

©Copyright Jorge Guevara Escobedo 2010

The author hereby grants to INAOE permission to

reproduce and distribute any part of this thesis

document.

“Prototype tool for design and construction of
polygonal objects with implementation in MATLAB,

Simulink and FPGA”

By

Jorge Guevara Escobedo

Thesis submitted in partial fulfillment of the degree of
Master of Science

Department of Electronics
National Institute of Astrophysics, Optics and Electronics

(INAOE)
Tonantzintla, Puebla, México

Advisor:
Dr. Jorge Francisco Martínez Carballido

INAOE

ABSTRACT

 The aim of computer vision is to make useful decisions about physical

objects and scenes based on sensed images. Nowadays, Computer Vision

has almost an unlimited field of application in which several solutions are

based on polygonal object identification; commercial, scientific, industrial and

military applications are some examples. Although several techniques have

been introduced and developed to solve the variety of computer vision

challenges, there is no accepted methodology or paradigm.

 This work focuses on developing an algorithm, used to develop a

software tool that allows to a computer vision designer explore in the design

of applications involving the recognition of polygonal objects. Usage of this

work in designing applications reduces time in the development of prototype

solutions using FPGAs.

 The algorithm has been developed using MATLAB and I/O equivalent

implementations in a Simulink block system with the aim of ease the design of

hardware description entities in VHDL.

 A Spartan 3e FPGA Starter kit evaluation board is used as the device

for the hardware implementation of the algorithm. Binary images are loaded

into the FPGA through a micro SD memory card and the resulting data from

the FPGA process is visualized through the Starter Kit built-in alphanumeric

LCD.

RESUMEN

 El objetivo de la visión por computadora es el tomar decisiones útiles

acerca de objetos físicos y escenas contenidos en imágenes captadas. Hoy

en día, la visión por computadora posee un campo casi ilimitado de

aplicación en la que hay varias soluciones basadas en la identificación de

objetos poligonales; aplicaciones comerciales, científicas, industriales y

militares son solo algunos ejemplos. Aunque varias técnicas se han

desarrollado para resolver los diversos problemas de visión por computadora,

no existe una metodología o paradigma establecido.

 Este trabajo se centra en desarrollar un algoritmo que sea utilizado

para desarrollar una herramienta software que permita a un desarrollador en

visión por computadora experimentar en el diseño de aplicaciones que

involucren el reconocimiento de polígonos y además proporcione facilidad en

el diseño y construcción de aplicaciones con la disminución de tiempo en el

desarrollo de soluciones prototipo usando FPGAs como hardware base.

 El algoritmo es desarrollado en MATLAB y además un equivalente a

nivel de entrada y salida es implementado en Simulink como un sistema a

bloques con el objetivo de facilitar el diseño de entidades de descripción de

hardware en VHDL.

 La tarjeta de evaluación Starter Kit que contiene un FPGA Spartan 3E

es usado para la implementación en hardware del algoritmo. Las imágenes

binarias son cargadas en el FPGA mediante una tarjeta de memoria micro

SD y los resultados son visualizados mediante la LCD alfanumérica incluida

en el Starter Kit.

ACKNOWLEDGMENTS

 Thanks to my adviser Dr. Jorge Francisco Martínez Carballido for his

teaching, time, patience, support and for being a good friend.

 Thanks for all my friends at INAOE. They gave me so many good

moments and supported me during this process.

 Thanks to CONACYT for the economical support.

This thesis work is dedicated to my parents

José Escobedo Mera
Jorge Guevara García

Rosa Aurelia Uranga Romero

María Eugenia Escobedo Uranga

And to my sister

Alejandra Guevara Escobedo

CONTENTS TABLE

ABSTRACT i

RESUMEN ii

ACKNOWLEDGMENTS .. iii

Chapter 1 INTRODUCTION ... 1

1.1 Motivation.. 1

1.2 Problem Description... 3

1.3 Objectives ... 7

1.4 Proposed Solution .. 8

1.5 Organization of this Thesis Report ... 9

Chapter 2 ALGORITHM DEVELOPMENT USING MATLAB 11

2.1 Introduction .. 11

2.2 Corners Extraction ... 11

2.3 Vertices Location .. 16

2.4 Summary .. 34

Chapter 3 SIMULINK BLOCK SYSTEM .. 36

3.1 Introduction .. 36

3.2 Corners Extraction .. 36

3.2.1 Position Update Block ... 37

3.2.2 Corners Detection Subsystem .. 38

3.2.3 Shift Position Block .. 38

3.2.4 Corners List Block .. 39

3.3 Vertices Location .. 39

3.3.1 Distances Between Corners Block ... 40

3.3.2 Distances Data Block .. 41

3.3.3 Enable Control Block .. 42

3.3.4 Comparison Subsystem ... 42

3.3.5 Vertices Location Block .. 43

3.3.6 Vertex Selection Subsystem Block .. 44

3.3.7 New Index Source Block ... 45

3.3.8 Vertices List Block .. 46

3.3.9 Feedback Shift Block .. 47

3.4 Summary .. 48

Chapter 4 VHDL SYSTEM ... 49

4.1 Introduction .. 49

4.2 Corners and Distances Between Corners Extraction .. 49

4.2.1 Demux Entity .. 51

4.2.2 Start Pixel Entity ... 52

4.2.3 Corner Detection Entity ... 52

4.2.4 Save/Shift Control Entity .. 54

4.2.5 Corner’s Block RAM .. 55

4.2.6 Shift Entity.. 55

4.2.7 Distances Between Corners Entity ... 56

4.2.8 Distances Between Corners Block RAM ... 57

4.3 Vertices Location .. 58

4.3.1 Difsource Entity .. 60

4.3.2 New Index Entity .. 61

4.3.3 Comparison Subsystem ... 61

4.3.4 Select Kind of Vertex Entity .. 63

4.3.5 Vertex Process Subsystem ... 64

4.3.6 Shift/Save Entity ... 66

4.3.7 Vertices Block RAM ... 68

4.3.8 System Feedback Entity .. 68

4.4 External Peripherals .. 70

4.4.1 Micro SD Memory Driver ... 70

4.4.2 LCD Driver ... 73

4.5 Summary .. 75

Chapter 5 RESULTS .. 76

5.1 Introduction ... 76

5.2 Matlab Function Results .. 76

5.3 Simulink Block System Results... 79

5.4 FPGA System Results ... 81

5.5 Summary ... 84

Chapter 6 CONCLUSIONS AND FUTURE

WORK 87

6.1 Conclusions .. 87

6.2 Future Work ... 88

FIGURES LIST ... 89

TABLES LIST... 91

REFERENCES ... 92

Chapter 1 INTRODUCTION

1.1 Motivation

 Human vision is a sophisticated system that senses and acts on visual

stimuli. One can see that human vision and computer vision share objectives

because both systems have the purpose to interpret spatial data. Even

though both systems are functionally similar, it is impossible to expect that

human eye can be replicated by a computer vision system but there may be

computer vision techniques which, in some level, can replicate or even

improve the human vision system. Vision science has been developed as an

interdisciplinary research field by including concepts and tools from areas like

computer science, image processing, artificial intelligence, pattern

recognition, computer graphics and some others thus it can be thought that

one of the most stimulating research areas will be those related to the main

human sense: vision.

 Computer vision is a rich topic for research and study; increasingly, it

has a commercial future. While the goal of computer vision is to make useful

decisions about physical objects and scenes based on sensed images [1],

whenever necessary to automate, or improve human activities, computer

vision systems become essential.

 Objects within images are essentially characterized by their shape, so

in a typical computer vision application, shapes from objects within images

are digitalized, pre-processed, analyzed and classified. Nowadays, these

techniques have been successfully applied to a wide range of practical

problems like: inspection of mechanical pieces [2] [3], agricultural products

quality inspection [4] [5], circuit board inspection systems [6], medical imaging

[7], automotive traffic [8], forensic studies and biometrics [9], and even

entertainment, multimedia, art and design [10].

 There are many problems addressed in the context of analysis and

recognition in which the contour extraction and interpretation has to be made

by considering polygonal shapes [11] [12] [13] [14] [15] [16].

Computer vision is one of the areas where hardware-implemented

algorithms can perform better than those implemented in software, moreover

that it is better not to depend on a personal computer in some real

applications. Nowadays reconfigurable hardware as FPGAs is increasingly

being used to design powerful hardware devices combining the main

advantages of ASICs and DSPs and the ease in reprogramming, simulating

and testing. By now reconfigurable hardware is a very attractive option for

rapid prototyping.

 Developing algorithms either in software or hardware that take an

image as input and produce a symbolic interpretation describing which

objects are present and some other properties from each object, is not

dominated by researchers and has no accepted paradigm [1]; so that, an

opportunity to develop an algorithm solution and its implementation in FPGA

based hardware to extract polygonal contours and its properties on images is

the main objective of this work.

 Figure 1-1 shows a classification of some possible areas covered by a

computer vision system.

Figure 1-1 Computer Vision System [17]

1.2 Problem Description

In order to perform a computer vision application, once that an image

has been acquired, segmentation has to be made with the purpose to store

data representing the object of interest. A Shape can be understood as a

connected set of points, so that stored data is better called shape

representation. Figure 1-2 shows the computational shape representation

techniques [18].

Figure 1-2 Computational Shape Representation Techniques

 The contour based approach is divided into three classes as follows:

 Parametric Contours: the shape outline is represented by a parametric

curve implying a sequential order along it.

 Set of Contour Points: the shape outline is simply represented as a set

of points, without any special order among them;

 Curve Approximation: a set of geometric primitives like straight line

segments are fitted to the shape outline.

 The region based approach is also divided into three classes:

 Region decomposition: the shape region is partitioned into simpler

forms and represented by the set of such primitives;

 Bounding regions: the shape is approximated by a special pre-defined

geometric primitive fitted to it;

 Internal features: the shape is represented by a set of features related

to its internal region.

 Given a specific shape representation, it may be needed to perform a

shape characterization by analyzing the shape representation. The

corresponding shape characterization can be interpreted as a series of

transformations taking a shape representation to a set of scalar measures

and features like area, perimeter, the number of sides, the number or location

of vertices or the fact of belonging to an established class or group. Figure

1-3 shows an example of a characterized shape into a set of features.

Figure 1-3 Characterized Shape

While for this work the purpose is to characterize polygonal figures on

digital images, it is needed to build a system (both software and hardware),

that makes it possible to extract polygon‟s edges from figures, save the

acquired information in a proper way for further processing of some other

properties from the image, that may be needed by the application. If a

polygon is defined as a plane figure that is bounded by a closed path or

contour, composed of a finite sequence of straight line segments, each

segment becomes a side of the figure and the intersection between two

different segments is known as a corner or vertex. The problem of polygonal

approximation or polygonal modeling of a given contour may be understood

as locating the vertices of a polygon along the contour, in such a way, that the

result is a good approximation of the given contour [18]. If vertices are

extracted from the polygon‟s edge, one can obtain properties such as: how

many segments are involved or how many sides does the figure have; the

position and orientation of each segment or the whole figures edge and even

the type of polygon that has been detected.

The methods for vertex detection and polygonal approximation can be

divided into two principal classes: global methods and local methods [18].

 Global methods are generally based on the polygonal

approximation of the contour in such a way that some error

function is minimized.

 Local methods are based on the idea of directly searching for

high curvature points along the contour.

 Table 1-1 shows Global and Local method examples with consulted

references.

Methods of Vertex Detection and Polygonal Approximation of a Given Contour

Global References Local References

Approximation or

Stopping Criteria

[19] Polygonal

approximation of

digital planar curves
through break point

suppression (2008).

Coding the Object’s

Contour as an

Ordered Sequence

of Points, High-

Curvature Points or

as Chain-Code

Histograms,

Obtained by

Different

Techniques.

[20] Polygon

Evolution by Vertex

Deletion (1999).
[21] An algorithm for

polygonal

approximation of
digitized curves

(2003).

[22] Polygonal shape

description for
recognition of

partially occluded

objects (2004).
[23] Novel efficient

two-pass algorithm

for closed polygonal
approximation based

on LISE and

curvature constraint

criteria (2006).
[24] Parsing

Silhouettes without

Boundary Curvature
(2007).

[25] A New

Algorithm for
Polygonal

Approximation Based

on Ant Colony

Optimization (2009).

Minimization of

the Mean-Squared

Error between the

Given Contour and

the Model.

[26] Optimal

polygonal

approximation of

digitized curves using
the sum of square

deviations criterion

(2000).

The Minimal

Polygon Perimeter.

[27] Constrained
piecewise linear

approximation of

digital curves (2008).
[28] Minimum-

Perimeter Polygons of

Digitized Silhouettes
(2009).

[29] Two Linear-Time

Algorithms for

Computing the
Minimum Length

Polygon of a Digital

Contour (2009).

The Maximal

Internal Polygon

Area.

[30] Multiscale

Contour Segmentation

and Approximation:
An Algorithm Based

on the Geometry of

Regular Inscribed
Polygons (1996).

[31] Decomposing a

Simple Polygon into
Trapezoids (2007).

Table 1-1 Vertex Detection and Polygonal Approximation Methods

 Processing with images on a personal computer, has many useful

tools that ease experimentation to develop an algorithm; but while the main

objective of the work is to design an algorithm capable of identify polygonal

objects within images with its hardware implementation, the most suitable

segmentation and characterization methods have to be considered.

1.3 Objectives

 Design and develop a component set that as a system extracts a

polygon from a boundary to serve as an element in designing a complete

computer vision system that involves recognizing polygons. The work must

provide a software solution either as a programming function or simulation

block system to explore its usage in an application solution. Once defined the

algorithm a hardware version of the work must match at input/output behavior

with the designed software function and block system. To reach this work‟s

purpose the following objectives were established:

 Design an algorithm in MATLAB to extract polygon‟s edge on digital

binary images and save it as a list of (x y) coordinates of the pixels

forming the edge.

 Define a method to extract vertices from the polygon‟s edge by

analyzing edge‟s (x y) coordinates to improve the MATLAB algorithm.

 Write a MATLAB function with the designed algorithm to ease testing

out as many different types of polygons on images to satisfy each

potential case.

 Refactor the MATLAB algorithm into blocks to write level-2 m files of

each task and build a Simulink block library.

 Design the hardware counterpart of the Simulink block in VHDL to

assure input/output compatibility.

 Design, develop, and implement input/output modules for peripheral

devices to interface with the FPGA evaluation board to test the VHDL

system. The FPGA evaluation board will acquire the binary image from

a micro SD memory card, using FAT16 file system. The resulting data

will be shown through a 16x2 alphanumeric LCD.

1.4 Proposed Solution

 Established objectives give way of what has to be done, so that

proposed solution is based on each objective as follows:

 The contour extraction is a common operation in digital image

processing, so there are several established methods to perform it.

Analyzing brightness differences between pixels is suitable common

approach; although further processing has to be considered. The edge

must be saved as a list of (x y) coordinates with a sequence order of

the pixels forming it (parametric contour).

 Locating vertices from the acquired data has to be found by

characterizing the ongoing list of the pixels forming the polygon‟s edge

(local vertex extraction method).

 By writing a MATLAB function m-file, testing can be more interactively

while input and output parameters are introduced all in a single

instruction.

 Simulink blocks will be designed and developed from Level-2 m-files

which allows the MATLAB m language, multiple input/output ports and

supports a matrix as data type.

 The hardware counterpart of each block will be designed as a VHDL

description language entity to assure the both systems match. While it

is not useful to test each single VHDL entity in the FPGA, simulations

in Modelsim will be performed to test correct function of each entity.

 Once all VHDL entities are tested and connected as a system, it is

possible to test it in the FPGA evaluating board. The FPGA will acquire

the test image from a micro SD memory card and will show resulting

vertices in the built-in 16x2 alphanumeric LCD. To interface the SD

memory card, communication protocol and FAT16 file system are

needed to be understood. Drivers for the SD memory card and LCD

communication will be designed and developed in VHDL.

 Each mode of the system will be tested with the same image and

required input parameters to assure the compatibility between each

mode at input/output level.

 Figure 1-4 shows a diagram of the proposed solution process.

Figure 1-4 Solution Process

1.5 Organization of this Thesis Report

 Chapter 2 explains how the algorithm was designed and gives details

of the criteria taken to reach the objectives.

 Chapter 3 shows how the algorithm was refactored and implemented

as a Simulink block system.

 Chapter 4 shows the VHDL implementation of the refactored algorithm

and how needed peripherals were interfaced to the FPGA evaluation board.

 Chapter 5 shows the obtained results for the MATLAB function, the

Simulink block system and the VHDL system implementations.

 Chapter 6 concludes the presented work and comments on the future

work.

Chapter 2 ALGORITHM DEVELOPMENT

 USING MATLAB

2.1 Introduction

 While the objective of this work is to extract vertices from polygonal

figures in images, it is important at first to try out several ways to find out

those vertices. It is important to choose a tool that gives us opportunity to

readily visualize results. MATLAB does that, so in fact, the entire algorithm

was first designed in MATLAB.

2.2 Corners Extraction

 To extract vertices from a polygonal figure, we needed information

about the edge of that figure, so the first big issue of this work is the edge

extraction of the polygonal figure.

Figure 2-1 Start up pixel location

 Information given by edge extraction can be known by applying some

operations at pixel levels; so at first, it is important to find out the first pixel

that belongs to the edge. In this case, the most “left-up” pixel is considered as

the first edge pixel. This first or better called, “start pixel”, is found by

analyzing each pixel, from up to down and left to right, until it is known as a

“0” or “black” pixel as shown in Figure 2-1.

The “start pixel” can be found by implementing the sequence shown by

Figure 2-2.

Figure 2-2 Start up pixel algorithm

Once the “start pixel” has been found, it is possible to extract the edge

by analyzing the pixel‟s value between the current pixel and its adjacent

pixels to decide if that pixel belongs to the edge or not and save its (x y)

coordinates to define a list containing the entire (x y) pixel‟s coordinates

conforming the edge as proposed in [32].

Figure 2-3 Edge extraction from adjacent pixels value differences [32]

While the objective to manage edge information is to extract vertices, it

can be inferred that a vertex in a polygon is a point where two lines or

segments with different slope meet, so that; a vertex has to be found in the

edge‟s direction change. Direction changes can be interpreted as corners, so

after several options were tried to find a way to extract useful information from

the whole edge‟s (x y) coordinates list, it can be seen that just pixels that take

the shape of corners are sufficient. In fact each corner becomes a vertex

candidate, so one only needs to extract those corners as shown on Figure

2-4.

Figure 2-4 Edge's corners

 Extracting corners instead of the whole edge, makes the process more

complicated than just finding differences in pixel‟s value, but it can also give

us a sense about some other properties like a defined quadrant and type of

corner (external or internal). Thus, to extract corners, it is needed to define

each edge quadrant and take sense of how pixels form a corner, so then it is

possible to create a pattern for each kind of corner as can be seen on the

Figure 2-5.

Figure 2-5 Corner patterns

 Corners extraction can be then achieved by comparing the current

pixel and its neighbors with the defined patterns and form a new list

containing the corners: (x y) coordinates, the type of corner (external or

internal) and, quadrant where the corner is situated. From the matched

pattern, knowledge as where to move and obtain a new pixel group, those by

repetition, the whole edge can then be scanned.

Figure 2-6 Corners extraction example

 A corners list can be obtained by implementing the next sequence.

Figure 2-7 Sequence to find corners list

 This way, all information needed directly from image‟s polygon, has

been saved in a list and is ready for further process.

2.3 Vertices Location

 Locating vertices of a polygonal figure from binary images with edges

detected is the main objective of this work, so by extracting vertices, it is

possible to know important properties from each polygon such as the number

of sides, the distance of each side, the type of polygon, its position and

rotation.

 Once the corners list has been obtained, useful information from the

polygon‟s edge is available, so vertices extraction can be performed by

analyzing this list. With this list, is possible to know the (x y) coordinates of

pixels that represent direction changes in the polygon‟s edge, the type of

corner and the quadrant where each pixel is located.

 It can be seen that just few elements from this list will be considered as

vertices, meaning that there is a need to analyze what kind of changes are

better candidates to being a vertex.

 The first and most intuitive kind of vertex is that located in quadrant

changes, meaning significant slope changes and no difference in corner type

as it can be observed from the list on Figure 2-8 that shows an example of

vertices indentified by quadrant changes.

Figure 2-8 Vertices on quadrant change

 From Figure 2-8, it can be seen that there is still an unidentified vertex

located in a slope difference between two sides of the polygon; both are on

the same quadrant, so the quadrant change condition is useless for this kind

of vertex. This case is important to find out that the corners list is not enough

to extract all kind of vertices from the polygon‟s edge, so there is a need to

find a new way to extract properties that can be used to find this type of

vertices.

 The only way that a vertex is located between two lines in the same

quadrant, is that both lines have different slope and intersect, so to find this

kind of vertex a way to find differences in slope is needed. Further FPGA

implementation has to be considered; meaning that, it is important to use

basic arithmetic operations as the elements to find this change in slope.

Computing a line slope is not the case, so this is not an option to find this kind

of vertex.

 By observing on Figure 2-9, it can be seen that the number of pixels

between corners determine the small changes in direction of pixel‟s segments

of the edge, so it is possible to take the distance between corners as an

indicator for the slope of that line, so if distances between corners are

computed, changes in slope can then be identified and a list capable to

provide additional properties can be obtained from the corners list of (x y)

coordinates.

Figure 2-9 Slope Change

 Distances between corners are obtained by performing an absolute

subtraction between the current evaluating corners list of (x y) coordinates

and its nearest last evaluated corners list of (x y) coordinates of the same

type, as shown in Figure 2-10.

Figure 2-10 Corners list and Distances between corners list

 Now it can be seen that changes in slope are identified, and also from

the same list, how changes in quadrant can still be met by watching that

when a change in quadrant happens, an axis remains in the same position,

so the distance in either axis x or y, is zero. This property is also useful to

identify vertical or horizontal lines represented by a zero distance in one

coordinate and its pixels‟ length on the other. On the other side having non-

zero distance in both axes means that between both corners, there is a

sloped line. Figure 2-11 shows types of vertices identified in a polygon.

Figure 2-11 Identified Vertices

 A new list containing distances between corners of the same type can

be obtained by implementing the sequence shown in Figure 2-12.

Figure 2-12 Distances Between Corners Algorithm

 By now, it seems that all necessary information from the image has

been saved in the distances between corners list, so the next step is to

manage all the information in a manner that all kind of vertices can be

identified. From the list, it can be seen that the most difficult vertex to be

computationally identified is the one located in a slope change in the same

quadrant.

 By analyzing the distances between corners list, it can be seen that

coordinates absolute differences keep a pattern that identifies the line they

included; using this characteristic, one can observe that changes in that

pattern means that there is a slope change, regardless of quadrant change

or not. The distances between corners show that a line is formed by a

combination of no more than two different distances; so by identifying two

different distances to form a pattern and differentiate one line from another.

Figure 2-13 shows how distances between corners form a pattern.

Figure 2-13 Patterns of distances between corners

 This is possible by getting a pattern at the beginning of the line

segment and searching for a mismatch down the list that identify a slope

change as in Figure 2-14.

Figure 2-14 Slope's Change

 If the type of corner is considered, a subsequent decision can be taken

for a better location of the vertex, Figure 2-15 and Figure 2-16 shows each

case.

Figure 2-15 External Corner Mismatch

Figure 2-16 Internal Corner Mismatch

 From Figure 2-13, it can be seen that distances between corners in

lines 1, 4 and 5 have a single distance pattern until there is a slope change;

this leads for the need to identify the number of contiguous corner distances

that belong to a single line. This can be done with a single parameter as input

that gives the minimum equal contiguous distances to consider it as a single

line. If distances are equal in both axes, we know that it is a 45° line. Figure

2-17 shows an example of a 45° line and its distances‟ list between corners.

Figure 2-17 45° Line

 The next and less complex type of vertex is the one located in

quadrant changes, as explained before, it can also be taken from the

distances between corners list by identifying at least one zero distance

between any corner, that means that a corner has just changed in one axis,

so that the line is taking a new direction in a new quadrant. As in finding a

better location for the vertex between a slope‟s change in the same quadrant,

by considering the type of corner, a better location of the vertex can also be

met in the quadrant change vertex by considering the quadrant information.

Figure 2-21 to Figure 2-21 shows the cases that can happen in deciding a

better location of the vertex for each quadrant.

Figure 2-18 Quadrant 1 Vertex Better Locations

Figure 2-19 Quadrant 2 Vertex Better Locations

Figure 2-20 Quadrant 3 Vertex Better Locations

Figure 2-21 Quadrant 4 vertex better locations

 The missing type of vertices are those located at the beginning and

end of an horizontal/vertical line, if the corner of the beginning and end of the

line are of the same type, vertices can be extracted by implementing the

same condition explained before for a quadrant change vertex, and

considering that the distance different from zero, be longer than an introduced

parameter. If corners are not of the same type, there will not be a zero

distance, so it is just needed to identify a long distance either in axis x or in

axis y. By applying those conditions, vertices can be found and the last

evaluated and current evaluating distances between corners (x y) coordinates

need to be saved. The long distance criteria have to be taken from

comparing the current distance between corners and an input parameter

called: “the minimum length to consider the distance between corners as a

horizontal/vertical line”. Figure 2-22 shows both cases.

Figure 2-22 Horizontal/Vertical line vertices locations

 Now we can see that using the distance information from the corners is

possible to obtain vertices for a polygonal line. Vertices can be classified into

the following four types:

1. Quadrant change.

2. At the beginning and end of a vertical/horizontal line.

3. Change in slope for lines in the same quadrant.

4. Change in slope for lines of minimum length segment of single

distance element.

 Table 2-1 shows the kind of vertices and its conditions that have to be

considered while evaluating the distances between corners list.

Vertex Type Conditions

Quadrant change This can be identified by a zero-distance between
corners either in axis X or Y

Beginning and end of a horizontal/vertical line This can be identified by a combination of a zero-

distance between corners in an axis and a big

distance between corners in the other axis (the big

distance judgment is taken from a minimum

length of an horizontal/vertical line input

parameter)

Different slope lines in the same quadrant

identified by a two-element pattern

Contiguous segment of two-elements pattern

Different slope in the same quadrant identified by

a one-element pattern segment of minimum

length

Consider a line of one-element pattern when the

contiguous corners with the same distance is at

least some specified minimum of corners

Table 2-1 Possible identifiable vertices

 From Table 2-1 we observe that algorithm‟s decisions are based on

two input parameters and corners features like: distance, type, and quadrant.

Figure 2-23 shows a general diagram of how to locate vertices.

Figure 2-23 Vertices Location Process

 Figure 2-24 shows a more detailed diagram of how the pattern can be

found.

Figure 2-24 Pattern Extraction Algorithm

 Figure 2-25 details how to decide which of the candidate corners

becomes a vertex.

Figure 2-25 Vertices Location Algorithm

 The algorithm is represented by Figure 2-24 and Figure 2-25;

pseudocode is also presented for a better understanding of the vertices

location process.

n = Index of the distances between corners list and corners (x y)coordinates list.

distances = Distances between corners list.

corner = Corner (x y)coordinates

better_vertex_location = Taken from the criteria explained in for each case.

M.C.C.S.D. = Minimum contiguous corners with same distance input parameter.

M.L.L. = Minimum length of a horizontal/vertical line input parameter.

1. while (n < length(distances))
2. while (true)

 / **search for pattern elements**/

3. if distances(n) == distances(n+1)
4. n++
5. contiguous_distances ++
6. elsif pattern_element_1_saved == false
7. save pattern_element_1
8. pattern_element_1_saved = true
9. if contiguous_distances >= M.C.C.S.D.
10. slope_change_in_same_quadrant_1_pattern_element = true
11. break
12. end if
13. elsif distances(n,x) == 0 or distances(n,y) == 0
14. change_in_quadrant = true
15. break
16. else
17. save pattern_element_2
18. contiguous_distances = 0
19. n ++

 /**pattern mismatch**/

20. while(pattern(1)==distances(n)or pattern(2)==distances(n))
21. n ++
22. if distances(n,x) == 0 or distances(n,y) == 0
23. change_in_quadrant = true
24. break
25. end if
26. end while
27. end if
28. end while

 /*a change in slope in the same quadrant with one pattern element*/

29. if slope_change_in_same_quadrant_1_pattern_element == true
30. save corner(n)

 /*a change in quadrant*/

31. elsif change_in_quadrant == true

32. /*a horizontal/vertical line is in the change in quadrant*/
33. if distances(n,x) >= M.L.L. or distances(n,y) >= M.L.L.
34. save corner(n-1)
35. save corner(n)
36. else
37. save corner(better_vertex_location)
38. end

 /*there is a horizontal/vertical line*/

39. elsif distances(n,x) >= M.L.L. or distances(n,y) >= M.L.L.
40. save corner(n-1)
41. save corner(n)
/*a slope change in the same quadrant with 2 pattern elements located by a
mismatch*/

42. else
43. save corner(better_vertex_location)
44. end if
45. end while

2.4 Summary

 This chapter explained how the MATLAB algorithm was designed. The

chapter focused on laying out criteria taken to develop each part of the

algorithm and the procedure followed to reach the established objectives. As

first step it presented why and how the start pixel is obtained; second, the

reason for just extracting corners instead of the whole set of pixels for the

polygon‟s edge (as in [ref]). Figure 2-26 and Figure-2-27 shows a comparison

on the proposed contour representation and the one proposed in [32].

Figure 2-26 Contour Representation in [32]

Figure-2-27 Proposed Contour Representation using corners

 Finally the reason for locating vertices and the process to locate them

was also explained.

 Once the algorithm was developed in MATLAB, it was refactored for

further implementation as a Simulink block system and a VHDL system. The

following chapter shows how the algorithm was implemented as a Simulink

block system.

Chapter 3 SIMULINK BLOCK SYSTEM

3.1 Introduction

 Once that the algorithm has been designed in MATLAB it is possible to

build an input/output level equivalent block system. If the MATLAB algorithm

is decomposed into several elements, a block can be built representing each

element.

3.2 Corners Extraction

 The first required task, as explained before, is the corners edge

extraction, so the algorithm in MATLAB was implemented as a block system

using Level-2 S Functions in m. Figure 3-1 shows the Simulink block diagram

for the corners extraction system.

Figure 3-1. Corners Extraction System

From Figure 3-1 can be seen that the general operation of the corners

extraction system has four stages:

 First stage - Finds the start pixel at the beginning of the process

or updates the position that from which to start next cycle.

 Second stage - Decides if the current pixel is a corner.

 Third stage - If a corner has been detected, save its position in

the corners list.

 Fourth stage - Move to a new pixel position in the polygon‟s

edge and decide if the whole edge has been covered, the

corners list has been completed or a new cycle needs to start.

The following section gives a more detailed explanation of each block.

3.2.1 Position Update Block

ELEMENT DESCRIPTION

Input Parameter Binary Image

Position[3] Feedback Enable(1/0), Y Position, X Position

New Position[2] Y Position, X Position

Finished Finish Flag (1/0)

At the first system iteration, this block extracts the start pixel‟s position

from the polygon‟s edge, transfers it to the next block trough the New Position

port, maintains the Finished port in the low start-up value and waits for a

Feedback Enable high data in the Position port for a position update. When

the pixel‟s position coming from the feedback is equal to the start pixel‟s

position, the Finished port will turn high and no position update will be passed

through the New Position port to the next block.

3.2.2 Corners Detection Subsystem

ELEMENT DESCRIPTION

Input Parameter Binary Image

Position[2] Y Position, X Position

Data to be Saved[5] Save Enable, Y Position, X Position, Corner Type, Quadrant

Shift Data[5] Shift Enable, Corner Type, Quadrant, Y Position, X Position

This block represents a subsystem that decides if the received pixel‟s

position in the Position input port is a corner or not, indentifies its type and

quadrant, and then it turns the Save Enable to high and sends the required

data to be saved to the Corners List block through the Data to be Saved

output port; after that, the block verifies if the next pixel‟s position represents

a corner or not; in the case it does, a feedback is made with the new position

and repeats the process until the next pixel‟s position is not a corner. Finally if

the pixel is not a corner, the Shift Enable turns high and the required data to

find a new corner is sent to the Shift Position block.

3.2.3 Shift Position Block

ELEMENT DESCRIPTION

Input Parameter Binary Image

Shift Data[5] Shift Enable, Corner Type, Quadrant, Y Position, X Position

System Feedback Y Position, X Position

This block represents a subsystem that goes over the pixel‟s edge until

a new corner‟s candidate is found. When a high Shift Enable data is received

from the Corners Detection Subsystem block, the block evaluates the type of

corner and quadrant of the last saved corner, where the next edge‟s pixel is

and repeats the process until a corner‟s candidate is detected. Then it sends

the new pixel‟s position to the Position Update block for the next process

iteration.

3.2.4 Corners List Block

ELEMENT DESCRIPTION

Input Parameter Binary Image

Corners Data[5] Save Enable, Y Position, X Position, Corner Type, Quadrant

Finished Finish Flag

This block stores the detected corners information as received from the

Corners Detection Subsystem block. If a high Save Enable data is received,

the block saves the (x y) coordinates of the detected corner, its type and its

quadrant. If a high Finish Flag data is received, the block shows the

evaluated polygon and plots the saved corners. When the input Finished is

activated, the whole corner‟s list is saved to a text file.

3.3 Vertices Location

 The vertices location module in MATLAB has the purpose of obtaining

a list of vertices of the polygon from the list of corners. Figure 3-2 shows the

block diagram for the vertices location subsystem having: Distances between

corners, Distances data, Enable control, Comparison, Vertices location, New

index, Vertex selection, Vertices list, and Feedback shift blocks.

Figure 3-2 Vertices Location System

3.3.1 Distances Between Corners Block

 This Distances Between Corners block has the purpose of compute

the distances between corners from the corners list.

ELEMENT DESCRIPTION

Enable System Start Enable

Index Distances Index input

Distances Data[12] Y Distance(n-1), X Distance(n-1), Corner Type(n-1), Quadrant(n-1),

Y Distance(n), X Distance (n), Corner Type(n), Quadrant(n),

Y Distance(n+1), X Distance(n+1), Corner Type(n+1), Quadrant(n+1)

Index Global Index Output

 This block receives the text file generated in the corners extraction

system and computes the distances between corners from the corners list.

Once the distances between corners list has been generated, the data

needed from the Distances Data block is sent by the Distances Data output

port, later from the second system iteration and on, the data is requested by

the Index input port, the new distances data is loaded and sent, and the index

is updated and sent through the Index output port.

3.3.2 Distances Data Block

The Distances Data block has the purpose of manage the received

data in a way that all requested data be ready at each output.

ELEMENT DESCRIPTION

Distances Data[12] Y Distance(n-1),X Distance(n-1),Corner Type(n-1),Quadrant(n-1),

Y Distance(n),X Distance(n),Corner Type(n),Quadrant(n),

Y Distance(n+1),X Distance(n+1),Corner Type(n+1),Quadrant(n+1)

Index Global Index Input

Index Global Index Output

Shift Data[4] Y Distance(n),X Distance(n),Y Distance(n+1),X Distance(n+1)

Comparison Data[2] Y Distance(n),X Distance(n)

Quad Change Data[7] Y Distance(n-1),X Distance(n-1), Y Distance(n),X Distance(n),

Quadrant(n-1), Quadrant(n), Quadrant(n+1)

Horizontal/Vertical Data[2] Y Distance(n),X Distance(n)

Slope Change Data Corner Type

Feedback Index[4] Y Distance(n),X Distance(n),Y Distance(n+1),X Distance(n+1)

 This block receives all the information from the Distances Between

Corners block through the Distances Data and Index input ports and

distributes it according to how is it required in each output port.

3.3.3 Enable Control Block

The Enable Control block has the purpose of coordinate the behavior

of the system for a proper operation of its elements.

ELEMENT DESCRIPTION

Edge Enable System Enable from the Corners Extraction System

Shift Finished Mask Comparison Flag

New Index Enable Feedback Enable

Mask Shift Comparison Enable

 When a system high Edge Enable data is received from the Corners

Extraction System, it indicates that system can start, and then it enables the

Comparison Subsystem block through a high Mask Shift enable data until

high Shift Finished flag data is received. When high New Index Enable data is

received, the block resets all enable outputs, thus setting signals for other

system iteration.

3.3.4 Comparison Subsystem

The Comparison subsystem has the purpose of find a line pattern,

save it and look for a pattern mismatch with the left distances between

corners of the list. While finding the line pattern, if a zero-distance between

corners is evaluated, a quadrant change vertex is identified, and also if the

count of contiguous corners with same distance reaches the maximum, the

first mismatch will meant that a slope change in the same quadrant vertex is

met.

ELEMENT DESCRIPTION

Input Parameter Minimum Contiguous Corners with Equal Distance

Enable Comparison Enable

Global Index Global Index Input

Shift Data[4] Y Distance(n),X Distance(n),Y Distance(n+1),X Distance(n+1)

Comparison Data[2] Y Distance(n),X Distance(n)

Feedback Count Contiguous Corners with Same Distance Count

Saved Mask Line Pattern Saved Flag

New Index 1 New Index if comparison not needed

New Index 2 New Index if comparison needed

Vertices Location Data Enable[2] Enable, Type of Vertex Candidate

 In general, this subsystem evaluates distances between corners to find

a line pattern, if a zero-distance is found or the contiguous vertices with same

distance count is smaller than the input parameter, a line pattern comparison

with the subsequent distances between corners is not needed, so the index is

updated and sent through the New Index 1 output port and the Vertices

Location Data Enable is set to high to locate de vertices candidates just

indentified. In the other hand, if none of the previously mentioned conditions

are met, the line pattern is saved, the Saved Mask flag is set to high and a

comparison is enabled by the Enable input port. When a mismatch is found

by the pattern comparison, the index is updated and sent through the New

Index 2 output port and the Vertices Location Data Enable is set to high.

3.3.5 Vertices Location Block

The Vertices location block has the purpose of evaluate which of the

vertex candidates is the identified vertex and enables the corresponding

output.

ELEMENT DESCRIPTION

Enable[2] Enable, Type of Vertex Candidate

Quad Change Data[7] Y Distance(n-1),X Distance(n-1), Y Distance(n),X Distance(n),

Quadrant(n-1), Quadrant(n), Quadrant(n+1)

Horizontal/Vertical Data Y Distance(n),X Distance(n)

Slope Change Data Corner Type

Slope Change Same Quad Enable Slope Change Same Quadrant Vertex Found

Quad Change Enable Quadrant Change Vertex Found

Horizontal/Vertical Enable Horizontal/Vertical Vertices Found

Slope Change Enable Slope Change Vertex Found

 This block decides from the type of vertex candidate information in the

Enable input port of what kind of vertex has been detected and set to high the

corresponding enable output port of the vertex found . Only one output port

enable can be set at a time and will be sent to the Vertex Selection

Subsystem.

3.3.6 Vertex Selection Subsystem Block

 The Vertex selection subsystem has the purpose of find the better

location of the identified vertex or vertices in the Horizontal/Vertical case.

ELEMENT DESCRIPTION

Input Parameter Minimum Length of a Horizontal/Vertical Line

Slope Change Same Quad[2] Enable

Quad Change[7] Enable,

Y Distance(n-1),X Distance(n-1), Y Distance(n),X Distance(n),
Quadrant(n-1), Quadrant(n), Quadrant(n+1)

Horizontal/Vertical[3] Enable, Y Distance(n),X Distance(n)

Slope Change[2] Enable, Corner Type

 Vertex Slope Change Same Quadrant Vertex

 Vertex Quadrant Change Vertex

 Vertices Horizontal/Vertical Vertices

 Vertex Slope Change Vertex

 This subsystem gives the final location of the detected vertex or

vertices; this final location is obtained from the enabled input port that

matches with the type of vertex indentified and the criteria described in the

MATLAB algorithm section.

3.3.7 New Index Source Block

The New index block has the purpose of identify the last updated index

and send it to the output for new system iteration.

ELEMENT DESCRIPTION

Index 1 Updated Index

Index 2 Updated Index

Index 3 Updated Index

Index 4 Updated Index

New Index New Index for new Distances Data

 This block manages the indices updates during each stage of the

system process and decides which is the last updated index and sends it for

a new Distances Between Corners block read.

3.3.8 Vertices List Block

The Vertices list has the purpose of store the index of each distance

between corners identified as a vertex.

ELEMENT DESCRIPTION

Global Index Last Updated Index

Vertex Type 1 Slope Change Same Quad Vertex

Vertex Type 2 Quadrant Change Vertex

Vertex Type 3 Horizontal/Vertical Vertices

Vertex Type 4 Slope Change Vertex

New Index 3 New Updated Index

Shift Enable[2] Feedback Shift Enable, Type of Shift

 This block stores the index of the located vertex, updates the index

and sets to high the Shift Enable output port and sends the type of shift

needed to be performed. When all the distances between corners list has

been analyzed, the block loads the corners list text file and plots the (x y)

coordinates that match with the saved indexes.

3.3.9 Feedback Shift Block

The Feedback shift block has the purpose of shift to a new distance

between corners index for a new system iteration.

ELEMENT DESCRIPTION

Input Parameter Minimum Length of a Horizontal/Vertical Line

Global Index Last Updated Index

Enable[2] Feedback Shift Enable, Shift Type

Shift Data[4] Y Distance(n),X Distance(n),Y Distance(n+1),X Distance(n+1)

New Index 4 New Updated Index

Feedback Enable Reset Enable Control Outputs

Feedback Count Contiguous Corners with equal Distance Count

This is the last block in the system and performs a corners‟ shift to

determine the new index in which the system will start a new iteration. There

are two types of shifts to be performed and this depends on the Shift Type

indicated by the Enable input port. The Contiguous Corners with equal

Distance Count is sent through the Feedback Count output-port to determine

if a slope change in the same vertex‟s quadrant has to be considered on the

shift performed. If while a shift operation, a distance longer or equal than the

Minimum Length of a Horizontal/Vertical Line input parameter, vertices at the

beginning and end of the line need to be located.

3.4 Summary

 Once the MATLAB algorithm was designed and explained in the last

chapter, a Simulink block system version was implemented. The MATLAB

algorithm was decomposed into small elements and from each element a

level-2 S function was written in m code so that an equivalent Simulink block

could be developed. This chapter explained the function of each Simulink

block and how it was built.

 The next chapter shows how VHDL entities were built from the

decomposed MATLAB algorithm and also explains how external peripherals

were interfaced with the FPGA evaluation board.

Chapter 4 VHDL SYSTEM

4.1 Introduction

 The VHDL system was implemented concurrently with the Simulink

system to ensure system I/O equivalence between the three phases of this

work (the MATLAB algorithm, the Simulink block system and the VHDL

system). Figure 4-1 shows a simplified diagram of the VHDL system.

Figure 4-1 VHDL System

 From Figure 4-1 we can see that input and output peripherals are

added to the Simulink implemented system. The binary image input is loaded

into the FPGA from a micro digital secure memory device, and the vertices (x

y) coordinates can be viewed in a LCD; with these added peripherals a

complete physical system is implemented.

 As in the MATLAB algorithm and in the Simulink system, the first task

to be performed is the corners extraction from the binary image, so the whole

system was also divided into two main parts: the corners and distances

between corners extraction and the vertices location.

4.2 Corners and Distances Between Corners Extraction

 Figure 4-2 shows a diagram for the corners and distances between

corners extraction section of the VHDL system.

Figure 4-2 Corners and Distances Between Corners Extraction System

 This system operates to extract the information needed from the binary

image, as follows:

 First stage. Find the Start Pixel by evaluating image‟s pixels.

 Second stage. From start pixel, evaluate the image‟s edge until a

candidate-vertex is found.

 Third stage. Define the vertex and its type, save it and do a corners‟

shift to a new position in the image for a new pixel evaluation.

 Fourth stage. Decide if the new position is the same as the start pixel;

if true, enable the distances between corners extraction; else,

feedback to a new corner extraction.

 Fifth stage. If corners extraction is finished, extract the distances

between corners from the saved corners.

Each element is fully described above.

4.2.1 Demux Entity

 The Demux entity has the purpose of requesting data from the Image’s

Block RAM and transfers it to the corresponding operating process entity.

ELEMENT DESCRIPTION

Imgdata[9] Values of the requested pixel and its surrounding pixels

Indexx1 X Updated index for start pixel process

Indexy1 Y Updated index for start pixel process

Indexx2 X Updated index for the corner extraction process

Indexy2 Y Updated index for the corner extraction process

started The start pixel has been found

adssx X Position of the requested pixel from the loaded binary image

adssy Y Position of the requested pixel from the loaded binary image

pixel Requested pixel value for the start pixel process

kernelimg[9] Requested pixel values for the corners extraction process

 This entity serves as a bridge between the Image’s Block RAM and the

current process that requests data from the binary image. The imgdata input

port receives the value of the requested pixel by the adssx and adssy position

output ports and its eight surrounding pixels. If started low data is received,

just the current pixel data is sent through the pixel output port; else, the whole

submatrix pixels values are sent through the kernelimg output port.

4.2.2 Start Pixel Entity

 The Start Pixel entity has the purpose of find the first zero or black

valued pixel in the image.

ELEMENT DESCRIPTION

clk Clock signal

rst Reset

loaded_img The image has been loaded in the block RAM

pixel Requested pixel value

Indexx1 X Updated index

Indexy1 Y Updated index

x Start pixel’s X coordinate

y Start pixel’s Y coordinate

started Start pixel found

indexready Start pixel found

This entity performs the first task of the whole system that is to find the

start pixel. It evaluates the pixel‟s value requested by the indexx1 and

indexy1 output ports until a zero or black value is found. Once the start pixel

is found, the started and indexready output ports turn high and the start

pixel‟s (x y) coordinates are sent through the x and y output ports.

4.2.3 Corner Detection Entity

The Corner Detection entity has the purpose of evaluate each

polygon‟s edge pixel and verify if it is a corner or not, extract the corner data

and finally, decide if the whole edge has been computed.

ELEMENT DESCRIPTION

x Start pixel’s X coordinate

y Start pixel’s Y coordinate

newindexx New shifted index for new image data request

newindexy New shifted index for new image data request

kernelimg[9] Requested pixel values for the corners extraction process

indexready Start pixel found

indexx2 X Updated index

indexy2 Y Updated index

corinfo[2] Corner information (type and quadrant)

save Save detected corner enable

imgdata[4] Necessary pixel values to define shift direction

edge Corners extracted from the whole edge flag signal

 When the indexready turns to high, the entity receives the (x y)

coordinates of the start pixel and the kernelimg data from the image, then it

compares with the corner patterns defined in the algorithm section and

decides if the current pixel is a corner or not. If a corner is detected, also its

type and quadrant are known, so the information is sent through the imgdata

output port. Now there is needed to define the direction that the shift has to

take from the detected corner; so that the necessary pixels to find that

direction are sent through the imgdata output port. When a corner detection

has been performed, the entity waits for the shifted position of the new

image‟s data request from the newindexx and newindexy input ports and

verifies if that position matches with the start pixel‟s position, so this way we

can find if the whole edge has been covered and the edge output turns to

high for the Distances Between Corners entity.

4.2.4 Save/Shift Control Entity

 The Save/Shift Control entity has the purpose of deciding if the data

just analyzed by the Corner Detection entity needs to be saved and shifted or

just shifted.

ELEMENT DESCRIPTION

clk Clock Signal

rst Reset

corinfo[2] Corner information (type and quadrant)

imgdata[4] Necessary pixel values to define shift direction

save Save detected corner enable

wenable Enables the Corner’s Block RAM

dirw Corner’s Block RAM index

datain[4] Data to be saved(corner’s x coordinate, corner’s y coordinate, corner type, quadrant)

shiftenable Enables the Shift entity

shiftdata[4] Data from the last saved corner to define the shift direction

imginfo[4] Necessary pixel values to define shift direction

 If the save input port is high, the data received in the wenable output

port turns high, the Corner’s Block RAM index is updated, sent through the

dirw output port and the data received in the imgdata input port is sent to the

Corner’s Block RAM through the datain output port. The shift entity is enabled

by turning to high the shiftenable output port and the required data is sent

through the shiftdata and imginfo output ports.

4.2.5 Corner’s Block RAM

 The Corner’s Block RAM has the purpose of store all the corners

extracted from the polygon‟s edge.

ELEMENT DESCRIPTION

clk Clock Signal

wenable Enables the Corner’s Block RAM

dirw Corner’s Block RAM index

datain[4] Data to be saved(corner’s x coordinate, corner’s y coordinate, corner type, quadrant)

dirr Read index from the distances between corners extraction process

data_read Read index from the LCD driver

data_bin Data requested from the LCD driver

dataout Data requested from the distances between corners extraction process

 This is the block RAM where the corners (x y) coordinates, type of

each corner and the quadrant location of the corner is saved. Data received

in the datain input port is only saved in the dirw received index if the wenable

input port is high. Data request indexes are received through the dirr and

data_read input ports and sent to the Distances Between Corners entity and

LCD Driver trough the dataout and data_bin output ports.

4.2.6 Shift Entity

 The Shift entity has the purpose of shift to a new position in polygon‟s

edge where a corner may be extracted in new system iteration.

ELEMENT DESCRIPTION

clk Clock Signal

rst Reset

shiftenable Enables the Shift entity

shiftdata[4] Data from the last saved corner to define the shift direction

imginfo[4] Necessary pixel values to define shift direction

newindexx New shifted index for new image data request

newindexy New shifted index for new image data request

When the shiftenable input port is high, the entity updates the index of

the new data that is going to be requested to the Image’s Block RAM, this

decision is taken from the data of the last saved corner received in the

shiftdata input port and the surrounding pixel values of interest received in the

imginfo input port. The updated index is sent to the Corner Detection entity

through the newindexx and newindexy output ports.

4.2.7 Distances Between Corners Entity

The Distances Between Corners entity has the purpose of extract the

distances between the stored corners by computing the absolute difference

between contiguous corners of the same type.

ELEMENT DESCRIPTION

clk Clock Signal

rst Reset

dataout Data request for the corner’s block RAM

edge Corners extracted from the whole edge flag signal

dirr Read index for the corner’s block RAM

w_distenable Distances between corners block RAM save enable

Idx_ramdist Distances between corners block RAM index

data_dist Data to be saved in the distances between corners block RAM

edge_enable All the operations from this system section have been performed

Once that all the edge corners have been extracted, the edge input

port of this entity is turned to high, so that the distances between corners can

now be extracted from the Corner’s Block RAM saved data. This entity

performs an absolute difference between the contiguous corners of the same

type and then the result is sent to the Distances Between Corners Block RAM

through the idx_ramdist and data_dist output ports to be saved. Once all the

distances between corners have been extracted, the edge_enable output port

is turned to high to signal that all the information needed from the image has

been saved.

4.2.8 Distances Between Corners Block RAM

The Distances Between Corners Block RAM has the purpose of store

all the absolute differences computed in the Distances Between Corners

entity .

ELEMENT DESCRIPTION

clk Clock Signal

rst Reset

w_distenable Distances between corners block RAM save enable

idx_ramdist Distances between corners block RAM index

data_dist Data to be saved in the distances between corners block RAM

index Read index from the vertices location section

index_dist Last read index from the vertices location section

data_rom Requested data from the vertices location section

edge_enable All the operations from this system section have been performed

When the w_enable input port is high, the Distances Between Corners

Block RAM saves the data received at the data_dist input port into the block

RAM index received from the idx_ramdist input port. Read data can be

requested through the index input port and sent to the vertices location

section trough the index_dist and data_rom output ports.

4.3 Vertices Location

 Figure 4-3 shows a diagram for the Vertices Location section of the

VHDL system.

Figure 4-3 Vertices Location System

 This section of the VHDL system operates to locate vertices from the

Distances Between Corners list, as follows:

 First Stage. From the distances between corners list, find a line pattern

for later comparison and identify a slope change in the same quadrant.

To find the pattern, evaluate each distance, so in the process to

identify: a quadrant change, a horizontal/vertical line and a one-pattern

slope change in the same quadrant for candidate vertices.

 Second Stage. At this stage, the candidate vertices are defined

according to the information extracted from the distances between

corners and input parameters.

 Third Stage. A better vertex location is established by considering:

corner type, quadrant and the criteria explained before in the MATLAB

algorithm section.

 Fourth Stage. Save vertex or vertices indexes and the new list of

distances between corners‟ index is traversed for a new vertex location

process.

Each element is fully described below.

4.3.1 Difsource Entity

 The Difsource entity has the purpose of request data from the

Distances Between Corners Block RAM and transfer to the outputs as

required from the process performed inside the system.

ELEMENT DESCRIPTION

data_rom[12] Requested data from the distances between corners block RAM

Index_dist Updated index of data from the distances between corners block RAM

Index_ready Index ready for a new system iteration flag

global_index Last updated index

shift_data[4] Necessary data for the comparison traversing

comparison_data[2] Necessary data for the comparison process

quadrant_chage_data[7] Necessary data to evaluate if the current distance between corners is a
quadrant change vertex candidate

hor/vert_data[2] Necessary data to evaluate if the current distance between corners is a

horizontal/vertical line vertex candidate

slopechange_data Necessary data to evaluate if the current distance between corners is a slope

change in the same quadrant vertex candidate

feedback_shift_data[4] Necessary data to find the new distances between corners index for a new

system iteration

 This entity receives all the needed data from the Distances Between

Corners Block RAM in the data_rom input port and manage it in a way that all

required data be ready at every request from any process within the system.

The index_ready output port indicates that an updated index has been

received in the index_dist input port and new system iteration is in course.

4.3.2 New Index Entity

The New index entity has the purpose to identify the last updated index

and send it to the output for a new data request.

ELEMENT DESCRIPTION

clk Clock signal

rst Reset

edge_enable Vertices Location section enable

shift_index Last updated index from the traversing process

comp_index Last updated index from the comparison process

vertex_index Last updated index from the shift/save process

feedback_index Last updated index from feedback

index Index to request data from the distances between corners block RAM

 This entity updates the index that will be sent to the distances Between

Corners Block RAM through the index output port for new data request. The

most updated received index depends on the last performed process within

the system.

4.3.3 Comparison Subsystem

 The Comparison Subsystem has the purpose to evaluate distances

between corners to extract a line pattern and compare with the remaining

distances between corners until a mismatch occurs and a slope change in the

same quadrant is identified. While extracting the line pattern, a quadrant

change or horizontal/vertical line can also be identified by considering a zero

distance between corners either in x or y axes.

ELEMENT DESCRIPTION

Input Parameter Minimum Contiguous Corners with equal Distance

clk Clock signal

rst Reset

shift_data[4] Necessary data for the comparison shift

feedback_count The count of contiguous corners with same distance that comes from the
feedback

comparison_data[2] Necessary data for the comparison process

index_ready Index ready for a new system iteration flag

global_index Last updated index

feedback_enable Feedback flag that gives advice that a new iteration is in course so some signals

and variables need to return to initial values

selection_type Necessary information from the comparison to find a vertex candidate

selection_enable Enable to select the vertex candidate from the selection_type information

comp_index Comparison process index

shift_index Shift index

 For a better understanding, Figure 4-4 shows a diagram of the entities

within the Comparison Subsystem.

Figure 4-4 Comparison Subsystem

 At first the Distances Shift entity has the purpose to identify a two-

element line pattern, so it requests distance between corners(n) and distance

between corners(n+1) from the Difsource entity and compare them until a

mismatch occurs. If the count of equal compared distances is smaller than the

Minimum Contiguous Corners with equal Distance input parameter, the line

parameter is saved in the Line Pattern entity and a new parameter is element

is extracted in the same way, else the Line Pattern entity is directed to save

just one line parameter element. On the other hand, if while comparing

distances, a zero distance is found either in the x or y axes, or the current

evaluated distance between corners is part of a quadrant change or

horizontal/vertical line so no more distances comparison will be needed and

the current data will be sent to the Line Pattern entity. The Line Pattern Entity

decides from the received data if a comparison needs to be made or not and

send saved data to the Comparison entity. If a comparison is needed, the

Comparison entity requests data from the Difsource entity through the

comparison_data input port and compares it with the saved line pattern until a

mismatch occurs, else it just receives data from the Line Pattern entity and

establishes three possible types of vertex to be located:

 Type 1. Quadrant change, horizontal/vertical line or slope change in

the same quadrant if a comparison process was performed.

 Type 2. A slope change in the same quadrant if the count reached the

Minimum Contiguous Corners with equal Distance input parameter.

 Type 3. A quadrant change or horizontal/vertical line if a zero distance

was found.

4.3.4 Select Kind of Vertex Entity

 The Select Kind of Vertex entity has the purpose of enable the

candidate vertices outputs by analyzing the selection type data received from

the Comparison Subsystem.

ELEMENT DESCRIPTION

rst Reset

feedback_enable Feedback flag that gives advice that a new iteration is in course so some

signals and variables need to return to initial values

selection_enable Enable to select the vertex candidate from the selection_type information

selection_type Necessary information from the comparison to find a vertex candidate

slope_change1_enable Candidate vertex of a slope change in the same quadrant with one line

pattern element enable

quadrant_change_enable Candidate vertex of a quadrant change enable

slope_change_enable Candidate vertex of a slope change in the same quadrant with two line

pattern elements enable

hor/vert_enable Candidate vertices of a horizontal/vertical line enable

 When the slection_enable input port is high, the Select Kind of Vertex

entity enables the corresponding candidate vertices output ports indicated by

the type received in the selection_type input port.

4.3.5 Vertex Process Subsystem

 The Vertex Process Subsystem has the purpose to define the vertex

from the vertex candidates.

ELEMENT DESCRIPTION

Input Parameter Minimum Length of a Horizontal/Vertical Line

rst Reset

feedback_enable Feedback flag that gives advice that a new iteration is in course so some

signals and variables need to return to initial values

slope_change1_enable Candidate vertex of a slope change in the same quadrant with one line

pattern element enable

quadrant_change_enable Candidate vertex of a quadrant change enable

hor/vert_enable Candidate vertices of a horizontal/vertical line enable

slope_change_enable Candidate vertex of a slope change in the same quadrant with two line

pattern elements enable

quadrant_change_data[7] Necessary data to evaluate if the current distance between corners is a

quadrant change vertex candidate

hor/vert_data[2] Necessary data to evaluate if the current distance between corners is a

horizontal/vertical line vertex candidate

slope_change_data Necessary data to evaluate if the current distance between corners is a

slope change in the same quadrant vertex candidate

slope_change1 Identified vertex in a slope change in the same quadrant with one line

parameter element

hor/vert_quadrant_change Identified vertices of a horizontal/vertical line from a quadrant change

corner1 Information to find the better location of a quadrant change vertex

corner2 Information to find the better location of a quadrant change vertex

corner3 Information to find the better location of a quadrant change vertex

corner4 Information to find the better location of a quadrant change vertex

hor/vert Identified vertices of a horizontal/vertical line

slope_change Identified vertex in a slope change in the same quadrant with two line

parameter elements

slope_change_data Information to find the better location of a slope change in the same

quadrant vertex with two line parameter elements

 For a better understanding, Figure 4-5 shows a diagram of the entities

within the Vertex Process Subsystem.

Figure 4-5 Vertex Process Subsystem

 This subsystem evaluates data received from candidate vertex

enabled input ports (slope_change1_enable, hor/vert_enable,

slope_change_enable and quadrant_change_enable) and decides which of

the candidate vertex succedes with the condition to become a vertex, so then

it enables the kind of vertex candidate output port (slope_change1,

slope:change, slope_change_data, hor/vert and hor/vert_quadrant_change).

If the Slope Change 1 Line Parameter Element entity is enabled, the

slope_change1 output port will be set to high. If the Slope Change 2 Line

Parameter Elements entity is enabled, the slope_change output port will be

set to high and the slope_change_data will be sent to the Shift/Save Vertex

entity to find the better location of the vertex. If the Horizontal/Vertical entity

line is enabled, it will verify if the current evaluating distance between corner

in x or y axis is longer than the Minimum Length of a Horizontal/Vertical Line

input parameter the hor/vert output port will be set to high. If the Quadrant

Change entity is enabled, it will verify if the current evaluating distance

between corner in x or y axis is longer than the Minimum Length of a

Horizontal/Vertical Line input parameter to identify horizontal/vertical line

vertices in a quadrant change, else from the quadrant in which a zero

distance between corners was found a corner”n” output port will be set to

high.

4.3.6 Shift/Save Entity

 The Shift/Save entity has the purpose to decide which of the vertices is

saved and if required, traverse the list for a better location. It also decides

what index traverse is needed for the new system iteration.

ELEMENT DESCRIPTION

clk Clock Signal

rst Reset

feedback_enable Feedback flag that gives advice that a new iteration is in course so some

signals and variables need to return to initial values

global_index Last updated index

slope_change1 Identified vertex in a slope change in the same quadrant with one line

parameter element

hor/vert_quadrant_change Identified vertices of a horizontal/vertical line from a quadrant change

corner1 Information to find the better location of a quadrant change vertex

corner2 Information to find the better location of a quadrant change vertex

corner3 Information to find the better location of a quadrant change vertex

corner4 Information to find the better location of a quadrant change vertex

hor/vert Identified vertices of a horizontal/vertical line

slope_change Identified vertex in a slope change in the same quadrant with two line

parameter elements

slope_change_data Necessary data to evaluate if the current distance between corners is a

slope change in the same quadrant vertex candidate

save_enable Save located vertex index enable

save_index Vertices block RAM index

save_data Located vertex index to be saved

feedback_shift_enable Feedback shift enable

feedback_shift_type Type of feedback shift to perform

vertex_index Updated index

 If the slope_change1 input port is high, the index of the vertex

identified by a slope change in the same quadrant with one line pattern

element will be sent to the Vertices Block RAM. If either of the hor/vert or the

hor/vert_quadrant_change input port is high, the beginning and end of the line

vertex indexes will be sent to the Vertices Block RAM. Finally if the

slope_change or any of the corner”n” input ports is high, a better location

decision will be performed to find the resulting index to be sent to the Vertices

Block RAM. This entity also decides the type of traversing that the System

Feedback needs to perform for new system iteration.

4.3.7 Vertices Block RAM

 The Vertices Block RAM has the purpose of store the identified index

of vertices.

ELEMENT DESCRIPTION

clk Clock Signal

rst Reset

read_index Block RAM index for data read

save_enable Save located vertex index enable

save_index Vertices block RAM index

save_data Located vertex index to be saved

data_read Requested data read

 When the save_enable input port is high, the Vertices Block RAM

saves the data received at the save_data input port into the block RAM index

received from the save_index input port. Read data can be requested through

the read_index input port and sent to the vertices location section through the

data_read output port.

4.3.8 System Feedback Entity

 The System Feedback entity has the purpose to traverse the index of

the last evaluated distance between corners and provide a new index for next

system iteration.

ELEMENT DESCRIPTION

clk Clock Signal

rst Reset

global_index Last updated index

index_ready Index ready for a new system iteration flag

feedback_shift_enable Feedback shift enable

feedback_shift_type Type of feedback shift to perform

feedback_shift_data[4] Necessary data to find the new distances between corners index for a new

system iteration

feedback_enable Feedback flag that gives advice that a new iteration is in course so some

signals and variables need to return to initial values

feedback_count Contiguous corners with same distance count

show_vertices This flag indicates that all the possible vertices have been extracted from the

distances between corners

feedback_index Updated index

 When a vertex or vertices have been located, in some cases is

necessary to traverse the distances between corners to assure that the new

index belongs to a corner that has possibilities to become a vertex, so

depending on the last saved vertex index, the feedback_shift_type and

feedback_shift_data will provide information about the traverse to be

performed. While performing a traverse, we maintain the number of

contiguous corners with the same distance. Now if a change in slope is

identified, this count is sent through the feedback_count output port. The

feedback_enable informs that a new iteration is in course so some signals

and variables need to return to initial values and be prepared for new system

iteration. When all the polygon‟s vertices are located, the show_vertices

output port is set to high to enable the LCD driver.

4.4 External Peripherals

 To build a complete physical system, there is a need for an input

medium to load the image‟s pixel data into the FPGA and an output medium

to visualize which vertices were obtained by the system from the image. The

FPGA loads an image from a micro Secure Digital memory card and then it

shows vertices (x y) coordinates in an alphanumeric LCD. Both peripherals

implementation will be explained below.

4.4.1 Micro SD Memory Driver

 This Micro SD Memory Driver has the purpose to establish

communication between the micro SD memory card and the FPGA through

the microdrive for read/write operations.

Figure 4-6 Micro SD memory driver

ELEMENT DESCRIPTION

clk Clock signal

rst Reset

sin Serial input

sout Serial output

loaded_img Indicates that the image has been loaded into the Image Block RAM

Imgdata[9] Values of the requested pixel and its surrounding pixels

adssx X Position of the requested pixel from the loaded binary image

adssy Y Position of the requested pixel from the loaded binary image

 Figure 4-7 shows a diagram of the entities within the Micro SD Memory

Driver

Figure 4-7 Internal component entities for Micro SD memory driver

 The microdrive is a device that integrates a microcontroller that makes

possible to access the memory card by standard commands that provide

direct access for storing and retrieving data through a simple serial interface;

such that, the microdrive provides both a physical and a software interface.

 The physical interface is provided by serial Reciver/Transmitter, this

way the FPGA communicates with the microdrive to send commands

and save/read data.

 The software interface provided by the microdrive is a set of easy to

use serial commands.

 The microdrive has an auto-baud feature which can automatically

detect the host clock speed and set its internal baud rate to operate from 300

to 256K baud so a Clock Prescaler entity is needed to adapt the FPGA clock

as required by the microdrive. Prior to any commands being sent to the

microdrive, it must first be initialized by sending an auto-baud command

(0x55) after any power-up or reset, this will allow determining and locking

onto the baud rate of the clock prescaler signal. Once the microdrive has

locked onto the baud rate, it will respond with an acknowledge byte (06hex)

and the micro SD memory card can now be initialized. The micro SD memory

card initialize command is used when the memory card is inserted after

power-up or reset, else if at power-up or reset cycle the memory card is

already inserted, there is no needed to send the micro SD memory card

initialize command. This command is two bytes long (0x40 and 0x69).

 The FAT32 file system is used for the micro SD memory card; this

ensures that the image written by the FPGA system can be readable in a

computer from the micro SD memory card of any standard image file format.

To retrieve the image from the micro SD memory card: first point at the file

system sector in which the image is saved to request data bytes. The

microdrive software interface has a command that sets memory address

pointer for byte wise reads and writes; after each byte read or write, the

memory Address pointer is automatically incremented to the next address

location. The set memory address command is eight bytes long (0x40, 0x44,

address Umsb, address Ulsb, address Lmsb and address Llmsb). Once the

set memory address command is sent, a read byte data can be sent and the

microdrive will return a byte of data from the pointing memory location. The

read byte data command is two bytes long (0x40 and 0x72).

 The Instruction State Machine entity outputs the corresponding

sequence to be sent to the microdrive for each command.

1. Auto-baud command.

2. Micro SD card initialize memory command.

3. Set memory address command.

4. Read byte data command.

 The Read/Write State Machine entity controls when does data is

received and when it is sent. If a command is sent, the Read/Write State

Machine entity waits for acknowledge before another command is sent or

data is received by the Transmitter/Receiver entities. When image data is

received, it is stored in the Image Block RAM.

4.4.2 LCD Driver

 The LCD Driver has the purpose to interface the LCD device with the

FPGA and send the resulting data of the system process to be displayed by

the LCD.

Figure 4-8 LCD Driver Subsystem

ELEMENT DESCRIPTION

clk Clock signal

rst Reset

show_vertices Signal that indicates that vertices are ready to be displayed

read_index Vertices Block RAM read index

data_bin[2] Vertex (x y)coordinates in binary

SF_CE0 Starter Kit Strata Flash Chip Enable (data signal shared between the LCD and

StrataFlash)

LCD_RS LCD Register select

LCD_RW LCD Read/Write control

LCD_E LCD Read/Write enable

SF_D[4] LCD Data bits(0:3)

 Figure 4-9 shows a diagram of the entities within the LCD Driver

Figure 4-9 LCD Driver

 Once that all vertices from the input image are located, the LCD Driver

is enabled and resulting the vertices (x y) coordinates are visualized on the

LCD.

 When the show_vertices input is high, the LCD driver requests a vertex

(x y) coordinate, then it makes a conversion between the received binary data

to BCD code and is sent to the LCD data entity. The LCD data entity receives

the BCD data and sends it to the LCD in the proper sequence and format to

be displayed. The LCD is first initialized through the LCD Init entity, this entity

has all the initialization sequence and runs just once at power-up. While in the

Starter Kit, the FPGA controls the LCD via a 4-bit data interface, the Data

Write entity separates the data to be displayed into two nibbles. The

Transmitter entity manages time and delays of LCD signals and sends data to

be displayed. The Switch Slide button enables/disables image and the Rotary

Button sends the signal to a new vertex display process, so just one vertex is

displayed at the time, so the rotary Button controls the vertices visualization

by turning it to right(display the next vertex) or left(display previous vertex).

4.5 Summary

 This chapter showed how the hardware version of the system was

developed. As in the Simulink block system where Simulink blocks were built

from decomposed elements of the MATLAB algorithm, VHDL entities were

concurrently designed, this part of the work explains the function of each

entity and how it was designed. To verify results in the VHDL system, it was

needed to add some external I/O peripherals; the chapter also explains how

the micro SD memory card and the LCD were interfaced to the FPGA

evaluation board.

 The next chapter shows the resulting data from each system mode and

by testing with different kinds of polygons.

Chapter 5 RESULTS

5.1 Introduction

This section presents results obtained in the three different

implementations for the algorithm (MATLAB function, Simulink block system

and VHDL system). A group of binary images in bmp format of size 64x64 -

574 bytes(512 bytes raw image + 62 bytes bmp format header) representing

a combination of all possible type of vertices to be found were selected as

examples. Each result comes from evaluating the identified vertices within

each input binary image considering the minimum length of a

horizontal/vertical line (M.L.H.) and the minimum contiguous corners with

same distance (M.C.C.S.D.) input parameters. Figure 5-1 shows the images

to be processed. Polygons 1 to 4 represent each type of vertex and polygons

5 to 7 are a combination of each type of vertex.

Figure 5-1 Test Images

5.2 Matlab Function Results

As mentioned before, while the main objective is to design a hardware

system capable to locate vertices from polygons on a given input image,

designing the vertex extraction algorithm, usage of software greatly simplifies

the process. Computing and testing with images is an easy task in MATLAB,

thus the algorithm was designed in MATLAB. Once that the algorithm was

designed using MATLAB, for ease in algorithm testing, a MATLAB function

called „vertices‟ was written. The vertices function can be executed at the

MATLAB command window. As output, the function plots the image showing

the extracted vertices, and a list containing the (y x) coordinates of the

identified vertices. The function format is as follows:

vertices(‘binary image route’, M.L.H., M.C.C.S.D.)

 Table 5-1 shows the located vertices (y x) coordinates from each

image and its input parameters.

MATLAB FUNCTION INPUT

DATA

MATLAB FUNCTION OUTPUT DATA

Binary

Image

M.L.H. M.C.C.S.D Vertices (y x)coordinates

pol1.bmp 50 20 (15,23), (11,50), (57,39), (32,6)

pol2.bmp 50 50 (8,29), (59,57), (54,7)

pol3.bmp 5 50 (7,57), (56,57), (56,8), (7,8)

pol4.bmp 50 50 (17,19), (14,35), (21,51), (32,54), (50,50), (55,32), (47,15),

(33,11)

pol5.bmp 5 50 (10,15), (5,27), (5,37), (10,49), (27,59), (36,59), (52,51),

(58,37), (58,27), (51,11), (36,5), (27,5)

pol6.bmp 50 50 (27,13), (7,23), (11,46), (21,57), (38,59), (54,51), (52,35),

(57,20), (44,8)

pol7.bmp 10 50 (14,13), (14,24), (3,29), (9,50), (20,51), (31,37), (32,27),

(49,57), (56,15), (31,4)
Table 5-1 Matlab Function Results

 Figure 5-2 shows the MATLAB function output for each image.

Figure 5-2 MATLAB Output Results

5.3 Simulink Block System Results

The Simulink block system was implemented to have a more

understandable representation of the designed algorithm in MATLAB, thus

hardware implementation could be easier. The main purpose of the Simulink

block system was to assist in designing a VHDL equivalence of the algorithm.

For Simulink block system testing, a binary image called image.bmp is

needed to be placed in the current work directory. The minimum contiguous

corners with same distance and the minimum length of a horizontal/vertical

line input parameters are introduced as a constant in the required system

block by double-clicking it as shown in Figure 5-3.

Figure 5-3 Input Parameters

 As output, the system shows a plot of the introduced image with the

identified corners and vertices, and generates a text file called vertices.txt in

the current work directory which contains the vertices (y x) coordinates and

the corner type and quadrant in which the vertex is located. Table 5-2 shows

the input and output data for each image.

SIMULINK BLOCK SYSTEM INPUT

DATA

SIMULINK BLOCK SYSTEM OUTPUT DATA

Binary Image M.L.H. M.C.C.S.D Vertices (y x)coordinates

pol1.bmp 50 20 (15,23), (11,50), (57,39), (32,6)

pol2.bmp 50 50 (8,29), (59,57), (54,7)

pol3.bmp 5 50 (7,57), (56,57), (56,8), (7,8)

pol4.bmp 50 50 (17,19), (14,35), (21,51), (32,54), (50,50), (55,32), (47,15), (33,11)

pol5.bmp 5 50 (10,15), (5,27), (5,37), (10,49), (27,59), (36,59), (52,51), (58,37),
(58,27), (51,11), (36,5), (27,5)

pol6.bmp 50 50 (27,13), (7,23), (11,46), (21,57), (38,59), (54,51), (52,35), (57,20),
(44,8)

pol7.bmp 10 50 (14,13), (14,24), (3,29), (9,50), (20,51), (31,37), (32,27), (49,57),
(56,15), (31,4)

Table 5-2 Simulink Block System Results

 Figure 5-4 shows the Simulink block system output for each image.

Figure 5-4 Simulink Output Results

5.4 FPGA System Results

Finally the algorithm was implemented in hardware. Each time a

Simulink block was built from the refactored algorithm, a VHDL equivalent

was concurrently designed, and thus I/O equivalence between the three

systems was assured.

The FPGA system loads each image from the micro SD memory card

and the input parameters are modified by constants into the VHDL code of

the required entity. Results ((x y) coordinates, type of corner and quadrant in

which vertices are located) are showed by a 16x2 alphanumeric LCD. The

LCD shows results of only one vertex at once, so a rotary button is used to

display all stored results within the FPGA Block RAMs (rotating to the right

displays next result and to the left displays the previous result).

 Table 5-3 shows the input and output data for each image.

FPGA SYSTEM INPUT DATA FPGA SYSTEM OUTPUT DATA

Binary

Image

M.L.H. M.C.C.S.D Vertices (x y)coordinates

pol1.bmp 50 20 (23,15), (50,11), (39,57), (6,32)

pol2.bmp 50 50 (29, 8), (57, 59), (7,54)

pol3.bmp 5 50 (57,7), (57,56), (8,56), (8,7)

pol4.bmp 50 50 (19,17), (35,14), (51,21), (54,32), (50,50), (32,55), (15,47),
(11,33)

pol5.bmp 5 50 (15,10), (27,5), (37,5), (49,10), (59,27), (59,36), (51,52),

(37,58), (27,58), (11,51), (5,36), (5,27)

pol6.bmp 50 50 (13,27), (23,7), (46,11), (57,21), (59,38), (51,54), (35,52),

(20,57), (8,44)

pol7.bmp 10 50 (13,14), (24,14), (29,3), (50,9), (51,20), (37,31), (27,32),

(57,49), (15,56), (4,31)
Table 5-3 FPGA System Results

 Figure 5-5 to Figure 5-11 show the FPGA system output for each

image.

Figure 5-5 Polygon 1 FPGA results

Figure 5-6 Polygon 2 FPGA results

Figure 5-7 Polygon 3 FPGA results

Figure 5-8 Polygon 4 FPGA results

Figure 5-9 Polygon 5 FPGA results

Figure 5-10 Polygon 6 FPGA results

Figure 5-11 Polygon 7 FPGA results

5.5 Summary

 MATLAB and Simulink Testing was performed by using MATLAB

R2008a running under Linux Operating System (Ubuntu 9.10) in a Intel Core

2 Duo processor at 1.83Ghz of clock frequency, with 2 GBytes of RAM.

 Although time performance is not within the purpose for the

development of this system, by executing the tic toc MATLAB function, an

estimated execution time for implemented algorithm was measured as an

indicator that the algorithm execution time depends linearly of the

combination between the number of pixels forming the polygon‟s edge, the

number of edge pixels that are corners and the number of vertices found.

Table 5-4 shows the obtained results.

Binary

Image

Number of Pixels

Forming the Edge

Number of

Corners on the

edge

Number

of

Located

Vertices

Approximated

Execution

Time

in Milliseconds

pol1.bmp 181 115 4 11

pol2.bmp 203 107 3 12

pol3.bmp 197 4 4 2

pol4.bmp 169 77 8 9

pol5.bmp 215 115 12 11

pol6.bmp 207 117 9 12

pol7.bmp 261 139 10 14
Table 5-4 Execution Time Performance

 FPGA implementation was made using a Spartan 3E Starter Kit, the

image was loaded into the FPGA from a micro SD memory card. The micro

SD memory card was interfaced with the Starter Kit through the Micro Drive

device. Results were displayed through the Starter Kit built-in 16x2 LCD. The

FPGA system was tested with a 50Mhz clock. FPGA execution time

performance measure was not contemplated in the design, so that no

execution time results are documented.

 Table 5-5 shows the Device Utilization Summary taken from the

synthesis report. The synthesized VHDL system includes the designed micro

SD memory and LCD communication drivers.

Device utilization summary

Device Xilinx Spartan 3E (500k gates)

Number of Slices 2212 out of 4656 47%

Number of Slice Flip Flops 883 out of 9312 9%

Number of 4 input LUTs 7287 out of 9312 78%

 3255 35% used as logic

 4032 43% used as RAMs

Number of IOs 15

Number of bonded IOBs 15 out of 232 6%

Number of GCLKs: 1 out of 24 4%
Table 5-5 Synthesis Report Device Utilization Summary

 Although the larger number of located vertices inside an image is

twelve (pol5-bmp), the algorithm, the maximum of vertices that can be

located, depends on the distance between corners of each line segment and

the M.L.H. and M.C.C.S.D. input parameters. Table 5-6 shows I/O

equivalence between each system through the resulting vertices (x y)

coordinates located in each of tested images.

 Vertices (x y)Coordinates

Binary Image MATLAB FUNCTION SIMULINK BLOCK

SYSTEM

FPGA SYSTEM

pol1.bmp (23,15)
(50,11)

(39,57)
(6,32)

(23,15)
(50,11)

(39,57)
(6,32)

(23,15)
(50,11)

(39,57)
(6,32)

pol2.bmp (29, 8)
(57, 59)
(7,54)

(29, 8)
(57, 59)
(7,54)

(29, 8)
(57, 59)
(7,54)

pol3.bmp (57,7)

(57,56)
(8,56)
(8,7)

(57,7)

(57,56)
(8,56)
(8,7)

(57,7)

(57,56)
(8,56)
(8,7)

pol4.bmp (19,17)
(35,14)
(51,21)
(54,32)
(50,50)

(32,55)
(15,47)
(11,33)

(19,17)
(35,14)
(51,21)
(54,32)
(50,50)

(32,55)
(15,47)
(11,33)

(19,17)
(35,14)
(51,21)
(54,32)
(50,50)

(32,55)
(15,47)
(11,33)

pol5.bmp (15,10)
(27,5)
(37,5)
(49,10)
(59,27)

(59,36)
(51,52)
(37,58)
(27,58)
(11,51)
(5,36)
(5,27)

(15,10)
(27,5)
(37,5)
(49,10)
(59,27)

(59,36)
(51,52)
(37,58)
(27,58)
(11,51)
(5,36)
(5,27)

(15,10)
(27,5)
(37,5)
(49,10)
(59,27)

(59,36)
(51,52)
(37,58)
(27,58)
(11,51)
(5,36)
(5,27)

pol6.bmp (13,27)
(23,7)
(46,11)
(57,21)
(59,38)
(51,54)
(35,52)
(20,57)

(8,44)

(13,27)
(23,7)
(46,11)
(57,21)
(59,38)
(51,54)
(35,52)
(20,57)

(8,44)

(13,27)
(23,7)
(46,11)
(57,21)
(59,38)
(51,54)
(35,52)
(20,57)

(8,44)

pol7.bmp (13,14)
(24,14)
(29,3)
(50,9)
(51,20)
(37,31)
(27,32)

(57,49)
(15,56)
(4,31)

(13,14)
(24,14)
(29,3)
(50,9)
(51,20)
(37,31)
(27,32)

(57,49)
(15,56)
(4,31)

(13,14)
(24,14)
(29,3)
(50,9)
(51,20)
(37,31)
(27,32)

(57,49)
(15,56)
(4,31)

Table 5-6 I/O Equivalence Results

Chapter 6 CONCLUSIONS AND FUTURE

 WORK

6.1 Conclusions

 An algorithm to identify polygonal objects from binary images was

designed in MATLAB. From the designed MATLAB algorithm, a MATLAB

function called “vertices” was written to ease testing. As an input the vertices

function uses the image‟s border route, the minimum length of a

horizontal/vertical line (M.L.H.) and the minimum contiguous corners with

same distance (M.C.C.S.D.). As output, the function shows a plot of the

processed figure with located vertices and a list of (x y) coordinates of each

vertex.

 A Simulink block library was also built by refactoring the MATLAB

algorithm. Each block of the library was built by writing Level-2 M-file S-

Functions from decomposed elements of the MATLAB algorithm. Once the

library was completed, a block system was built and tested to match with the

designed algorithm at I/O level.

 A set of VHDL entities were almost simultaneously built with the

Simulink block library thus I/O equivalence could be ensured at simulation

level using Modelsim. Once that the set of VHDL entities was completed, the

micro SD memory and Starter Kit built-in LCD were interfaced to the FPGA,

this way, images could be loaded into the FPGA and results could be

visualized through the LCD.

 By testing the MATLAB function, the Simulink block system and the

VHDL system all together, equivalence at I/O level was shown. A complete

system, in software and hardware, was developed to contribute computer

vision implementations of applications based on polygon identification.

6.2 Future Work

 Make it possible not just to identify polygonal objects but also objects

formed by curved segments.

 Integrate the system into a computer vision application in which

identifying polygons is part of the solution.

 Use this work to design and develop a vertices‟ finding system of

polygonal edges as a coprocessor in such a way that computer vision

applications can be easier to develop.

FIGURES LIST

Figure 1-1 Computer Vision System [17] .. 3

Figure 1-2 Computational Shape Representation Techniques 4

Figure 1-3 Characterized Shape .. 5

Figure 1-4 Solution Process ... 9

Figure 2-1 Start up pixel location ... 11

Figure 2-2 Start up pixel algorithm ... 12

Figure 2-3 Edge extraction from adjacent pixels value differences [32] 13

Figure 2-4 Edge's corners .. 13

Figure 2-5 Corner patterns ... 14

Figure 2-6 Corners extraction example ... 15

Figure 2-7 Sequence to find corners list.. 15

Figure 2-8 Vertices on quadrant change ... 17

Figure 2-9 Slope Change.. 18

Figure 2-10 Corners list and Distances between corners list 19

Figure 2-11 Identified Vertices ... 20

Figure 2-12 Distances Between Corners Algorithm ... 21

Figure 2-13 Patterns of distances between corners ... 22

Figure 2-14 Slope's Change ... 23

Figure 2-15 External Corner Mismatch ... 23

Figure 2-16 Internal Corner Mismatch ... 24

Figure 2-17 45° Line.. 24

Figure 2-18 Quadrant 1 Vertex Better Locations .. 25

Figure 2-19 Quadrant 2 Vertex Better Locations .. 26

Figure 2-20 Quadrant 3 Vertex Better Locations .. 27

Figure 2-21 Quadrant 4 vertex better locations .. 28

Figure 2-22 Horizontal/Vertical line vertices locations ... 29

Figure 2-23 Vertices Location Process ... 31

Figure 2-24 Pattern Extraction Algorithm .. 31

Figure 2-25 Vertices Location Algorithm ... 32

Figure 2-26 Contour Representation in [32] .. 34

Figure-2-27 Proposed Contour Representation using corners 34

Figure 3-1. Corners Extraction System ... 36

Figure 3-2 Vertices Location System ... 40

Figure 4-1 VHDL System .. 49

Figure 4-2 Corners and Distances Between Corners Extraction System................... 50

Figure 4-3 Vertices Location System ... 59

Figure 4-4 Comparison Subsystem ... 62

Figure 4-5 Vertex Process Subsystem .. 65

Figure 4-6 Micro SD memory driver... 70

Figure 4-7 Internal component entities for Micro SD memory driver 71

Figure 4-8 LCD Driver Subsystem ... 73

Figure 4-9 LCD Driver ... 74

Figure 5-1 Test Images ... 76

Figure 5-2 MATLAB Output Results .. 78

Figure 5-3 Input Parameters .. 79

Figure 5-4 Simulink Output Results ... 80

Figure 5-5 Polygon 1 FPGA results ... 82

Figure 5-6 Polygon 2 FPGA results ... 82

Figure 5-7 Polygon 3 FPGA results ... 82

Figure 5-8 Polygon 4 FPGA results ... 82

Figure 5-9 Polygon 5 FPGA results ... 83

Figure 5-10 Polygon 6 FPGA results ... 83

Figure 5-11 Polygon 7 FPGA results ... 84

TABLES LIST

Table 1-1 Vertex Detection and Polygonal Approximation Methods 6

Table 2-1 Possible identifiable vertices ... 30

Table 5-1 Matlab Function Results .. 77

Table 5-2 Simulink Block System Results ... 79

Table 5-3 FPGA System Results ... 81

Table 5-4 Execution Time Performance .. 84

Table 5-5 Synthesis Report Device Utilization Summary .. 85

Table 5-6 I/O Equivalence Results .. 86

REFERENCES

[1] Yali Amit, 2D Object Detection and Recognition; Models, Algorithms, and Networks.

United States of America: MIT Press, 2002.

[2] Yong-Bin Zhang Fu-Cheng You, "A Mechanical Part Sorting System Based on

Computer Vision," in IEEE Computer Society, International Conference on Computer

Science and Software Engineering, 2008.

[3] William C. Regli Vincent Cicirello, "Machining Feature-based Comparisons of

Mechanical Parts," in IEEE Computer Society, Proceedings of the International

Conference on Shape Modeling and Applications, 2001.

[4] A. Kiritsakis, F. Stergiopoulos , Dimitris Bechtsis, V. Kilintzis, A. Antoniadis, K.

Kiritsakis and K. Kokonas Efstratiadis, "Optical Inspection for Quality Separation of

Olive Fruit," in 1st International Seminar Olive Biotechnology and the Quality of the

end products in the Mediterranean Basin, Errachida, Morocco, 2004.

[5] Ryoei Ito, Kenichi Nakanishi, Takashi Mishima, Toyokazu Hirozumi, Takaharu

Kameoka, Masayuki Hirafuji, Seishi Ninomiya Atsushi Hashimoto, "An Integrated Field

Monitoring System for Sustainable and High-Quality Production of Agricultural

Products Based on BIX Concept with Field Server," in IEEE Computer Society,

Proceedings of the International Symposium on Applications and the Internet

Workshops, 2007.

[6] Flávio F. Feliciano, Flavius P. R. Martins Fabiana R. Leta, "Computer Vision System

for Printed Circuit Board Inspection," in ABCM Symposium Series in Mechatronics,

2008, pp. pp.623-632.

[7] Dimitris N. Metaxas By Xiaolei Huang, "Metamorphs: Deformable Shape and

Appearance Models," in IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2008, pp. pp. 1444-1459.

[8] Paulo Lobato Correia Carlos Filipe Paulo, "Traffic Sign Recognition Based on

Pictogram Contours," in Ninth International Workshop on Image Analysis for

Multimedia Interactive Services, 2008.

[9] N. Magnenat-Thalmann and L. Moccozet, "Some New Challenging Research Topics in

Human Animation," in IEEE Computer Society, Proceedings of the 17th Spring

Conference on Computer Graphics, 2001.

[10] Golan Levin, "Computer Vision in Interactive Art," in Processing, a Programming

Handbook for Visual Designers and Artists.: MIT Press, 2007, pp. 547-555.

[11] Vijay Laxmi, Bhavitavya Bhadviya, Nemi Chand Singh and Ashwini Sharma Neeta

Nain, "Decomposing a Polygonal Boundary as a List of Line Segments," in Proceedings

of the International MultiConference of Engineers and Computer Scientists, 2008.

[12] Carla Maria Modena Stefano Messelodi, "Detection of Polygonal Frames in Complex

Document Images," in 10th International Workshop on Database and Expert Systems

Applications, 1999.

[13] Sriram Swaminarayan Lakshman Prasad, "Hierarchical Image Segmentation by Polygon

Grouping," , 2007.

[14] Liu Shenglan, Wu Xi, Zhou Laishui Zhang Liyan, "Segmentation and Parametrization of

Arbitrary Polygon Meshes," in Proceedings of the Geometric Modeling and Processing,

2004.

[15] B. Gatos and S.L. Mantzaris, "A novel recursive algorithm for area location using

isothetic polygons," in Proceedings of the International Conference on Pattern

Recognition, 2000.

[16] Gareth Loy, David Shaw and Antonio Robles-Kelly Nick Barnes, "Regular polygon

detection," in Proceedings of the Tenth IEEE International Conference on Computer

Vision, 2005.

[17] Richard E. Woods Rafael C. Gonzalez, Digital Image Processing. United States of

America: Pearson-Prentice Hall, 2002.

[18] Roberto Marcondes Cesar Jr. Luciano da Fontoura Costa, Shape Analysis and

Classification.: CRC Press LLC, 2001.

[19] Luc Vincent, Vance Faber Artem Mikheev, "High-Quality Polygonal Contour

Approximation Based on Relaxation," in Sixth International Conference on Document

Analysis and Recognition (ICDAR'01), Seattle, Washington , 2001.

[20] Longin Jan Latecki and Rolf Lakämper, "Polygon Evolution by Vertex Deletion ," in

Lecture Notes in Computer Science, Springer, 1999.

[21] Bimal Kr. Ray and Kumar S. Ray, "An algorithm for polygonal approximation of

digitized curves," in Pattern Recognition Letters, Volume 13, Issue 7, 2003.

[22] Filip Krolupper and Jan Flusser, "Polygonal shape description for recognition of

partially occluded objects," in Pattern Recognition Letters, Volume 28, Issue 9, 2004.

[23] Po-Hsuan Liaoa and Jia-Ming Changa Kuo-Liang Chung, "Novel efficient two-pass

algorithm for closed polygonal approximation based on LISE and curvature constraint

criteria," in Journal of Visual Communication and Image Representation, 2006.

[24] Ralf Juengling and Lakshman Prasad, "Parsing Silhouettes without Boundary Curvature

," in 14th International Conference on Image Analysis and Processing (ICIAP 2007),

2007.

[25] Cecilia Di Ruberto and Andrea Morgera, "A New Algorithm for Polygonal

Approximation Based on Ant Colony Optimization ," in Lecture Notes in Computer

Science, Springer, 2009.

[26] Marc Salotti, "Optimal polygonal approximation of digitized curves using the sum of

square deviations criterion," in Pattern Recognition Society. Published by Elsevier

Science B.V. , Octeville, France, 2000.

[27] Alexander Kolesnikov, "Constrained piecewise linear approximation of digital curves ,"

, 2008.

[28] Jack Chazin, Robert L. Hansen, Bruce J. Sklansky, "Minimum-Perimeter Polygons of

Digitized Silhouettes ," in Computers, IEEE Transactions, 2009.

[29] Xavier Provençal and Jacques-Olivier, "Two Linear-Time Algorithms for Computing

the Minimum Length Polygon of a Digital Contour," in Discrete Geometry for Computer

Imagery, Springer, 2009.

[30] Robert Bergevin and Marielle Mokhtari, "Multiscale Contour Segmentation and

Approximation: An Algorithm Based on the Geometry of Regular Inscribed Polygons,"

in Computer Vision and Image Understanding, Volume 71, Issue 1, 1996.

[31] Reinhard Klette Fajie Li, "Decomposing a Simple Polygon into Trapezoids ," in

Computer Analysis of Images and Patterns, 2007.

[32] Partha Bhowmick and Bhargab B. Bhattacharya, "Fast Polygonal Approximation of

Digital Curves Using Relaxed Straightness Properties," in IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 9, 2007.

[33] George C. Stockman Linda G. Shapiro, Computer Vision. United States of America:

Prentice Hall, 2001.

[34] Keith Price. Computer Vision Information Pages. [Online]. http://www.visionbib.com.

[Accessed: Febrero2009]

http://www.visionbib.com/

[35] Denise Guliato, Juliano D. de Carvalho, Sérgio A.Santiago Rangaraj M. Rangayyan,

"Polygonal approximation of contours based on the turning angle function," in Journal

of Electronic Imaging 17(2), 023016 (Apr–Jun 2008), 2008.

