

Searching Extended Emerging Patterns
for Supervised Classification

By

MSc. Milton García Borroto

Dissertation submitted in partial
fulfillment of the requirements for the

degree of

DOCTOR IN COMPUTER SCIENCE

at the

National Institute for Astrophysics, Optics and Electronics
September 2010,

Tonantzintla, Puebla, México

Advisor:

Dr. José Francisco Martínez Trinidad

© INAOE 2010
All rights reserved

The author hereby grants to INAOE permission to reproduce and to
distribute copies of this thesis document in whole or in part

Abstract

For many learning tasks, a high accuracy is not the only desired characteristic
of a supervised classifier; A classifier should also be easily comprehensible
by humans. Although higher classification accuracies are usually obtained at
the expense of classification comprehensibility, Emerging Pattern classifiers
are both accurate and easy to understand. The main contribution of this dis-
sertation is the introduction of two new kinds of emerging patterns, which are
more expressive than traditional definitions: Extended Crisp Emerging Pat-
terns and Fuzzy Emerging Patterns. The higher expressiveness of the new
patterns allows to obtain more accurate classifiers, without sacrificing under-
standability. Another contribution of this dissertation is a collection of algo-
rithms for mining the new kinds of patterns from a database containing mixed
and incomplete data. The classifiers proposed in this dissertation, using the
new patterns, attain higher accuracy than traditional emerging pattern clas-
sifiers and other comprehensible classifiers, while they are competitive with
state-of-the-art non-comprehensible classifiers. The selection of the classi-
fier to be used in a particular problem depends on the type of patterns (crisp
or fuzzy) the user wants to obtain, and a tradeoff among accuracy, complexity,
and classification speed.

iii

Resumen

Para muchas tareas de aprendizaje, una alta eficacia no es la única ca-
racterı́stica deseada; el clasificador debe ser fácilmente entendible por los
humanos. Aunque una elevada eficacia de clasificación se obtiene usual-
mente en detrimento de la comprensibilidad, los clasificadores basados en
Patrones Emergentes son eficaces y fáciles de entender. La contribución
principal de esta disertación es la introducción de dos nuevos tipos de pa-
trones emergentes, más expresivos que los tradicionales: Patrones Emer-
gentes Duros Extendidos y Patrones Emergente Difusos. El mayor nivel
de expresividad de estos patrones permite obtener clasificadores más efi-
caces. Otra contribución de este trabajo es una colección de algoritmos
para extraer los nuevos tipos de patrones a partir de una base de datos
que contiene datos mezclados e incompletos. Los clasificadores basados
en los patrones propuestos en esta disertación alcanzan mayor eficacia que
los clasificadores tradicionales basados en patrones emergentes y que otros
clasificadores comprensibles, siendo además competitivos con otros clasi-
ficadores del estado del arte que no son comprensibles. La selección del
clasificador a utilizar en un problema en particular depende del tipo de resul-
tado que el usuario desee obtener, ası́ como del compromiso deseado entre
eficacia, complejidad y velocidad de clasificación.

v

Acknowledgments

I would like to express my deep and sincere gratitude to my supervisor, Dr.
José Francisco Martı́nez Trinidad. His knowledge and his logical way of think-
ing have been of great value for me. His understanding, encouraging and
personal guidance have provided a good basis for the present thesis.

I wish to express my warm and sincere thanks to Dr. José Ruiz Shul-
cloper, Head of the Advanced Technologies Application Center, Havana, Cuba,
who introduced me to the field of pattern recognition. His ideals and concepts
have had a remarkable influence on my entire career in this field.

I would like to thanks the members of my revision committee for their
detailed review, constructive criticism and excellent advice during the prepa-
ration of this thesis. Thanks to Dr. Eduardo Morales Manzanares, Dr. Jesús
Ariel Carrasco Ochoa, Dr. Manuel Montes y Gómez, Dra. Marı́a del Pilar
Gómez Gil, and Dr. Gouzhu Dong.

I also wish to thank Mrs. Dania Yudith Suárez Abreu for revising the
English of my manuscript and publications.

During this work I have collaborated with many colleagues and friends
for whom I have great regard, and I wish to extend my warmest thanks to all
those who have helped me with my work in the Computer Science Laboratory,
Bioplants Center, Ciego de Ávila, Cuba.

I owe my loving thanks to my wife Yalily Talabera Dı́az and my daughters
Ana Flavia and Mariana. They have lost a lot due to my research abroad.
Without their encouragement and understanding it would have been impos-
sible for me to finish this work. My special gratitude is due to my mother,
fathers, and my families for their loving support. My loving thanks are due to
José Alberto and his family, Alejandro, and Toño. They let me own a happy
family in Mexico.

I also want to acknowledge the extraordinary help provided by all the
INAOE staff members.

Finally, I thank to the National Institute of Astrophysics, Optics and Elec-
tronics and to the CONACyT (doctoral scholarship 25275) for their support
during the doctoral studies.

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Description of the problem . 3
1.3 Thesis proposal . 6
1.4 Goals . 9
1.5 Main contributions . 10
1.6 Thesis organization . 11

2 Background 13
2.1 Basic concepts . 13
2.2 Classifier performance . 14
2.3 Classifier abstention . 16
2.4 Missing data, challenges . 17
2.5 Understanding classification results 17
2.6 Pattern vs Discriminative Pattern Mining 19
2.7 Measuring the Quality of a Discriminative Pattern Collection . . 21
2.8 Decision tree induction . 22

2.8.1 Handling Missing Values in Decision Tree Induction . . 25
2.9 Fuzzy logic . 26

2.9.1 Fuzzy Set Operators 27
2.9.2 Linguistic hedges . 28

2.10 Fuzzy Decision Tree Induction 29

3 Related work 31
3.1 Types of emerging patterns . 31
3.2 Algorithms for mining emerging patterns 34
3.3 Classification using emerging patterns 38

i

ii CONTENTS

3.3.1 Aggregation of support 38
3.3.2 Information-based classifiers 38
3.3.3 Bayesian classifiers . 39
3.3.4 Combined classifiers 39

3.4 Summary . 40

4 Extended crisp emerging pattern mining 41
4.1 Introduction . 41
4.2 Pattern expressiveness . 42
4.3 Logical Complex Mining . 44

4.3.1 Searching Procedure 45
4.3.2 Filtering Strategy . 48
4.3.3 Emerging Pattern-Based Classifier 49

4.4 Crisp Emerging Pattern Mining 51
4.4.1 Estimating the Minimal Support Threshold for CEPM . . 55

4.5 LCMine, CEPM, and Over-fitting 56
4.6 Cascading CEPM-based classifiers 56
4.7 Experimental Results . 59
4.8 Summary . 62

5 Fuzzy emerging pattern mining 65
5.1 Introduction . 65
5.2 Fuzzy Emerging Patterns . 66
5.3 Mining Fuzzy Emerging Patterns 67

5.3.1 Computational complexity 72
5.4 Classifying with Fuzzy Emerging Patterns 73
5.5 Experimental Results . 76

5.5.1 Algorithm Scalability 79
5.6 Summary . 79

6 Conclusions and future work 81
6.1 Conclusions . 81
6.2 Future work . 83
6.3 Publications . 83

Bibliography 85

Chapter 1

Introduction

1.1 Introduction

Supervised classification (or just “classification”) is the branch of Pattern
Recognition1 that finds the relations between object characteristics and a pre-
defined set of classes, in order to predict the class of unseen objects. In this
dissertation, we deal with problems where objects are described by mixed
and incomplete data [49], because they can be simultaneously described by
categorical and numerical features, with some feature values missing.

Because of the high diversity in pattern recognition problems, there is a
large collection of techniques to find these relations, and a huge amount of
class prediction algorithms based on them. Frequently, for a given problem,
the user has to test different techniques and algorithms to select the most
accurate. Nevertheless, there are some problems where a high accuracy is
not the only desired characteristic of a supervised classifier; the classifier
should be also easily understandable by the user.

In many domains, the lack of comprehensibility is an important drawback
that may cause a reluctance to use certain algorithms. For example, when
credit has been denied to a customer, the Equal Credit Opportunity Act of the
US requires the financial institution to provide the reasons why the applica-

1An introduction to Pattern Recognition can be found in Chapter 2.

1

2 CHAPTER 1. INTRODUCTION

tion was rejected; indefinite and vague reasons for denial are illegal [48]. In
some other fields, like medical diagnosis and mineral prospection, clarity and
explainability are key user requirements.

An important family of understandable classifiers are the emerging pat-
tern classifiers [59]. An emerging pattern (EP) is a discriminative pattern 2

whose support 3 increases significantly from a class to the remaining prob-
lem classes.

Example 1.1. The pattern
[
PetalLength > 1.9

]∧ [
PetalWidht > 1.6

]
is an

emerging pattern of the class iris-virginica in the popular Iris database, because
its support in the iris-virginica class is significantly higher than its support in the
remaining two classes.

Although emerging pattern classifiers are widely used, showing a compet-
itive behavior with respect to other classifiers [27], they have some serious
drawbacks.

First, before mining the emerging patterns, these classifiers apply data
discretization over all the numerical features. Data discretization is the pro-
cess of transforming numerical features into a finite set of intervals, causing
minimal loss of information [39]. However, discretizing individual features to
extract later emerging patterns could have the following problems:

• Emerging patterns are combinations of values that must appear si-
multaneously, thus discretizing individual features could deteriorate the
quality of the mined patterns. An example of this behavior appears
in Table 1.1, where for tae and wpbc databases, the SJEP classifier
(SJEPC) [27] transforms most numerical features into a single-valued
categorical feature. This way, those features are virtually discarded
because they can not appear in any pattern, and SJEPC cannot find
enough patterns to accurately classify query objects.

• Discretization usually defines crisp boundaries, therefore it is possible
that the object (3, 5) matches a pattern, while (3.001, 5) does not match
the same pattern.

2For a comprehensive introduction to patterns and discriminative patterns see Section 2.6.
3The support of a pattern is the amount of objects that fulfill the pattern.

1.2. DESCRIPTION OF THE PROBLEM 3

Table 1.1: SJEPC accuracy vs. 3-Nearest Neighbor accuracy in some UCI
Databases

Database Name SJEPC accuracy 3-Nearest Neighbor accuracy
autos 12.31 68.24
glass 20.43 69.03
iris 75.33 96.59
labor 55.33 90.67
lymph 43.86 85.90
tae 0 68.75
wpbc 0 72.30

Second, fast pattern miners use a simplified pattern representation. This
simplification usually results in huge amounts of patterns, even for problems
with few objects and features. Finally, filtering procedures are based on pat-
tern properties like minimality 4 or covering objects in a single class, which
may have two undesirable effects: deletion of important patterns and selec-
tion of useless patterns.

1.2 Description of the problem

Emerging patterns can capture useful contrasts among the problem classes
[19], therefore they can be used to predict the class of unseen objects. Pat-
terns covering a query object provide the classification support, in a simple
and easy to understand language. For this reason, emerging pattern clas-
sifiers are valuable tools to solve real problems in fields like Bioinformatics
[9, 56, 54], streaming data analysis [2], intruder detection [14], human activ-
ity recognition [33], anomaly detection in network connection data [11], rare
event forecasting [31], and mining spatio-temporal relationships [12].

There are two families of Emerging Pattern-based classifiers, according
to the stage where the pattern extraction takes place. The first family, intro-
duced by Li et al. [43], searches in the training sample the patterns that match
the query object during the classification stage. This way, no global pattern
searching process takes place during the training stage. The second family,
introduced by Dong and Li [19], searches all the patterns in the training stage.

4Minimality is defined over the subset inclusion relation.

4 CHAPTER 1. INTRODUCTION

Classifiers in the first family are appropriate to handle dynamic databases,
because the addition or deletion of an object to the database could com-
pletely change all existing patterns. Finding all the emerging patterns in large
databases could take a prohibitive amount of time, so these classifiers are
also more scalable than those in the second family. Nevertheless, they have
some serious drawbacks:

• Repeating the searching process for every query object could make the
classification stage prohibitively slow. Additionally, the classifier cannot
apply any global pattern filtering or selection strategy.

• For numerical features, this family of classifiers finds items with the form
Feature ∈ [value − α, value + α], being α a global threshold specified
by the user. The determination of the α value, which is the same for all
features [43], is a complex and difficult task.

Because of their drawbacks, the classifiers in the first family are not con-
sidered in this dissertation. Therefore, we will focus on the second family.

Extracting emerging patterns from a training sample is challenging, due
to the following reasons:

1. The downward closure property5 used for frequent itemset discovery
does not hold for EPs, so algorithms like Apriori cannot be used.

2. In high-dimensional databases, there are many potential emerging pat-
tern candidates. The problem of finding all emerging patterns is proved
to be an NP-hard problem [65].

3. Continuous features cannot be rationally compared by the equality ope-
rator. For example, the values 3, 2.999 and 3.001 are not equal, but
they can be probably found in the same pattern. On the other hand, a
global discretization of numerical features could seriously degrade the
classification accuracy, because very similar values could be assigned
to different discrete values.

5A property fulfills the downward closure when, for every item X, if X does not fulfill the
property, all other items more particular than X do not fulfill the property either. Section 2.6
contains more details about pattern mining and the downward closure.

1.2. DESCRIPTION OF THE PROBLEM 5

4. The algorithms for extracting emerging patterns have a high sensitivity
to the minimal support threshold value, therefore it could be very hard
for the user to select a good value. The minimal support threshold
is the minimal amount of objects that should support a pattern to be
considered useful.

Most algorithms for emerging pattern mining have the goal of finding the
patterns that satisfy a desired property: being supported by a single class,
minimality over subset inclusion, or tolerance to noisy objects [27]. These
algorithms have the following general steps:

1. Selection of the minimal support threshold µ. The following question
arises:
– How can we infer a good µ value from the data?

2. Global discretization of numerical features. The following question arises:
– How can we avoid the global discretization of numerical features?

3. Representation of the transformed objects using a data structure6 and
traversing the structure to find all the emerging patterns. This is the
slowest step in the algorithm, because the more the objects, the more
complex and larger the structure. The following question arises:
– How can we extract a representative collection of high quality emerg-
ing patterns without a time consuming structure traversal?

4. Pattern filtering. Common pattern filtering criteria include pattern min-
imality7, pattern maximality, and reduced redundancy in object cover-
age8. The following question arises:
– How can we filter the pattern collection to obtain a high-quality non-
redundant subset of patterns, without sacrificing classifier accuracy?

5. Classification of unseen objects. The following question arises:
– How can we create more accurate classifiers based on the mined
pattern?

6Usually a tree-like representation of the objects in the training set.
7Over the support subset inclusion.
8Objects covered by the patterns.

6 CHAPTER 1. INTRODUCTION

1.3 Thesis proposal

Algorithms for mining emerging pattern use a very simplified language to rep-
resent the patterns:

∧[
Feature = value

]
. That is why all numerical features

are discretized a priori, since they will be compared using the equality ope-
rator. Using this reduced language allows to use all the tools from frequent
pattern discovery, a well formalized and mature branch of Data Mining. How-
ever, doing so could degrade the classifier accuracy, as the examples shown
in Table 1.1.

As the hypothesis of this dissertation, we claim that it is possible to ex-
tract emerging patterns from a collection of diverse decision trees induced
from the training data. This method avoids the global discretization step, al-
lowing the patterns to be expressed with a richer set of properties that include
operators like <,≥,,. Patterns using an extended set of properties are more
expressive9, because they can express more selective properties than those
used in previous emerging pattern classifiers. Classifying with these more ex-
pressive patterns is more accurate than previous comprehensible classifiers,
and at least as accurate as state-of-the-art non-comprehensible classifiers.

In order to demonstrate our hypothesis we introduce two new types of
emerging patterns: Extended Crisp Emerging Patterns and Fuzzy Emerging
Patterns. For mining these patterns, we introduce a family of mining methods,
which can be described by the following steps:

1. Induce a diverse decision tree.

2. Extract patterns from the induced decision tree. Each pattern corre-
sponds to the conjunction of the properties from the root node to a leaf
node.

3. If stop condition is not met, return to Step 1.

4. Merge the patterns extracted from all induced decision trees.

5. Filter patterns.

9A formal definition of pattern language expressiveness can be found in Section 4.2.

1.3. THESIS PROPOSAL 7

Our mining methods do not include a global discretization step, because
they discretize only feature values appearing in the objects that belong to
each tree node. The proposed mining method have the following parameters:

• Type of decision tree to be built: fuzzy or crisp.

• Induction algorithm to build the decision trees.

• Method to obtain diverse decision trees. Classical methods to induce
decision trees obtain a single tree, which is not enough to find a repre-
sentative collection of patterns.

• Stop condition. This condition evaluates if the patterns mined so far are
representative enough for the database.

Traditional emerging pattern miners are able to find all the emerging pat-
terns in a database. Nevertheless, decision tree-based miners do not usually
find all the emerging patterns, but commonly obtain a good collection of high-
quality patterns. This is supported by the following reasons:

• In databases containing numerical features, there is a finite number
of traditional emerging patterns, but an infinite number of extended
emerging patterns. Then, it is impossible to mine all the patterns.

• Decision trees split the database using the most discriminative prop-
erties first. If the method for obtaining diversity follows this rule, the
patterns mined are the most discriminant among all the patterns. So,
they are the best patterns for classification.

• The experimental results presented in this dissertation show that deci-
sion tree-based miners are more accurate than traditional miners over
a significant database collection.

The first algorithm introduced in this dissertation is LCMine (Logical Com-
plexes mining), which uses a collection of C4.5 [58] decision trees10. To gen-
erate diversity among the trees, LCMine selects different candidate splits at
each tree level. LCMine filters the mined patterns using a novel algorithm,
which significantly reduce the redundancy in the patterns coverage.

10An introduction to decision tree induction can be found in Section 2.8.

8 CHAPTER 1. INTRODUCTION

The second introduced algorithm is an enhanced version of LCMine, na-
med CEPM (Crisp Emerging Pattern Mining). The main improvement in
CEPM is to use the patterns mined so far to guide the construction of subse-
quent decision trees. To attain this, CEPM weights all the objects in the train-
ing sample after each iteration. Higher weights are assigned to objects which
are not covered by the current set of patterns, while weights close to zero
are assigned to objects covered by many patterns. The decision tree built
on each iterations is the one that better represents the objects with higher
weights.

One of the key parameters of every pattern based classifier is the minimal
support threshold µ; This threshold indicates the minimal amount of objects
that must support a pattern in order to be considered as a useful pattern.
Finding a good value for µ is a hard task for the user, because the quality
of the patterns is very sensitive to the µ value. That is why CEPM finds an
accurate estimation of the minimal support threshold µ, by testing different
values decrementally. The rationale of this procedure holds in the following
property: if we classify using patterns mined with lower µ values, we obtain
less accurate classifiers, but having lower abstention levels11. Following this
property, CEPM infers two values:

• µini: a high enough value, such that any classifier built with µ > µini is
inaccurate.

• minAbst: minimal abstention level we can expect to attain with the cur-
rent dataset.

Then, CEPM starts testing µ values decrementally, starting from µini, until the
built classifier attains an abstention level less than or equal to minAbst. As
a consequence of this procedure, CEPM returns a set of emerging patterns
with the highest support value associated with the lowest expected abstention
level.

Additionally, we also introduce CascadeCEPM, a new method for building
cascades of CEPM classifiers. This cascade is as accurate as CEPM classi-
fier, but it is faster for most objects. In CascadeCEPM, the topmost classifier12

is built with the highest µ value, while the bottommost classifier is built using

11A definition of classifier abstention can be found in Section 2.3.
12In a classifier cascade, the topmost classifier is the first one to be evaluated.

1.4. GOALS 9

the lowest µ value. This way, this ensemble combines the higher accuracy of
classifying with patterns having high support thresholds with the lower levels
of abstention of classifying with patterns mined using low support thresholds.

The new Fuzzy Emerging Patterns (FEP) are patterns formed by fuzzy
selectors [Feature ∈ FuzzyS et], joined by a fuzzy AND operator. This way,
an object satisfies a given pattern to a certain extent, according to the de-
gree the object feature values satisfy the property expressed in the FEP. To
efficiently extract fuzzy emerging patterns from a database, we use a set of
fuzzy decision trees, induced with a new algorithm that includes the use of
linguistic hedges. These hedges modifies the initial fuzzy discretization to
satisfy the semantics of the classes in the training sample [32]. Finally, we
propose a new classifier based on fuzzy emerging patterns, which uses a
novel aggregation mechanism for the pattern votes.

1.4 Goals

To answer the questions enunciated in the description of the problem and to
demonstrate the hypothesis, this dissertation has the following goals:

General Goal

To develop methods to mine more expressive emerging patterns from a data-
set with mixed and incomplete data, in order to obtain pattern-based classi-
fiers more accurate than other comprehensible classifiers and as accurate as
non-comprehensible state-of-the-art classifiers.

Specific goals

G1. To extend the concept of emerging pattern in order to make the patterns
more expressive, considering both crisp and fuzzy cases.

G2. To develop algorithms for extracting extended crisp emerging patterns
from databases with mixed and incomplete data.

10 CHAPTER 1. INTRODUCTION

G3. To develop an algorithm for inferring a good value of the minimal support
threshold.

G4. To develop an ensemble of emerging pattern based classifiers.

G5. To develop an algorithm to extract fuzzy emerging patterns from a data-
base with mixed and incomplete data.

G6. To develop classifiers more accurate than traditional pattern-based clas-
sifiers, using the mined emerging patterns.

1.5 Main contributions

The main contribution of this dissertation is the introduction of two kinds of
emerging patterns, which are more expressive than the traditional patterns.
The higher expressiveness of the patterns allows to express more selective
properties, obtaining more accurate pattern-based classifiers. We also intro-
duce a formal definition for expressiveness of a family of emerging patterns.

We introduce two new extended emerging pattern mining algorithms with-
out global discretization of numerical features. Both extract patterns from a
collection of decision trees, using a special pattern mining procedure during
the tree induction. The first algorithm, LCMine, generates a fixed amount of
diverse decision trees, while the second, CEPM, uses a novel object weight-
ing scheme. For CEPM, we introduce an algorithm to calculate a good value
of the minimal support threshold.

We also propose a cascade of emerging pattern classifiers. This cas-
cade combines the higher accuracy of classifying with patterns mined using
higher support thresholds with the lower levels of abstention of classifying
with patterns mined using lower thresholds.

Additionally, we introduce the concept of Fuzzy Emerging Pattern, and a
new algorithm for mining fuzzy emerging patterns from a database with crisp
classes. This algorithm extracts patterns from a set of fuzzy decision trees,
induced with a new algorithm that includes the use of linguistic hedges. We
propose a new classifier based on fuzzy emerging patterns, which includes
a novel mechanism for the aggregation of single pattern votes.

1.6. THESIS ORGANIZATION 11

The classifiers built using both crisp and fuzzy emerging patterns attain
higher accuracy than traditional emerging pattern classifiers and other com-
prehensible classifiers. They are also competitive with state-of-the-art clas-
sifiers that are not comprehensible. In a real problem, the selection between
fuzzy and crisp patterns depends on the type of model desired by the user
and a tradeoff between accuracy, complexity, and classifier training speed.

1.6 Thesis organization

Chapter 2 introduces a background of the main topics that are necessary to
understand the contents of this dissertation.

Chapter 3 contains a critical review of the state of the art about emerging
pattern mining and classification, which is presented in three parts. The first
part reviews the different kinds of emerging patterns, the second part reviews
the algorithms for mining the patterns, and the last section reviews emerging
pattern classification algorithms.

Chapter 4 presents five novel results. First, the formalization of the con-
cept of emerging pattern language and emerging pattern language expres-
siveness. Second, the Logical Complexes Mining algorithm (LCMine), an
initial solution for mining more expressive patterns from a database with nu-
merical and categorical features. Third, the Crisp Emerging Pattern Mining
algorithm (CEPM), an improved version of LCMine. Fourth, the novel al-
gorithm for computing an accurate value for the minimal support threshold
used in CEPM. Fifth, a new cascade of emerging pattern classifiers, which
combines the higher accuracy of classifying with patterns mined using higher
support thresholds with the lower levels of abstention of classifying with pat-
terns mined using lower thresholds. This chapter ends with the experimental
results, where we compare our classifiers against state-of-the-art compre-
hensible and non-comprehensible classifiers.

Chapter 5 introduces the concept of Fuzzy Emerging Pattern (FEP) and
presents a novel algorithm for mining these patterns from a database with
crisp classes. Additionally, this chapter contains a novel pattern based clas-
sifier, based on a graph organization of the mined FEPs. This chapter ends
with the experimental results, where we compare the FEP classifier against
state-of-the-art comprehensible and non-comprehensible classifiers.

12 CHAPTER 1. INTRODUCTION

Chapter 6 enunciates the conclusions of this dissertation and gives future
directions of research.

Chapter 2

Background

2.1 Basic concepts

Pattern recognition is about assigning labels to objects, which is known as
classification [42]. Usually, objects are described by a set of measurements
called features or attributes. Although there are many types of features used
in pattern recognition problems, the most common are numerical (integer or
real) and categorical (ordinal1 or cardinal.). Some authors [60, 49] use the
term “Mixed Data” in those cases where objects are described by more than
one type of feature. A collection of objects belonging to a pattern recognition
problem is usually named dataset or database.

According to the knowledge we have a priori about the object labels, there
are three families of classification algorithms:

Supervised The user has an object collection with known labels or classes.
Based on this dataset, named training sample, the classifier must cre-
ate an internal structure that represents the relationships between the
feature values and the known class. This structure is later used to pre-
dict the label of unseen objects.

1A feature is considered ordinal if its values are ordered. Usually they represent different
degrees of fulfillment of a property, like ‘high’, ‘medium’, and ‘low’.

13

14 CHAPTER 2. BACKGROUND

Unsupervised The user wants to group a collection of objects in clusters ac-
cording to some predefined criteria. That is why this process is fre-
quently named clustering. The name unsupervised emphasizes that
there is no previous knowledge about the labels of any object in the
dataset.

Partially supervised In some supervised classification problems with large
databases, the user knows the label of a small subset of the training
sample. Using this information, the task involves to infer the correct
class of most training objects, using later this knowledge to infer the
class of unseen objects.

In this thesis, we focus on supervised classification algorithms. Most su-
pervised classification algorithms has two stages:

• Training. During the training the classifier uses the training sample to
create internal structures containing a representation of the relations
between feature values and object labels. This structures could be as
diverse as the whole training sample (Nearest neighbor classifiers [17]),
a tree-like structure (Decision trees [58]), a weighted graph (Neural net-
works [36]), or a projection of the feature tuple into a higher dimensional
space (Support vector machines [15]).

• Classification. During the classification the internal structures are used
to infer the class of unseen objects.

In general, according to the type of the internal structures and the way
they are built, we have different classification paradigms. There is a gen-
eral consensus that there is no globally best paradigm. The selection of the
best paradigm for a given dataset is still an open problem. Frequently, the
user tests different algorithms on a testing sample, and selects the one that
performs better.

2.2 Classifier performance

The performance of a classifier is a compound characteristic, whose most
important characteristics are classification speed and classification accuracy.

2.2. CLASSIFIER PERFORMANCE 15

Classification speed is measured in both stages. On static databases2,
training speed is not crucial, because this stage is applied only once. On the
contrary, on dynamic databases3 training speed is usually very important.

Classification accuracy is somehow harder to calculate, because we can-
not test a classifier with all possible inputs. That is why we need to estimate
how accurate a classifier is, usually based on counting the errors that the
classifier makes on a sample database. This database is usually named
testing database. Selecting a testing database is a complex task due to the
following reasons:

• The user usually has a small collection of objects, compared with the
total number of objects in the universe.

• The user needs to use as much data as possible to train the classifier,
and also as many objects as possible to test the performance, for an
accurate error estimation.

• Using the same data for training and testing could make the estimation
to be optimistically biased. This way, we can find a classifier to be accu-
rate, because it could perfectly learn the training data, but the classifier
might fail on many unseen objects4.

There are many sampling methods to select the training and testing sam-
ples, with their respective strong and weak points:

Resubstitution It uses the whole database for training and testing. As we
have seen before, the resubstitution error could be very optimistically
biased.

Data shuffle The database is randomly split into training and testing sam-
ples, using a fixed percent for each one. The classifier is trained with
the training sample and evaluated using the testing sample. This pro-
cess is repeated and the obtained accuracies are finally averaged. Ac-
curacy results using data shuffle are usually pessimistically biased [42].

2Databases where objects cannot be inserted or deleted after training.
3Databases where objects can be inserted or deleted after training.
4This problem is known as overfitting.

16 CHAPTER 2. BACKGROUND

Cross validation The user chooses an integer k (usually 10) and randomly
divides the database in k subsets of equal size. Each subset is itera-
tively used for testing, while the union of the remaining k − 1 subsets is
used for training. Finally, the obtained accuracies are averaged. This
method is the most commonly used for comparisons among classifiers.

Leave-one-out A variant of cross validation, using k = |Database|. This way,
a single object is tested on each iteration. This method is not frequently
used because it is very time consuming, and its results could be opti-
mistically biased.

2.3 Classifier abstention

There are some situations where a classifier cannot safely assign a class to
a query object; we name this situation as classifier abstention. There are two
different types of classifier abstention:

Abstention by tie The classifier has the same amount of evidences for two or
more different classes, and it cannot break the tie. A common example
of this behavior can be found in a nearest neighbor classifier [17] when
the query object has the same amount of neighbors from two different
classes, or in a neural network [36] when the level of the output neurons
for two classes is the same.

Abstention by lack of evidence The classifier has no evidences to infer the
query object class. This behavior can appear in a decision tree clas-
sifier [57], when the query object has a feature value different to those
assigned to child nodes in a decision node.

Abstention by tie is so frequent that most classifiers can have it. It is
frequently solved by returning a random class among the tied classes. Ab-
stention by lack of evidence is less frequent, and it can be found mostly in
pattern based classifiers, like decision trees and emerging pattern classifiers
[59]. It can be solved returning the majority class, or a random class among
all the problem classes.

Common solutions to classifier abstention usually hide the classifier in-
ability to classify some objects in the domain, and introduces a random com-

2.4. MISSING DATA, CHALLENGES 17

ponent in classifier comparisons. On the other hand, it is very hard to con-
vince a user about using these solutions in a real problem. A more rational
approach, in our opinion, is to report the abstention, so that the user can use
a different classifier to obtain an accurate result.

2.4 Missing data, challenges

There are cases where datasets contain feature values that are unknown
or missing. Common examples include ”Don’t know” and ”Refused” values,
unintelligible answers to written questionaries, and unavailable medical test
results.

Missing data5 arise many difficulties in scientific research because most
data analysis procedures were not designed for them [61]. The most com-
mon approach to handle missing data is data editing, which lends an ap-
pearance of completeness. Unfortunately, estimating a missing value may
do more harm than good, producing answers that are biased, inefficient, and
not reliable [61].

Another common strategy deletes objects and features containing miss-
ing values. This strategy can be hard to apply to some problems where most
objects contain missing values. Medical diagnose databases, for example,
contain the results of the tests applied to each patient. Unfortunately, dif-
ferent tests can be applied to different patients, and many test results are
missing. Another important drawback of deletion is that the discarded values
frequently contain useful information.

2.5 Understanding classification results

For many learning tasks, a high accuracy is not the only desired characteristic
of a supervised classifier; a classifier should also be easily understandable
by the users. “Symbolic” learning systems like decision trees or emerging
patterns are usually much more amenable to human comprehension than

5Also named ‘incomplete data’ by some authors.

18 CHAPTER 2. BACKGROUND

classifiers that use complex mathematical models, like Neural Networks and
Support Vector Machines [16].

In many domains, the lack of comprehensibility is an important drawback
that may cause a reluctance to use the model. For example, when credit
has been denied to a customer, the Equal Credit Opportunity Act of the US
requires the financial institution to provide the reasons why the application
was rejected; indefinite and vague reasons for denial are illegal [48]. In some
other fields, like medical diagnosis and mineral prospection, clarity and ex-
plainability are key constraints.

Higher classification accuracies are frequently obtained at the expense of
classification comprehensibility:

• In neural networks [36] (NN), after training the classifier, the user ob-
tains the connection weights, but those weights do not have a clear
interpretation in terms of features or feature value relations. Moreover,
when classifying with the trained NN, the level of output neurons brings
no information about why the object was assigned to the resultant class.
So, neural networks are limited in this respect, since they are usually
difficult to interpret after training [16].

• In k-Nearest Neighbor classifiers [17], the user could know the objects
that determine the classification, but it is necessary a deep understand-
ing of the distance function and the representation space in order to
obtain a meaningful interpretation of the result.

• In a support vector machines [15], the classifier is described as a com-
plex mathematical function, which is rather incomprehensible for hu-
mans [48].

In most comprehensible classifiers like KORA-3[8], emerging patterns
[20], decision trees [58], and decision forest [37], the user can understand
the model found by the classifier in the training stage. This understanding
is very useful to explain the classification results. For example, in a deci-
sion tree [41], any path from the root to a leaf determines a conjunction of
properties appearing mostly in the leaf-associated class, which explains the
classification. Therefore, the disjunction of the properties, determined by all
the paths from the root to the leaf nodes of a given class, forms an empirical
characterization of the class. This empirical characterization of classes is the

2.6. PATTERN VS DISCRIMINATIVE PATTERN MINING 19

key for classifying query objects. A similar reasoning is applicable to decision
forests [37], where each tree gives support to a certain class, and the inte-
gration strategy provides a joint explanation. It is worth to mention that using
a large number of trees can degrade understandability.

KORA-3 classifier [8] introduces another way to obtain an empirical char-
acterization of classes. This algorithm exhaustively searches the database
finding subdescriptions6 of three feature values that appear only in a single
class. The subdescriptions appearing in a query object are evidences about
the object class, and they are aggregated to obtain the final classification.
Emerging pattern classifiers [20] use similar subdescriptions, but they are
mined with optimized procedures.

The practical problem is how to find an empirical characterization of the
classes in a supervised classification problem. It is important to underline
that “empirical” implies not only the dependency with respect to the training
sample, but also that the obtained characterization of the classes is not a
universal truth. Every algorithm for this task obtains an approximation of the
truth based on the training data, using a particular procedure to obtain this
characterization.

2.6 Pattern vs Discriminative Pattern Mining

A pattern is an expression, defined in a language, which describes a col-
lection of objects [55] . Patterns are usually expressed as combinations of
feature values, like (Color = green, S ex = male, Age = 23) or as logical prop-
erties, like [Color = green] ∧ [S ex = male] ∧ [Age > 23]. We say that the
pattern P covers the object x, or the object x supports the pattern P, if the
object fulfills the property expressed by the pattern. In this work, we de-
note this relationship as P b x7. A useful characteristic of a pattern P is the
amount of objects from a collection X that supports P, which is called the
pattern support and it is denoted by support(P, X).

In a supervised classification problem, we say that a pattern is discrimi-

6Bongard uses the term subdescription to name this partial object descriptions.
7If the patterns are expressed as itemsets, the "covers" relation becomes the traditional subset

relation.

20 CHAPTER 2. BACKGROUND

native if it includes properties which helps to differentiate between classes8.
In general, many comprehensible classifiers use discriminative patterns for
classification and classification support [30].

There are different ways to represent discriminative patterns in classi-
fiers, although they could be implicit in some classifiers. In a decision tree
[57] or forest [37], the paths from the root to the leaves are implicit discrimi-
native patterns expressed in conjunctive forms. In a rule-based system [34],
the antecedents of the rules that imply the class are discriminative patterns.
KORA’s complex features [8] are explicit discriminative patterns, expressed
as conjunctions of simple properties.

An important type of discriminative patterns is the emerging pattern. A
discriminative pattern is an emerging pattern if its support is significantly
larger on a class than on the others [19]. Additionally, the support of a dis-
criminative pattern on its class must be greater than a certain minimal support
threshold µ. The intuition behind using a minimal support is that an emerging
pattern with low support can be noisy or casual, which could be harmful for
the classification [27].

There are many algorithms to search patterns in a dataset. Most of them
are based on restrictions that alleviate the computational complexity of using
exhaustive methods. The most important restriction reported is the down-
ward closure [73]. A property X satisfies the downward closure restriction if,
for every pattern P, if P fulfills X, then any pattern more particular than P also
fulfills X.

Example 2.1. The property X = “P has support below n” satisfies the downward
closure, because if a given pattern P fulfills X, a more particular pattern P′ has
a lower support, so it also fulfills X. For example, if P = [Age > 20] has support
n, the more particular patterns P′ = [Age > 30] and P′′ = [Age > 20]

∧
[S ex =

male] must have support lower or equal to n, so P′ and P′′ also fulfills X.

Searching discriminative patterns in a training sample is the key proce-
dure in many comprehensible classifiers, even though it may be implicit. If
a pattern is discriminative for a single class, it can cover at most a limited
amount of objects in other classes. A more particular pattern covers more
objects in its class, but it also covers more objects in other classes and the

8Discriminative patterns were named discriminative regularities in [30].

2.7. MEASURING THE QUALITY OF A DISCRIMINATIVE PATTERN
COLLECTION 21

limit could be exceeded. That is why discriminative patterns do not fulfill the
downward closure and they cannot be mined using algorithms like Apriori
[34]. In addition, there could be too many candidates in high dimensional
databases and exhaustive solutions may be too costly because of the size of
the search space [20].

2.7 Measuring the Quality of a Discriminative Pat-
tern Collection

After training, the classifier quality is proportional to the quality of the internal
structure it uses to represent the relationships found in the training sample.
In the case of discriminative pattern classifiers, the classifier quality depends
tightly on the mined pattern quality.

There is no generally accepted methodology to measure the quality of
a discriminative pattern collection. Nevertheless, there are some desired
properties the collection should fulfill:

Discriminability Every pattern should cover a significant amount of objects
in a class, and few objects in the remaining classes.

Simplicity There should be few patterns, at least an order of magnitude less
than the number of objects. Violating this property could seriously de-
grade the classifier comprehensibility.

Non-redundancy Each pattern should contain some new knowledge, with re-
spect to the remaining patterns. Redundant patterns could present re-
dundant evidence on a query object, biasing the classification towards
a single class.

Generality Patterns covering large amount of objects are usually less noisy.
On the contrary, too particular patterns could exist due to chance.

Algorithms for mining discriminative patterns follow two different strate-
gies for obtaining a high quality pattern collection:

• Extract patterns belonging to a particular family:

22 CHAPTER 2. BACKGROUND

– Patterns covering objects in a single class, like jumping emerging
patterns, used in the DEEPs classifier [44].

– Minimal patterns with respect to the subset inclusion of their re-
spective properties, used in the JEPC classifier [27].

• Filter a large collection of patterns, looking for a subset with the de-
sired properties. This strategy is used in the LCMineC classifier [30],
described later in this dissertation.

One of the most popular approaches to measure the quality of a pattern
subset, followed in this dissertation, is the accuracy of a classifier built using
this subset. Nevertheless, it is important to remember that the accuracy of the
classifier is affected by many other parameters, like the support aggregation
mechanism and the pattern organization.

2.8 Decision tree induction

In this section, we present an introduction to decision tree induction algo-
rithms, because the algorithms introduced in this dissertation are based on
them.

A tree is a directed acyclic graph, where all nodes have a single ancestor,
except a distinctive node named root, which has no ancestors. Trees are
very popular data structures used for representing hierarchical information.
In pattern recognition, there is a supervised classifier named decision tree,
which uses a particular type of tree as internal structure. Figure 2.1 contains
an example of a decision tree, built using a database with three features
(Length – numerical, Color – categorical, and Fly – boolean) and two classes
(Bad and Good).

To classify a query object a decision tree traverses the inner tree, starting
in the root node towards the leaf nodes. A decision tree contains two types
of nodes:

Decision nodes All nodes except the leaf nodes. These nodes contain a
property assigned to each child node. The child node is selected ac-
cording to the property fulfilled by the query object.

2.8. DECISION TREE INDUCTION 23

Figure 2.1: Example of a decision tree with three features and two classes: Good
and Bad

Class nodes Each leaf node contains a class, which is assigned to the query
object if the traverse ends in this node.

Example 2.2. Suppose we want to use the decision tree of Figure 2.1 for classi-
fying the following object:

o = (Length = 50,Color = White, Fly = true)

We start by traversing the tree in the root node, testing the properties Length >

30 in the left child and Length ≤ 30 in the right child. As o has Length = 50,
we select the left child as the next node in the traversing. Likewise we choose
consecutive properties Color = White and Fly = true, arriving to the leaf node
with class Bad.

There are two main strategies to build decision tress9, which are known as
bottom-up and top-down. In the first iteration, the bottom-up strategy starts
grouping similar objects in nodes. In later iterations a common parent is
assigned to similar nodes, until a single parent node is built. This way we
obtain a decision tree, containing a hierarchical collection of clusters. Bottom-
up strategies are not considered in this dissertation.

The top-down strategy starts with the whole collection of objects as a sin-
gle group, and tries to find the best property to split this collection into subsets
(usually two), according to a predefined criterion. The obtained subsets are
recursively split with the same algorithm, until certain stopping criterion is

9Building decision trees is commonly known as inducing decision trees.

24 CHAPTER 2. BACKGROUND

met. The property hierarchy is then used to build the decision tree. A general
algorithm to build a decision node appears in Algorithm 2.1.

Data: T – objects
Result: N – new tree node created
if Stopping criterion is met then

return N ← new class node, with the majority class in T
end
CandidateS plits← All properties that split T in different subsets ;
BestS plit← Split in CandidateS plit that maximize the quality criterion ;
N ← New decision node using property BestS plit ;
Ti ← Subsets of T according to property BestS plit ;
foreach Ti do

BuildNode(Ti)
end
return N;

Algorithm 2.1: Pseudocode of the algorithm BuildNode to recursively build
a decision tree

The following parameters have to be defined in order to build a decision
tree:

Stopping criterion Stopping criterion is usually composed of different simple
criteria like the following:

• The node is pure enough to be considered as a class node.

• The node has too few objects, so it is worthless to continue ana-
lyzing it.

Candidate split generation Candidate splits are created based on the fea-
ture values of the objects in T . To consider a feature, it must have at
least two different values in the node. According to the feature types,
the following candidate splits can be generated, among others:

• Each categorical value v generates a binary candidate split, using
the properties value = v and value , v.

• Each categorical feature with k values vi generates an n-ary split
with the properties value = v1, value = v2, . . ., value = vk.

• Each numerical feature can generate many binary candidate splits
with properties value < vi and value ≥ vi, according to the collec-
tion of cut points vi. There are many ways to find a good cut point,

2.8. DECISION TREE INDUCTION 25

but it is usually the midpoint between two values belonging to ob-
jects of different classes.

Quality criterion to evaluate splits This criterion assigns each split a quality
rating according to some desired characteristics like node pureness
and tree balancing. The following equation is used in CART decision
trees [10] for evaluating binary splits:

∆i(N) = i(N) − P(N1)· i(N1) − P(N2)· i(N2) (2.1)

where i(N) is the impurity of the tree node N and P(Ni) is the proba-
bility of an object to be assigned to node Ni, which is estimated as the
division of the amount of objects in Ni by the amount of objects in N.
The impurity of a node N measures how close the class distribution of
the objects in N is to be a pure distribution. A common way to measure
this impurity is the entropy:

i(N) = −
c∑

j=1

P j log P j

where c is the number of classes and P j is the probability of a random
object in node N to belong to class C j.

2.8.1 Handling Missing Values in Decision Tree Induction

Properly handling missing values is a key component of a decision tree in-
duction algorithm. A straightforward solution is, for each candidate split using
feature Xi, to ignore the objects with this feature value missing. Nevertheless,
this solution can make a candidate split to be selected, even if it includes a
property containing a feature that is missing in most objects. The resultant
tree is unable to classify a large amount of objects10.

There are basically two strategies to handle missing values in the evalu-
ation of a candidate split [58], which penalize splits that contain features with
missing values:

10There are techniques to classify an object with a missing value in the feature contained in
a decision node. Nevertheless, theses techniques are frequently less accurate than building the
decision tree using properties with less missing values.

26 CHAPTER 2. BACKGROUND

• Grouping the objects with missing values in a virtual node11 with maxi-
mum impurity. According to (2.1) this virtual node penalizes the quality
criterion proportionally to the amount of objects in the virtual node.

• Penalizing the quality criterion evaluation using the probability of finding
a non-missing value. This way, the more missing values present in the
selected attribute, the lower value of the quality criterion index.

2.9 Fuzzy logic

Fuzzy logic [72] is a form of multi-valued logic to deal with approximate rea-
soning rather than precise. In contrast with “crisp logic”, fuzzy logic variables
are not constrained to two truth values as classical propositional logic; the
degree of truth of a fuzzy statement can range between 0 (false) and 1 (true)
[53].

Fuzzy set theory is a generalization of traditional set theory, using fuzzy
logic to define the classical operators like belong, union, and intersection. In
this section, we present some concepts of fuzzy set theory, containing the
elements used in this dissertation.

Let us consider a universe set �. A fuzzy set F is characterized by a
membership-degree function f : � → [0, 1] that associates to every object
o ∈ � the degree of membership to the fuzzy set F. Fuzzy sets help us to
model concepts with some degree of uncertainty.

Example 2.3. Consider, in the universe of temperatures, the set of hot temper-
atures. Using crisp set theory we must select a cut point, and consider any
temperature above that point as hot, and any temperature below that point as
not hot. This is clearly contrary to human interpretation of the concept of Hot,
because a very small variation, can make a temperature abruptly change from
hot to not hot.

Figure 2.2 shows the fuzzy sets Hot, Warm, and Cool. As we can see, small
variations in the temperature value are associated with small variations in the
membership values. For example, temperatures below 0 °C are completely cool,

11Virtual nodes are discarded after tree induction, so they are not nodes in the resultant deci-
sion tree.

2.9. FUZZY LOGIC 27

Figure 2.2: Fuzzy sets Hot, Warm, and Cool defined in the universe of tempera-
tures

so they have membership equal to 1 for the cool fuzzy set; temperatures above
50 °C are not cool at all, so they have membership equal to zero for the cool
fuzzy set; when the temperature moves from 0 to 50 °C , the membership softly
decreases from 1 to 0.

2.9.1 Fuzzy Set Operators

Fuzzy set operators UNION, INTERSECTION, and COMPLEMENT have
similar semantics compared to their crisp versions, but using a fuzzy versions
of logical operators OR, AND, and NOT, respectively:

UNION The union of two sets F
⋃

G contains all the elements that belong to
F OR to G. Fuzzy OR operators (or T-Conorms) assign to each object
a membership to F OR G which is not smaller than the memberships to
F and G. The most popular fuzzy OR operators are the following:

•
(
F OR G

)
(x) = max

{
F(x),G(x)

}

•
(
F OR G

)
(x) = min

{
F(x) + G(x), 1

}

INTERSECTION The intersection of two sets F
⋂

G contains all the ele-
ments that belong to F AND to G. Fuzzy AND operators (or T-Norms)
assign to each object a membership to F OR G which is not greater
than the memberships to F and G. Popular fuzzy AND operators are
the following:

28 CHAPTER 2. BACKGROUND

•
(
F AND G

)
(x) = min

{
F(x),G(x)

}

•
(
F AND G

)
(x) = F(x) ·G(x)

COMPLEMENT The complement of a set ¬F contains all the elements that
are NOT in F. Fuzzy NOT operators assign to each object a member-
ship complementary to the membership to F. The most popular NOT
operator is

(
NOT F

)
(x) = 1 − F(x).

It is easy to see that some properties of crisp set theory, inherited from
Boolean logic, do not hold for fuzzy sets:

• F
⋃¬F , �

• F
⋂¬F , ∅

2.9.2 Linguistic hedges

Linguistic hedges modify fuzzy sets in the same way that adverbs modify ad-
jectives in English. It is important to highlight that a new fuzzy set is obtained
after applying a linguistic hedge to a fuzzy set.

Example 2.4. Figure 2.3 shows the fuzzy set Warm modified with linguistic
hedges very and somewhat. Like the equivalent adverb, the hedge very concen-
trates a concept. This way, the membership of a temperature to the new concept
very(warm) cannot be greater than the membership to the concept warm. For
example, the temperature value 40 °C has membership 0.8 to the fuzzy set Warm,
but only 0.5 to the fuzzy set very(Warm). On the other hand, the linguistic hedge
somewhat dilates a fuzzy set.

Linguistic hedges are commonly used in learning algorithms to dynam-
ically fix the fuzzy discretization of continuous features. They can be very
useful because they can help to fix a wrong initial discretization of numerical
features, which could become a strong limitation for the classification quality
[32].

2.10. FUZZY DECISION TREE INDUCTION 29

Figure 2.3: Fuzzy set Warm modified with linguistic hedges very and somewhat

2.10 Fuzzy Decision Tree Induction

Fuzzy decision tree induction has been an active research area for decades
[13, 70, 67]. Some fuzzy decision trees are extensions of crisp decision trees
to the fuzzy domain, like Fuzzy ID3 [66] and its variations [67]. On the other
hand, some authors have created novel schemes of fuzzy decision tree in-
duction specially designed for the fuzzy case. LR-COG [38], for example,
uses an induction procedure based on the trapezoid center of gravity, using
an information entropy minimization heuristic.

Fuzzy decision trees are similar to their crisp counterparts, but using fuzzy
logical operators and properties. The main differences are the following:

• In a crisp decision tree, each child node of a node N is associated to
a crisp property. To classify an object, all these properties are tested,
and the single one which is true is used to choose which child node to
follow. In a fuzzy decision tree, an object can fulfill simultaneously all
the child properties, eventually with different degrees.

• In the crisp version, a query object q travels from the root node to-
wards a leaf node. In each recursive call (see Algorithm 2.1,) the query
object is located in a single tree node. As a consequence of fulfilling si-
multaneously all the child properties with different degrees, q would be
simultaneously located on many different nodes in the fuzzy tree, but
belonging to each node with a different degree. This degree is under-
stood as the level of membership of q to each tree node. To calculate

30 CHAPTER 2. BACKGROUND

this membership, we must take into account also the membership of q
to the parent node, maybe using a fuzzy AND operator.

• Because the query object arrives to different class nodes, we need an
aggregation mechanism to find the resultant class. This mechanism
must take into account, for each leaf node, the node class and the
membership of q to this node.

Inducing a fuzzy decision tree is similar to the crisp case, but with the
following differences:

• Candidate splits use fuzzy properties. To obtain fuzzy properties, we
must first fuzzyfy the original features, transforming each one in a col-
lection of fuzzy sets. For example, Figure 2.2 shows the fuzzyfied Tem-
perature feature. Then, fuzzy properties have then the following form:

Feature IS FuzzyS et

where FuzzyS et is one of the fuzzy sets in the fuzzyfied Feature.

• The quality criterion for split evaluation must take into account that in
the fuzzy version each object belongs to different tree nodes with dif-
ferent membership values. This way, object counting strategies are
not appropriate, and should be substituted by membership summation
strategies.

• The stop criterion must use membership values.

Chapter 3

Related work

This chapter presents a critical revision of previous works on emerging pat-
tern mining and classification. For a better understanding, we split the content
in three sections: Section 3.1 introduces different types of emerging patterns,
Section 3.2 presents algorithms for mining them, and Section 3.3 reviews dif-
ferent emerging patterns classification algorithms.

3.1 Types of emerging patterns

Most papers on emerging pattern mining use a transactional representation
of the objects. This way, an object is represented as a collection of items, or
itemset. An item is a pair (Feature, value), where value belongs to the Feature
domain. If the original database contains numerical features, they are dis-
cretized using some methods like the Entropy algorithm [28]. Considering
this transactional representation, an emerging pattern is also an itemset, and
the relation P b x becomes the traditional subset inclusion P ⊂ x.

Dong and Li [20] introduced in 1999 the ρ-emerging pattern for two class
problems, which is an emerging pattern with GrowthRate ≥ ρ. The GrowthRate
(3.1) measures how frequent a pattern is in its own class CP with respect to

31

32 CHAPTER 3. RELATED WORK

its frequency in the other class C.

GrowthRate(P) =

0, i f support(P,C) = 0 ∧ support(P,CP) = 0

∞, i f support(P,C) = 0 ∧ support(P,CP) > 0
support(P,CP)
support(P,C) , otherwise

(3.1)

An important class of emerging patterns are those that cover objects in
a single class, which are named Jumping Emerging Patterns (Definition 3.1).
The jumping emerging patterns have been widely used in emerging pattern
classifiers, because they have a strong predictive power. Jumping emerging
patterns represent properties that are only present in a single class, so they
should be distinctive.

Definition 3.1 (Li et al. [43]). A Jumping Emerging Pattern (JEP) is an emerging
pattern with infinite growth rate.

Fan and Ramamohanarao introduced in 2006 [27] the Strong Jumping
Emerging Pattern (Definition 3.2). These patterns have an infinite growth
rate, but they are also minimal with respect to the subset inclusion.

Definition 3.2 (Fan and Ramamohanarao [27]). P is a Strong Jumping Emerging
Pattern (SJEP) if it satisfies the following conditions:

1. P has infinite growth rate.

2. No proper subset of P satisfies condition 1.

Condition 2 means that a strong jumping emerging pattern is the minimal
JEP satisfying the support constraint. According to Fan and Ramamoha-
narao [27], non minimal JEPs are useless for classification, and they can be
harmful to the accuracy when aggregating many of them to make decisions.
SJEPs are also known as essential JEPs (eJEPs) [25].

On the contrary, Wang et al. [68] considered that aggregating many min-
imal EPs may implicitly cause duplicate counting of the EP’s contribution,
which leads to lower accuracy (see Example 3.1).

Example 3.1. Suppose we have the properties A, B, C, D, E, and F. Now the
patterns ABCD, ABCE, ABCF are all minimal, but counting their contribution
as individual pattern can make the pattern ABC to be counted three times.

3.1. TYPES OF EMERGING PATTERNS 33

To solve the duplicate counting Wang introduced the Maximal Emerging
Pattern (Definition 3.3).

Definition 3.3 (Wang et al. [68]). A Maximal Emerging Pattern (MaxEPs) is an
emerging pattern whose supersets are not emerging patterns.

We summarize the pros and cons of using minimal and maximal patterns
for classification, pointed out in the literature, as follows:

• Using only minimal, more general patterns:

– If less features can distinguish between two classes, using more
features may not help and may even add noise [25].

– It can speed up the searching process, saving computing [25].

– Large growth rate ensures EP’s sharp discriminating power; large
supports, which means enough coverage on the training dataset,
makes EPs more resistant to noise [26].

– Minimal EPs have higher support, so unknown instances are eas-
ier to match [68].

– Aggregating many minimal EPs may implicitly cause duplicate count-
ing of individual EP’s contribution, which could lead to lower accu-
racy [68, 5].

• Using only maximal, more specific patterns:

– They provide more information about the higher order interactions
between features [74].

– They minimize duplicated EP contribution [68].

– Maximal patterns are harder to find in the query object, so the
classifier may have fewer patterns to decide about the classifica-
tion [68].

No matter the advantages of using jumping emerging patterns, they can-
not capture useful properties if there is noise in the data. Noise appears
frequently in real-world data due to sensor or user errors. To make emerging
patterns tolerant to noise, a small but not strictly zero support in other classes
must be allowed (Definition 3.4).

34 CHAPTER 3. RELATED WORK

Definition 3.4 (Fan and Ramamohanarao [27]). A Noise-tolerant emerging pat-
tern (NEP) is a minimal pattern P that satisfies:

1. support(P,CP) ≥ δ2

2. support(P,C) ≤ δ1

where CP is the class of the pattern, C , CP is any other problem class, and
δ2 � δ1 are two positive integer thresholds.

Other varieties of emerging patterns have been defined incorporating
appropriate constraints, such as Chi Emerging Patterns [59], Constrained
Emerging Patterns [7], and Emerging Patterns with Occurrence Count [40].
Nevertheless, they are specific to some applications, and they are not fre-
quently used in other domains.

3.2 Algorithms for mining emerging patterns

In 1999 Dong and Li [20] introduced the concept of emerging pattern. They
found that the number of EPs in a problem could be too large, so they devel-
oped a simplified representation, using the subset-closedness: they repre-
sented all the EPs as a collection of minimal and maximal patterns over the
subset inclusion relation, called borders. In their paper, they showed that bor-
ders can be efficiently found for many commonly used repository databases.

ConstEPMiner [76] introduced a set of constraints to prune the search
space of EPs and save computations. The authors created an algorithm to
apply these constraints to get a subset with good predictive power and no
redundancies. Only patterns that are more general (those with top growth
rate) remain and they filter patterns with the same support, considering them
as redundant. Although these constraints are the basis of many posterior
filtering methods, the algorithm could delete important patterns, with a direct
impact in the classifier accuracy.

Bailey et al. [5] introduced the first tree based approach for fast JEPs mi-
ning. They adapted the frequent pattern tree FP-tree [35] algorithm to deal
with datasets structured in classes. Additionally, the authors presented a

3.2. ALGORITHMS FOR MINING EMERGING PATTERNS 35

study of the influence of the selection of the minimal support threshold in the
classification accuracy. They found that, in many databases, it is worth to use
higher values because of the substantial decrement in computational time, at
the expense of little accuracy degradations. Bailey et al. [5] also showed the
impact of mining only patterns with length below a given threshold [5], argu-
ing that small (more general) patterns are the best for classification. Although
they found a significant increase in extraction speed, they also found accu-
racy degradation in some databases. They explained this behavior by the
fact that classification accuracy is not only dependent upon the representa-
tion of the classes, but also upon the discriminative power of each class with
respect to other classes.

Li et al. [45] introduced the following important modifications to the adapted
FP-tree, in order to speed up the process:

• Grouping mined patterns in equivalence classes, according to the ob-
jects described. This allows to reduce redundant patterns, and to sim-
plify the task of calculating sophisticated statistics, which can be used
to select the most useful patterns.

• Suppressing too frequent and rare items, because they are less prone
to appear in emerging patterns.

• In multi-class problems, the algorithm simultaneously mines patterns
from all classes. Previous methods handle multiple classes one by
one, using a single class and the complement on each iteration.

A different tree, named contrast pattern tree (CP-tree), was introduced
by Fan and Ramamohanarao [25, 27]. A CP-tree is an ordered multiway
tree structure, where all the objects in the training sample are represented.
The mining algorithm searches depth-first the CP-tree to discover the pat-
terns. For speeding up the process, only the strong JEP were considered.
Nevertheless, the authors claimed to obtain higher accuracies than previous
methods, using fewer patterns.

An adaptive version of CP-tree based mining [63] gradually raises the
minimum support threshold during mining. The algorithm tries to find the top-
K patterns, so the threshold is raised based on the number of patterns mined
so far with the current threshold value. This optimization boosts the mining
speed, since more tree branches are pruned earlier.

36 CHAPTER 3. RELATED WORK

Bailey et al. [6] introduced a fast algorithm for computing hypergraph trans-
versals and applied it to mining emerging patterns. This algorithm is based on
a guided partitioning heuristic, which seems to work fine in some databases
with thousands of objects.

Fan and Ramamohanarao [26] created the first post-processing pattern
filtering. They extracted SJEPs from the training sample, ranked them, and
iteratively selected those that covered at least a new object. The ranking
considers the pattern support and the pattern length, discarding the growth
rate information. According to the authors, EPs have implicitly large growth
rate, and it does not make sense to compare between their values.

Loekito and Bailey [47] used Zero-Suppressed Binary Decision Diagrams
(ZBDDs) [52] as the core data structure for mining emerging patterns. First,
itemsets are represented as a n-bit binary vector, where each Boolean value
represents the presence/absence of the particular item. Then, some binary
operators like set-union, set-difference, and set-intersection are performed
in order to find the emerging patterns. ZBDDs works like CP-trees and FP-
trees, but with better performance.

In cases where data are scattered in multiple tables of a relational data-
base, it is not necessary to do costly joins to mine the emerging patterns.
Appice et al. [4] created Mr-EP, an algorithm that can capture the differences
between objects of two classes. Mr-EP can extract emerging patterns whose
properties are spanned in separated data tables. A recent approach for this
task uses local projections of the database [64].

Most of the algorithms for mining emerging patterns described in this sec-
tion have the following general steps:

1. Selection of the minimal support threshold µ.

2. Global discretization of numerical features.

3. Representation of the transformed objects using a particular structure.

4. Traversing the structure to find emerging patterns.

5. Pattern filtering.

Using these conventional steps has two important drawbacks:

3.2. ALGORITHMS FOR MINING EMERGING PATTERNS 37

Table 3.1: Databases where SJEPC gets significant accuracy degradations

DBName 3-NN J48 SJEPC
balance-scale 85.4 77.6 16.0
breast-cancer 70.3 73.4 44.5
cleveland 82.5 78.2 77.9
haberman 70.6 68.0 0.0
hayes-roth 71.4 89.3 0.0
heart-h 83.6 79.6 46.3
heart-statlog 79.3 79.3 64.8
iris 96.0 94.0 66.7
liver-disorders 65.5 68.7 0.0
lung-cancer 43.3 35.0 0.0
lymph 85.9 78.5 51.5
shuttle-landing-control 60.0 60.0 0.0
spect 64.7 66.8 0.0
trains 70.0 90.0 0.0
wine 96.1 92.7 55.1

1. Global discretization of numerical features can drastically degrade the
classifier accuracy, since an emerging pattern relates a combination of
feature values with a class. Therefore, discretizing a numerical feature
without considering the values of other features could hide important
relations.

In Table 3.1, we can see that SJEPC [27], one of the most accu-
rate emerging pattern classifiers, obtains very poor accuracies com-
pared with Nearest Neighbors [17] and C4.5 [58] classifiers. In some
databases, SJEPC is unable to extract even a single pattern, because
most numerical features are discretized into a single categorical value.
Although SJEPC uses the Entropy discretization method [28], other dis-
cretization methods have similar behaviors, perhaps in different databases.

2. High sensitivity to the minimal support threshold value µ. The accu-
racy of the classifier could have a serious degradation on small varia-
tions of the minimal support value. For example, in chess and census
databases (from the UCI repository [50]), the accuracy drops 3% with a
difference of 2 in µ [5]. We must point out that the adaptive modification
of µ [63] does not solve the problem, because it discards most patterns
with low support. Discarding all the patterns with low support usually
increases dramatically the classifier abstention level.

38 CHAPTER 3. RELATED WORK

3.3 Classification using emerging patterns

Given a query object x, a pattern based classifier assigns to x the class with
the highest score. The score is computed based on the patterns contained in
x. Usually the scoring function is designed taking into account the character-
istics of the kind of emerging pattern used [59]. Emerging pattern classifiers
can be grouped in categories, according to the type scoring function used. In
this section, we present the most used single categories and the combined
approaches.

3.3.1 Aggregation of support

Classifiers on this category aggregate the individual discriminating power of
the patterns contained in the query object. The first classifier using aggrega-
tion of support was CAEP [21], which can use patterns with support in other
classes. CAEP normalizes the votes per class using a base score per class,
which is one of the most commonly used approaches [25, 27].

A different approach consists in aggregating the support of the matching
EPs by using the compact summation method [43]. The compact summation
of the support set in the class Ci is the percentage of instances in the class
that contain one or more of the patterns. This method avoids counting dupli-
cate contributions of training instances, and it is commonly used in classifiers
that mine patterns during the classification stage [44].

3.3.2 Information-based classifiers

A variant of CAEP is iCAEP [74], which uses the minimum encoding inference
approach to classify an object, instead the aggregation of support. iCAEP
uses each matching pattern as a message indicating a class bias of the pat-
tern class. Then, the class that can be encoded with the minimum message
length is assigned to the query object. The authors select patterns with many
items, claiming that they provide more information about the higher order in-
teractions between features.

3.3. CLASSIFICATION USING EMERGING PATTERNS 39

3.3.3 Bayesian classifiers

The Bayesian Classification based on Emerging Patterns (BCEP) [26] is a hy-
brid classifier of the EP and Naive Bayes. It uses essential Jumping Emerging
Patterns to relax the strong feature independence assumption. BCEP uses
the patterns extracted in the training stage to derive a product approxima-
tion for each class probability. To obtain such approximation, the matching
patterns are combined using the chain rule of probability.

A version of BCEP using maximal emerging patterns is MaxEPs [68]. As
we mentioned in Section 3.1, classifying with maximal EPs reduces dupli-
cate pattern contribution, avoiding accuracy reduction. Nevertheless, max-
imal patterns are not frequently found in query objects and classifying with
few patterns can be unreliable. That is why MaxEPs uses the intersection
between the maximal patterns and the query object. However, there is no
guarantee that the intersection is an emerging pattern, and this fact can de-
grade the classifier accuracy.

3.3.4 Combined classifiers

Li et al. [46] combined a pattern based classifier in cascade with a k-NN clas-
sifier [17]. First, if the query object has objects nearby, the k-NN classifier
assigns the classifier result. Otherwise, distance is considered as inaccurate
for classification, and an emerging pattern classifier [44] returns the classifi-
cation result. This way, the resultant classifier combines the higher accuracy
of the NN classifier in databases with numerical features, with the effective-
ness of the EP classifiers in categorical domains.

Because they are complex and stable classifiers, emerging Pattern clas-
sifiers are not frequently used in ensembles. Nevertheless, they have been
used as base classifiers in ensembles using Bagging and Boosting [42] meth-
ods. The boosted emerging pattern classifier [62] is the application of Ad-
aBoost to the CAEP classifier. The Bagged Emerging Pattern [24] introduced
a new scoring function for EP classifiers, to make them unstable. Additionally,
the authors modified the classical voting scheme to allow classifier absten-
tion.

There is no general theory that can help us to select the appropriate pat-

40 CHAPTER 3. RELATED WORK

terns and classifier for a given problem. Actually, the only solution for users
is to test all the available classifiers over some data samples, selecting the
one with the highest accuracy. The two most commonly used schemes are
using minimal patterns with aggregation of support classifiers and maximal
patterns with Bayesian classifiers.

3.4 Summary

This chapter presents a critical revision of previous works on emerging pat-
tern mining and classification. This revision shows that existing methods
for mining emerging patterns have two important drawbacks: they include a
global discretization step, and they have high sensitivity to the value of the
minimal support threshold. Both drawbacks could have a significant impact
in the classification accuracy.

The last section shows that there are several emerging pattern-based
classifiers, but none of them shows a clear superiority compared to the oth-
ers. It is also unclear which kind of patterns should be used to attain the
highest accuracy: minimal, maximal, non-redundant, or other subsets.

Chapter 4

Extended crisp emerging pattern
mining

4.1 Introduction

This chapter presents five novel results. First, Section 4.2 formalizes the
concepts of emerging pattern language and emerging pattern language ex-
pressiveness. These concepts are very important to understand why using
more expressive patterns allows our classifiers to be more accurate than tra-
ditional emerging pattern classifiers. Second, Section 4.3 introduces the Log-
ical Complexes Mining algorithm (LCMine), an initial solution for mining more
expressive patterns from a database with mixed and incomplete data. Third,
Section 4.4 presents the Crisp Emerging Pattern Mining algorithm (CEPM),
an improved version of LCMine. Fourth, Section 4.4.1 introduces a novel al-
gorithm for computing an accurate value for the minimal support threshold.
Fifth, Section 4.6 proposes a new method for building cascades of emerg-
ing pattern classifiers. This method combines the higher accuracy of clas-
sifying with higher support thresholds with the lower levels of abstention of
classifying with lower thresholds. Finally, Section 4.7 presents a compari-
son of the proposed classifiers versus state-of-the-art comprehensible and
non-comprehensible classifiers.

41

42 CHAPTER 4. EXTENDED CRISP EMERGING PATTERN MINING

4.2 Pattern expressiveness

Before introducing the concept of pattern expressiveness, let us start with
some basic definitions and notations.

Definition 4.1. A Pattern Language Λ is the set of all possible conjunctive ways
to aggregate the selectors1 [Feature # ValueS et], where Feature is any feature,
is a relational operator like ≤, ∈, = or ,, and ValueS et ⊂ domain(Feature).
Pattern languages are represented by the tuple

({Feature} , {#}), formed by the
feature set and the operator set.

Example 4.1. Let us consider a database with two attributes: X1 = {1, 2, 3},
and X2 = {a, b}. If # is the set {=,,}, the pattern language includes all the
following elements: [X1 = 1], [X1 , 1], [X1 = 2] . . ., [X2 = a], [X2 = b],
[X1 = 1] ∧ [X2 = a], [X1 , 1] ∧ [X2 = a], [X1 = 2] ∧ [X2 = b], . . .

It is important to highlight that each emerging pattern mining algorithm
extracts patterns represented in a determinate language. For example, pre-
vious algorithms for mining emerging patterns discretize numerical features,
so they return patterns expressed in the following language:

ΛTraditional =
({Feature}, {=})

A very important property of a pattern language is its expressiveness,
with respect to a given universe of objects �:

e(Λ,�) =

∣∣∣∣{S ⊂ � : ∃P ∈ Λ, supp(P) = S
}∣∣∣∣

2|�|

where supp(P) is the set of objects in � containing the pattern P.

The expressiveness of a pattern language measures how many subsets
of the universe can be exactly represented by a single pattern from the lan-
guage. This way, if a pattern language Λ1 is more expressive than the pattern
language Λ2, we can characterize most subsets in the universe using fewer
patterns in Λ1 than using patterns in Λ2.

All the algorithms introduced in this chapter are expressed as l-complexes.

1The term selector was introduced by Michalski [51].

4.2. PATTERN EXPRESSIVENESS 43

Definition 4.2. A logical product of selectors
∧

i∈I[Featurei # ValueS eti] is called
a logical complex (l-complex) [51], where I is a set of feature indexes. An object
o satisfies an l-complex — or an l-complex covers an object o — if the feature
values in o satisfy all the selectors in the l-complex

Example 4.2. Given the features Color, Age, Height and Weight, the object
o1 = (red, 34, tall, 150.1) satisfies the l-complex:

[
Color ∈ {red, pink,white}] ∧ [

Age ≥ 20
]

however, it does not satisfy the l-complex:

[Height , tall] ∧ [Age ≥ 20]

This way, an l-complex can be viewed as an exact symbolic representation
of the set of objects that it satisfies [51]. For instance, the last l-complex in the
Example 4.2 represents those objects whose height is different from tall and
their age is greater or equal to 20. If an object has some missing values in
the features associated with an l-complex, then the l-complex does not cover
the object.

L-complexes use the following pattern language:

ΛExtended =
({Feature}, {=,,,≤, >})

Theorems 4.1 and 4.2 express the relationship between the expressive-
ness of the language used in traditional pattern extraction algorithm and the
language used in the algorithms introduced in this chapter.

Theorem 4.1. For all universes�, the language ΛExtended is at least as expressive
as ΛTraditional. That is, e(ΛExtended,�) ≥ e(ΛTraditional,�).

Proof. To prove the theorem, we show that any pattern in ΛTraditional can be ex-
pressed as a pattern in ΛExtended. Let be P =

∧
[Fi = S i] a pattern from ΛTraditional.

We can construct a new pattern Q =
∧

[Gi #i Ti] from ΛExtended, expressing an
identical property. For each item in [Fi # S i], we construct the following items
for Q:

• if Fi is a nominal feature we construct [Gi = Ti] with Gi = Fi and Ti = S i.

44 CHAPTER 4. EXTENDED CRISP EMERGING PATTERN MINING

• If Fi is a discretization of a numerical feature, we create two new items for
Q using the non-discretized feature Gi: [Gi >= v1] and [Gi < v2], where v1

and v2 are the left and right bounds of S i.

�

Theorem 4.2. There exist some universes�where the language ΛExtended is more
expressive than ΛTraditional. That is, e(ΛExtended,�) > e(ΛTraditional,�).

Proof. Let us consider the universe � =
{
1, 2, 3, 4, 5, 6

}
with a single numeri-

cal feature X, discretized into two subsets S 1 = [0, 3] and S 2 = (3, 6]. Now
ΛTraditional has the patterns [X = S 1] and [X = S 2], while ΛExtended has the pat-
terns [X ≤ 1], [X > 1], . . . , [X ≤ 6], [X = 1], [X , 1],

It is easy to see that only two subsets of � can be exactly covered by patterns
in ΛTraditional, so e(ΛTraditional,�) = 2

26 . Nevertheless, there are much more subsets
covered exactly by patterns in ΛExtended. There are the subsets {1}, {2}, . . ., {6},
{1, 2}, {1, 3}, . . ., {1, 2, 3, 4, 5, 6}. This way, e(ΛExtended,�) > e(ΛTraditional,�). �

Theorems 4.1 and 4.2 show that the emerging patterns mined in this dis-
sertation are more expressive than traditional emerging patterns. This higher
expressiveness allows us to find properties that differentiate better objects
in different classes. This is an important element to explain why our clas-
sifiers outperform traditional emerging pattern classifiers in most databases
(Sections 4.7 and 5.5).

4.3 Logical Complex Mining

In this section, we introduce the Logical Complex Mine (LCMine) algorithm for
extracting emerging patterns, expressed as logical complexes, from databases
with mixed and incomplete data. LCMine has two main components: a
searching procedure and a filtering procedure. We also propose a classi-
fier based on the mined emerging patterns.

4.3. LOGICAL COMPLEX MINING 45

4.3.1 Searching Procedure

The searching procedure extracts emerging patterns from a set of different
decision trees induced from the training sample. The induction procedure is
similar to traditional methods for building decision trees. However, we explore
more candidate splits than classical methods do in order to look for properties
that better describe the training sample in terms of accuracy and simplicity. In
this dissertation, we understand simplicity as the number of conjunctions and
features involved in an emerging pattern. Therefore, the fewer conjunctions
and features the pattern has, the simpler the pattern is.

To guarantee diversity among the trees we select a trade-off between the
best tree (the one with the highest gain in all splits) and the generation of all
possible trees, because the former option is unique, and the last one is hard
to apply to nontrivial problems because of its time complexity. Our BuildTree
algorithm, unlike traditional methods for building decision trees2, expands a
subset of the best candidate splits at each tree level. The number of splits
to expand decreases from the root node to the leaves, starting from a user-
defined value k to 1. This allows higher diversity in upper nodes, where good
candidate splits are more frequent, reducing the diversity in lower nodes,
where it is common to find fewer good splits.

LCMine expands the best k splits on the root, k − 1 splits on root children,
and so on, generating k! diverse decision trees. Each decision tree can be
described by the indexes

{
ilevel

}
, representing which of the best candidate

splits to use at each level.

Example 4.3. The tree
{
1, 1, . . . , 1

}
is built using the best split available on each

node, in a similar way than traditional decision tree induction algorithms like
ID3 and C4.5 [57, 58] do.

Example 4.4. Using k = 5, LCMine generates 120 decision trees, starting from
(1, 1, 1, 1, 1) to (5, 4, 3, 2, 1). Then, the tree (2, 1, 3, 2, 1) is built using the second
best split in the root node, the best split in the second level, the third best split in
the third level and so on.

The LCMine (Algorithm 4.1) algorithm calls the BuildTree procedure (Al-
gorithm 4.2) for each combination of values

{
ilevel

}
, obtaining a family of di-

2Traditional methods for building decision trees expand the single best candidate split at
each tree level.

46 CHAPTER 4. EXTENDED CRISP EMERGING PATTERN MINING

verse trees. BuildTree generates all the candidate splits according to the
type of each feature. The split type corresponds to the type of selectors we
include in our patterns, in the following way:

• For categorical features:

– If the feature has exactly two values, BuildTree creates a sin-
gle split with two children with the properties Feature = v1 and
Feature = v2 respectively.

– Otherwise, BuildTree creates all these candidate splits:

* For each value vi, a split Feature = vi and Feature , vi.

* A single split with a child for each feature value with the prop-
erty Feature = vi.

* A split with a child per class. In the child node corresponding
with class C, it groups in VC all the values that appear more
in class C than in its complement. An extra node groups the
values with no correlated class. Each child node uses the
property Feature ∈ VC.

• For numerical features BuildTree searches the candidate cut-points
{
vi
}
,

which are the midpoints between two values belonging to objects of
different classes. For each vi, BuildTree creates a division with the
properties Feature ≤ vi and Feature > vi respectively.

We handle missing values introducing a penalizing factor to calculate the
information gain. During the construction of a tree, when a split is evaluated,
all the objects having a missing value in the feature associated to this split
are grouped in a virtual child node with maximum entropy. This way, it is
unlikely that a feature with several missing values can be selected as a good
candidate.

LCMine extracts all the patterns from the trees, which are the conjunctions
of properties in all the paths from the root node to the leaves. For example,
from the decision tree in Figure 4.1, we can extract six patterns, like (Length >
30) ∧ (Color = red) from class Good and (Length ≤ 30) ∧ (Fly = f alse) from
class Bad.

4.3. LOGICAL COMPLEX MINING 47

Data: T – object collection to build the tree, k – diversity control
parameter

Result: ResultEP
EP← ∅;
// The i j values control which of the best candidate

splits is selected for expanding the tree nodes,

according to each node level

for i1 ← 1 to k do
for i2 ← 1 to k − 1 do

for i3 ← 1 to k − 2 do. . .
Tree← BuildTree

(
T, 1, {i1, i2, i3, . . .});

EP← EP ∪ ExtractPatterns(Tree)
end

end
end
EP← RemoveDuplicates(EP);
EP← S impli f y(EP);
ResultEP← EPS (T, EP)

Algorithm 4.1: Algorithm LCMine

Data: T – object collection to build the tree, l – level in the tree of the
resulting node (1 is the default value), {klevel} – set of k values for
each level

Result: N – decision node
while T has more than one object in the non-majority classes do

Generate all candidate splits S i as explained before;
Calculate ig(S i), the information gain using entropy [58];
Sort S i in descending order according to its information gain ig(S i);
Find S ′, the kl

th element of the sorted S i collection;
Find the child node subsets Tch, according to the split S ′;
Create a decision node N using S ′, with the appropriate number of
children;
For each child node ch call BuildTree

(
Tch, l + 1, {klevel});

end
Algorithm 4.2: BuildTree Algorithm

48 CHAPTER 4. EXTENDED CRISP EMERGING PATTERN MINING

Figure 4.1: Example of a decision tree with three features and two classes: Good
and Bad

After removing duplicated patterns, we simplify each pattern to obtain
more compact patterns, by joining redundant selectors and deleting dupli-
cated selectors. Examples of redundant selectors are the following:

• Age > 30 and Age > 50, which are simplified to Age > 50

• Age > 30 and Age ≤ 50 , which are simplified to Age ∈ (30, 50]

4.3.2 Filtering Strategy

LCMine filters the resulting patterns using procedure EPSF (Algorithm 4.3).
LCMine assigns to each pattern P a weight wP equal to the amount of objects
that it supports in its own class. Filtering emerging patterns is a challenge
because of two main reasons:

1. Subjective nature of the definition of a “good” pattern.

2. Total amount of possible pattern subsets is 2n where n is the number of
patterns.

This section introduces a filtering strategy based on redundancy reduc-
tion in the computed emerging pattern set. We compute the redundancy of
each pattern as the amount of objects covered in the training dataset that are
also covered by another(other) pattern(s) defined over the same feature set.

4.3. LOGICAL COMPLEX MINING 49

Having highly redundant patterns might cause biased classifiers; for exam-
ple, classifiers that usually tend to classify most of the objects in the same
class.

The following example shows why the introduced strategy takes into ac-
count patterns defined over the same feature set. Let P1 =

(
[x1 = large] ∧

[x3 ≤ 0.4] ∧ [x4 > 3]
)

and P2 =
(
[x2 > 27] ∧ [x5 , white] ∧ [x7 > 6.8]

)
be two

patterns, covering the same objects in the training dataset. Notice that these
patterns are not defined over the same feature set

({x1, x3, x4} , {x2, x5, x7}).
If we consider that P1 is redundant with respect to P2 and consequently we
remove P1, this removal might be a wrong decision. For example, the object
x = (large; 25; 0.1; 7; blue; true; 5) might be now misclassified because it does
not satisfy P2. Nevertheless, it satisfies P1, which was removed from the fi-
nal emerging pattern set. A proper algorithm, like the one that we propose,
can avoid this undesirable behavior taking into account the redundancy in
patterns defined over the same feature set.

The proposed algorithm follows the hypothesis that a good emerging pat-
tern subset must reduce redundancy as much as possible. The Emerging
Pattern Selection by Feature set (EPSF, Algorithm 4.3) algorithm applies the
Emerging Pattern Selection (EPS, Algorithm 4.4) algorithm on each pattern
group, defined over the same feature set. EPS selects a small size pattern
subset that covers the same objects as the whole group does. EPS scores
each pattern using (4.1).

scoreP =
|S (P, class(P),T)|

max z∈Z
z,class(P)

{|S (P, z,T)|} (4.1)

where Z is the set of classes, S (P, z,T) is the subset of objects from T with
class label z that satisfies the pattern P, and |A| is the cardinality of the set A.
This weighting scheme favors patterns covering more objects of their class
and fewer objects from different classes. Finally, EPS builds the resultant
pattern subset adding the best patterns one by one, only if the pattern covers
a yet uncovered object.

4.3.3 Emerging Pattern-Based Classifier

In order to test the quality of the emerging patterns found by LCMine, it is
necessary to build a supervised classifier. Like traditional Emerging Pattern-

50 CHAPTER 4. EXTENDED CRISP EMERGING PATTERN MINING

Data: T – Training sample, L – set of emerging patterns
Result: L′ – selected emerging patterns
L′ ← ∅
Split L in groups Gi, where patterns in the same group are defined over the
same feature subset ;
foreach G ∈ Gi do

foreach C in G do
L′′ ← {

P ∈ G : class(P) = C
}
;

L′ ← L′ ∪ EPS (T, L′′);
end

end
Algorithm 4.3: Emerging Pattern Selection by Feature set algorithm(EPSF)

Data: T – Training sample, L – set of emerging patterns
Result: L′ – selected emerging patterns
foreach pattern P ∈ L do

calculate scoreP

end
Sort L in descending order according to scoreP;
L′ ← ∅;
foreach pattern P in the sorted set L do

if there is any object that supports P and does not support any pattern
already in L′ then

L′ ← L′ ∪ {P}
end

end
Algorithm 4.4: Emerging Pattern Selection algorithm(EPS)

based and KORA type classifiers, our classifier uses a scoring function. Given
a query object q this function computes the total score for class Ci aggregat-
ing the weight of the emerging patterns contained in q. We compute the score
per class using (4.2).

score(q,Ci) =
∑

P∈Pi
qbP

wP (4.2)

where wP is the weight of the pattern P (assigned by LCMine as the amount
of objects that support P on its own class), and Pi is the collection of all
emerging patterns for class Ci.

Finally, the output of the classifier is the class with the highest score.
If there is a tie, or no vote exists, the classifier refuses to classify. Such
abstentions count as errors.

4.4. CRISP EMERGING PATTERN MINING 51

4.4 Crisp Emerging Pattern Mining

Crisp Emerging Pattern Mining (CEPM) is an enhanced version of LCMine.
CEPM is faster and more accurate than LCMine, because it includes the
following improvements:

• CEPM uses a novel weighting scheme for mining diverse patterns and
it uses a stop criterion based on pattern coverage. This way, it does not
have to generate a fixed amount of trees like LCMine does.

• CEPM does not need a pattern filtering post-processing. Nevertheless,
it obtains fewer and more accurate patterns than LCMine does.

• CEPM assigns weights to the objects according to the support they
have with the current mined patterns. This information is used in the
generation of the subsequent decision trees. This way, CEPM priori-
tizes new patterns covering unsupported objects or objects supported
in a wrong class.

• CEPM uses a novel algorithm for estimating the minimal support thres-
hold.

The main improvement in CEPM is to use the patterns mined so far to
guide the construction of subsequent decision trees. To attain this, CEPM
weights all the objects in the training sample after each iteration. Higher
weights are assigned to objects which are not covered by the current set
of patterns, while weights close to zero are assigned to objects covered by
many patterns. The decision tree built on each iteration is the one that best
represents the objects with higher weights, so CEPM induces decision trees
using the weighted information gain. The weighted information gain is similar
to the classical information gain (4.3) but there is a weight associated to each
object.

IG(N) = Imp(N) −
∑

Nch∈childern(N)

PNch · Imp(Nch) (4.3)

where
Imp(N) = −

∑

class∈ClassesN

(
Pclass · log(Pclass)

)
(4.4)

52 CHAPTER 4. EXTENDED CRISP EMERGING PATTERN MINING

Figure 4.2: Example of an emerging pattern appearing in a non-optimal candi-
date split

The weighted information gain uses a modified class probability on a node
PClass and a modified child probability Pchild (4.5). Note that objects with
weight close to 0 have low influence in the determination of the best split.
CEPM handles incomplete data with the same procedure used by LCMine
(Section 4.3).

PClass =

∑
o∈Class wo∑

wo
, Pchild =

∑
o∈child wo∑

wo
. (4.5)

CEPM extracts emerging patterns during the induction procedure; every
tree node that, (I) has at least µ objects in a class, and (II) has at most one
object in the complement of that class 3 , generates a new emerging pattern.
Additionally, CEPM extracts patterns while evaluating the splits, even if a split
has not the highest gain; any tree node that fulfills (I) and (II) generates an
emerging pattern. For example, Figure 4.2 shows two candidate splits, using
different properties. Although the first one has the highest information gain,
the second contains the emerging pattern (Age < 20). So, this pattern is
extracted although the split is discarded.

CEPM iteratively induces several decision trees, updating the object weights
after each induction. The algorithm updates the weights using (4.6).

wo =
arccot

(
5 · S upporto

averageS upport

)

π
. (4.6)

where

3Traditional emerging pattern classifiers allow certain amount of objects in the complement
of the class. The classifiers introduced in this dissertation allow only a single object in the
complement of the class, which is considered as noise.

4.4. CRISP EMERGING PATTERN MINING 53

Figure 4.3: The arccot function

• S upporto is the sum of the support of such patterns contained in o. If
a pattern belongs to a different class than the o class, its support is
multiplied by −1.

• averageS upport is the average support of the patterns in the database,
which is estimated based on the patterns found in the first built tree.

Equation 4.6 ranges from 0 to 1, because arccot ranges between 0 and π
(Figure 4.3). An object obtains a weight close to 1 if it has a negative support
lower than −5. In this case, it is necessary to mine more patterns to support
the object to its own class. On the contrary, a weight close to 0 means the
object has support above 5. In this case, no more patterns are necessary
for this object, and it is virtually ignored in information gain calculations. As
you can see in Figure 4.3, values 5 and −5 are both distinctive in the arccot
function, because those are the points where the function values start to be
close to the asymptotes. That is why we use value 5 in equation 4.6.

It is important to mention that the property in the topmost node in each
tree is not allowed to appear in any other node in further generated decision
trees. This property is usually highly discriminant therefore it is present in
most decision trees, so the pattern miner would extract many useless non-
minimal sub-patterns. Discarding such properties helps to obtain more di-
verse patterns.

The pseudocode of CEPM appears in Algorithm 6. It is worth to mention
that CEPM returns a set of the most general emerging patterns with support
greater or equal to µ. A pattern P is more general than a pattern Q if the
set of objects described by Q is strictly contained in those described by P,

54 CHAPTER 4. EXTENDED CRISP EMERGING PATTERN MINING

Data: T - training sample, µ - minimum support threshold, maxIter -
maximum number of iterations

Result: EPS - Mined Patterns, abstentionRatio - Abstention ratio of EPS
with respect to T

forall o ∈ T do wo ← 1 ;
/* InduceTree stores the topmost property in a NotAllowed

list */

NewTree← InduceTree(T,w, µ);
/* Simplify procedure deletes duplicated and less

general patterns */

EPS ← S impli f y (ExtractPatterns(NewTree));
averageS upport ←

∑
ep∈EPS support(ep)

|EPS | ;
i← 0 ;
repeat

AbstentionCount ← 0 ;
// Weight recalculation

foreach o ∈ T do
EPc← {Patterns that support o, belonging to its class};
EPnc← {Patterns that support o, belonging to different classes};
support =

∑
ep∈EPc support(ep) −∑

ep∈EPnc support(ep) ;
wo = arccot

(
5 · support

averageS upport

)
/π;

if no pattern supports o then
AbstentionCount ← AbstentionCount + 1

end
EPS ← S impli f y (EPS

⋃
ExtractPatterns (InduceTree(T,w, µ)));

i← i + 1
until i = maxIter OR no new pattern was added in this iteration ;
return (EPS , abstentionRatio = AbstentionCount

|T |)
Algorithm 4.5: Pseudocode of the algorithm CEPM, which extracts a repre-
sentative collection of patterns from T

4.4. CRISP EMERGING PATTERN MINING 55

considering all the objects in the universe.

The CEPM classifier (CEPMC) uses the same decision rule than the
LCMine classifier does: it assigns the query object q to the class with the
maximum value of the total votes given by the patterns supported by q. Ev-
ery pattern supported by q votes for its own class with its total support. If
no pattern supports q or there is a tie in the votes, the classifier refuses to
classify q, counting this abstention as an error.

4.4.1 Estimating the Minimal Support Threshold for CEPM

Selecting the minimal support threshold for an emerging pattern classifier
is a difficult task; a classifier using patterns with higher µ value is a more
accurate classifier, but it could reject to classify more objects. On the contrary,
a classifier using patterns with lower µ values might contain many useless
patterns, which could degrade its classification accuracy.

CEPM finds an accurate estimation of the minimal support threshold µ,
testing different values decrementally. The rationale of this procedure holds
in the following property: if we classify using patterns with lower µ values,
we obtain less accurate classifiers with lower abstention levels4. To use this
property, CEPM infers two values:

• µini is a high enough value, so any classifier built with µ > µini is inaccu-
rate.

• minAbst is the minimal abstention level we can expect to attain with the
current dataset.

Then, CEPM decrementally tests the µ values, starting from µini, until the built
classifier attains an abstention level smaller than or equal to minAbst. As a
consequence of this procedure, CEPM returns a set of emerging patterns
with the highest support value associated with the lowest expected abstention
rate.

4A definition of classifier abstention can be found in Section 2.3.

56 CHAPTER 4. EXTENDED CRISP EMERGING PATTERN MINING

4.5 LCMine, CEPM, and Over-fitting

While a complex model may allow a very good classification of the training
samples, it is likely to assign wrong classes to unseen objects. This situation
is known as overfitting [23]. Following this, as complex models tend to be
overtrained, it may seem that LCMine and CEPMC, using the mined emerg-
ing patterns, would be overfitted. Nevertheless, some characteristics of the
proposed classifier avoid this drawback:

• Unlike decision trees, where a single property (branch) assigns the
class, in our classifiers different emerging patterns influence the final
classification result. This way, the votes of too specific patterns are
usually lower than the votes of more general patterns, which are more
likely to appear in a query object.

• Using a wider set of operators allows us to find more general emerging
patterns, which cover more objects in the universe. This way, many
unseen objects would be correctly classified using this kind of patterns.

4.6 Cascading CEPM-based classifiers

A cascade classifier is a type of ensemble where a single classifier is active
at each time [42]. To classify a query object, the first classifier is activated
and returns the class. If a classifier is not sure enough about the correct
classification, it passes the query object to the next classifier in the chain. The
cascading classifier approach is better than multi-expert methods 5 when the
topmost classifiers can handle most objects with higher accuracy, but they
are unable to classify some other objects [3].

Emerging pattern classifiers with different minimal support µ are good
candidates for cascading; a classifier using patterns with higher µ values,
is more accurate but could reject to classify more objects. Then, to build
a cascade of emerging pattern classifiers, the first classifier should be built
with a high µ value. The remaining classifiers in the cascade should have a

5In multi-expert methods all the classifiers are activated at once, and the final classification
is obtained aggregating the individual votes. Majority class, bagging and boosting ensembles are
examples of this approach.

4.6. CASCADING CEPM-BASED CLASSIFIERS 57

Data: T - training sample
Result: Classi f iers - Cascade of classifiers. The first classifier is the one

built with the highest µ value
(µini,MinAbst)← In f erParams(T) // in Algorithm 4.7

currentS upport ← µini ;
step← max

{
currentS upport

10 , 1
}

;
while currentS upport > 1 AND currentAbstention > MinAbst do

(patterns, currentAbstention)← CEPM(T,maxIter = 120, µ =

currentS upport) ;
if currentAbstention < 0.5 then

Add a new classifier using patterns to Classi f iers
currentS upport ← currentS upport − step ;
if currentS upport = 0 AND abstentionRatio >= MinAbst then

currentS upport ← step − 1 ;
step← max

{
currentS upport

10 , 1
}

;
end

end
Algorithm 4.6: Pseudocode of the CascadeCEPM algorithm, which builds a
cascade of CEPM-based classifiers

Data: T - training sample
Result: µini - Maximal µ value used in the classifier ensemble, minAbst -

Expected minimal abstention level
(Patterns,minAbst)← CEPM(T,maxIter = 20, µ = 2) ;
/* Using the highest support value makes µini to be high

enough; checking that at least half of the objects be

supported makes µini to be not too high */

µini ← Highest support value such that at least half of the objects in T are
supported for at least a pattern in Patterns ;
return (µini, minAbst)

Algorithm 4.7: Pseudocode of the InferParams algorithm, used to predict the
values of maximal support and maximum abstention rate in CascadeCEPM

58 CHAPTER 4. EXTENDED CRISP EMERGING PATTERN MINING

µ value lower than the µ value of their predecessors, to allow them to classify
uncovered objects.

Our novel cascading creation method, named CascadeCEPM, appears
in Algorithm 4.6. It starts inferring the support of the topmost classifier (µini)
and the minimal expected abstention rate for the lower classifier (minAbst).
CascadeCEPM creates classifiers starting with µ = µini, decrementing µ for
each new classifier until an abstention rate lower than minAbst is achieved or
µ = 1. For decrementing µ, CascadeCEPM uses a calculated S tep = µini/10,
because if µini is high, decrementing µ with S tep = 1 might be too costly.

Some important remarks:

1. µini and minAbst are inferred like in the CEPM classifier (Section 4.4).

2. minAbst is inferred using µ = 2, so it measures the minimal expected
abstention of a pattern based classifier. A maximum iteration value
equal to 20 speeds up the procedure (Algorithm 4.7, step 1).

3. We dismiss classifiers with abstention level higher than 0.5, because
they are usually inaccurate, according to our experiments.

4. The value 120 (Algorithm 4.6, Step 5) is the maximum number of it-
erations of the algorithm CEPM. It is necessary to use this value be-
cause CEPM converges slowly6 in some databases. As in each iter-
ation the mined patterns have less quality, stopping the algorithm in a
high enough iteration does not significantly alter the classifier quality.

5. The condition currentAbstention < 0.5 in Algorithm 4.6 (step 6) discards
inaccurate classifiers, having high abstention levels.

CascadeCEPM creates a cascade of emerging pattern classifiers, each
one using the highest sum of support as decision rule. Given a query object,
the first classifier returns the most supported class; if no pattern supports the
object or there is a tie, the classifier refuses to classify and activates the next
classifier in the cascade. If the last classifier cannot classify the query object,
the whole cascade refuses to return a classification, counting this abstention

6CEPM always converge, because there is a finite amount of emerging patterns in any data-
set. It is easy to prove this affirmation, because even numerical features have a finite amount of
candidate cut-points.

4.7. EXPERIMENTAL RESULTS 59

Table 4.1: Description of the databases used in the experiments

DBName Objects #Attr #Class DBName Objects #Attr #Class
autos 205 25 4 balance-scale 625 4 3
breast-cancer 286 9 2 breast-w 699 10 2
cleveland 303 13 2 credit-screening 690 15 2
cylinder-bands 540 39 2 diabete 768 8 2
glass 214 9 6 haberman 306 3 2
hayes-roth 160 4 3 heart-c 303 13 2
heart-h 294 13 2 heart-statlog 270 13 2
hepatitis 155 19 2 ionosphere 351 34 2
iris 150 4 3 labor-neg 57 16 2
liver 345 6 2 lymph 148 18 4
monkproblem1 556 6 2 monkproblem2 601 6 2
monkproblem3 554 6 2 mushroom 8124 22 2
sick 4744 29 2 sonar 208 60 2
spect 267 22 2 tic-tac-toe 958 9 2
vote 433 16 2 wdbc 569 30 2
wine 178 13 3 wpbc 198 33 2

as an error. Classifying with this cascade is faster than using CEPMC, be-
cause most objects are classified using top classifiers, which uses a reduced
subset of patterns7.

4.7 Experimental Results

To compare the performance of the LCMine, CEPMC, and CascadeCEPM
classifiers, we carried out some experiments over 33 well-known databases
from the UCI Repository of Machine Learning [50]. We include a represen-
tative collection of the databases most commonly used in previous pattern
based publications. We also include some databases where pattern based
classifiers obtain poor results. The general description of tested databases
appears in Table 4.1. In this table, The column Objects contains the num-
ber of objects in the database while the columns #Attr and #Class have the
number of attributes and classes, respectively.

For comparison, we selected six state-of-the-art classifiers: Nearest Neigh-
bors [17], Bagging and Boosting [42], Random Forest [37], C4.5 [58] and

7The number of patterns is proportional to the classification speed, because a query object
has to be tested with all the patterns.

60 CHAPTER 4. EXTENDED CRISP EMERGING PATTERN MINING

Table 4.2: Default parameters used in the Weka classifiers

Classifier Weka Name Parameters
3-NN IBK -K 3 -W 0
AdaBoost AdaBoostM1 -P 100 -S 1 -I 10
Bagging Bagging -P 100 -S 1 -I 10 -o -W

REPTree – -M 2 -V 0.0010 -N 3 -S 1 -L -1
C4.5 J48 -C 0.25 -M 2
Random Forest RandomForest -I 10 -K 0 -S 1
SVM SMO -C 1.0 -E 1.0 -G 0.01 -A 250007

-L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1

Support Vector Machines [15]. For each classifier, we used the Weka 3.6.1
implementation [29] with its default parameters (Table 4.2). We also tested
SJEPC [27], which is one of the most accurate emerging pattern based clas-
sifiers, using the minimal support threshold suggested by their authors. To
make a fair comparison, our classifiers use the same parameters on all the
databases.

We performed 10-fold cross validation, averaging the results. In emerging
pattern classifiers LCMine, SJEPC, CEPMC and CascadeCEPM we reported
the abstentions as errors. In these objects, the classifier is unable to assign a
class; returning the majority or a random class could hide these undesirable
cases. Table 4.3 presents the accuracy results, in percentage.

Experimental results show that SJEPC has low accuracy values in many
databases, compared to other classifiers. In those databases, most numer-
ical features were discretized into a categorical feature with a single value,
so they were useless for mining patterns. CEPMC and CascadeCEPM have
higher accuracies than SJEPC does in most databases.

In order to determine if the differences in accuracy are statistically signif-
icant, we performed a pairwise comparison between all the classifiers. Each
cell in Table 4.4 contains the number of databases where the classifier in the
row significantly wins/loses with respect to the classifier in the column. We
detected ties using a two-tailed T-Test [18] with significance of 0.05.

The pairwise comparison shows that, in the tested databases, our clas-
sifiers are more accurate than other understandable classifiers, while being
competitive with Nearest Neighbors and Support Vector Machines classifiers.
On the other hand, CEPMC is more accurate than LCMine, and slightly more

4.7. EXPERIMENTAL RESULTS 61

Table 4.3: Accuracy results of the tested classifiers in the selected databases. The
highest accuracy per database is bolded

DBName 3nn Boost Bagg c4.5 RandFor SVM SJEPC LCMine CEPMC CascCEPM
autos 68.2 42.4 61.1 81.0 81.0 66.0 12.3 80.1 79.8 83.5
balance-scale 89.3 71.7 82.6 77.6 79.4 87.5 16.0 75.1 79.5 82.7
breast-cancer 74.5 72.4 71.0 73.4 65.8 70.7 44.5 70.7 72.0 72.3
breast-w 96.5 95.6 95.6 95.9 96.5 97.0 96.3 97.4 96.0 94.1
cleveland 81.8 84.2 79.9 78.2 78.6 84.5 77.9 82.2 81.2 81.5
credit-screening 84.2 86.3 85.9 85.1 85.0 86.3 82.6 86.8 85.9 87.6
cylinder-bands 70.2 72.9 60.4 72.2 78.5 80.9 64.3 81.8 77.8 75.1
diabete 74.9 75.4 75.7 76.4 75.4 74.1 76.2 73.1 75.7 74.0
glass 69.0 44.7 73.8 67.7 70.9 57.1 20.4 68.2 63.2 58.4
haberman 72.2 70.9 72.5 68.0 67.6 72.5 0.0 70.9 68.6 71.6
hayes-roth 50.0 53.6 75.0 89.3 85.7 53.6 0.0 53.2 78.6 75.0
heart-c 81.2 83.2 81.9 76.2 80.9 82.8 78.6 81.3 81.2 82.2
heart-h 83.0 81.6 79.9 79.6 79.3 82.6 46.3 79.5 81.0 80.2
heart-statlog 81.1 80.7 79.3 79.3 79.3 83.0 64.8 79.2 80.0 80.0
hepatitis 86.0 83.6 82.0 81.8 82.4 85.2 83.2 79.4 82.5 81.3
ionosphere 85.5 91.4 90.3 90.3 92.6 88.0 93.5 91.1 89.5 90.2
iris 96.6 97.8 95.8 95.8 95.2 97.0 75.3 96.5 95.3 95.3
labor-neg 90.7 87.0 84.0 80.0 86.7 90.7 82.0 80.9 89.0 79.3
liver 62.6 66.1 68.7 68.7 70.7 57.7 0.0 70.2 69.3 69.9
lymph 85.9 75.7 77.7 78.5 79.9 87.9 43.9 85.5 83.7 82.5
monkproblem1 81.0 75.0 50.0 88.9 75.7 50.0 86.8 95.6 100.0 100.0
monkproblem2 61.3 60.7 55.1 69.9 65.1 50.5 71.1 75.0 83.8 79.2
monkproblem3 88.2 97.2 50.0 96.3 97.2 50.0 93.5 97.5 97.5 97.5
mushroom 100.0 96.3 100.0 100.0 100.0 100.0 100.0 100.0 99.7 100.0
sick 96.0 97.2 95.1 98.7 98.2 97.6 96.8 96.8 97.8 96.9
sonar 82.3 77.4 76.4 68.4 81.8 82.0 85.1 75.7 78.8 77.1
spect 64.7 66.8 61.5 66.8 62.0 67.9 0.0 66.8 78.1 83.4
tic-tac-toe 97.9 74.7 85.3 85.3 92.6 95.8 98.8 97.0 96.5 94.4
vote 92.2 94.7 95.2 96.1 96.1 95.9 91.1 94.5 94.0 94.5
wdbc 96.3 92.3 94.4 91.4 94.0 97.7 85.1 94.3 95.6 95.3
wine 96.0 87.5 94.3 92.7 97.2 98.9 55.1 87.9 93.3 95.0
wpbc 72.3 71.0 78.8 75.5 74.7 75.9 0.0 68.4 79.8 80.8

accurate than CascadeCEPM. Nevertheless, CascadeCEPM is faster in the
classification stage.

The model built by our classifiers is easy to understand in terms of the
problem domain, unlike the Nearest Neighbors and the Support Vector Ma-
chines models. Each class is described as a collection of discriminative prop-
erties, as you can see in the example appearing in Table 4.5.

62 CHAPTER 4. EXTENDED CRISP EMERGING PATTERN MINING

Table 4.4: Pairwise comparison between the tested classifiers. Each cell shows
the number of times the classifier in the row Wins/Losses with respect to the
classifier in the column, over the 33 databases

3nn Boost Bagg c4.5 RandFor SVM SJEPC LCMine CEPMC CascCEPM
3nn 13/9 14/6 12/11 12/10 8/9 20/5 8/11 8/10 10/12
Boost 9/13 8/10 5/12 7/13 5/13 22/6 5/10 3/15 4/15
Bagg 6/14 10/8 8/9 5/13 6/15 18/7 8/9 3/12 2/8
c4.5 11/12 12/5 9/8 5/9 10/14 20/4 7/10 3/12 3/16
RandFor 10/12 13/7 13/5 9/5 8/13 21/4 9/9 6/9 8/11
SVM 9/8 13/5 15/6 14/10 13/8 21/7 11/7 10/9 12/9
SJEPC 5/20 6/22 7/18 4/20 4/21 7/21 4/23 3/24 6/23
LCMine 11/8 10/5 9/8 10/7 9/9 7/11 23/4 3/11 5/8
CEPMC 10/8 15/3 12/3 12/3 9/6 9/10 24/3 11/3 6/4
CascCEPM 12/10 15/4 8/2 16/3 11/8 9/12 23/6 8/5 4/6

Table 4.5: Classifier model built by CEPM for one of the folds in the Iris database

iris-setosa
[PetalLength ≤ 1.90]
[PetalWidth ≤ 0.60]
iris-versicolor
[PetalLength > 1.90] ∧ [PetalLength ≤ 4.90] ∧ [PetalWidth ≤ 1.60]
iris-virginica
[PetalLength > 1.90] ∧ [PetalWidth > 1.60]
[PetalLength > 4.90]

4.8 Summary

In this chapter, we formalized the concept of extended crisp emerging pattern.
We introduced two algorithms for mining this kind of patterns from databases
with mixed and incomplete data. The first algorithm, named LCMine, uses lo-
cal discretization of numerical values to solve the global discretization draw-
back of previous emerging pattern classifiers. LCMine extracts patterns from
a collection of decision trees, using a special extraction procedure during
the tree induction. To overcome the limitations of LCMine, we introduced
an enhanced version, named CEPM. To obtain a collection of representative
patterns, CEPM uses a novel object weighting scheme. Furthermore, this
chapter proposed an algorithm for accurately estimating the minimal support
threshold for CEPM.

We proposed also a cascade of emerging pattern classifiers. This cas-

4.8. SUMMARY 63

cade combines the higher accuracy of classifying with patterns having higher
support thresholds with the lower levels of abstention of classifying with pat-
terns having lower support thresholds.

Experimental results showed that CEPMC and CascadeCEPM are more
accurate than one of the most accurate emerging pattern classifiers, in the
majority of tested databases. A pairwise comparison revealed that both clas-
sifiers are more accurate than other understandable classifiers, and as ac-
curate as Nearest Neighbors and Support Vector Machines, while the clas-
sification model built by them is easy to understand in terms of the problem
domain. LCMine, on the other hand, is less accurate than the CEPMC and
CascadeCEPM classifiers. To select which classifier to use in a particular
problem we must consider that CEPMC is more accurate, but CascadeCEPM
is faster in the classification stage.

In order to improve some of the limitations of our algorithm, the following
approaches can be studied:

• Speeding up the algorithm to estimate the minimal support threshold,
which is the slowest component of CEPM.

• Speeding up the algorithm to estimate the support threshold for the
classifiers in the CascadeCEPM cascade.

• Studying the impact of the weighting recalculation function in the quality
of the patterns and the convergence of the algorithms, to propose new
weighting schemes.

Chapter 5

Fuzzy emerging pattern mining

5.1 Introduction

Fuzzy sets [71] offers a solution to discretization problems in many domains.
Fuzzy sets have contributed to improve many mining tasks, like mining fuzzy
association rules from uncertain data [69]. This chapter introduces a new
kind of emerging pattern, named Fuzzy Emerging Pattern (FEP). Fuzzy emerg-
ing patterns are patterns formed by fuzzy selectors with the structure [Feature ∈
FuzzyS et], joined by fuzzy AND operators. This way an object satisfies a
given pattern in certain degree, according to the degree the object feature
values satisfy the property expressed in the pattern. Fuzzy patterns alleviate
some drawbacks of crisp patterns:

• Crisp boundaries in numerical features are eliminated. Let us consider
the pattern

[
Weight ≥ 24

]
. Note that an object with Weight = 23.99

does not fulfill the pattern at all, having a very small difference with
respect to the pattern.

• The pattern fulfillment relation is more flexible, because objects can
fulfill a fuzzy pattern in certain degree. This way, classifier abstention
for lack of evidence is less frequent.

• Fuzzy patterns are easier to read and to explain in terms of the problem
domain. Using them we can find patterns like “Temperature is high and

65

66 CHAPTER 5. FUZZY EMERGING PATTERN MINING

Pressure is above normal”, where “high”, “above”, and “normal” are
defined by the user, according to his background knowledge.

To efficiently extract fuzzy emerging patterns from a database, we use
a set of fuzzy decision trees, induced using a new algorithm that includes
linguistic hedges. Linguistic hedges allow modifying the semantics of the
initial fuzzy discretization to satisfy the semantics of the different classes in
the training sample [32]. We also propose a new classifier based on fuzzy
emerging patterns, which includes a novel mechanism for the aggregation of
pattern votes. This classifier outperforms many state-of-the-art classifiers in
most of the tested databases.

5.2 Fuzzy Emerging Patterns

Fuzzy emerging patterns are an extension of crisp emerging patterns, where
the objects support the patterns in a certain degree. First, we introduce the
concept of Fuzzy Pattern.

Definition 5.1. A Fuzzy Pattern is a conjunction (using a T-Norm1) of selec-
tors [Feature ∈ FuzzyS et], where ∈ is the membership of the Feature value to
FuzzyS et; in this paper, these selectors will be named F-selectors.

Example 5.1. [Temperature ∈ hot] ∧ [Humidity ∈ normal] and [Outlook ∈
sunny] ∧ [Windy ∈ true] are fuzzy patterns. Additionally, any number of lin-
guistic hedges can modify each FuzzyS et, like in

[
Temperature ∈ very(hot)

] ∧[
Humidity ∈ somewhat(normal)

]
.

Instead of the phrase “an object supports a pattern”, commonly used with
the classical emerging patterns, each object supports every fuzzy pattern in
a certain degree between zero and one. If the degree is one, the object fully
supports the pattern; if the degree is zero, the object does no support the
pattern. The individual fuzzy support of a fuzzy pattern f p with respect to an
object o, denoted as f sup(o, f p), can be calculated as the minimum value (or
another T-norm) of the membership µ of every feature value of o to the fuzzy
set in the respective F-selector f s of the fuzzy pattern f p:

f sup(o, f p) = min
f s∈ f p

{
µ f s(o)

}

1An introduction to fuzzy set operators can be found in Section 2.9.1.

5.3. MINING FUZZY EMERGING PATTERNS 67

In a problem with multiple classes, each fuzzy pattern f p has a different
support in every class Ci, which is calculated as the sum of the individual
fuzzy support for all objects in Ci.

FS up(f p,Ci) =
∑

o∈Ci

f sup(o, f p)

In order to measure the relevance of each fuzzy pattern for classification,
we introduce the concept of Trust.

Definition 5.2. The trust of a fuzzy pattern f p is:

Trust(f p) =
maxCi FS up(f p,Ci)∑

Ci
FS up(f p,Ci)

The Trust of a fuzzy pattern measures the support ratio of f p in the class
with the highest support, with respect to the total support of f p in all the
classes. We can understand the Trust as the membership degree of a given
pattern to the fuzzy set of “good patterns for classification”. It is a measure
that evaluates how good a pattern is to discriminate between classes, and
we will use it to select fuzzy emerging patterns.

Definition 5.3. A Fuzzy Emerging Pattern (FEP) is a fuzzy pattern with
Trust > 0.5.

A Trust above 0.5 means the pattern has higher support in the highest
supported class than in the combined remaining classes. That is why we use
this value as cutting-point to determine which patterns are good for super-
vised classification. It is worth to mention that a pattern P whose support in
a class is significantly higher than its support in the remaining classes has a
higher Trust than a pattern Q with lower differences; since the Trust is used
as voting weight, P has a higher influence in the final classification of the
objects than Q.

5.3 Mining Fuzzy Emerging Patterns

Extracting fuzzy patterns from a given training sample is the first step for
classification using fuzzy emerging patterns. Initially, we fuzzify all features,

68 CHAPTER 5. FUZZY EMERGING PATTERN MINING

according to their types. For each categorical feature, we create a collection
of singleton fuzzy sets, i.e. for each different value, we create a fuzzy set
having membership 1 for that value, and 0 for the remaining values. For
each numerical feature, we apply a traditional fuzzification algorithm, which
transforms the feature in a fuzzy Ruspini partition 2. Next, we extract fuzzy
emerging patterns from a set of diverse fuzzy decision trees induced from the
training sample. The induction algorithm is a variant of the ID3 method [57]
for the fuzzy case, with the following diferences:

• Candidate splits use the following fuzzy sets and their fuzzy negation:

1. All the fuzzy sets obtained in the fuzzyfication step.

2. Fuzzy sets in the previous item, modified by all different prede-
fined hedges. The hedges must be defined by the user according
to the problem domain.

• In classical ID3, each object in a decision node is assigned to a single
child node. In the fuzzy version, each object is assigned to all child
nodes with different membership value. This way, every object belongs
to all the nodes in the fuzzy tree with a different membership value3. To
calculate the object membership in a child node, our algorithm applies
a fuzzy AND between the object membership in the parent node and
the membership of the object to the fuzzy set associated to the child
node.

• If the membership of an object to a particular node is below a given
threshold µmin, the object is deleted from the node.

• In the fuzzy version, we use the following stopping criteria:

– The node is pure, i.e. all the objects in the node belong to the
same class.

– The node is empty.

– No split provides an improvement in the quality function.

2In a fuzzy Ruspini partition the total membership of every value in the domain is equal to
one. For example, the fuzzy sets in Figure 5.1 are Ruspini partitions of the domains of Tempera-
ture, Rain, and Humidity respectively.

3In our mining method, if an object belongs to a node with membership below 0.05, it is
discarded.

5.3. MINING FUZZY EMERGING PATTERNS 69

• The use of fuzzy information gain (f ig) of a node N. The f ig is an
extension of the ID3 information gain for the fuzzy case [22]:

f ig(N) = f imp(N) −
∑

Nc∈child(N)

f imp(Nc)·
∑

o∈Nc µNc(o)∑
o∈N µN(o)

(5.1)

where µN(o) refers to the membership of the object o to the node N,
and the fuzzy impurity f imp(N) is defined as:

f imp(N) = −
∑

C∈classes(N)

∑
o∈C µN(o)∑
µN(o)

· log
(∑

o∈C µN(o)∑
µN(o)

)

In the tree construction process, missing data are handled like in LCMine
algorithm (Section 4.3).

To guarantee diversity among the trees used to extract fuzzy emerging
patterns, we use the same searching procedure as for the LCMine algorithm
(Section 4.3.1). The pseudocode of the pattern mining procedure appears in
Algorithm 5.1.

Data: T - training sample, k - diversity control parameter
Result: ResultFEP
FEP← ∅;
forall o ∈ T do

set µT (o) = 1
end
// The i j values control which of the best candidate

splits is selected for expanding the tree nodes,

according to each node level

for i1 ← 1 to k do
for i2 ← 1 to k − 1 do

for i3 ← 1 to k − 2 do. . .
Tree← BuildNode

(
T,

{
µT (o)

}
, {i1, i2, i3, . . .}

)
;

FEP← FEP ∪ ExtractPatterns(Tree)
end

end
end
ResultEP← RemoveDuplicates(FEP);

Algorithm 5.1: MinePatterns Algorithm

Example 5.2. For example, Table 5.1 contains the description of three objects,
using three numerical features: Temperature, Rain and Humidity. Figure 5.1

70 CHAPTER 5. FUZZY EMERGING PATTERN MINING

Data: T – object collection to build the tree,
{
µT (o)

}
- associated

membership of the object o to the current node, l – level in the tree
of the resultant node, {klevel} – set of k values for each level

Result: N – decision node
while T has objects in more than one class ∧
∃Ci ∈ T :

∑
o∈Ci

µT (o) > µmin do
Generate all candidate splits S i using all fuzzy sets and hedges;
Calculate f ig(S i), the fuzzy information gain of every split S i;
Sort S i in descending order according to f ig(S i);
Find S ′, the kl

th element of the sorted S i collection;
Construct the left and right child node fuzzy sets FS le f t and FS right

according to S ′. FS le f t corresponds to the fuzzy set associated to S ′,
while FS right corresponds to the negated fuzzy set, using a fuzzy
negation operator;
Find the child node subsets Tle f t and Tright, according to the split S ′.
Calculate

{
µTle f t(o)

}
and

{
µTright(o)

}
, as the product of its current value

and the membership of the object to FS le f t and FS right respectively;
Nle f t ← BuildNode

(
Tle f t,

{
µTle f t(o)

}
, l + 1, {klevel}

)
;

Nright ← BuildNode
(
Tright,

{
µTright(o)

}
, l + 1, {klevel}

)
;

Construct the decision node N, with child nodes Nle f t and Nright

respectively;
end

Algorithm 5.2: BuildNode algorithm

shows the membership functions generated using a fixed-bin fuzzy discretization,
with three bins.

To generate the tree i j = (2, 1, 3, 2, 1) the algorithm expands the root node,
generating all candidate splits (Figure 5.2). Next, it calculates the fuzzy in-
formation gain of each candidate split (Figure 5.3) using (5.1), sorts the splits
according to their f ig (Figure 5.4), and selects the second highest value (Fig-
ure 5.5). Finally, we built a new decision node using the fuzzy sets associated
with the selected split (Figure 5.6), and recursively apply the whole procedure to
each child node until we find a leaf node. Figure 5.7 shows the complete fuzzy
decision tree generated by the BuildNode algorithm (Algorithm 5.2).

From each tree, we extract all its fuzzy emerging patterns, which are the
conjunctions of the properties in the paths from the root node to the leaves.
Each pattern is assigned to the class with the highest fuzzy support. Finally,
we remove duplicated patterns and patterns with a Trust below 0.5, because

5.3. MINING FUZZY EMERGING PATTERNS 71

Table 5.1: Description of the objects used in the example

Object Class Temperature (oC) Rain (mm) Humidity (%)
o1 Bolded 95 120 5
o3 Bolded 50 10 40
o2 Non-bolded 70 150 15

Figure 5.1: Fuzzy membership functions per feature used in the example

Figure 5.2: Candidate splits in the example

Figure 5.3: Evaluating the fuzzy information gain (fig) in a candidate split exam-
ple

Figure 5.4: Sorting candidate splits in the example according to the f ig value

Figure 5.5: Selecting the second candidate split in the example

72 CHAPTER 5. FUZZY EMERGING PATTERN MINING

Figure 5.6: Creating a new decision node and its related fuzzy sets

Figure 5.7: Fuzzy tree generated in the example. The membership of the objects
to each node appears between parenthesis

Table 5.2: Fuzzy emerging patterns extracted from the tree in Figure 5.7

Class FEP Trust
Bolded very(dry) ∧ somewhat(hot) 0.99

not(very(dry)) ∧ not(rainy) 0.91
Non-bolded very(dry) ∧ not(somewhat(hot)) 0.91

not(very(dry)) ∧ rainy 1.00

they are not fuzzy emerging patterns.

In the tree appearing in Figure 5.7 we have four leaves, so we extract the
four fuzzy emerging patterns shown in Table 5.2. It is important to highlight
the expressivity and easiness to understand of the extracted patterns.

5.3.1 Computational complexity

The computational cost of the proposed mining procedure is a constant (k!)
multiplied by the cost of inducing each fuzzy decision tree. Extracting the
fuzzy emerging patterns does not increase the complexity, because the pat-
terns can be directly extracted from the trees during the induction procedure.

5.4. CLASSIFYING WITH FUZZY EMERGING PATTERNS 73

The algorithm we use to induce fuzzy decision trees has similar complex-
ity than crisp decision tree induction algorithms; the following are the main
differences:

• A fixed amount of splits are used for each numerical feature, instead of
dynamically calculating the cut points, as in the crisp version.

• In the crisp version, every object is assigned to a single child, so in the
case of balanced trees you get log(n) levels. In the fuzzy version, most
objects are assigned to both child nodes with different membership val-
ues, so the tree has more depth.

Section 5.5.1 presents an experimental study about the scalability of the
mining procedure by increasing the number of objects, features and dis-
cretized values.

5.4 Classifying with Fuzzy Emerging Patterns

To understand the classification stage of the classifier, we first extend the
concepts of more particular pattern and more general pattern to the fuzzy
case.

Definition 5.4. An F-selector f s1 ≡ [Attr1 ∈ FS 1] is more particular than an-
other F-selector f s2 ≡ [Attr2 ∈ FS 2] if Attr1 = Attr2 and FS 1 ⊂ FS 2

4.

Definition 5.5. Let f ep1 and f ep2 be two fuzzy emerging patterns. f ep1 is more
particular than f ep2 if for all F-selectors in f ep1, f ep2 contains an equal or
more particular f-selector.

Definition 5.6. Let f ep1 and f ep2 be two fuzzy emerging patterns. f ep1 is more
general than f ep2 if f ep2 is more particular than f ep1.

If two patterns contain linguistic hedges, we use the fuzzy subset inclusion
between them to select the more general. This way, the F-selector very(high)
is more general than extremly(high), but less general than high. The “more

4Fuzzy subset relation. A fuzzy set is subset of another fuzzy set if it has lower membership
values for all the values in the domain.

74 CHAPTER 5. FUZZY EMERGING PATTERN MINING

general” relation is antisimetric, so a pattern can be unrelated with other pat-
terns. According to Definition 5.6, an object supports a more general pattern
with higher degree than a less general pattern.

As we reviewed in Section 3.1, particular patterns reduce duplicate pat-
tern contribution [65] and provide more information about relationships be-
tween features [75], but they are harder to appear in query objects, generat-
ing abstention [65]. On the other hand, general patterns are more resistant
to noise [25, 26] and can be mined with less computational effort [25]. Nev-
ertheless, aggregating many minimal patterns may implicitly cause duplicate
counting of individual pattern contributions, which could decrease classifica-
tion accuracy [5, 65].

In this section, we introduce a novel strategy to build the classifier, which
uses all available patterns. In our classifier, we build a pattern graph as
follows:

• Nodes are associated with fuzzy emerging patterns.

• Arcs connect nodes with more particular patterns to nodes with more
general patterns, according to the antisymmetric relation “is more par-
ticular than”.

When an arc A connects two nodes N1 and N2, if there is a longer path
between both nodes, A is discarded. This procedure avoids considering
a more general pattern while a more particular one is still untested.

In this graph, nodes with no ancestors are maximal patterns (more partic-
ular), because any other pattern contains it. Similarly, nodes with no succes-
sors are minimal patterns (more general). The algorithm for creating such
graph is straightforward. We evaluate every possible pair of nodes, evalu-
ating the fulfillment of the relation “is more particular than”. If it holds, we
create the corresponding arc. Finally, a post-processing step discards longer
redundant paths.

To compute the votes per class of a query object, the proposed classifier
named FEPC starts evaluating the patterns with no ancestors. If the evalu-
ated pattern matches the query object (with a fuzzy support above a certain
threshold) the vote to its class is increased with its Trust, while all its succes-
sors are discarded. Otherwise, all immediate successors are evaluated in the

5.4. CLASSIFYING WITH FUZZY EMERGING PATTERNS 75

Figure 5.8: Example of pattern tree built by FEPC

same way. The process ends when every single node has been evaluated
or discarded. Finally, FEPC assigns to the query object the class with the
highest total vote (See Algorithm 5.3).

Data: q – query object to classify, G – fuzzy emerging pattern graph
Result: Classi f ication – class assigned by the classifier to the query

object
Processed ← ∅ ;
foreach class C do

VotesC ← 0
end
Pendant ← FEPs with no ancestors in G ;
foreach f ep ∈ Pendant do

Processed ← Processed ∪ { f ep} ;
if f ep match q then

Votesclass(f ep) ← Votesclass(f ep) + Trust(f ep) ;
Processed ← Processed ∪ { descendants of f ep in G}

else
Pendant ← Pendant ∪ { descendants of f ep in G}

end
if ∃Class : VotesClass > 0 then

Classi f ication← arg maxC{VotesC}
else

Classi f ication← ∅
end

end
Algorithm 5.3: FEPC Algorithm, Fuzzy Emerging Pattern Classifier

Example 5.3. Suppose we have the following patterns ABE, ABD, DE, AB, A,
and B, formed by the selectors A, B, C, D and E. In the training stage, FEPC
builds the pattern graph appearing in Figure 5.8. If we want to classify the object
Q = ABE, FEPC starts considering the patterns with no ancestors: ABE, ABD,
and DE. Any of them matches Q, so FEPC considers their immediate successors:
AB and D. Since Q matches AB, the pattern A is discarded. Finally, the pattern
AB is the only one considered for classification. Following the same algorithm,

76 CHAPTER 5. FUZZY EMERGING PATTERN MINING

FEPC classifies BDE using the pattern DE, and classifies ADE considering the
patterns DE and A.

FEPC tries to classify each object with fuzzy emerging patterns as partic-
ular as possible. If a pattern does not match the query object, the classifier
uses more general patterns, following the arcs in the graph. This way, we
can combine, in a synergic way, particular patterns having lower errors with
general patterns with low abstention. FEPC strategy avoids vote duplication,
which frequently leads to incorrect classification in problems where there are
many similar patterns.

5.5 Experimental Results

In this section, we present the results of our experimental comparison be-
tween FEPC and other classifiers. To make the results comparable, we select
the same classifiers, evaluation protocol, and databases than in the previous
chapter (Section 4.7). From our new classifiers, we select CEPMC because
it is the most accurate.

For FEPC, we construct a fuzzy Ruspini partition for each numerical fea-
ture. We create d uniformly distributed fuzzy sets, the first and last ones with
a trapezoidal shape, and the inner sets with triangular shapes (like the exam-
ples in Figure 5.1), which is a commonly used configuration in mining tasks
[38, 1]. We experimentally determine that the highest accuracy is reached
using d = 4, but 3 and 5 achieved similar accuracy results. In a similar way,
we set k = 5. We use µmin = 0.05 for all threshold values, although we did
not find statistically significant differences in the accuracies using values be-
tween 0.05 and 0.15. Also, we experimentally found that the shape of the
fuzzy set has a low impact in the quality of the mined patterns, compared to
other similar shapes (Sigmoid, beta) used in knowledge mining tasks. Nev-
ertheless, the number of bins has a high negative impact in the algorithm
efficiency, because using more bins implies evaluating more candidate splits
on each iteration of the tree building procedure.

In Table 4.3, we show the accuracy results of the experiments. We per-
form 10-fold cross validation, averaging the results. It is easy to notice that
our classifier outperforms all the tested classifiers in most of the databases.

5.5. EXPERIMENTAL RESULTS 77

Table 5.3: Accuracy of the tested classifiers on the selected databases. The high-
est accuracy result for each database appears bolded

DBName 3nn Boost Bagg c4.5 RandFor SVM SJEPC CEPMC FEPC
autos 68.2 42.4 61.1 81.0 81.0 66.0 12.3 79.8 85.4
balance-scale 89.3 71.7 82.6 77.6 79.4 87.5 16.0 79.5 84.5
breast-cancer 74.5 72.4 71.0 73.4 65.8 70.7 44.5 72.0 70.6
breast-w 96.5 95.6 95.6 95.9 96.5 97.0 96.3 96.0 98.8
cleveland (cleve) 81.8 84.2 79.9 78.2 78.6 84.5 77.9 81.2 82.2
credit-screening(crx) 84.2 86.3 85.9 85.1 85.0 86.3 82.6 85.9 88.9
cylinder-bands 70.2 72.9 60.4 72.2 78.5 80.9 64.3 77.8 89.8
diabete 74.9 75.4 75.7 76.4 75.4 74.1 76.2 75.7 74.2
glass 69.0 44.7 73.8 67.7 70.9 57.1 20.4 63.2 59.7
haberman 72.2 70.9 72.5 68.0 67.6 72.5 0.0 68.6 70.0
hayes-roth 50.0 53.6 75.0 89.3 85.7 53.6 0.0 78.6 78.6
heart-c 81.2 83.2 81.9 76.2 80.9 82.8 78.6 81.2 84.2
heart-h 83.0 81.6 79.9 79.6 79.3 82.6 46.3 81.0 79.5
heart-statlog 81.1 80.7 79.3 79.3 79.3 83.0 64.8 80.0 82.2
hepatitis 86.0 83.6 82.0 81.8 82.4 85.2 83.2 82.5 85.8
ionosphere 85.5 91.4 90.3 90.3 92.6 88.0 93.5 89.5 93.4
iris 96.6 97.8 95.8 95.8 95.2 97.0 75.3 95.3 97.7
labor-neg 90.7 87.0 84.0 80.0 86.7 90.7 82.0 89.0 90.3
liver 62.6 66.1 68.7 68.7 70.7 57.7 0.0 69.3 65.0
lymph 85.9 75.7 77.7 78.5 79.9 87.9 43.9 83.7 92.0
monkproblem1 81.0 75.0 50.0 88.9 75.7 50.0 86.8 100.0 99.1
monkproblem2 61.3 60.7 55.1 69.9 65.1 50.5 71.1 83.8 75.0
monkproblem3 88.2 97.2 50.0 96.3 97.2 50.0 93.5 97.5 96.1
mushroom 100.0 96.3 100.0 100.0 100.0 100.0 100.0 99.7 100.0
sick 96.0 97.2 95.1 98.7 98.2 97.6 96.8 97.8 96.4
sonar 82.3 77.4 76.4 68.4 81.8 82.0 85.1 78.8 82.2
spect 64.7 66.8 61.5 66.8 62.0 67.9 0.0 78.1 66.3
tic-tac-toe 97.9 74.7 85.3 85.3 92.6 95.8 98.8 96.5 99.4
vote 92.2 94.7 95.2 96.1 96.1 95.9 91.1 94.0 91.3
wdbc 96.3 92.3 94.4 91.4 94.0 97.7 85.1 95.6 96.4
wine 96.0 87.5 94.3 92.7 97.2 98.9 55.1 93.3 98.7
wpbc 72.3 71.0 78.8 75.5 74.7 75.9 0.0 79.8 83.4

As we saw in Section 4.7, SJEPC attains poor results in some databases. In
those databases, most numerical features were discretized into a categorical
feature with a single value, so they were useless for mining patterns.

In order to determine if the differences in accuracy are statistically signifi-
cant, we performed a pairwise comparison between CEPMC, FEPC, and the
other classifiers. Each cell in Table 5.4 contains the number of databases
where our classifier significantly Win/Lose to each other classifier. We de-
tected ties using a two-tailed T-Test [18] with significance of 0.05. The results
in the pairwise comparison reveal that the FEPC classifier beats in accuracy

78 CHAPTER 5. FUZZY EMERGING PATTERN MINING

Table 5.4: Pairwise comparison between CEPMC, FEPC, and the others. Each
cell shows the number of times CEPMC and FEPC Win/Loss with respect to the
corresponding classifier over the 33 selected databases

3nn Boost Bagg c4.5 RandFor SVM SJEPC CEPMC FEPC
CEPMC 10/8 15/3 12/3 12/3 9/6 9/10 24/3 5/15
FEPC 14/5 18/2 20/4 19/7 20/4 13/5 25/1 15/5

Figure 5.9: Scalability results of FEP miner by increasing the number of objects
(A), features (B), and values of the features (C)

all other single classifiers in almost all the tested databases.

Tables 5.3 and 5.4 show that the new classifier performs better than the
others in many but not all cases. Although FEPC clearly outperforms other
non-metric methods (Bagging, Boosting, c4.5, Random Forest and SJEPC),
it frequently ties with metric methods (kNN and SVM). To explain this behav-
ior, we should point out that emerging patterns are unable to capture relations
among features 5 , which are easily captured by distance-based methods.

FEPC is more accurate than CEPMC, while CEPMC has a slower train-
ing time. To select between them, the user must also consider the type of
model he wants to generate, in order to comprehend the classifier results.
In a fuzzy model, to understand each single pattern the user needs a deep
understanding of each fuzzified value and each hedge present in the pattern.
That is why a fuzzy model can be easier to comprehend for some users, but
very hard to comprehend for others.

5.6. SUMMARY 79

5.5.1 Algorithm Scalability

In order to test the scalability of our mining algorithm by increasing the num-
ber of objects, the number of features, and the number of discretized values
of the features, we use the database hypothyroid [50]. Hypothyroid has 3772
objects, 7 numerical features, and 22 categorical features. We evaluated the
impact of increasing each parameter, testing different values while keeping
the other parameters unaltered. The results were the following:

Number of objects Adding new objects has different levels of impact, de-
pending on characteristics of the objects. An object similar to previous
objects in its same class usually does not alter the decision tree. An
object very dissimilar to previous objects, or similar to objects in a differ-
ent class, could force the mining procedure to make more splits. Figure
5.9 shows a linear dependence between the number of objects and the
time needed to mine the patterns.

Number of features Adding a new feature increments the number of candi-
date splits in every node of the tree by k ·NumHedges, where NumHedges
is the amount of hedges considered in the system, and k is the number
of values of the feature (4 for numerical features). Figure 5.9 shows an
exponential dependence with respect to the number of features.

Number of discretized values Increasing the number of discretized values
adds NumHedges candidate splits in every node of the tree. Figure
5.9 shows a dependence close to linear.

Generally speaking, our algorithm scales better to adding new objects
than to adding new discretized values, and scales worst to adding new fea-
tures.

5.6 Summary

In this chapter, we introduced Fuzzy Emerging Patterns, an emerging pattern
extension to the fuzzy case, aiming at a better discretization of continuous

5Emerging patterns capture relations among feature values and the class. A relation between
features like Attr1 > Attr2 cannot be represented using this kind of patterns.

80 CHAPTER 5. FUZZY EMERGING PATTERN MINING

features. In order to extract these fuzzy patterns from a training sample, we
proposed a new procedure based on the induction of several fuzzy decision
trees. The induction procedure uses linguistic hedges to fix the initial fuzzy
discretization of the continuous features, which is also a contribution of this
thesis. Besides, we introduced a measure to test the discriminability of a
fuzzy emerging pattern for classification, named Trust.

Using the extracted fuzzy emerging patterns, we proposed the FEPC
classifier, which uses a novel graph-based strategy for organizing the pat-
terns. This strategy allows to create more accurate classifiers, with lower
levels of abstention. In our experiments, FEPC showed significant higher ac-
curacies than some popular and state of the art classifiers. In the pairwise
comparison, FEPC beats every other single classifier in the majority of the
tested databases.

In order to improve some of the limitations of our algorithm, the following
approaches can be studied:

• Inclusion of splits containing more than one feature in the tree induc-
tion algorithm, in order to capture relations among features. This is
a complex task because it could significantly degrade the mining effi-
ciency, because many more splits would have to be considered in every
node. Additionally, finding the splitting hyperplanes can be a long time
consuming task.

• Selection of a dynamic number of bins for the fuzzy discretization, ac-
cording to the feature value distribution.

• Generation of a variable number of fuzzy decision trees, according to
the complexity of the database, maybe using a scheme similar to CEPM
(Section 4.4.)

Chapter 6

Conclusions and future work

6.1 Conclusions

A useful characteristic of a supervised classifier is that the user can com-
prehend the classification results in terms of knowledge domain, particularly
in those cases where the classification is contradictory with the user expec-
tations. Unfortunately, top accurate classifiers are usually non comprehen-
sible, while most comprehensible classifiers attain lower accuracy in most
databases. Emerging Pattern classifiers, on the other hand, build accurate
and easy to understand models.

In this dissertation, we introduced two new kinds of emerging patterns,
which are more expressive than the traditional ones. The higher expres-
siveness of the new patterns allows expressing more selective properties,
which allows to obtain more accurate classifiers. For each kind of emerging
patterns, we introduced novel mining algorithms, which allow extracting the
patterns from databases with mixed and incomplete data.

For the crisp case, we introduced LCMine, a new extended emerging
pattern mining algorithm without global discretization of numerical features.
LCMine extracts patterns from a collection of C4.5 decision trees, using a
special pattern mining procedure during the tree induction. Although LCMine
is a very accurate classifier, it is slow and very sensitive to the selection of
the minimal support threshold. To overcome these limitations, we introduced

81

82 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

an enhanced version, named CEPM. To guarantee that CEPM finds a re-
presentative collection of patterns, it uses a novel object weighting scheme.
Furthermore, we proposed an algorithm for accurately estimating the minimal
support threshold of the CEPM classifier.

We also proposed a new method for building cascades of emerging pat-
tern classifiers, which combines the higher accuracy of classifying with higher
support thresholds with the lower levels of abstention of classifying with lower
thresholds.

From the experimental results we can conclude that CascadeCEPM and
CEPMC are more accurate than other understandable classifiers, while being
competitive with Nearest Neighbors and Support Vector Machines classifiers.
On the other hand, CascadeCEPM attains similar results than CEPMC, but it
is faster.

To reduce the drawbacks of crisp discretization, we introduced the con-
cept of Fuzzy Emerging Pattern, and we proposed a new algorithm for mining
fuzzy emerging patterns from a database with crisp classes. This algorithm
extracts patterns from a set of fuzzy decision trees, induced with a new al-
gorithm that includes the use of linguistic hedges. We proposed a new clas-
sifier based on fuzzy emerging patterns, which includes a novel mechanism
for aggregation of single pattern votes. From the experimental results we
concluded that the proposed fuzzy emerging pattern classifier is better in ac-
curacy than all other tested single classifiers.

All the classifiers proposed in this dissertation attain higher accuracy than
traditional emerging pattern classifiers and other comprehensible classifiers.
They are also competitive with other state-of-the-art classifiers that are not
comprehensible.

To select which of the introduced classifiers to use in a particular problem,
the expert must select first the type of model wanted: a crisp model or a fuzzy
model. Fuzzy models are very close to the way humans talk and think, but
they are slower and more complex to implement. If the expert chooses a
fuzzy model, then it must use FEPC. Otherwise, the selection depends on
a tradeoff between complexity and classification speed. While CEPMC is a
simpler classifier, because it uses a model simpler to be understood by the
users, CascadeCEPMC is faster.

6.2. FUTURE WORK 83

6.2 Future work

Mining extended emerging patterns is computationally more expensive than
mining traditional patterns. An important point to alleviate this drawback is to
develop more effective mechanisms to early estimate when a pattern subset
is representative enough of a training sample. Another interesting point to
explore is developing new decision tree induction procedures specialized for
the task of mining patterns, even if the induced trees are not good classifiers
by themselves.

The new kinds of patterns proposed in this dissertation could improve the
user understanding in many application fields. That is why it is interesting
to apply the new classifiers in domains where traditional emerging pattern
classifiers succeeded.

There are some databases where any emerging pattern classifier works
fine. It could be very important to find an automated procedure to detect
those cases, based on some database information. This way, we could com-
bine an emerging pattern classifier with distance based classifiers, obtaining
a more accurate ensemble.

Finally, emerging pattern based classifiers have been modified to deal
with some traditional problems: one-class problems (Like intrusion detec-
tion), data flow analysis (Like news and stocks), highly unbalanced datasets,
and large datasets. Although the classifiers introduced in this dissertation
uses a new mining paradigm, they could also be modified to handle these
problems.

6.3 Publications

• Milton Garcı́a-Borroto et al. LCMine: An efficient algorithm for mining
discriminative regularities and its application in supervised classifica-
tion. Pattern Recognition vol. 43, pp. 3025-3034, 2010.

• Milton Garcı́a-Borroto et al. Fuzzy Emerging Patterns for Classifying
Hard Domains. Knowledge and Information Systems 2010, DOI:10.1007/s10115-
010-0324-x.

84 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• Milton Garcı́a-Borroto et al. A New Emerging Pattern Mining Algorithm
and Its Application in Supervised Classification. M.J. Zaki et al. (Eds.):
PAKDD 2010, Part I, LNAI 6118, pp. 150-157, 2010.

• Milton Garcı́a-Borroto et al. Cascading an Emerging Pattern based
classifier. J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2010, LNCS 6256,
pp. 240-249, 2010.

Bibliography

[1] Jesús Alcalá-Fdez, Rafael Alcalá, Marı́a José Gacto, and Francisco Her-
rera. Learning the membership function contexts for mining fuzzy association
rules by using genetic algorithms. Fuzzy Sets Syst., 160(7):905–921, 2009.
[cited at p. 76]

[2] Hamad Alhammady. Mining streaming emerging patterns from streaming data.
In IEEE/ACS International Conference on Computer Systems and Applications,
pages 432–436, Amman, 2007. [cited at p. 3]

[3] Ethem Alpaydin and Cenk Kaynak. Cascading classifiers. Kybernetica,
34(4):369–374, 1998. [cited at p. 56]

[4] Annalisa Appice, Michelangelo Ceci, Carlo Malgieri, and Donato Malerba. Dis-
covering relational emerging patterns. In AI*IA 2007: Artificial Intelligence and
Human-Oriented Computing, pages 206–217. 2007. [cited at p. 36]

[5] James Bailey, Thomas Manoukian, and Kotagiri Ramamohanarao. Fast algo-
rithms for mining emerging patterns. In Proceedings of the 6th European Con-
ference on Principles of Data Mining and Knowledge Discovery, volume 2431 of
Lecture Notes in Computer Sciences, pages 187–208. Springer-Verlag, 2002.
[cited at p. 33, 34, 35, 37, 74]

[6] James Bailey, Thomas Manoukian, and Kotagiri Ramamohanarao. A fast al-
gorithm for computing hypergraph transversals and its application in mining
emerging patterns. In ICDM ’03: Proceedings of the Third IEEE International
Conference on Data Mining, page 485, Washington, DC, USA, 2003. IEEE
Computer Society. [cited at p. 36]

[7] James Bailey, Tomas Manoukian, and Kotagiri Ramamohanarao. Classification
using constrained emerging patterns. In Fourth International Conference on

85

86 BIBLIOGRAPHY

Web-Age Information Management, pages 226–237, Chengdu, China, 2003.
[cited at p. 34]

[8] Mikhail N. Bongard. Solution to geological problems with support of recognition
programs. Sov. Geologia, 6:33–50, 1963. [cited at p. 18, 19, 20]

[9] Anne-Laure Boulesteix, Gerhard Tutz, and Korbinian Strimmer. A cart-based
approach to discover emerging patterns in microarray data. Bioinformatics,
19(18):2465–2472, 2003. [cited at p. 3]

[10] Leo Breiman, Jerome. H. Friedman, Richard A. Olshen, and Charles J. Stone.
Classification and Regression Trees. Wadsworth International, Belmont, Cali-
fornia, 1984. [cited at p. 25]

[11] Michelangelo Ceci, Annalisa Appice, Costantina Caruso, and Donato Malerba.
Discovering emerging patterns for anomaly detection in network connection
data. Lecture Notes in Artificial Intelligence, 4994:179–188, 2008. [cited at p. 3]

[12] Mete Celik, Shashi Shekhar, James P. Rogers, and James A. Shine. Sustained
emerging spatio-temporal co-occurrence pattern mining: A summary of results.
In ICTAI ’06: Proceedings of the 18th IEEE International Conference on Tools
with Artificial Intelligence, pages 106–115, Washington, DC, USA, 2006. IEEE
Computer Society. [cited at p. 3]

[13] Robin L. P. Chang and Theodosios Pavlidis. Fuzzy decision tree algorithms.
IEEE Transactions on Systems, Man, and Cybernetics, 7(1):28–35, 1977.
[cited at p. 29]

[14] Lijun Chen and Guozhu Dong. Masquerader detection using oclep: One-
class classification using length statistics of emerging patterns. In WAIMW
’06: Proceedings of the Seventh International Conference on Web-Age Infor-
mation Management Workshops, page 5, Washington, DC, USA, 2006. IEEE
Computer Society. [cited at p. 3]

[15] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learn-
ing, 20(3):273–297, 1995. [cited at p. 14, 18, 60]

[16] Mark W. Craven and Jude W. Shavlik. Extracting tree-structured representa-
tions of trained networks. In Advances in Neural Information Processing Sys-
tems, volume 8. MIT Press, Cambridge, MA, 1996. [cited at p. 18]

[17] Belur Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques. IEEE Computer Society Press, Los Alamitos, California, 1991.
[cited at p. 14, 16, 18, 37, 39, 59]

BIBLIOGRAPHY 87

[18] Thomas G. Dietterich. Approximate statistical tests for comparing super-
vised classification learning algorithms. Neural Computation, 10(7):1895–1923,
1998. [cited at p. 60, 77]

[19] Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns: Discov-
ering trends and differences. In Proceedings of the Fifth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 43–52,
San Diego, California, United States, 1999. ACM. [cited at p. 3, 20]

[20] Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns: Discov-
ering trends and differences. In Proceedings of the Fifth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 43–52,
San Diego, California, United States, 1999. ACM. [cited at p. 18, 19, 21, 31, 34]

[21] Guozhu Dong, Xiuzhen Zhang, Limsoon Wong, and Jinyan Li. Caep: Clas-
sification by aggregating emerging patterns. In DS ’99: Proceedings of the
Second International Conference on Discovery Science, pages 30–42, London,
UK, 1999. Springer-Verlag. [cited at p. 38]

[22] Ming Dong and Ravi Kothari. Look-ahead based fuzzy decision tree induction.
IEEE Transactions on Fuzzy Systems, 9(3):461–468, 2001. [cited at p. 69]

[23] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.
Wiley-Interscience, second edition, 2000. [cited at p. 56]

[24] Hongjian Fan, Ming Fan, Kotagiri Ramamohanarao, and Mengxu Liu. Fur-
ther improving emerging pattern based classifiers via bagging. In W.K. Ng,
M. Kitsuregawa, and Jianping Li, editors, PAKDD 2006, volume 3918 of Lec-
ture Notes in Artificial Intelligence, pages 91–96, 2006. [cited at p. 39]

[25] Hongjian Fan and Kotagiri Ramamohanarao. An efficient single-scan algorithm
for mining essential jumping emerging patterns for classification. In PAKDD ’02:
Proceedings of the 6th Pacific-Asia Conference on Advances in Knowledge Dis-
covery and Data Mining, pages 456–462, London, UK, 2002. Springer-Verlag.
[cited at p. 32, 33, 35, 38, 74]

[26] Hongjian Fan and Kotagiri Ramamohanarao. A bayesian approach to use
emerging patterns for classification. In ADC ’03: Proceedings of the 14th Aus-
tralasian database conference, pages 39–48, Darlinghurst, Australia, Australia,
2003. Australian Computer Society, Inc. [cited at p. 33, 36, 39, 74]

[27] Hongjian Fan and Kotagiri Ramamohanarao. Fast discovery and the general-
ization of strong jumping emerging patterns for building compact and accurate
classifiers. IEEE Transactions on Knowledge and Data Engineering, 18(6):721–
737, 2006. [cited at p. 2, 5, 20, 22, 32, 34, 35, 37, 38, 60]

88 BIBLIOGRAPHY

[28] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of continuous-
valued attributes for classification learning. In 13th Int’l Joint Conf. Artificial
Intelligence (IJCAI), pages 1022–1029, 1993. [cited at p. 31, 37]

[29] Eibe Frank, Mark A. Hall, Geoffrey Holmes, Richard Kirkby, Bernhard
Pfahringer, and Ian H. Witten. Weka: A machine learning workbench for data
mining. In O. Maimon and L. Rokach, editors, Data Mining and Knowledge Dis-
covery Handbook: A Complete Guide for Practitioners and Researchers, pages
1305–1314. Springer, Berlin, 2005. [cited at p. 60]

[30] Milton Garcı́a-Borroto, José F. Martı́nez Trinidad, Jesús Ariel Carrasco Ochoa,
Miguel Angel Medina-Pérez, and José Ruiz-Shulcloper. Lcmine: An efficient
algorithm for mining discriminative regularities and its application in supervised
classification. Pattern Recognition, 43(9):3025–3034, 2010. [cited at p. 20, 22]

[31] Valeriy V. Gavrishchaka and Valery Bykov. Market-neutral portfolio of trading
strategies as universal indicator of market micro-regimes: From rare-event fore-
casting to single-example learning of emerging patterns. In ICICIC ’07: Pro-
ceedings of the Second International Conference on Innovative Computing, In-
formatio and Control, page 215, Washington, DC, USA, 2007. IEEE Computer
Society. [cited at p. 3]

[32] Antonio González and Raul Pérez. A study about the inclusion of linguistic
hedges in a fuzzy rule learning algorithm. International journal of uncertainty,
fuzziness and kenowledge-based systems, 7(3):257–266, 1999. [cited at p. 9, 28,

66]

[33] Tao Gu, Zhanqing Wu, Xianping Tao, Hung Keng Pung, and Jian Lu. epsicar:
An emerging patterns based approach to sequential, interleaved and concur-
rent activity recognition. In PERCOM ’09: Proceedings of the 2009 IEEE In-
ternational Conference on Pervasive Computing and Communications, pages
1–9, Washington, DC, USA, 2009. IEEE Computer Society. [cited at p. 3]

[34] Wilhelmiina Hämälı̈nen. Statapriori: an efficient algorithm for searching statisti-
cally significant association rules. Knowledge and Information Systems, 2009.
DOI 10.1007/s10115-009-0229-8. [cited at p. 20, 21]

[35] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns
without candidate generation: A frequent-pattern tree approach. Data Mining
and Knowledge Discovery, 8(1):53–87, 2004. [cited at p. 34]

[36] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1998. [cited at p. 14, 16, 18]

BIBLIOGRAPHY 89

[37] Tin Kam Ho. The random subspace method for constructing decision forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–
844, 1998. [cited at p. 18, 19, 20, 59]

[38] Dong-Mei Huang. An algorithm for generating fuzzy decision tree with trapezoid
fuzzy number-value attributes. In International Conference on Wavelet Analysis
and Pattern Recognition, ICWAPR 08, volume 1, pages 41–45, Hong Kong,
China, 2008. [cited at p. 29, 76]

[39] Ruoming Jin, Yuri Breitbart, and Chibuike Muoh. Data discretization unification.
Knowledge and Information Systems, 19:1–29, 2009. [cited at p. 2]

[40] Lukasz Kobylinski and Krzysztof Walczak. Jumping emerging patterns with
occurrence count in image classification. In Takashi Washio, editor, PAKDD
2008, volume 5012 of Lecture Notes in Artificial Inteligence, pages 904–909.
Springer-Verlag, 2008. [cited at p. 34]

[41] Ravi Kothari and Ming Dong. Decision trees for classification: A review and
some new results. In Sankar K. Pal and Amita Pal, editors, Pattern Recognition.
From Cassical to Modern Approaches, pages 169–184. World Scientific, 2001.
[cited at p. 18]

[42] Ludmila I. Kuncheva. Combining Pattern Classifiers. Methods and Algorithms.
Wiley-Interscience, Hoboken, New Jersey, USA, 2004. [cited at p. 13, 15, 39, 56, 59]

[43] Jinyan Li, Guozhu Dong, and Kotagiri Ramamohanarao. Instance-based clas-
sification by emerging patterns. In Proceedings of the 4th European Confer-
ence on Principles of Data Mining and Knowledge Discovery, pages 191–200.
Springer-Verlag, 2000. [cited at p. 3, 4, 32, 38]

[44] Jinyan Li, Guozhu Dong, Kotagiri Ramamohanarao, and Limsoon Wong.
Deeps: A new instance-based lazy discovery and classification system. Ma-
chine Learning, 54(2):99–124, 2004. [cited at p. 22, 38, 39]

[45] Jinyan Li, Guimei Liu, and Limsoon Wong. Mining statistically important equiv-
alence classes and delta-discriminative emerging patterns. In KDD ’07: Pro-
ceedings of the 13th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 430–439, New York, NY, USA, 2007. ACM.
[cited at p. 35]

[46] Jinyan Li, Kotagiri Ramamohanarao, and Guozhu Dong. Combining the
strength of pattern frequency and distance for classification. In PAKDD ’01:
Proceedings of the 5th Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pages 455–466, London, UK, 2001. Springer-Verlag. [cited at p. 39]

90 BIBLIOGRAPHY

[47] Elsa Loekito and James Bailey. Fast mining of high dimensional expressive
contrast patterns using zero-suppressed binary decision diagrams. In KDD ’06:
Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 307–316, New York, NY, USA, 2006. ACM.
[cited at p. 36]

[48] David Martens, Bart Baesens, Tony Van Gestel, and Jan Vanthienen. Com-
prehensible credit scoring models using rule extraction from support vector
mahines. European Journal of Operational Research, 2007. [cited at p. 2, 18]

[49] José Francisco Martı́nez-Trinidad and Adolfo Guzmán-Arenas. The logical
combinatorial approach to pattern recognition, an overview through selected
works. Pattern Recognition, 34:741–751, 2001. [cited at p. 1, 13]

[50] Christopher J. Merz and Patrick M. Murphy. Uci repository of machine learning
databases. Technical report, University of California at Irvine, Department of
Information and Computer Science, 1998. [cited at p. 37, 59, 79]

[51] Ryszard Michalski and Robert Stepp. Revealing conceptual structure in data by
inductive inference. In D. Michie, J. E. Hayes, and H. H. Pao, editors, Machine
Intelligence, volume 10, pages 173–196. Ellis Horwood Ltd, New York, 1982.
[cited at p. 42, 43]

[52] Shin-ichi Minato. Zero-suppressed bdds for set manipulation in combinatorial
problems. In DAC ’93: Proceedings of the 30th international Design Automation
Conference, pages 272–277, New York, NY, USA, 1993. ACM. [cited at p. 36]

[53] Vilem Novak, Irina Perfilieva, and Jiri Mockor. Mathematical principles of fuzzy
logic. Kluwer Academic, 1999. [cited at p. 26]

[54] Nicolas Pasquier, Claude Pasquier, Laurent Brisson, and Martine Collard. Mi-
ning gene expression data using domain knowledge. International Journal of
Software and Informatics, 2(2):215–231, 2008. [cited at p. 3]

[55] Gregory Piatetsky-Shapiro and William J. Frawley. Knowledge Discovery in
Databases. AAAI/MIT Press, Cambridge, MA, 1991. [cited at p. 19]

[56] John Quackenbush. Computational approaches to analysis of dna microarray
data. In IMIA Yearbook of Medical Informatics, pages 91–103. 2006. [cited at p. 3]

[57] James Ross Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106,
1986. [cited at p. 16, 20, 45, 68]

[58] James Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers Inc., 1993. [cited at p. 7, 14, 18, 25, 37, 45, 47, 59]

BIBLIOGRAPHY 91

[59] Kotagiri Ramamohanarao and Hongjian Fan. Patterns based classifiers. World
Wide Web, 10(1):71–83, 2007. [cited at p. 2, 16, 34, 38]

[60] José Ruiz-Shulcloper and Mongi A. Abidi. Logical combinatorial pattern recog-
nition: A review. In S.G. Pandalai, editor, Recent Research Developments
in Pattern Recognition, pages 133–176. Transword Research Networks, USA,
2002. [cited at p. 13]

[61] Joseph L. Schafer and John W. Graham. Missing data: our view of the state of
the art. Psychological Methods, 7(2):147–77, 2002. [cited at p. 17]

[62] Yanmin Sun and Andrew K.C Wong. Boosting an associative classifier. IEEE
Trans. on Knowl. and Data Eng., 18(7):988–992, 2006. [cited at p. 39]

[63] Pawel Terlecki and Krzysztof Walczak. Efficient discovery of top-k minimal
jumping emerging patterns. In C. Chang, editor, RSCTC, volume 5306 of Lec-
ture Notes in Artificial Intelligence, pages 438–447, 2008. [cited at p. 35, 37]

[64] Pawel Terlecki and Krzysztof Walczak. Local projection in jumping emerging
patterns discovery in transaction databases. In PAKDD’08: Proceedings of the
12th Pacific-Asia conference on Advances in knowledge discovery and data
mining, pages 723–730, Berlin, Heidelberg, 2008. Springer-Verlag. [cited at p. 36]

[65] Lusheng Wang, Hao Zhao, Guozhu Dong, and Jianping Li. On the complex-
ity of finding emerging patterns. Theor. Comput. Sci., 335(1):15–27, 2005.
[cited at p. 4, 74]

[66] Xi Zhao Wang, Bin Chen, Guoliang Qian, and Feng Ye. On the optimiza-
tion of fuzzy decision trees. Fuzzy Sets and Systems, 112:117–125, 2000.
[cited at p. 29]

[67] Xi Zhao Wang, Jun Hai Zhai, and Su Fang Zhang. Fuzzy decision tree basen
on the important degree of fuzzy attribute. In 2008 International Conference
on Machine Learning and Cybernetics, volume 1, pages 511–516, Kunming,
2008. [cited at p. 29]

[68] Zhao Wang, Hongjian Fan, and Kotagiri Ramamohanarao. Exploiting maximal
emerging patterns for classification. In 17th Australian Joint Conference on
Artificial Intelligence, pages 1062–1068, Cairns, Queensland, Australia, 2004.
[cited at p. 32, 33, 39]

[69] Cheng-Hsiung Weng and Yen-Liang Chen. Mining fuzzy association rules
from uncertain data. Knowledge and Information Systems, 2009. DOI
10.1007/s10115-009-0223-1. [cited at p. 65]

92 BIBLIOGRAPHY

[70] Yufei Yuan and Michael J. Shaw. Induction of fuzzy decision trees. Fuzzy Sets
and Systems, 69:125–139, 1995. [cited at p. 29]

[71] Lofti Zadeh. Fuzzy sets. Information Control, 8:338–353, 1965. [cited at p. 65]

[72] Lotfi A. Zadeh. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers
by Lotfi A. Zadeh. World Scientific Publishing Co., Inc., River Edge, NJ, USA,
1996. [cited at p. 26]

[73] Mohammed J. Zaki and Ching-Jui Hsiao. Efficient algorithms for mining closed
itemsets and their lattice structure. IEEE Transactions on Knowledge and Data
Engineering, 17(4):462–478, 2005. [cited at p. 20]

[74] Xiuzhen Zhang, Guozhu Dong, and Kotagiri Ramamohanarao. Information-
based classification by aggregating emerging patterns. In IDEAL ’00: Proceed-
ings of the Second International Conference on Intelligent Data Engineering
and Automated Learning, Data Mining, Financial Engineering, and Intelligent
Agents, pages 48–53, London, UK, 2000. Springer-Verlag. [cited at p. 33, 38]

[75] Xiuzhen Zhang, Guozhu Dong, and Kotagiri Ramamohanarao. Information-
based classification by aggregating emerging patterns. In Proceedings of the
Second International Conference on Intelligent Data Engineering and Auto-
mated Learning, Data Mining, Financial Engineering, and Intelligent Agents,
pages 48–53. Springer-Verlag, 2000. [cited at p. 74]

[76] Xiuzhen Zhang, Guozu Dong, and Ramamohanarao Kotagiri. Exploring con-
straints to efficiently mine emerging patterns from large high-dimensional
datasets. In KDD ’00: Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 310–314, New
York, NY, USA, 2000. ACM. [cited at p. 34]

	Phd Thesis, first page
	PhD thesis, Milton Garcia Borroto

