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Abstract

Symbolic analysis has been for some years a topic of interest in electronics, because it
represents a way to have a better understanding on circuit behavior. Through this time,
different approaches have been developed to obtain expressions that allow

representing the circuit behavior and then try to improve its performance.

These approaches have been done for example, through graphs methods, flow charts
or analytical methods, like MNA or pure nodal analysis, which is the chosen method to

be used in this Thesis.

Nodal analysis utilized in this Thesis could not be employed without an important
element in circuit analysis; it is the nullor, which can be employed to model different
devices. But it is also useful for reducing the rank of matrices of the system being

analyzed, by using the properties this element have.

In this Thesis, a method for obtaining symbolic expressions is explained, and it is
shown how the nullor helps creating the nodal formulation which allows getting those

expressions.

There is an open research in symbolic analysis due to the length of symbolic
expressions and the necessity to reduce them in order they could be easier to be
understood, this way, some simplification methods have been developed and presented

in this Thesis, to show their usefulness to obtain shorter expressions.

Within these reduction methods, a method of reducing order is treated, it is known as
asymptotic waveform evaluation, and allows the reduction of order in expressions, to

have smaller expressions.

Symbolic analysis is also useful for calculating expressions that represent parameters

like noise in amplifiers; this topic is also reviewed in this Thesis.



Chapter 1. Symbolic analysis

1.1 Symbolic analysis methods

Usually, in the process of designing a circuit using metal-oxide-semiconductor field
effect transistors (MOSFETS), after the first approach on sizing elements, a numerical
simulation is held; in order the circuit behavior can be verified and afterwards improved,
to achieve the desired specifications. However, when trying to get a better insight on
what is happening on the circuit, a symbolic expression representing it could be more
useful to try to understand its behavior. There are different approaches to obtain the
referred symbolic expression; this chapter is aimed to summarize some of these

methods.

1.1.1 Tree enumeration methods

Tree enumeration methods are based on graph theory, they have been the base for old
and more recent symbolic analysis programs. There are two categories to classify
them: the directed and the undirected tree enumeration. These methods face the
disadvantage that they could only deal with small RLCgm circuits because a large

number of symbolic terms are generated, producing expressions difficult to handle [1].



1.1.1.1 Directed tree enumeration

To use this method, a slightly modified circuit, should be implemented, adding an
admittance in parallel with a current source to the original circuit, this modification
contributes to the construction of an adequate determinant expression and the
necessary cofactors for the augmented circuit. To see graphically how the augmented

circuit can be created, let’s take for instance the amplifier of figure 1.1.

The small signal circuit representation of this circuit, where the MOSFET is modeled by
a voltage-controlled current source (VCCS), can be observed in figure 1.2a. After
adding the mentioned controlled source and the admittance, the augmented circuit is

obtained, which can be seen in figure 1.2b.
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Figure 1.1 Example of circuit for applying tree enumeration
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Figure 1.2 (a) Small signal representation of amplifier of figure 1.1 (b) Augmented circuit.



Once the augmented circuit is ready, a directed graph representing it can be formed by
using the stamps corresponding to each of the elements of the circuit. In this case, after
employing the adequate stamps, the graph that represents the circuit of the example
can be seen in figure 1.3. In this graph, all directed trees should be enumerated,
because the admittance products of these trees are used to find the nodal admittance
matrix determinant and cofactors to produce the required symbolic transfer functions.
However, the number of branches in the graph may grow exponentially with the

increase of the circuit-elements.

Figure 1.3 Directed graph

1.1.1.2 Undirected tree enumeration

This method is based on the construction of two graphs, one for currents and the other
for voltages, for this reason, this method is also known as “two-graph tree enumeration
method”. The constructed graphs are equal for RLC circuits, but they are slightly
different for RLCgm circuits, because the gm admittance corresponding to the
controlled sources is positioned in a different place, depending on the current or voltage
graph. The construction of these graphs is useful for generating the cofactors of nodal

admittance matrix Y, that generates the symbolic transfer functions.

As an example for graph construction, let's use the circuit of previous example, in
specific, the small signal representation of it, that is, the one of figure 1.2a. Using this
circuit, two graphs can be constructed; one for voltages and one for currents, this is

illustrated in figure 1.4.



(a) (b)
Figure 1.4 (a) Voltage graph (b) Current graph

After applying the adequate operations with these graphs, the needed transfer function
can be obtained. However, as for the directed tree enumeration, the number of

branches may grow exponentially with the increase in the number of circuit-elements.

1.1.2 Signal flowgraph (Topological methods)

There are two kinds of flowgraphs aimed to generate symbolic equations of circuits, the
Mason signal flowgraph and the Coates graph, the first one is the popular known
method used in other applications, such as control, but in this case, it is also useful for
symbolic analysis. The second method was created ad-hoc for generating symbolic
expressions. These flowgraph methods have an advantage over tree enumeration
methods, because they can deal with circuits containing all types of controlled sources.
However, these methods have also the limitation of circuit size, because they generate

very large expressions that cannot be managed easily due to their complexity.

Mason flowgraph method for finding transfer functions among two nodes of a circuit

(xi/x;) is based in the application of Mason’s formula:

X; 1
L ==3PA 1.1
. A 2P (1.1)

A = 1-(sum of all Li’s), - where Li’s are the loops of the flowchart
+ (sum of all second-order loop weights)

- (sum of all third-order loop weights)

L



For applying this method a tree and cotree should be constructed from the original
circuit; in this case, voltage sources should be located in tree, and current sources in
the cotree. Then KCL, branch admittances, and tree branches voltages are used to find
an expression for every cotree link current. KVL, branch impedances, and cotree link
currents are used to find an expression for every tree branch voltage. The signal
flowchart should be created by drawing a node for each current and voltage source,
tree branch voltage, and cotree link current. The branches between nodes of the graph
represent the equations corresponding to the analyzed circuit. Once the flowchart is
constructed, Mason formula can be applied to find the transfer function between the
chosen nodes.

A figure that can be used to illustrate the formation of a signal flowgraph can be seen

next (figure 1.5)
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Figure 1.5 lllustration on graph creation for Mason method

1.1.3 Parameter extraction method

This is a method best suited when dealing with a semi-symbolic expression. Because of

that, it can handle larger circuits. However, if the number of the symbolic terms is large,



it has the same problem of exponential growing of terms, making difficult to manage the

resulting expressions.

To apply this method for symbolic analysis, an appropriate pattern should be found in
the matrix being dealt with. For example, if indefinite admittance matrix is being used,
the analysis and rules depend on the appearance of symbolic parameters in four
locations in the matrix: (i,i),(i,j),(j,i) and (j,j). Other methods are based on a different

pattern found in the matrix.

To use a parameter extraction method, a symbolic variable a, which appears in the
matrix to solve, needs to be “extracted” using matrix operations, like adding rows or

columns, or subtracting them, making possible to take the variable out of the matrix.

1.1.4 Interpolation method

This method is based on finding coefficients of the polynomial resulting from a
determinant, to do this; different values of s are substituted to evaluate the function,

being a better approach to use complex values for s, not only real ones.

When substituting values for s, a set of linear equations is formed. This way, to find the
coefficients, the set of linear equations should be solved. The main disadvantage of this
method relies on that it only generates rational expressions with the unique symbol

described by s.

1.1.5 Nodal analysis and MNA

These methods lie on the idea of obtaining the fully symbolic equations of the circuit
directly from its description, and then putting them into a linear matrix form: Ax=b.

Where A is a symbolic matrix of dimension n x n, x is a vector of circuit variables of
length n, b is a symbolic vector of constants. The analysis consists in solving for x of the

system of equations.



To generate the already mentioned matrix, there are different techniques, such as nodal
analysis and its modifications. This is the method adopted in this Thesis, and it is

highlighted in the following chapters.

1.1.5.1 Nodal Analysis

This is one of the most known and popular methods for circuit analysis, and it can also
be employed as a method for symbolic analysis. It is based on Kirchhoff's laws of

current and voltage.

With nodal analysis (NA), only conductances and current sources can be dealt with;

however there are modifications that allow managing other circuit elements.

Nodal Analysis is formulated as:
YoVio=iy (1.2)

Y, is known as Indefinite Admittance Matrix or Nodal Admittance Matrix, and has a (n7 x
n) order and /, is the independent vector or stimulus vector (7 order), containing the

independent current sources present in the circuit. 1/;is the vector of variables.

Admittance matrix is the base for formulation methods; it can be set up through

Kirchhoff's current law in nodes of the treated circuit, that is: [2]

Zb:ik =0 (1.3)
k=1

With b, the number of branches connected to that node and / the current in branch 4. If
this approach is applied to every node of the circuit, a system of equations can be

constructed, which contains Y, matrix.

There are two types of admittance matrix, definite and indefinite. An indefinite matrix
become definite when node A is grounded (taken as the reference node) thus deleting

the corresponding row and column from the matrix.



1.1.5.2 Modified Nodal Analysis

This method overcomes the problem of NA, because it can handle more circuit
elements which allow performing a more complete analysis. Formulating the Y matrix of
the circuit (nodal admittance matrix, as it was mentioned before), is the beginning of this
method. However, when the circuit elements are modeled by using nullors, then the
circuit analysis can be performed by just applying the NA method, instead of the MNA,
as it is shown in the following chapters. It is worthy to mention that the NA method
applied to nullor equivalent circuits does not increase its order compared to the MNA

method, which is described below.

1.1.5.2.1 Stamps approach

One way to construct nodal admittance matrix is using element stamps, which allows
applying automated methods. The manner this technique is applied, consist on
analyzing every branch of the circuit and adding to nodal admittance matrix the
contribution given for the elements present in the circuit. In the next figures, taken from
[1], the stamps of some elements are shown; these are the conductance, current
source and VCVS.

i J | I j Kk
. iy -¥ : 1
v ll Yoogl-y oy J
1y not a variable Iy ¥y —¥Ii—- I
- iy a variable

Figure 1.6 Stamp corresponding to conductance branch
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Figure 1.7 Stamp corresponding to current source
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Figure 1.8 Stamp corresponding to VCCS

MNA method allows including those elements that cannot be handled with simple nodal
analysis, such VCVS, CCCS, CCVS, this is done by introducing some branch currents
as extra variables into the system of equations. Each new variable introduced would
require an extra equation to solve for it; these extra equations are obtained from the
branch relationship given by the added branch currents, corresponding to the element

that wants to be taken in consideration.

The matrix resulting after the addition of new variables is known as MNA matrix, and

< ofil e

Where / is a vector of size n;, and contains the extra branch current variables

has the form:

introduced. £ has the independent voltage sources values. C and D have the branch

relationship equations whose currents are in vector /.

10



1.1.5.3 Compacted nodal analysis using nullors
1.1.5.3.1 Nullor concept

In 1954, Tellegen showed that an ideal amplifier could be used as a general block for
implementing linear or non-linear circuits. In 1964, Carlin proposed the Nullor for
modeling the ideal amplifier as a two port element, with four associated variables (figure
1.9). This element is composed by a Nullator in the input and a Norator in the output.

[3], [4].

R — I
+ = - +

Figure 1.9 Nullor

Nullator has the property that v, voltage and /, current are always zero. Conversely,
norator has the property that their voltage v, and current j, are arbitrarily assigned.
From these properties, an equation can be derived, which represents Nullor behavior

and is formed through the next null transfer matrix.

el

Nullor allows modeling active elements such as opamps, otas, cfoas or cc’s [9].

1.1.5.3.2 Compacted nodal analysis

The way to obtain a compacted system of equations (CSE) of an analog circuit is
through obtaining an equivalent circuit with nullors substituting each active device and
non NA compatible element with its nullor model. Then applying nullator and norator

properties, that is: [3]

11



1. If a nullator is grounded, as it can be seen in figure 1.10(a), applying its voltage

property, /node will be virtually grounded.

2. If a norator is grounded, the case is the same, because when applying its current

property, /node will be virtually connected to ground.

3. For a floating nullator, as that shown in figure 1.10b, /node will be virtually connected

to /node.

4. For a floating norator, like the one showed in figure 1.10d, 7/ and j node will be

virtually connected.

After the application of these considerations, a CSE is obtained, having an order of m =
n— N, where n is the number of nodes and N the number of nullors. More on this topic

will be presented in another chapter.

‘ﬁg i | % i |
a) b) d)

c)

Figure 1.10 Nullator and norator properties

1.1.5.3.3 Transistor modeling using nullors

To take advantage on computer aided analysis, physical devices should be modeled in
order simulations or symbolic analysis can be performed automatically. Let’s take, for
instance small signal transistor model, which allows considering this element as linear,
in this case there are different models that can be used to represent transistors
according to the dealt application, for example, there exist a basic and a high frequency

MQOS transistor model [2], basic model, using the VCCS, is shown in figure 1.11.

12
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Figure 1.11 MOS Small signal model

To start modeling a transistor through nullors, the basic small signal model of figure
1.11 can be used, that is because its representation using a nullor is like it can be

viewed in figure 1.12.

am

S

Figure 1.12 Transistor modeled through nullor element

Parting from figure 1.12, a more complex model can be developed, that is, parasitic
elements can be added in order a more complex can be used, however, a model
including more elements results in greater symbolic expressions, which creates a
problem when trying to interpret the result. A solution to this problem is presented in the
following chapters through the generation of symbolic behavioral models of few voltage

amplifiers.

Using nullors to represent transistors gives the advantage in nodal formulation of
reducing the rank, that can be showed from the fact that the two columns corresponding
to the input nodes of a nullor can be added since the two input node voltages are equal,
and the two rows corresponding to the output nodes are added to eliminate the output

current [6], because of this, each nullor reduces the rank of the matrix by one.

13
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1.2 Non dominant elements approach

Due to the exponential growth of the number of terms with the circuit size, the symbolic
expressions for analog integrated circuits rapidly become too lengthy and complicated
to use or interpret, rendering them virtually useless. A solution that can help solving this
problem is considering the magnitude of elements, which varies in semiconductor
devices. This way, in a transistor its transconductance is usually larger than its output
conductance, taking this into account, leads to prone the majority of the terms in a fully
symbolic expression, because just some of the terms are necessary to represent the

circuit behavior. [7] This topic will be later explained in another chapter.

1.3 Moments and moment matching method

When analyzing an integrated analog circuit, the order of the system of equations might
be much higher than it is required to understand the global behavior. In this manner, to
reduce the order of the equations, the asymptotic waveform evaluation (AWE) method
can be applied. Basically, one needs to compute moments and then match the

moments by applying Padé approximation.

1.3.1 Concept of moments

In the s domain, the transfer function of a linear network H(s) is defined as the ratio of

the output to the input under zero initial conditions [8]:
Y(s
H(s) = ﬁ (1.8)
X(s)
If the input is the impulse function 5(t), its Laplace transformation is 1. So the transfer
function is also the impulse response at the port. If H(s) is expanded around s=0 by the

Taylor series expansion, we have:
H(s)=> m,s (1.9)
k=0

where

14
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Where the Ath coefficient of H(s), my, is called the Ath moment.

(1.10)

Assuming that h(t) is the corresponding time-domain impulse response, we have

H(s) = Jje’“h(t)dt (1.11)

The moments defined in (1.11) in terms of H(t) by using the Taylor expansion of et in

the Laplace transform H(s) can be written as:

H(s) = J':e*“h(t)dt

2 k
=j h(t)(l—stJrszt+---+sk(_l)tk+---}dt (1.12)
0 2 k!

=is = 1) " [thoa

Comparing (1.12) with the definition of (1.9), moments can be rewritten as:

_( 1) j t“h(t)dt (1.13)

1.3.2 Padé Approximation

Padé approximation is a method that generates a family of rational functions whose
moments agree with those of the impulse response. The rational functions are further
decomposed into partial fractions, whose inverse Laplace transforms are used to

constitute the approximated response of waveforms.

Padé approximation can be explained as: given two integers p and q, (p,q) Padé

approximation of the transfer function H(s) is a rational function.

P(s) _ & +a,5+a,5" +--+a,s’
Q(s)  1+bs+b,s?+--+b,s"

H,q(s) = (1.14)

The Maclaurin expansion of H, s) agrees with that of A(s) in the first p+g+1 terms, i.e.,

15



H(s)=H_,(s) +O(s” ") (1.15)

As there are p+q+1 unknowns in (1.14), it is necessary to establish p+qg+1 independent
equations to solve for them. Assuming that A, (s) is a proper transfer function i.e. p<q,

we can get coefficients in denominator Q(s) of (1.14) by solving the following equations:

m, m M., | b, m,
MM Mo | Bos | _ | Maa (1.16)
mq—l mq m2q—2 b1 m2q—1

a, m, 0 0 0
m m 0O - 0| ©b
_| 0 :1 (1.17)
a'q—l mq—l mq—2 mq—3 mO bq—l

Equations (1.16) and (1.17) can be verified by honoring the fact that the first p+q+1

moments of H,4(s) match those of H(s), i.e.,

2
P(s) _ 8 t&5+a,8 +e+a,s’
Q(s)  1+bs+b,s* +---b;s"

=My +MS+---+m sP+r(s)sP T (1.18)

where r(s) is a polynomial function of s. Multiplying both sides with denominator Q(s),

we have

2 p_ 2 q p+q p+q+l
a, +,S+a,8" +---+a,s —(1+bls+bzs +-o+D, s )x(m0+mls+---+mp+qs " 4r(s)s ”)
(1.19)

By equating the coefficients of powers of s on both sides, we are able to write the two
equations in (1.16) and (1.17).

16



1.4 Conclusion

As it was seen through this chapter, many different methods have been developed to

obtain symbolic expressions, which vary from graphs to numerical methods.

Among those methods described within this chapter, compacted nodal analysis was
chosen to be used in this Thesis, because the inclusion of nullor element generates a
reduced system of equations. Nullor properties allow also eliminating non dominant

circuit elements, which is important to reduce the resulting symbolic expressions.

17



Chapter 2. Modeling using nullors

2.1 Modeling using nullors

Nullor element and its singular characteristics were introduced in the first chapter, there,
it was shown that it can be used to represent a MOS transistor, but this element can be

employed to model other circuit elements.

Different elements can be represented using nullors, taking into account the voltage
and current relationships they have. At first, the controlled sources using nullors will be

presented in table 2.1, figures were taken from [9].

2.2 MOS transistor modeling

In the first chapter, a simple model of MOS transistor was presented, as it can be seen
from table 2.1, a VCCS is represented with two nullator-norator pairs. The way to obtain
the model presented in figure 1.11 is considering that the negative terminals of a VCCS

are connected to the same node, as it can be seen in figure 2.1.

18
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Table 2.1 Representation of controlled sources
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gm

S

Figure 2.1 Simple model of MOSFET

Then, making use of nullors’ properties, when a nullator and a norator are parallel

connected, they can be considered as a short circuit, this way, simple model of MOS

transistor is obtained.
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When more complex models of transistors are required, like the small signal model
presented in figure 2.2, as it appears on [10], elements should be added to obtain a

complete equivalent.

I |
Tcgs @ lo
gmVgs OmVbs

—LCdb

n
*—
|7
0O
@
|

Figure 2.2 MOS transistor model using VCCS'’s

Let's consider, for example, the case when adding parasitic capacitors and output
conductance of MOS transistor, in this case, a resistance and two capacitors are added

to the model, obtaining representation of figure 2.3.

Cgs = go

I
A4

agm

|
S

Figure 2.3 MOSFET model considering parasitic elements

If the resistance given for contacts is added to the model of figure 2.3, then the

equivalent observed in figure 2.4 is obtained
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Figure 2.4 MOS transistor model considering contacts resistances

If substrate terminal wants to be taken into account, and the elements associated to this

terminal are needed to be added to the model, then representation of figure 2.5 is

obtained.
Cgb
|

D
g R Cgd Rd " Cab Rb g
W\ | | NN—

Cgs = go = Csb
gm gmb
%Rs

Figure 2.5 MOS transistor model considering substrate terminal and contacts resistances

When dealing with symbolic analysis, having short expressions is preferred, because
these can give easier information to be interpreted, than bigger ones. So a simple
representation of MOS transistor could be more useful to have a better understanding
of circuit behavior. But it depends on the application, the necessary model to be

employed.
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2.3 Modeling other devices using nullors
2.3.1 Operational amplifier

It is known that input impedance of an operational amplifier is very large, ideally infinite,
and output impedance, is ideally zero, for this reason, a nullor can be efficiently used to

represent this device [3], as it can be seen in figure 2.6.

V+ V+ Vout
Vout
V-
V-

Figure 2.6 Equivalent of opamp using nullor

2.3.2 Operational transconductance amplifier (OTA)

This device, represented with its nullor equivalents, can be seen in figure 2.7, from this
figure, the voltage across the conductance gm is just the differential voltage at the input

port because the voltage across each nullator is zero.

V+ V+ lout
lout gm
V- V-
Figure 2.7 Equivalent of OTA using nullor i
2.3.3 Current feedback operational amplifier (CFOA)
The nullor equivalent for this device is presented in figures 2.8. Open loop CFOA
should have these characteristics [3]:

Infinite impedance at non-inverting input.

Zero impedance at inverting input.
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Zero impedance at output.

V+
Vout Z

Ix

Figure 2.8 Equivalent of CFOA using nullor

2.3.4 Current conveyors

The current conveyor (CC) is a universal active device whose derivations are known as
first generation CC (CCI), second generation CC (CCIl), and third generation CC
(CCIII. In [5] several of these current conveyors using nullors are presented and here
repeated to show these structures. Their parasitic resistance at the terminal X (Rx) is
included, so symbolic NA can be performed. In next figures these nullor equivalents of

current conveyors are presented.

Rx

Z+

CCl+ CCl-

IcCl+ IcCl-
c) d)

Figure 2.9 Equivalents of current conveyors using nullors a)CClI+ b)CCI- ¢)ICCIl+ d)ICCI-
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Figure 2.10 Equivalents of current conveyors using nullors a)CCII+ b)CCII- c)ICCII+ d)ICCII-

CClllI+

ICCllI+

©)

ICCIlI-

d)

Figure 2.11 Equivalents of current conveyors using nullors a)CClIll+ b)CCIII- c)ICCIII+ d)ICCIII-



2.4 Data structure generation

In this section, the method that will be used throughout this Thesis will be presented,
which consist in employing nullors to model devices, so they can be used with nodal

analysis (NA) formulation.

The procedure that should be followed to create the NA formulation (/=YV) to obtain a

symbolic expression for a circuit is:

1) Model all circuit elements (active devices [5], controlled sources and independent
voltage sources), by using nullors. In [5] and [11], the modeling processes using nullor
equivalents include grounded admittances as much as possible, because they have
only one entry in the NA formulation [12], while floating ones may have up to four

entries requiring more computational work [1].

2) Number all nodes in circuit, because they will be used as indexes in further steps.

Also label nullators and norators.

3) Describe the interconnection relationships of norators Pj, nullators Oj.

4) Now two sets should be created, because they will allow indexing at Y matrix and
creating /and v vectors. Also two tables are listed, enumerating admittances within the
circuit which will be used to fill admittance matrix.

a. Set ROW: It contains all nodes (ordered) calculated by using the interconnection
relationships (IR’s) and properties of the norator, whose nodes (m,n) are
virtually short-circuited. These indexes are associated to rows and are used to
fill vector /and the admittance matrix Y.

b. Set COL: It contains all nodes (ordered) calculated by using the IRs and
properties of the nullator, whose nodes (m,n) are virtually short-circuited. These
indexes are associated to columns and are used to fill vector v and the

admittance matrix Y.
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c. Tables for admittances: Admittances are structured into two tables: Table A
consists of all nodes (ordered), and in each node is the sum of all admittances

connected to it. Table B consists of all floating admittances and its nodes (m,n).

5) Use sets ROW and COL to fill vector 7 and v, respectively. To fill the admittance
matrix Y: if in Table A, a node is included in sets ROW and COL (Cartesian product
described in [13]), introduce that admittance(s) in Y with the corresponding row
(from ROW index) and column (from COL index). For each floating admittance
connected between nodes (m,n) in Table B, search node m in set ROW and node n
in set COL (do the same but now search n in ROW and m in COL), if both nodes
exist that admittance is introduced in Y with the corresponding row (from ROW

index) and column (from COL index), and it is negative.

2.5 lllustrative example.

A small circuit will be used as an example to clarify the steps that should be followed. In

this case, it is a non inverting amplifier, shown in figure 2.12

@

V,

I——out

V%g_i K ng e

Figure 2.12 Non inverting amplifier

To substitute elements in circuit of figure 2.11 we start using model for transistors that
appears in figure 2.3. For the case of the DC sources, the terminals between they are
connected must be grounded. For the independent AC voltage source, the model using

nullors of figure 2.13 will be employed.
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D28

Figure 2.13 Nullor-based model for voltage source

Now the equivalent circuit for the non inverting amplifier is presented in figure 2.14,
where the nodes connected to the DC voltage sources have been grounded, and the

AC source at input has been substituted by the equivalent of figure 2.13.

gm2 gm3
Cgs2
902§ 4 T Cgs3 T 6 %goS
P3( )O3 o4l | P4
1|
1

Cgd3

7
2 C?d1 C?Idb

~— 11 11
@) P O5( | P5
? P1 L
1 T 3 go1 8 gob
Vin Cgs1
gm1 gmb

Figure 2.14 Non-inverting amplifier using nullor equivalents

As it can be seen in figure 2.14 the capacitors Cgd2 and Cgsb where taken out, the
former because of the short circuit connection due to the diode connection, and the

latter because of the result of grounding the biasing DC voltage source.

It can also been appreciated that nodes have been enumerated and norators and

nullators have been labeled.
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Now that the circuit is ready to be analyzed, the next steps can be presented.

Let’s start describing the nullators and norators interconnection relationships by using

two tables, which are now presented.

Nullator (O) Associated nodes
o1 (1,2)
02 (2,3)
03 (4,9
04 (5.6)
05 (8,0)
Norator (P) Associated nodes
P1 (2,0)
P2 (3.5)
P3 (4,5)
P4 (6,7)
P5 (7,8)

Continuing with the steps now sets COL and ROW (named after column and row) will

be created, they are constructed from previous tables.

Once the interconnection relationships (IR) have been defined, now it has to be
checked which of norators and nullators are virtually connected, allowing a reduction in

the order of the matrix.

For norators, P1 is virtually grounded; P2 and P3 are virtually connected and the same
case applies for P4 and P5.
In case of nullators, O1 and O2 can be related in a unique set, the same case is for O3

and O4, and O5 is virtually grounded.
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As it can be seen on tables, for the case of nullators, node 7 is not listed, but it has to
be considered in COL set, which also happens for node 1 in norators considering this,
the ROW and COL sets can be defined as:

ROW ={(1),(3,4,5),(6,7,8)}

COL ={(1,2,3),(4,5,6),(7)}

Now tables corresponding to admittances (A and B tables) should be created, the first
one (A) contains admittances that are connected to each of the nodes (excluding datum
node) and the second (B) corresponds to elements that are floated, that is, those

elements whose nodes are not grounded.

In this way, tables A and B are presented as:

Table A Table B
Nodes Admittances Floating Nodes
1 1 admittances
2 sCgs1+sCgd1 sCgd1 (2,5)
3 gm1 sCgd3 (5,7)
4 gm2
5 go1+go2+sCgd1+sCgd2+sCgs2+sCgs3
6 gm3
7 sCgd3+sCgdb+go3+gob
8 gmb

Once the sets and tables are ready, the next step can be applied.

To formulate the Cartesian product, ROW and COL sets are combined, for the present

case; we have then the next combinations, corresponding to each of the entries of Y

matrix.
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(1,1)+(1,2)+(1,3) (1,4)+(1,5)+(1,6) (1.7)
3B, 1)+(3,2)+(3,3)+ (3,4)*(3,5)+(3,6)+ B7+47)+(5.7)
(4,1)+(4,2)+(4,3)+ (4,4)+(4,5)+(4,6)+

(5, 1)*+(5,2)+(5,3) (5,4)*+(5,5)+(5,6)

(6,1)+(6,2)+(6,3)+ (6,4)+(6,5)+(6,6)+ (6,7)+(7,7)+(8,7)
(7, 0)+(7,2)+(7,3)+ (7,4)+(7,5)+(7,6)*

(8,1)+(8,2)+(8,3) (8,4)+(8,5)+(8,6)

According to this table representing Y admittance matrix, there are elements of tables A
and B that correspond to entries of this matrix, in the case of table A, each of the

elements correspond to a pair, that is 1 represents (1,1), 2 represents (2,2), etc.

For elements of table B there are two cases, the first one is if the entry is considered as
it appears, let’s take for instance Cgd1, which is connected between nodes (2,5), but it
can also appear as connected between nodes (5,2), in both cases, the sign with which

it entries the matrix is negative.

Then, filling in the matrix, we have:

1 0 0

gm1-sCgd1 gm2+go1+go2+sCgd1+sCg | -sCgd3
d2+sCgs2+sCgs3

0 Gm3-sCgd3 go3+gob+sCgd3+sCgdb

Matrix Y is filled, but in order to have the system /=Yv complete, two vectors are

necessary, one for currents and one for the variables to look after (voltages).

Voltages correspond to COL set, so the voltage vector is v =[v123,Va56,V7]T

The current vector is ~[vin, 0, 0]T which was created after checking which independent

current sources are connected to each of the sets of nodes inside the ROW set.
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Now the complete structure corresponding to the circuit can be presented

1 0 0 Vigs Vv,
gml-sCgdl gm2+gol+go2+sCgdl+sCgd2+sCgs2+sCgs3 —sCgd3 Vyse |=| O
0 gm3-sCgd3 go3+gob +sCgd3+sCgdb || v, 0

As it can be seen, the generated system corresponds to a 3 x 3 admittance matrix.

To solve this last system of equations, different methods can be employed, for example,

determinant decision diagrams (DDD). [14]-[16].

2.6 Conclusion

As it has been seen in this chapter, nullor is useful to model different devices, such as

MOS transistor and other active devices like opamps or current conveyors.

In this chapter, a nodal formulation was presented, where it was observed the

usefulness of modeling using nullors, which allow using only nodal analysis. The

method was illustrated by using a circuit as example.
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Chapter 3. Simplification approaches

3.1 Non dominant elements discrimination

There are different approaches to neglect non dominant elements within circuits, which
allow simplifying symbolic expressions, in order shorter results easier to be handled can

be obtained.

These approaches can be considered as methods to implement simplifications before
(SBG), during (SDG) or after the generation (SAG) of symbolic expressions [12].

3.1.1 Simplification before generation

This method is based on the reduction of the original circuit, so the symbolic

computations are performed on the simplified circuit [1].

Some heuristics can be considered to perform simplification before generation. For
example, it can be taken into account that output conductance of MOS transistor is
smaller than its transconductance [8], so it can be neglected in the circuit being

analyzed.
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Also, if the output conductance of a MOS is set in the output of a stage it should be
taken into account (for those multi-stage amplifiers), if it is set in an input branch it could

be taken away.

Some elements could also be taken away, like those capacitors belonging to transistors
connected in a diode configuration, or any other element parallel-connected to a short

circuit.

The gate to source capacitance tends to be larger than gate to drain capacitor [17] so

Cgs capacitor could be considered and Cgd neglected.

However those capacitors are usually smaller than compensation or load capacitors,

and could be discarded if the latter are present.

If a MOS transistor is used for biasing it could not be taken into account for the global

symbolic expression.

There exists also an approach given by the signal-path approximation (SPA) to perform

SBG, taken from reference [17] it can be summarized as:

Model each MOST and independent voltage sources with their nullor-based model, and
do not include parasitic capacitors and output conductance for MOST diode connected.
Then reconstruct the circuit so it can be observed which elements are not connected to
the signal path and then neglected. Finally, nodes containing more capacitors, and
which are closed to the output node, are considered, discarding those nodes with few

capacitors connected to them.

3.1.2 Simplification during generation

It is applied in the formulation process of the system of equations of a network [17]

trying to generate directly the simplified expression.
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There are techniques proposed on [23], [24], [25] that don’t generate the exact
expression but directly build the wanted simplified expression by generating the terms
one by one in decreasing order of magnitude, until the approximation error gets a

defined value [8].

3.1.3 Simplification after generation

Usually, simplification after generation is used once the complete expression has been

generated in an expanded format [1].

There are also some approaches to perform SAG, one is based in comparing numerical
values for each parameter, to improve the interpretability of the expressions [18]. This

comparison is done to neglect some elements which are compared to larger ones.

Another approach consist in heuristically consider that the transconductance of a MOS
transistor operating in saturation is about 100 times larger than its output conductance,

neglecting the latter.

Terms can also be eliminated from symbolic expression by cancelling common symbols

between two terms into a sum of products by carrying out a quotient operation [17].
The moment matching lays in the simplification categories, and it works from the
computation of the symbolic transfer function. The final expression is an order reduced

one, but the symbolic expressions might increase.

In order the topics of the last chapter and the approach given for neglecting non

dominants terms can be exemplified, a circuit will be next presented.
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3.2 lllustrative example

The circuit used to exemplify the procedure is a p-Miller amplifier, represented in figure
3.1.

w————{
|

W) \2A #%gm M@s JCL

Figure 3.1 Miller amplifier

As it was established in last chapter, elements of a circuit should be substituted by their
equivalents using nullors, so a NA formulation can be performed, this way, Miller

amplifier using nullors can be represented as it appears on figure 3.2.

As a first approach of SBG, it can be seen that according to figure 3.1, there is a
transistor diode connected, so, it can be appreciated that capacitor Cgd2a is short
circuited in figure 3.2, this way; it can be eliminated.

In the same way, capacitors Cgs4 and Cgs5 are in parallel with a short circuit, which is
a result of grounding those nodes, used for biasing, so those capacitors can be taken

away and not considered for the symbolic expression.

It can also be noted that Mb equivalent was not taken into account, because it is a

transistor used for biasing.

Redrawing the circuit again, without the capacitors, it appears on figure 3.3
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Figure 3.2 Miller amplifier using nullor equivalents
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Figure 3.3 Equivalent circuit for Miller amplifier
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Parting from circuit on figure 3.3 the ROW and COL sets for this circuit are:
ROW ={(1),(3,4,5),(6,7,8),(9,10),(11,12,13)}

COL =

{(1,2,3),(4,5,6),(7,12),(9),(13)}

And the admittance tables for the circuit are:

Table A Table B

Nodes | Admittances Floating Nodes

1 1 admittances

2 sCgs1a+sCgdia sCgd1a (2,4)

3 gmia sCgd1a (2,9)

4 gola+go2a+sCgd1a+sCgd2b+sCgs2a+sCgs2b gmia (3,9)

5 gm2a sCgdzb (4,7)

6 gm2b gola (4,9)

7 go1b+go2b+sCgd1b+sCgd2b+sCc+sCgd3+sCg sCc+sCgd3 (7,13)

s3 gm1b (8,9)
8 gm1ib
9 gola+go1b+gm1a+gm1ib+go5+sCgd5+sCgsia
+sCgs1b

10 gmb

11 gm4

12 gm3

13 go3+go4+sCgd3+sCgd4+sCc+sCL

Then the admittance matrix Y is:
1 0 0 0 0
gm1ia-sCgdia golatgo2a+sCgdia+s | -sCgd2b -gmia-go1a 0
Cgd2b+sCgs2a+sCgs?2
b+gm2a
0 gm2b-sCgd2b go1b+go2b+sCgd1b+sCgd | -gm1b -sCc-sCgd3
2b+sCdg3+sCgs3+sCc
-sCgs1a-gm1a -gola 0 gola+go1b+gmia+gm1 0
b+go5+sCgd5+sCgsia+
sCgs1b
0 0 gm3-sCc-sCgd3 0 go3+god+sCc+sCg
d3+sCgd4+sCL
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And vectors for current sources and voltages are:
V =[V123,Va,56,V7,12Vo,V13]

F[vin, 0, 0,0,0]7

In this case, the voltage transfer function representing amplifier gain will be considered,
so Vvi3/vin should be found, we get a symbolic expression consisting in 119 terms in
numerator and 2147 in denominator, so simplifications are seen as a solution to try to

get a shorter expression for this circuit.

To make a comparison between the resulting expression and the result obtained
through a numerical simulation of the circuit, values are substituted into the expression,
and then plotted. The two graphs can be seen in the figure 3.4, which shows that there

is an agreement between both results.

50 —— ry

- Symbolic
Hspice

40 -

30

20

Gain (dB)

10 Y Y E I STt E Ut E S BT R STV R
10° 10 10° 10° 10* 10° 10° 10 10°
Frequency

Figure 3.4. Output generated from symbolic transfer function, and comparison with numerical simulation

38



The phase response of the resulting expression is also compared to the one obtained

through numerical simulation, the plot corresponding to this result can be seen in figure

180 o ———r . e
- Symbolic
Hspice
160 |-
140
1201
S 1001
ksl
L
2
2
£ 8o
80
401
20
0 L |Hu||\_ L \III\HI\ Ll Ll Ll L |||HH|7 Ll L
10° 10 10° 10° 10° 10° 10° 107 10°

Frequency (Hz)

Figure 3.5 Phase response of Miller amplifier

In order to try to reduce this expression, a simplification before it is generated can be
carried out. To achieve this, three resistors can be taken away (go5, go1a and go2a),
which are connected in the first branch of the circuit, getting the configuration that
appears on figure 3.6.

Generating the nodal formulation for system /=Yv again, and solving to get the voltage
gain, a new expression is obtained, but it is still very large, because it has 83 terms in

numerator and 174 in denominator

In the circuit analyzed, capacitors of compensation and load are of larger order than

parasitic capacitors, which allows neglecting these.

Once again, transfer function is obtained, parting from the circuit without parasitic

capacitors, it is now:
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tf = (gmla ((Cc golb gm2b + Cc gmlb gm2b + gmlb gm2a Cc) s
— gm3 gmlb gm2b — gm3 golb gm2b — gm3 gmlb nga))/
(gm2a ((gm]b Ce CL + gmla Cc CL + golb Cc CL) s
+ (go]b2 Cc + gm3 golb Cc + gmla Cc go3 + go]b2 CL
+ golb Cc go3 + gm3 gmib Cc + gmla Cc go4
+ gmlb golb CL + golb Cc go4 + gmlib Cc go4
+ gmlb golb Cc + Cc golb gmla + gm3 gmla Cc
+ gmla golb CL + gmlb Cc g03) s + gmla golb go3
+ gmlb golb go3 + gmlb golb go4 + gmlia golb go4

+g0]b2g04 +g01b2g03)) (3.1)
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T 09525: Cgs3::
gm2a gm2b gm3

Figure 3.6 Miller amplifier after taking resistors out

Expression (3.1) has 6 terms in numerator and 24 in denominator, so it is significantly
shorter than the first expression obtained, but it can still be done a little shorter, if a

simplification after generation (SAG) is applied.

For this case, the way to get a shorter expression is neglecting those terms whose

magnitude won’t contribute significantly to the result; so, let’s see which values could be
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taken away. When the numerical simulation was held, some values were obtained,;

these are which can be seen next

gofa = L0.8007Te—10
goib = S0 5667e—6
gode = 16.5503e—6:
go2b = 165503 —6
god == 350886 —§ .
god == 51.8343e—8:
ol = 2736002 —0;
gmfa = Tl 52560e—10
gmfh o= T21 5256e—6
e = 54340%8e—6
gmlh = 5434098 —§
gmd = 1 65l4e—3:
gmd = 2.0155e—13:
b= 11318e—3:

From these values, it can be noted that the transistor transconductance is bigger than
output transistor conductance, taking this into account to reduce the expression, and

grouping similar terms we can get the expression (3.2).

tf = (gmla ((gmlb gm2a + gmlb gm2b) s-Cc — gm3 gmlb gm2b
— gm3 gmlb gm2a)) (gm2a ((gmla + gmlb) -¢cC-CL-s*
+ (gm3 gmlb + gm3 gmla) s-Cc + gmlb golb go4

+ gmla golb go4 + gmlb golb go3 + gmla golb g03)) (3.2)

In this last expression, there are four terms in numerator and eight terms in
denominator, which is a significant reduction from the original one, obtained using al

terms.

A comparison between expression 3.2 and the response given for the circuit in HSPICE
is presented in figure 3.7, so it can be seen that there is still an agreement between
these two plots. The difference between the two plots is a result of taken away
elements. In figure 3.8, it can also been seen the phase response for this amplifier and

the comparison done with the numerical simulation.
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Figure 3.7 Comparison of plots resulting from simplified expression and numerical simulation
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Figure 3.8 Phase response given for reduced expression of Miller amplifier
Finally, a table to summarize the results of simplifying expressions will be presented,

where the number of terms in the expression can be seen, along with the method used

to simplify it.
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Number of terms in

Number of terms in

Expression .
numerator denominator

Complete 119 2147
First simplification before

83 174
generation
Second simplification before

6 24
generation
Simplified before and after 4 8

generation

Table 3.1 Reduction of terms in symbolic expression

3.3 Conclusion

In this chapter, some heuristics were presented, which allow reducing symbolic

expressions, so they can be easier to be interpreted.

There are different approaches for these simplifications, if a reduction on the circuit is

performed, it is considered as a simplification before generation. If the simplification

occurs when the circuit is being analyzed, it is considered as a simplification during

generation. If the reduction is carried out when the expression has already been

obtained, it is a simplification after generation.

A circuit was used as an example to illustrate the usefulness of these simplification

approaches, and the agreement between plots comparing the result when using a

numerical simulator and the obtained expression gives us the idea that the procedure is

correct.
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Chapter 4. Behavioral model generation of

analog circuits

Considering what was mentioned in last chapters, some circuits will be analyzed

following the given methodology.
4.1 Common source amplifier (resistive load)
A single transistor amplifier will be the first example presented here, it is the known

inverter topology given by an amplifier with a resistive load and common source, the

circuit at transistor level is presented in figure 4.1.

Figure 4.1 Common source amplifier

Using the model of transistor given in figure 2.3 and the model for voltage source at
input taken from figure 2.13, the equivalent circuit is obtained, where it can be

appreciated (figure 4.2) that there are two nullors.
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Vin Cgs

am

Figure 4.2 Nullor equivalent circuit of common source amplifier

As there are just few elements in this circuit, all of them will be taken into account to

obtain the voltage transfer function of it.

Creating COL and ROW sets as already explained, we have:
COL ={(1,2,3),(4)}
ROW={(1),(3,4)}

Meanwhile, the tables where admittances are listed are here presented.

Table A Table B
Nodes Admittances Floating Nodes
1 1 admittances
2 sCgs+sCgd sCgd (2,4)
3 gm
4 sCgd+gL+go

According to what was mentioned, the admittance matrix should be filled, performing a
Cartesian product between COL and ROW sets, by doing this and filling in the

adequate positions of the Y matrix, the system of equations corresponding to this

amplifier is:
Vi | 1 0 Va3
0 gm — s Cgd gl + g0+ 3 Cad Vy

And solving for V4/Vi,, the transfer function corresponding to this circuit is:
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__(-gm+5Cgd)
(gl + g + 5 Cgd)

¥

(4.1)
These result agrees with the one presented in [19]. A graph resulting from expression

(4.1) can be seen in figure 4.3. And the phase response given for this result is given in
figure 4.4
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Figure 4.3 Symbolic and numeric results for common source amplifier with resistive load
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Figure 4.4 Phase response for common source amplifier with resistive load
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4.2 Common source amplifier (active load)

A second single-ended stage circuit corresponds to the amplifier depicted in figure 4.5.

As it is shown, the load resistance has been replaced by a transistor, using this as an

active load.

v

Vin{ MI

Figure 4.5 Common source amplifier with active load

This circuit will be substituted by the equivalents given for nullors, obtaining the circuit

of figure 4.6

Vin

Cgs2

03
02

Egsl

gm2
4
P3
Cgd1
fl
1T
P2
3
gm1l

gol

Figure 4.6 Common source amplifier with active load

As it can be appreciated, capacitor Cgd2 doesn’t appear in figure 4.6 because of the

short circuit connection present in M2.

Let's now formulate the nodal analysis for this circuit. So the corresponding sets and

tables should be obtained.
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In first instance, COL and ROW sets are formulated, and they are as it can be see now.

COL ={(1,2,3),(4,5)}
ROW={(1),(3,4,5)}

Tables for admittances are:

Table A Table B
Nodes | Admittances Floating Nodes
1 1 admittances
2 sCgs1+sCgd1 sCgd1 (2,5)
3 gm1
4 gm2
5 sCgd1+sCgs2+go1+go2

Now, formulating the CSE, we have:

Vin | ! 0 V1,2,
0 gul — 5 Codf gn2 + 5 Cgdi + 5 Tgs2 + gol + goi ¥

The voltage transfer function given for this system is:
gmi — 5 Cgdf
(Cgdd + Cgs2) s + gm2 + go + gal (4.2)

J‘I‘].V: -

And a graph that illustrates the plot of this expression compared to one obtained
through a numeric simulation is presented in figure 4.7, and the comparison for phase

response is given in figure 4.8:
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Figure 4.7 Symbolic and numeric results for common source amplifier with active load
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Figure 4.8 Phase response for common source amplifier with active load

Another example corresponding to one stage amplifiers is given by a differential pair.

This will be presented now.

49



4.3 Differential pair

The circuit representing differential pair can be seen in figure 4.9

M2j F—i M2A

Figure 4.9 Differential pair

The equivalent circuit for differential pair when using the nullor equivalents can be seen

in figure 4.10.
gm2 gm2a
Cgs2|
8 = Cgs2a T 9 % go2a
P3 03 05 P5
7 M
"
Cgd2a
12
1 3 CgJ;d1 2 5 Cghtha
1 "
o1 06
02 P2 o7 P7
P1 P6 = § 1
1 4 1 6 gota
\2 Cgst Vin2 Cgsta
in
-‘V gm1 gmia

o4 P4

11 § got

Figure 4.10 Differential pair equivalent circuit using nullors
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From circuit in figure 4.10, it can be seen that conductances go1 and go2 were taken

away, trying to obtain a reduced expression. Sets and tables for this circuit are

obtained, these are:

ROW and COL sets:

ROW ={(1),(2),(4,7,8),(6,9,12),(10,11)}
COL ={(1,3,4),(2,5,6),(7,8,9),(10),(12)}

Tables for admittances:

Table A Table B
Nodes Admittances Floating Nodes
1 1 admittances
2 1 sCgd1 (3,7)
3 sCgs1+sCgd1 gm1 (4,10)
4 gm1 sCgs1a (5,10)
5 sCgs1+sCgdi1a sCgd1a (5,12)
6 gm1ia gmia (6,10)
7 sCgd1+sCgs2+sCgs2a+sCgd2a sCgd2a (7,12)
8 gm2 gola (10,12)
9 gm2a
10 sCgs1+sCgs1a+sCgdt+gm1+gm1a+goia+got
11 gmt
12 gola+go2a+sCd2a+sCgdia

The compact system of equations is:

1
0

gml — s-Cgdl 0

i

—gmi

0 0 0
1 0 0

s-Cgdi + 5 -Cgs2 + 5-Cgs2a
+ 5-Cgdza + gm2

gmla — 5 Cgdia gmnla — 5 Cgdla

—sCgsfa — gmlia 0

—gmi

—gnla — gola

0
0
0

gola + goZa + s-Cgdla+ s

-Cgd2a

gml + gola + gmla + got

+ sCgsl + sCgsla + sCgdt

And solving for transfer function V12/Vin we get expression (4.3).

-gof

51




In figure 4.11 there are plots to compare the results given for a numeric simulator and
one obtained after numerical values were substituted in expression (4.3). The response

obtained for phase can be seen in figure 4.12.

Av= ((C’gd’Za Cgsia Cgdl + Cgd2a Cgdt Cgdl + Cgd2a Cgs! Cgdf) X (—gm2a Cgdt Cgd? + gola Cgd2a Cgdl — gm2a Cgsila Cgdl — gm2a Cgsi Cgdl
+ Cgd2a got Cgdi + gnli Cgd2a Cgdl — gni Cgd2a Cgdt — gm! Cgad2a Cgsia — gni Cgd2a Cgsi + gmia Cgdla Cgdl) 24 (gofa gni Cgs2
— gm2a gola Cgdl + gola gni Cgs2a + gni gnla Cgsla + gnl gnla Cgsl + gnl gn2a Cgdt — gn2a gnia Cgdl — gn2a got Cgdl
— gm! gmia Cedi + gola gml Cgdl — gnl CedZa got + gmia gm! Cgd! + gmia gnl Cgs?2 + gnia gml Cgsla)s + gnl gmia gmia
+ golagnl gn2 + golagn! gr2a + gml gmia gol + gnia gm! ng]/[(ngi C’gd2cz2 + CgdZa Cgsia Cgd! + Cesla Cgdla Cgs2
+ Cgdt Cgdla Cgd2a + Cgdi Cgdla Cgs2a + Cesl Cgdla Cgrla + Cgsla Cgdla Ces2a + Cgdt Cedla Cgs2 + Cgsla C‘gdZa2 + Cgdi Cgd2a Cgs2
+ Cgdt Cgd2a Cgs2a + Cgsla Cgd2a Cgsla + Cgdt Cgdia Cgdi + Cgsla Cgdia Cgdi + Cgsla Cgdla Cgs2 + Cgdla Cgdt Cgd?
+ Cgsia Cgdla Cgd2a + Cgsi Cgdle Cgdl + Cgs’ ng2a2 + Cgsd Cgdia Cgs2 + Cgsl Cgdia Cgd2a + Cgd2a Cgs! Cgdl + Cgsl Cgdla Cgs2
+ Cgsd Cgd2a CgsZa] Fa [gmi Cgd2a Cgdl + gmia Cgd2a Cgdl + Cgdla got Cgdl + gola Cgd2a Cgdl + got ng2a2 + C’ger:t2 gola
+ gmi C‘gdZ::rZ + gmia ng2a2 + got Cgdia Cgd2a + Cgsia gola Cgd! + Cgsia gola Cgs2 + Cgsla gofa Cgs2a + Cgsia gola Cgd2a
+ Cgdt gofa Cgdl + goia Cgdla Cgs2 + gola Cgdia Cgs2a + gofa Cgdia Cgd2a + got Cgdia Cgdl + Cgsla CgdZa gn2 + Cgsi Cgdia gn2
+ Cgdla gola Cgsla + Cgdt Cgdla gn2 + Cgsl gola Cedl + Cgsl gala Cgs2 + Cgsl gola Cgsla + gml Cgdla Cgdl + gml Cgdia Cgs2
+ gmi Cgdla Cgs2a + Cgsia Cgdla gn2 + Cgsla goZa Cgdl + gmlia Cgdia Cgdla + gmia Cgdia Cgdl + gmia Cgdla Cgs2 + Cgsla gola Cgst
+ Cgsia gola Cgsla + Cgsla gola Cgdla + gnia Cgdla Cgsla + Cgsl Cgd2a gnl + Cgsl gola Cgdla + Cgdla gala Cgs2 + gola Cgdla Cgdl
+ Cgdt gola Cgs2 + Cgdt gola Cgsla + Cgdt gola Cgd2a + got Cgd2a Cgs2 + got Cgd2a Cgs2a + gm] Cgdla Cgdla + Cgdt Cgd2a gm2
+ Cgdt goZa Cgdl + Cgdt goZa Cgs2 + Cgdt goZa Cgsla + gmla Cgdla Cgs2 + gmia Cgd2a Cgsla + got Cgdla Cgs2 + got Cgdla Cgsla

+ Cgdt goZa CgdZa + Cgsl gola Cgdl + Cgsl gola Cgs2 + Cgsl gola Cgsla + Cgsl gola Cgdla + gnl Cgd2a Cgs2 + gni Cgdla C,"gsZa] b
+ (got Cedia gm2 + got gola CgsZa + Cgsla gela gm2 + gola Cedla gn2 + gmi gola Ced2a + Cgdla gola gni + got gola Cedl

+ gotgala Cgs2 + Cgsla gola gnl + gn! Cgdlagn2 + gnlia Cgdla gm2 + Cgsl gola gm2 + Cgdt gola gn2 + got goZa Cgdl + got gola Cgs2
+ got gela Cgsla + got gela Cgd2a + got Cgd2a gn? + gola gola Cgdl + gmila gola Cgdl + gmia CgdZa gn2 + gmlia gola Cgs2

+ gmia gola Cgsla + gmla gola Cgdla + gola gola Cgs2 + Cedl gela gn2 + Cgsl gola gn2 + gmi Ced2a gm2 + got gola Ced2a

+ gml gola Cgdl + gml gola Cgs2 + gnl gola Cgsla + gola gola Cgsla + gola gala Cgdla + gola gml Cgdl + goia gml Cgs2

+ gola gnl Cgsla) s + got gola gm2 + gola gola gm? + gola gml gmla + gm! gola gm2 + gnla gola gm2 + gola gni gn2 + got gola gm2)

(4.3)
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Figure 4.11 Symbolic and numeric results for differential pair amplifier
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Figure 4.12 Phase response for differential pair amplifier

Now a three-stage circuit is presented.

4.4 Uncompensated amplifier

R o
Wl ok Lo

T _sz Vout
M7

wH—e—— o 1

Figure 4.13 uncompensated amplifier




Substituting the circuit of figure 4.13 by using the nullor equivalents of each of the

elements, the circuit of figure 4.14 is obtained.

gm3 gm4 gmé
6 7 % god 13 go6
P3 Q 03 05 PS5 o8 P8
10
1 3 5 2 8 15
-
o1 06
02 P2 o7 P7 010
1 P1 4 v 1 P6 9 92 Lcp = 16
Vinl in2 sz
gml gm2
1
04 P4 09 Po o11
12 go5 14 17
go7
gm5 gm7

P10

go8

18

P11

gm9

go9

Figure 4.14 Uncompensated amplifier using nullors

As mentioned beforehand, drain-source transconductances were employed only in
those branches corresponding to outputs (this circuit can be seen as a series of stages,
each of those having and output). This way, the transconductances that were left are
go2, go4, gob5, go6, go7, go8 and go9. As it can be observed from figure 3.24, all
parasitic capacitors were taken away, because the contribution to poles was mainly

given capacitors named as Cp1, Cp2 and the load capacitor, C..
And the sets COL and ROW for this circuit are:
ROW ={(1),(2),(4,5,6),(7,9,10),(11,12),(13,14,15),(17,18)}

COL ={(1,3,4),(2,8,9),(5,6,7),(10,13),(11),(15,16),(18)}

And the tables corresponding to this circuit are:
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Table A Table B
Nodes Admittances Floating Nodes
1 1 admittances
2 1 gm1 (4,11)
3 0 gm2 (9,11)
4 gm1 go2 (10,11)
5 0 gm8 (16,18)
6 gm3
7 gm4
8 0
9 gm2
10 go2+go4+sCp1
11 go2+go5
12 gmb
13 gm6
14 gm7
15 go6+go7+sCp2
16 gm8
17 gm9
18 go8+go9+sCL

Constructing the system of equations corresponding to this circuit, we have:

Vel [t 000
I T Y

]

0 gnl 0 gm3 0

n = 0 gnZ gmd gol + god + 5 Cpl
0 -gmi —-gm2 10 -gol

] ] ] ] gmb

]

] ] ] ]

]
]
—gm
—goi — gnz

gni + gol + gnl + go?

]
]

o S e R e Y e Y e

golf + goi + 5 Cpl2
—gmé

o N e Y e T e Y e R e

gof + goR 4+ gmd + 5 UL

L34
2,89
56,7
10,13
1

V15,16

13

By solving this system, as in the case of the Miller amplifier, a very large expression is

obtained, so, SAG should be performed.

After reducing the expression for the transfer function, the new one obtained is:

gns gnd gni

Ap=

Cpl Cp2 CL P+ Cpd Cp2 gné =+ (Cpl got + Cpl go? + god Cp2 + go2 Cp2) gnls + (go2 go? + god go7 + gol gob + god got) gnd

(4.4)
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Comparing the responses between the symbolic expression we have obtained and that

given by an Hspice simulation we get the next graphs for magnitude and phase:
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Figure 4.15 Symbolic and numeric results for uncompensated amplifier
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Figure 4.16 Phase response for uncompensated amplifier
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4.5 Asymptotic Waveform Evaluation approach

As it was observed in previous chapters, when the number of elements in a circuit
increases, so does the resulting expression, increasing also the order of it. In chapter
one, the Padé approach was presented, which allows approximating a curve by using

moments (Aymptotic Waveform Evaluation).

In this chapter, two examples will be presented to show how this method can be

employed to obtain a reduced expression in some order.

4.6 Miller amplifier with AWE approach

Miller amplifier was presented in chapter 3 to illustrate the proposed method for the
nodal formulation. Now it will be used to exemplify the approximation given by

moments.

The expression representing Miller amplifier when using numerical values has a

numerator of third order and a denominator of fourth order, which is now presented.

Av= (7363891940 1011 5% + 2427350752 109 5° + 2.839700650 107 5% + 31451599276 10M 5
— 6.451607630 107) / (8.193548824 101 +* + 3286128881 10% &° + 3.145100272 10°0 52
+ 1231027051 10% 5 + 3.339898308 10°1)

(4.5)

In this case, the only symbolic variable to be used will be s, to show how this method

can be employed.

To compute moments in order Padé approximation can be used, equation 1.10 will be

here required, this way, first four moments resulting from expression (4.5) are:

M[0]=-193.1677364

M[1]=0.00007130155122
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M[2]= -2.609857244 10711

M[3]=4.776172606 10712

Using these moments, system of equations (1.16) is created, so coefficients named b

can be obtained. This system of equations is now presented.

—193.1677864  0.00007130155122 || by 3 Gnogs744 10

0.00007130155122 —2.609857244 10711 || b, —4.776172606 1071

And solving this last system of equations, values of coefficients for denominator are

calculated, these are:
E:nl =0.00002207282740

B, =8.012351799 1071

Using these values and those required moments, coefficients for numerator can be

found, and they are:

ap = —193.1677864

@y = —[.004152457657

Once all the values are ready, the new transfer function representing Miller amplifier is:

—0.004182457657 2 — 193 1677564

8012351799 10 5 + 0.000022072827405 + 1 (4.6

Hiz)=

Performing a comparison between this last expression and graph given by the HSPICE
simulation of the circuit, the plot of figure 4.17 is obtained. The phase response

comparison can be observed in figure 4.18.
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Figure 4.17 Response given for Miller amplifier with AWE approach
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Figure 4.18 Phase response given for Miller amplifier with AWE approach
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4.7 Uncompensated amplifier with AWE approach

In figure 4.10 this amplifier was presented, and the expression resulting after its
analysis. In this case, a numerical expression with only a symbolic variable representing
it is found, which is:

Av= (1536 (233350029 10° & + 2755087082 10%0 5% — 4 402376050 1070 5°

— 4199356001 10% 5% — 5.695516721 10°) 5 — 1.948584729 1091)) /

(7.676195087 10'% 5° + 1329024706 10%° 5* + 3508716518 10°° &

+ 1511009958 107 5% + 3295791001 10°% 5 + 1.296371843 10°1) .7)

As it can be seen, this is a fifth-order expression in both, numerator and denominator; it

will be reduced to a second order expression, using Padé approximation.

For this purpose we have to calculate the moments, which are:

M[0]=-2308.771329

M[1]=0.0005862885330
M[2]= -1.221430006 10710

M[3]=1214077215 107V

Creating system given by expression (1.16) we have:

~2308.771329  0.0005862885330 || by 1.221430006 10710

0.0005862885330 —1.221430006 10710 || b, —1.214077215 107

Solving this system, we obtain b coefficients:
by =7.055445983 107"

by =1263634118 1071

Which can be used along with appropriated values of moments to calculate a

coefficients:
@y =—2308. 7711329
@y =—0.00104357Fal115
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Then using the @ and b coefficients, the order reduced system is:
—-0.001043576115 5 — 2308.771329

His) = 13 2 7
1.263634118 107 5% + 7.059445983 107 s + 1 (6.4)

And making a comparison between response given by a numerical simulator for this
amplifier and that obtained from last expression, the plot showed in figure 4.19 is found.

The phase response comparison for this approach can be seen in figure 4.20.
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Figure 4.19 AWE approach for uncompensated amplifier
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Figure 4.20 AWE approach for uncompensated amplifier (phase response)
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4.8 Conclusion

Several examples of amplifiers where presented along this chapter, used to illustrate
the method of nodal analysis formulation, and also the way to obtain reduced

expressions through simplifications.

According to the graphs, it can be seen that there is an agreement in the results
obtained when using a numerical simulator (Hspice) and when employing the proposed

formulation to obtain symbolic expressions.

Asymptotic Waveform Evaluation represents a good method when reducing order of
expressions. However in symbolic analysis it can be used only when dealing with semi-
symbolic expressions, because the process of obtaining moments makes growing the

length of expressions.
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Chapter 5. Symbolic noise analysis

5.1 Noise analysis in amplifiers

It is important to perform noise analysis in circuits, because noise can determine the
amplitudes of signals a circuit is able to manage. Noise is also related to parameters

like power dissipation, speed and linearity [20].

There are different noise models used in circuit simulators, among those, BSIM models
are often taken as a reference. In Spice2, for example, there are different models for
flicker and thermal noise, according to the level. In table 5.1 these models are

presented [21].

As it was seen in previous chapters, nullor is useful when modeling MOS transistor, in
figure 5.1 a model of a transistor is shown, where sources of flicker and thermal noise
are added to this device, this model can be used to obtain noise characteristics of

circuits containing MOS transistors [9].

Figure 5.1 MOS transistor with associated noise sources
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Hspice Models Flicker Noise Thermal Noise
KA
NLEV =0 S = F—FS
CuLeyf s ) 8kTg,.
chanrel = 3
K.l -
NLEV = 1 S, = ELIDS ( Also for NLEV = 2}
CNW'Ejwa
. 2
K 2 chane! = gﬁ[l'g;_ Voo :'l_ ara SN O
MLEV =2,3 — FEm - l+a
P e, W L f |a=1- "¢ |inear a=0 Saturation
Tox T eff eﬂ.f v,

Table 5.1 Spice models for noise [22]

Using model of figure 5.1, noise analysis will be performed on amplifiers through this

chapter, obtaining output noise of these circuits. The method employed in the previous

chapters will be used to obtain the expressions.

5.2 Common source amplifier

Let's start analysis with common source amplifier with resistive load, whose transistor

representation appears on figure 4.1, and the nullor equivalent using model for noise

analysis is seen in figure 5.2

o1 P1

12 M1

agm

5

12 RL

Figure 5.2 Equivalent for common source amplifier
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In this case, the noise source for the transistor (InZMl) can be represented by two
components, one used for thermal and the second for the flicker noise, meanwhile, the

resistor includes a source to represent the thermal noise on it.
Sets ROW and COL corresponding to this circuit are:
ROW={(1,2)}

COL ={(2)}

And the table for admittances in this circuit is:

Table A
Nodes Admittances
1 gm
2 gL

The equation that represents the output noise voltage can be found using ROW, and

COL sets and admittance table as:

[QLIV1z2l= [IZM1+12RL]

Then, for this circuit, the output noise voltage per unit bandwidth is:

V?,out = 4kngm+ K -l-gﬁﬂrﬁ R} (5.1)
37 CoxWL f R,

Simulating the response of this circuit in Hspice, we get the graph of figure 5.3, where it

can also be observed the response given by plotting the symbolic expression (5.1)
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Figure 5.3 Numerical and symbolic expression responses (common source amplifier with resistive load)

5.3 Common source amplifier with active load
Now, applying analysis to an amplifier with a transistor as a load (active load), which is

shown at transistor level on figure 4.5. After substituting the transistors by its equivalent

with noise sources, circuit of figure 5.4 is obtained.

2
am go2
; § G)ﬁmz
o1 P1
02 A\P2
3 I
§ 3w
gm1 go1

Figure 5.4 Equivalent circuit for common source amplifier, using model of transistor for noise

ROW and COL sets should be obtained for this circuit, and these are:
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ROW: {(1,2,3)}

COL: {(1,2)}

and the table for admittances is:

Table A
Nodes Admittances
1 gm2
2 go2+go1
3 gm1

Filling the admittance matrix and the vectors for voltages and currents, the system

corresponding to this inverting amplifier is:

[12M1+12M 2]=[gm2+go2+go1][V1.]

By solving this system, the noise at output can be expressed as:

Viz= VZout =([12M1+12M2])/((gm,)* +(go,)* +(gol)?)

(5.2)

The graphs comparing the response between the symbolic obtained expression and

Hspice simulation can be seen in the figure 5.5.

Output noise (Vfsart{Hz))

Figure 5.5 Numerical and symbolic expression responses (common source amplifier with active load)

- Symbolic
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10

0

Frequency (Hz)

10

10°
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5.4 Non-inverting amplifier

Now a non inverting amplifier is presented. This circuit is shown in figure 2.12. The

equivalent circuit using nullors is depicted in figure 5.6.

gm2 gm3
—— 12 M3
12 M2 ¢ 2 4 %go:ﬁ "
P2 02 03 P3
3
6
o] P1 04 P4
— ob 2
! 17 M1 5 § g 17 Mb
gm1 gmb

Figure 5.6 Equivalent circuit for non inverter amplifier using noise sources

Finding ROW and COL sets for this circuit we get:
ROW = {(1,2,3),(4,5,6)}
COL={(2,3,4),(6)}

and the table for admittances is:

Table A

Nodes Admittances

gm1

gm2
0
gm3

gmb

OO |~ WIN|-

go3+gob

So the system of equations representing this circuit is:
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1 2 7
gm2” 0 nya,3 | | AN LMy

2 2 2 2 2
ani goi® + gob V§4 » Put, + g,

And solving for voltage at output V °

" ase » the response is given as:

2.3 2.2 23, 23
—gm3° LM —gm3° [N, + gn2® IV, + gm2” I,

AR
n, ouf ng'z {gﬂ_?z + g@bz} (5.3)
Using numerical values for this expression in order a comparison with an Hspice

simulation of the circuit can be done, the graph of figure 5.7 is obtained.

6 — ——y — ——— ————
------- Symbolic
— Hspice

5 |

Output noise (Visart(Hz))

10 10 10 10 10* 10°
Frequency (Hz)

Figure 5.7 Numerical and symbolic expression responses (non-inverting amplifier)

5.5 Differential pair

The circuit representing differential pair can be seen in the figure 4.7. Substituting this
circuit by its equivalent using noise sources of MOS transistor, the circuit of figure 5.8 is

obtained.
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ROW and COL sets are for this circuit are given by:

gm2a
4
o3 P3

go2a

VW

o1

gm1

()

05,

5 got§ 12 Mt

P4

gmt

12 M2a

Figure 5.8. Equivalent circuit for differential pair using noise sources

ROW ={(1,2,3),(4,7,8),(5,6)}
COL={(2,3,4),(6),(8)}

And the admittances tables are:

Table A Table B
Nodes | Admittances Floating Nodes
1 gm1 admittances
2 gm2 gm1 (1,6)
3 0 gola (6,8)
4 gm2a gmila (6,7)
5 gmt
6 got+gm1+gmia+goila
7 gmia
8 gola+go2a

The system corresponding to this circuit is now presented:
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gm2° gm1° 0 V¥ nzas
gm2a’ gola® + gmla® gola® +go2a® || V?ue |=
0 got® + gml® + gmla® + gola® gola® V2.

2 12
I “nmia+ | “nme2a

And the noise at output can be expressed by the next equation:

V2 ot = (—~gm22 gola’ 12 nmza— gola’gm2a2 12 nmo+ gmia’gm2? 12 nmi— gmla?gm2a’ 12 nvi— gmla’gma2aZ 12 oo+ gmla’gm2® 12 nm
+g01a%gm22 12 o1+ go1a’gm22 12 nw — gola’gm2a’® 12 ami+ gm2a2gmi® 12 nmia+ gm22 got? 12 nmia— gmlaZgm2® 12 nmoa

+gm2a2gmi® 12 nmza+ gm22gml2 12 e+ got2gm22 12 nmia+ got’gm22 1% ame — got>gm2aZ 12 nmi— got2gm2a® 12 nwmz+ gmi® gm22 12 o

—gm1®gm2a’ 12 o wi— gmi? gm2a? 12 nuz-+ gmi? gm22 12 o) /(gola® gm2a®gmi? + gm22 gola®got? + gm22 gola®gmi1® + gm2? go2a’got?
+gm22go2a’gmi® + gm2%go2a®gmia’® + gm2% go2a’gola’)

(5.4)

Comparing the response obtained with numerical values for expression 5.4 and the

simulation performed in Hspice, the graphs of figure 5.9 can be observed:

Symbolic
Hspice

Output noise (Visgrt(Hz))

0 L | L Co ol M TR A | L N i e s
10 10’ 10° 10° 10 10°
Frequency (Hz)

Figure 5.9 Numerical and symbolic expression responses (differential pair amplifier)

5.6 Miller amplifier

Miller amplifier is represented in figure 3.1. Meanwhile, the circuit equivalent with the

noise sources associated to it can be seen in the figure 5.10.
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2904

gm4
9
06 P6
o7 P7
10
gm3

Figure 5.10 Equivalent circuit for Miller amplifier

ROW and COL sets are given by:
ROW ={(1,2,3),(4,5),(6,7,8),(9,10,11)}
COL={(2,3,7),(5),(8,10),(11)}

And the admittances tables are:

13 M4

Table A Table B
Nodes | Admittances Floating Nodes
1 gmia admittances
2 gm2a gmila (1,5)
3 0 gm1b (5,6)
4 gm5 golb (5,8)
5 gm1b+go1b
6 gm1b
7 gm2b
8 go1b+go2b
9 gmé
10 gm3
11 go3+god
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The nodal analysis formulation corresponding to this circuit is:

gm2a’® gmla’® 0 0 1V Znzsr 120w+ 12 nmiza

0 gmib°® golb? 0 VZis | _[1Zams+ 1 Zamtat 1 2mm
gm2b® gmib® + golb® goZb22 2 0 2 VZaom 12 ot o

0 0 gm3° go3° + go4 1 Vo I 1 et s _

And solving this system of equations to obtain the output noise voltage, the resulting
expression is:
VZ oo = —(gmlb?gm3% gm2a? I 2 nuzo— gmib?gm3? gm2b? 12 nuia— gmlb?gm3% gm2b? 12 o mza— gmib?gm2a2go2b? 12, ma— gm2a?gmibZgm3? 12 o us

— gm2a’gmlb?gm3? 1% nmia— gmib2gm2a2go2b?® 12 nws+ gm2agmib?golb? 12 o me+ gm2a®gmlb®golb? 1% nws— gm2a®golb?gm3? 12 ams

— gm2a®golb?gm3? 12 o mw— gm2a2golb?gm3? 12 o wia+ gm2a®golb 12 nms+ gm2b2gmla’gma? 1% nmw + gm2b’gmla’gm3? 12 nmia

— gm2b®gm1a®golb? 12, ma+ gm2o?gmiaZgma? 1% ,ms— gm2bZgmiagolb? 12\ ua+ gm2a’golb® 12 ue)/(gmib?gm2aZgo2b? go3?
+ gmlb®gm2a®go2b®go4? — gm2a®gmib?golb®go3? — gm2a®gmib®golb®god? — gm2a®golb*go4? — gm2a®golb®go3? + gm2b?gmla’golb?go3? +
gm2b®gmla’golb?go4?)

(5.5)

The graph comparing the response given by Hspice and the symbolic expression can

be seen in the figure 5.11.

Output noise (Visgrt(Hz))

0 N
10 10 10° 10° 10* 10°
Frequency (Hz)

Figure 5.11 Numerical and symbolic expression responses (Miller amplifier)
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5.7 Uncompensated amplifier

The circuit corresponding to this amplifier can be observed in figure 4.10, the equivalent

circuit with nullors and the associated noise sources appears in figure 5.12.

ROW and COL sets are given by:

ROW ={(1,2,3),(4,5,8),(6,7),(9,10,11),(13,14)}

COL={(2,3,4),(6),(8,9),(11,12),(14)}

And the admittances tables are:

Table A Table B

Nodes | Admittances Floating Nodes

1 gm1 admittances

2 0 gm1 (1,6)

3 gm3 gm2 (5,6)

4 gm4 go2 (6,8)

5 gm2 gm8 (12,14)

6 gm1+gm2+go2

7 gm5

8 go2+go4

9 gm6

10 gm7

11 go6+go7

12 gm8

13 gm9

14 go8+go9

The system of equations corresponding to this circuit is:

gm3? gm1? 0 0 | \ﬁ_”“’“

gmé4? gm2? + go2? 0 0 VA
0  gml®+gm2°® + go2? 0 0 VZiso |=
0 0 g06° + go7? 0 Sy
0 0 gm8? go8? + go9? V_n'lm

1V
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By solving this system of equations for output voltage, the expression is:

V2 oo = (—gm42 gm12 gm82 go22 12, 7+ gmi2 gm82 gm62 gm32 12wy + gm12 gm3? go4? go6? | % s — gm2% gms? gm32 god? 1% us

+0022gm3? g04? go62 12 e+ gm22 gm32 god? go72 2 nms— go22 gms2 gm62 gm4? | 2

a3+ 022 gMB? gmB2 gm3? 12 o w1— gm2% gm8? gm6> gma2 12y

+g02% gm8? gm6% gm3? 12 o us— go2° gmB? gm6> gm4? I 2, vy — g022 gm82 gm32 god? I % s — go22 gma? gm3? go4? 12 w7+ gm22 gm82 gm6? gm32 12 s

+gm22gm32 go42 go62 12 nme+ gm22 gm3? go4? go6? 12 o ms+ gm22 gm3? go4? go7?

+g022gm3? go4? go6? |

— gm4? gm1? gm8? go2?

12

I

e+ §022 gm32 god2 go72 12 ams+ 9022 gm32 go4? go7 1 % nme

nms-+ gMA4Z gm1? gm82 gm6? 12 o ma+ gma4® gmi® gm8? gm6? 12 n.mz2+ gma? gmi® go22 go6®

I

nms— gM22 gm82 gm32go4? 12 ,m7— gm32 gm22 gm82 gm6? 12 nms— gm32 go2° gms? gm6? 1% nma+ gma2 gm1®go22 go72 12 nus

nms-+ gM42 gmi2 go22 go6? 12 o ms

+ gm1% gm82 gm62 gm3? 1% oo+ gma2 gm12 go22 go72 |2y e+ gmi® gms? gm6? gma? 12 o ms— gm1Z gms? gm62 gma? 12, ua— gmi® gm? gm6® gma? 1% oy

— gm1®gm8? gm3? go2? |
+gm1% gm3? go22 go6? I % s+ gmiZ gm3? god? go72 12 nue+ gm1? gma? go4? go6?

+gm12 gm32 go42 go72 1% nms— gm2% gms? gm6> gm4>

2

2

1

a7 — gM12 gm8? gm32 go22 12 s — gm1> gme? gm3? god? 1 o7 — gmi® gma? gm32 god? 12 nue-+ gml? gm3® go22 go6? I % nus

nms+ gml® gm3% go2% go7? 12 nms+ gml? gm3° go2° go7? 1% nme

a3+ gm22 gm82 gm6? gm3? 12 nm1) /(gm42 gmi2 go2? go62 go8? + gma2 gmi? go2? go72 gos?

+gm22gm3? go4? go62 go9? + gml* gm3? go2% go62 go8? + gm22 gm3? go4? go7° go8? + gm2? gm3? go4® go72 go9? + go2? gm3? go4* go6° gos*

+gm4?gm1® go2° go72 go9” + gml? gm3° go4” go6* go9? + gml® gm3? go4® go6° go8® + gm4* gml® go2® go6° go9* + gm1® gm3° go4’ go7? gos®

+ gm1? gm3? go4? go7? go9? + go2? gm3? go4? go62 go9? + gm2? gm3? go4? go6° go8? + gml? gm3? go22 go6* go9? + go2? gm3? go4? go7? gos?

+ 9022 gm3? go4? go72 go9? + gml? gm3® go22 go72 go8? + gml® gm3? go2% go72 go9?

(5.6)
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15 M3 go4
2 2
C@ g3 [ 3 % M4 %goe In M6
P2 02 03 P3 06 P6
8
2
o1 Pl 04 P4 go2 08 P8
gol _ ; ;goa
1 11 12
13 M1 17 M2
gm1 gm2 gm8
6
14
09 P9
05 P5 | gos
7 > S 13
§ 15 M5 15 M7 §
go9
gm5 gm9

Figure 5.12 Equivalent circuit for uncompensated amplifier using noise sources

The graph in figure 5.13 corresponds to the response given in Hspice and the plot

corresponding to expression 5.6.
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Figure 5.13 Numerical and symbolic expression responses (uncompensated amplifier)

5.8 Conclusion

There exist different models used to represent noise in circuits, in this chapter; a model

based on nullors to represent noise in MOS transistor was presented.

The noise-based model for MOS transistor was substituted in amplifier circuits, so a

noise at output expression could be found.
It was observed that the plots are in a good agreement with the graph obtained with a

numerical simulation. So it can be said that the symbolic expressions representing

noise at output of the circuit are correct.
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General conclusions

In the first chapter there were presented different methods that have been used to
obtain symbolic expressions of circuits, those methods include graph, flowchart and
analytical methods. In that chapter it was also introduced the topic concerning to
asymptotic waveform evaluation, which allows, with the use of moments reducing the

order of expressions.

In first chapter, there was a briefly introduction to nullor concept, but it was in the
second chapter where this element was considered to model different active devices,
such the opamp, ota or current conveyors, but most importantly the MOS transistor,

which can have different representations according to the necessary application.

It was in second chapter, where a methodology to perform nodal analysis was
presented, allowing the substitution of MOS transistors by the nullor equivalents and
then performing pure nodal analysis, taking advantage of the reduction of order of
matrices due to the properties of nullors. A circuit was presented in this chapter to

illustrate the way an amplifier can be treated by using the mentioned methodology.

In the third chapter, some techniques were introduced, which can be used to perform
simplification of symbolic expressions before they are created, during the process of
formulation or after it. Most of these techniques are based on heuristics, which are the
result of knowledge on circuit behavior under different conditions, such biasing, position
of transistor in the circuit or region of operation of MOS transistor. Making use of such
techniques allows the reduction of symbolic expressions and then obtaining
expressions easier to be handled, as it was shown with the use of a circuit as an
illustrative example in this chapter. With the use of a numerical simulator and the
agreement presented with the expressions obtained through the given methodology, it

could be appreciated that the result obtained through symbolic analysis is correct.

In the fourth chapter, several examples of amplifiers were presented, varying from a
small circuit to a larger one, where it could be appreciated the usefulness of neglecting
some elements to create a reduced expression having the result an acceptable

behavior compared to the response given by a numerical simulator.
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In this chapter, two examples using Padé approach were analyzed, it was seen the
usefulness of this technique when dealing only with a symbolic variable, because if this
methodology is employed having a semi-symbolic or fully symbolic expression, it leads
to an exponential grow of symbolic terms making the result very difficult to be

interpreted or handle.

In last chapter of this Thesis, the already given methodology was employed to obtain
the output noise of the amplifiers being analyzed throughout this work. The obtained
result was possible due to the employment of an adequate model of MOS transistor

with the appropriated noise sources attached to it.
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Appendix

Algorithm implementation

To employ the method given in chapter two to create the system of equations
representing nodal analysis ~ Yy, it can be done via a computational implementation,
taken into account the steps already presented. To observe how this algorithm should
be implemented, a flow chart is now depicted, in which the necessary steps to obtain

the symbolic expressions are presented.

Read data
from netlist
file

Create data structure and new netlist including
new elements

v

Order and enumerate nodes of new netlist

v

Create tables of admittances

v

Create ROW set, through the elimination of
grounded nullators, and the association of
virtually connected ones.

v

Create COL set, through the elimination of
grounded norators, and the association of
virtually connected ones.

v

Create Y matrix and i and v vectors

Solve the
system and
present
results

Finish
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The algorithm is implemented using Maple, because it can deal directly with symbolic

expressions.

As it was written down, for the first step of the algorithm, it is necessary to read data, in
this case, the elements of the circuit are read from a netlist with .sp or .cir extension,

which are files used for Spice simulations.

In second step of algorithm, a new netlist is created, where the nullor model of
transistors and independent voltage sources are used, also, the dc voltage sources are

grounded.

Parting from the new netlist, composed of nullors (norators, nullators) and any other
passive device, each of these elements is set in a structure where the nodes of each of
these elements, along with their value are listed. These structures will allow the correct
management of elements, so they could be ordered in tables for admittances and in the

case of nullors, they could be used to create ROW and COL sets.

For the third step of flow chart, once the data structures are ready, in the structure
corresponding to admittances, it should be found which of the elements have a
connection to datum node and any other node within the circuit, to create table A,

where elements connected to each of the nodes of the circuit are enumerated.

Also in this step, elements connected between two nodes should be found, to create

table B, corresponding to floating admittances.

For the next step, in the structure of nullators, it ought to be found which of these
elements are connected to ground, in order they could be eliminated. Then a cycle
should be implemented to look for nullators with a common connection, so they could

be grouped to form COL set.
Almost the same should be done with norators, it should be found which of them are

grounded connected to discard them, and those virtually connected should be together
to create ROW set.
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Once the ROW and COL sets have been created, perform a Cartesian product between
these two sets, in order Y matrix can be formed. Also form v and i vectors, to have the

F~Yvsystem complete.

Then, solve the system for the required parameter and present the results.

Software in Maple

To exemplify the software developed to obtain symbolic expressions, some fragments

of Maple code will be showed in this section.

File reading and creation of data structure

#File reading
while fzs = "END" do
fine = readline(arch2),
if lire[1] ="R" then
Resistar|il ] = sscanf(fre, "Vosz Yad %0d %),
il = (il) + 1
fi;

What we can see in this code, is how to read a file, using command readline, employing
this command, each line within the file is read, and it is interrupted when the line reads
a “.END” inside the file.

It can also be seen how to form the data structure that will allow the creation of the new
netlist, it is done by creating a structure for each of the different elements of the original
circuit, that is, resistors, capacitors, transistors, sources, etc. In the code presented, we
see how resistor structure is created, that is, each element of the circuit is listed into a
corresponding structure where similar elements are grouped, each having an index, the

associated nodes and numerical values.
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For the case of non NA compatible elements, they are substituted by their equivalents
using nullors, and these new elements are used in the new netlist, including the addition

of new nodes resulting of the substitution of nullor equivalents.

Also in the new netlist, elements that were connected originally to a DC voltage source

are grounded, so it can be seen which of those can be neglected (in case of nullators

and norators).

Once the new netlist has been created, the different nodes of it are sorted, because
they will be used as indexes for ROW and COL sets and taken as a reference for

admittance tables. In this case, a fragment of the code for sorting the nodes is

presented.

while valor == 1 do
vatfor = 1
for 1 from 0 to masznod — 2 do
if rodo|i] = nodei + 1] then
templ = nodali]:
podo(i] = moda[i + 1]
podo(i + 1] = tempi
vefor = 0
fi
od:
od:

Now the tables for admittances should be created, and this is done by checking the
node connections of each of these elements, to know whether they are connected to

ground or between two nodes (floating admittances)

A piece of code where it is verified which admittances are connected to each node can

here be seen.

fori from 1 to var — 1 do
forjfrom ltoo — | do
if (glem|[i][2] =node[i] or elem | j][ 3] = node[i]) then
admit|i] = elemento|j][1] + admit[i];
ik
od:
od:

In the case of enumeration of floating admittances, the code is here presented.
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forj from | too — | do
if (glem|i][2] # Dand elam | 7][3] # 0) then
Hoated|cont|[1] = slementa F][1],
Hoated|cont|[2] = &lem|F][2];
Hoated|cont|[3] = elem | F][3];
cont = cant + 1
fi
od:

For the creation of COL and ROW sets, it should be verified which nodes of nullators
and norators have a terminal connected to ground, so they could be neglected, it also
should be verified which of these elements are sharing a node, so they can be set

together in sets corresponding to column and row of /=Yv system.

A fragment of the corresponding code can be seen now. First, the elimination of

grounded nodes is presented.
forifrom ltop — | do

if (muliat[i][2] = 0and pulla[i][3] # 0) then
mandiat[ F1[1] = mullat[i][1]:
mundlat F112] = mulat[i][2]:
mundlat F1[3] = mulat[i][3]:
ji=1+1:
fi
od:

Now the union of nullators is presented, at least a part of the entire procedure to

perform this action.

forii from [ to] — 1 do

for ji from 1 to; — | do

if (maudlatn][2] = mmullat[ 1] 2] or sadiat[ 1] 2] = meulat] § ][ 3] ) then
wrion! [k = ({mllat] 77 ][ 2], noollat] 7713} undon {asuliet|i ]| 2], meuliat[E]]3]});
F=k+1

hreal;

elif (mmuliat[i][ 3] = mrediat] j7 )] 2] ov meediat| [ 3] = metdiat] j7][3]) then
wrmiont [k = ({nnullat] 77 ][ 2], noolat] 77 ][ 3]} andon {sewliat[n]] 2], meudat[a][ 3]},
E=k+1,
hrealk;
fi;
od:
od:
The same kind of procedure is performed for norators.
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Once sets ROW and COL have been created, it is now possible to do Cartesian product

to fill Y matrix. Cartesian product is now presented.

for i from | to coltownum do
for j from | to colrownum do
A2 = {}:
T = cartprad( [ rawu|i], calul 71])
while not 7| flzisked | do A7 == T[rexhvalue]( ),
AZ = AZ union {AF},
end do:
MAT[:][j] = Az,
od:
od:

To fill the admittance matrix, these procedures are followed:
for i from | to colrownum do
for j from | to colrownum do
for & from | to var — 1 do
test = verifip(par[ k], MAT[i][J], subsat’),
if tost = true then
mirx|i|[j] = groundsd[k][2] + mirx[i][F]:
else
mirx[i][j] = mir=[1][ ]
ik
od:
od:
od:

for i from | to colrownum do
for j from | to colrowsien do
for & from 1 to 2-maxfloat do
test = verify(floatng[ k][ 1], MAT[][ 7], subeat’),
if test = triie then
mirx|i]|[j] = Aoating|k][2] + mrx[i][F]:
fi
od:
od:
od:

for 1 from 1 to colrownum do
for { from 1 to colrownum do
Al1, ] = mirx[1][ 7],

od:

od:
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Then the vectors for current sources and voltages (variables) are created, which can be

seen next.

for i from 1 to colrownum do

check == {Fuenteac[1][2]} subset rowz[1],
if check = true then

vectimput[i] = 1,

fi

od

for i from ! to colrowmun do
Bli] = vectinput|i]:
od:

Finally, the solution for the system should be found, which is realized with this

command.
safiy = linsalve (4, B)

Then the desired expression is found among the solution given by linsolve command

results.

The same procedure as the one presented in this appendix should be followed to

implement an algorithm to obtain output noise of circuits.
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