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Abstract 
 
Symbolic analysis has been for some years a topic of interest in electronics, because it 
represents a way to have a better understanding on circuit behavior. Through this time, 
different approaches have been developed to obtain expressions that allow 
representing the circuit behavior and then try to improve its performance. 
 
These approaches have been done for example, through graphs methods, flow charts 
or analytical methods, like MNA or pure nodal analysis, which is the chosen method to 
be used in this Thesis. 
 
Nodal analysis utilized in this Thesis could not be employed without an important 
element in circuit analysis; it is the nullor, which can be employed to model different 
devices. But it is also useful for reducing the rank of matrices of the system being 
analyzed, by using the properties this element have. 
 
In this Thesis, a method for obtaining symbolic expressions is explained, and it is 
shown how the nullor helps creating the nodal formulation which allows getting those 
expressions. 
 
There is an open research in symbolic analysis due to the length of symbolic 
expressions and the necessity to reduce them in order they could be easier to be 
understood, this way, some simplification methods have been developed and presented 
in this Thesis, to show their usefulness to obtain shorter expressions. 
 
Within these reduction methods, a method of reducing order is treated, it is known as 
asymptotic waveform evaluation, and allows the reduction of order in expressions, to 
have smaller expressions. 
 
Symbolic analysis is also useful for calculating expressions that represent parameters 
like noise in amplifiers; this topic is also reviewed in this Thesis.  
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Chapter 1. Symbolic analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.1 Symbolic analysis methods 
 
Usually, in the process of designing a circuit using metal-oxide-semiconductor field 
effect transistors (MOSFETs), after the first approach on sizing elements, a numerical 
simulation is held; in order the circuit behavior can be verified and afterwards improved, 
to achieve the desired specifications. However, when trying to get a better insight on 
what is happening on the circuit, a symbolic expression representing it could be more 
useful to try to understand its behavior. There are different approaches to obtain the 
referred symbolic expression; this chapter is aimed to summarize some of these 
methods. 
 
 
1.1.1 Tree enumeration methods 
 
Tree enumeration methods are based on graph theory, they have been the base for old 
and more recent symbolic analysis programs. There are two categories to classify 
them: the directed and the undirected tree enumeration. These methods face the 
disadvantage that they could only deal with small RLCgm circuits because a large 
number of symbolic terms are generated, producing expressions difficult to handle [1]. 
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1.1.1.1 Directed tree enumeration  
 
To use this method, a slightly modified circuit, should be implemented, adding an 
admittance in parallel with a current source to the original circuit, this modification 
contributes to the construction of an adequate determinant expression and the 
necessary cofactors for the augmented circuit. To see graphically how the augmented 
circuit can be created, let’s take for instance the amplifier of figure 1.1. 
 
The small signal circuit representation of this circuit, where the MOSFET is modeled by 
a voltage-controlled current source (VCCS), can be observed in figure 1.2a. After 
adding the mentioned controlled source and the admittance, the augmented circuit is 
obtained, which can be seen in figure 1.2b. 
 

 
Figure 1.1 Example of circuit for applying tree enumeration 

 

 
(a) 

 
(b) 

Figure 1.2 (a) Small signal representation of amplifier of figure 1.1 (b) Augmented circuit. 
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Once the augmented circuit is ready, a directed graph representing it can be formed by 
using the stamps corresponding to each of the elements of the circuit. In this case, after 
employing the adequate stamps, the graph that represents the circuit of the example 
can be seen in figure 1.3. In this graph, all directed trees should be enumerated, 
because the admittance products of these trees are used to find the nodal admittance 
matrix determinant and cofactors to produce the required symbolic transfer functions. 
However, the number of branches in the graph may grow exponentially with the 
increase of the circuit-elements. 
 

 
Figure 1.3 Directed graph 

 

 
 
1.1.1.2 Undirected tree enumeration 
 
This method is based on the construction of two graphs, one for currents and the other 
for voltages, for this reason, this method is also known as “two-graph tree enumeration 
method”. The constructed graphs are equal for RLC circuits, but they are slightly 
different for RLCgm circuits, because the gm admittance corresponding to the 
controlled sources is positioned in a different place, depending on the current or voltage 
graph. The construction of these graphs is useful for generating the cofactors of nodal 
admittance matrix Yn that generates the symbolic transfer functions. 
 
As an example for graph construction, let’s use the circuit of previous example, in 
specific, the small signal representation of it, that is, the one of figure 1.2a. Using this 
circuit, two graphs can be constructed; one for voltages and one for currents, this is 
illustrated in figure 1.4. 
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(a)                (b) 

Figure 1.4 (a) Voltage graph (b) Current graph 
 

After applying the adequate operations with these graphs, the needed transfer function 
can be obtained. However, as for the directed tree enumeration, the number of 
branches may grow exponentially with the increase in the number of circuit-elements. 
 
 
1.1.2 Signal flowgraph (Topological methods) 
 
There are two kinds of flowgraphs aimed to generate symbolic equations of circuits, the 
Mason signal flowgraph and the Coates graph, the first one is the popular known 
method used in other applications, such as control, but in this case, it is also useful for 
symbolic analysis. The second method was created ad-hoc for generating symbolic 
expressions. These flowgraph methods have an advantage over tree enumeration 
methods, because they can deal with circuits containing all types of controlled sources. 
However, these methods have also the limitation of circuit size, because they generate 
very large expressions that cannot be managed easily due to their complexity. 
 
Mason flowgraph method for finding transfer functions among two nodes of a circuit 
(xj/xi) is based in the application of Mason’s formula: 

∑ Δ
Δ

=
k

kk
i

j P
x
x 1                                         (1.1) 

 
Δ  =  1-(sum of all Li’s), - where Li’s are the loops of the flowchart 
         + (sum of all second-order loop weights) 

- (sum of all third-order loop weights) 
+ …  
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For applying this method a tree and cotree should be constructed from the original 
circuit; in this case, voltage sources should be located in tree, and current sources in 
the cotree. Then KCL, branch admittances, and tree branches voltages are used to find 
an expression for every cotree link current. KVL, branch impedances, and cotree link 
currents are used to find an expression for every tree branch voltage. The signal 
flowchart should be created by drawing a node for each current and voltage source, 
tree branch voltage, and cotree link current. The branches between nodes of the graph 
represent the equations corresponding to the analyzed circuit. Once the flowchart is 
constructed, Mason formula can be applied to find the transfer function between the 
chosen nodes. 
A figure that can be used to illustrate the formation of a signal flowgraph can be seen 
next (figure 1.5) 
 

 
Figure 1.5 Illustration on graph creation for Mason method 

 

 
1.1.3 Parameter extraction method 
 
This is a method best suited when dealing with a semi-symbolic expression. Because of 
that, it can handle larger circuits. However, if the number of the symbolic terms is large, 
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it has the same problem of exponential growing of terms, making difficult to manage the 
resulting expressions. 
 
To apply this method for symbolic analysis, an appropriate pattern should be found in 
the matrix being dealt with. For example, if indefinite admittance matrix is being used, 
the analysis and rules depend on the appearance of symbolic parameters in four 
locations in the matrix: (i,i),(i,j),(j,i) and (j,j). Other methods are based on a different 
pattern found in the matrix. 
 
To use a parameter extraction method, a symbolic variable α, which appears in the 
matrix to solve, needs to be “extracted” using matrix operations, like adding rows or 
columns, or subtracting them, making possible to take the variable out of the matrix. 
 
 
1.1.4 Interpolation method 
 
This method is based on finding coefficients of the polynomial resulting from a 
determinant, to do this; different values of s are substituted  to evaluate the function, 
being a better approach to use complex values for s, not only real ones. 
 
When substituting values for s, a set of linear equations is formed. This way, to find the 
coefficients, the set of linear equations should be solved. The main disadvantage of this 
method relies on that it only generates rational expressions with the unique symbol 
described by s. 
 
 
1.1.5 Nodal analysis and MNA 
 
These methods lie on the idea of obtaining the fully symbolic equations of the circuit 
directly from its description, and then putting them into a linear matrix form: Ax=b.  
Where A is a symbolic matrix of dimension n x n, x is a vector of circuit variables of 
length n, b is a symbolic vector of constants. The analysis consists in solving for x of the 
system of equations. 
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To generate the already mentioned matrix, there are different techniques, such as nodal 
analysis and its modifications. This is the method adopted in this Thesis, and it is 
highlighted in the following chapters. 
 
 
1.1.5.1 Nodal Analysis 
 
This is one of the most known and popular methods for circuit analysis, and it can also 
be employed as a method for symbolic analysis. It is based on Kirchhoff’s laws of 
current and voltage. 
 
With nodal analysis (NA), only conductances and current sources can be dealt with; 
however there are modifications that allow managing other circuit elements. 
 
Nodal Analysis is formulated as: 

YnVn=In                                       (1.2) 
 
Yn is known as Indefinite Admittance Matrix or Nodal Admittance Matrix, and has a (n x 
n) order and In is the independent vector or stimulus vector (n order), containing the 
independent current sources present in the circuit. Vn is the vector of variables. 
 
Admittance matrix is the base for formulation methods; it can be set up through 
Kirchhoff’s current law in nodes of the treated circuit, that is: [2] 

∑
=

=
b

k
ki

1
0                                            (1.3) 

 
With b, the number of branches connected to that node and ik the current in branch k. If 
this approach is applied to every node of the circuit, a system of equations can be 
constructed, which contains Yn matrix. 
 
There are two types of admittance matrix, definite and indefinite. An indefinite matrix 
become definite when node k is grounded (taken as the reference node) thus deleting 
the corresponding row and column from the matrix. 
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1.1.5.2 Modified Nodal Analysis 
 
This method overcomes the problem of NA, because it can handle more circuit 
elements which allow performing a more complete analysis. Formulating the Y matrix of 
the circuit (nodal admittance matrix, as it was mentioned before), is the beginning of this 
method. However, when the circuit elements are modeled by using nullors, then the 
circuit analysis can be performed by just applying the NA method, instead of the MNA, 
as it is shown in the following chapters. It is worthy to mention that the NA method 
applied to nullor equivalent circuits does not increase its order compared to the MNA 
method, which is described below. 
 
 
1.1.5.2.1 Stamps approach 
 
One way to construct nodal admittance matrix is using element stamps, which allows 
applying automated methods. The manner this technique is applied, consist on 
analyzing every branch of the circuit and adding to nodal admittance matrix the 
contribution given for the elements present in the circuit. In the next figures, taken from 
[1], the stamps of some elements are shown; these are the conductance, current 
source and VCVS. 
 

 
Figure 1.6 Stamp corresponding to conductance branch 
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Figure 1.7 Stamp corresponding to current source 

 

 
Figure 1.8 Stamp corresponding to VCCS 

 
MNA method allows including those elements that cannot be handled with simple nodal 
analysis, such VCVS, CCCS, CCVS, this is done by introducing some branch currents 
as extra variables into the system of equations. Each new variable introduced would 
require an extra equation to solve for it; these extra equations are obtained from the 
branch relationship given by the added branch currents, corresponding to the element 
that wants to be taken in consideration. 
 
The matrix resulting after the addition of new variables is known as MNA matrix, and 
has the form: 

                                     (1.4) ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
E
J

I
V

DC
BYn

 
Where I is a vector of size ni, and contains the extra branch current variables 
introduced. E has the independent voltage sources values. C and D have the branch 
relationship equations whose currents are in vector I. 
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1.1.5.3 Compacted nodal analysis using nullors 
 
1.1.5.3.1 Nullor concept 
 
In 1954, Tellegen showed that an ideal amplifier could be used as a general block for 
implementing linear or non-linear circuits. In 1964, Carlin proposed the Nullor for 
modeling the ideal amplifier as a two port element, with four associated variables (figure 
1.9). This element is composed by a Nullator in the input and a Norator in the output. 
[3], [4]. 

+

-

+

-

o

o

p

pVV

II

 
Figure 1.9 Nullor 

 
Nullator has the property that vo voltage and io current are always zero. Conversely, 
norator has the property that their voltage vp and current ip are arbitrarily assigned. 
From these properties, an equation can be derived, which represents Nullor behavior 
and is formed through the next null transfer matrix. 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

p

p

o

o

i
v

i
v

00
00

                                           (1.5) 

 
Nullor allows modeling active elements such as opamps, otas, cfoas or cc’s [5]. 
 
 
1.1.5.3.2 Compacted nodal analysis 
 
The way to obtain a compacted system of equations (CSE) of an analog circuit is 
through obtaining an equivalent circuit with nullors substituting each active device and 
non NA compatible element with its nullor model. Then applying nullator and norator 
properties, that is: [3] 
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1. If a nullator is grounded, as it can be seen in figure 1.10(a), applying its voltage 
property, i node will be virtually grounded. 
 
2. If a norator is grounded, the case is the same, because when applying its current 
property, i node will be virtually connected to ground. 
 
3. For a floating nullator, as that shown in figure 1.10b, i node will be virtually connected 
to j node. 
 
 4. For a floating norator, like the one showed in figure 1.10d, i and j node will be 
virtually connected. 
 
After the application of these considerations, a CSE is obtained, having an order of m = 
n – N, where n is the number of nodes and N the number of nullors.  More on this topic 
will be presented in another chapter. 
 

 
Figure 1.10 Nullator and norator properties 

 
 
1.1.5.3.3 Transistor modeling using nullors   
 
To take advantage on computer aided analysis, physical devices should be modeled in 
order simulations or symbolic analysis can be performed automatically. Let’s take, for 
instance small signal transistor model, which allows considering this element as linear, 
in this case there are different models that can be used to represent transistors 
according to the dealt application, for example, there exist a basic and a high frequency 
MOS transistor model [2], basic model, using the VCCS, is shown in figure 1.11. 
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Figure 1.11 MOS Small signal model 

 
To start modeling a transistor through nullors, the basic small signal model of figure 
1.11 can be used, that is because its representation using a nullor is like it can be 
viewed in figure 1.12. 
 

 
Figure 1.12 Transistor modeled through nullor element 

 
Parting from figure 1.12, a more complex model can be developed, that is, parasitic 
elements can be added in order a more complex can be used, however, a model 
including more elements results in greater symbolic expressions, which creates a 
problem when trying to interpret the result. A solution to this problem is presented in the 
following chapters through the generation of symbolic behavioral models of low voltage 
amplifiers. 
 
Using nullors to represent transistors gives the advantage in nodal formulation of 
reducing the rank, that can be showed from the fact that the two columns corresponding 
to the input nodes of a nullor can be added since the two input node voltages are equal, 
and the two rows corresponding to the output nodes are added to eliminate the output 
current [6], because of this, each nullor reduces the rank of the matrix by one. 
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1.2 Non dominant elements approach 
 
Due to the exponential growth of the number of terms with the circuit size, the symbolic 
expressions for analog integrated circuits rapidly become too lengthy and complicated 
to use or interpret, rendering them virtually useless. A solution that can help solving this 
problem is considering the magnitude of elements, which varies in semiconductor 
devices. This way, in a transistor its transconductance is usually larger than its output 
conductance, taking this into account, leads to prone the majority of the terms in a fully 
symbolic expression, because just some of the terms are necessary to represent the 
circuit behavior. [7] This topic will be later explained in another chapter. 
 
 
1.3 Moments and moment matching method 
 
When analyzing an integrated analog circuit, the order of the system of equations might 
be much higher than it is required to understand the global behavior. In this manner, to 
reduce the order of the equations, the asymptotic waveform evaluation (AWE) method 
can be applied. Basically, one needs to compute moments and then match the 
moments by applying Padé approximation.  
 
 
1.3.1 Concept of moments    
 
In the s domain, the transfer function of a linear network H(s) is defined as the ratio of 
the output to the input under zero initial conditions [8]: 

)(
)()(

sX
sYsH =                                       (1.8) 

If the input is the impulse function δ(t), its Laplace transformation is 1. So the transfer 
function is also the impulse response at the port. If H(s) is expanded around s=0 by the 
Taylor series expansion, we have: 

∑
∞

=

=
0

)(
k

k
k smsH                                       (1.9) 

where 
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sHd

k
m                                        (1.10) 

Where the kth coefficient of H(s), mk, is called the kth moment.  
 
Assuming that h(t) is the corresponding time-domain impulse response, we have  
 

∫
∞ −=

0
)()( dtthesH st                                       (1.11) 

The moments defined in (1.11) in terms of H(t) by using the Taylor expansion of e-st in 
the Laplace transform H(s) can be written as: 
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LL            (1.12) 

Comparing (1.12) with the definition of (1.9), moments can be rewritten as: 

∫
∞−

=
0

)(
!
)1( dttht

k
m k

k

k                                              (1.13) 

 
 
1.3.2 Padé Approximation 
 
Padé approximation is a method that generates a family of rational functions whose 
moments agree with those of the impulse response. The rational functions are further 
decomposed into partial fractions, whose inverse Laplace transforms are used to 
constitute the approximated response of waveforms. 
 
Padé approximation can be explained as: given two integers p and q, (p,q) Padé 
approximation of the transfer function H(s) is a rational function. 
 

q
q

p
p

qp sbsbsb
sasasaa

sQ
sPsH

++++

++++
==

L

L
2

21

2
210

, 1)(
)()(                      (1.14) 

 
The Maclaurin expansion of Hp,q(s) agrees with that of H(s) in the first p+q+1 terms, i.e., 
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As there are p+q+1 unknowns in (1.14), it is necessary to establish p+q+1 independent 
equations to solve for them. Assuming that Hp,q(s) is a proper transfer function i.e. p<q, 
we can get coefficients in denominator Q(s) of (1.14) by solving the following equations: 
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And the coefficients ak of numerator P(s) satisfy the equation: 
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Equations (1.16) and (1.17) can be verified by honoring the fact that the first p+q+1 
moments of Hp,q(s) match those of H(s), i.e., 
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where r(s) is a polynomial function of s. Multiplying both sides with denominator Q(s), 
we have 
 

( ) ( )1
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(1.19) 
 
By equating the coefficients of powers of s on both sides, we are able to write the two 
equations in (1.16) and (1.17). 
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1.4 Conclusion 
 
As it was seen through this chapter, many different methods have been developed to 
obtain symbolic expressions, which vary from graphs to numerical methods. 
  
Among those methods described within this chapter, compacted nodal analysis was 
chosen to be used in this Thesis, because the inclusion of nullor element generates a 
reduced system of equations. Nullor properties allow also eliminating non dominant 
circuit elements, which is important to reduce the resulting symbolic expressions.   
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Chapter 2. Modeling using nullors 
 
 
 
 
 
 
 
 
 
2.1 Modeling using nullors 
 
Nullor element and its singular characteristics were introduced in the first chapter, there, 
it was shown that it can be used to represent a MOS transistor, but this element can be 
employed to model other circuit elements. 
 
Different elements can be represented using nullors, taking into account the voltage 
and current relationships they have. At first, the controlled sources using nullors will be 
presented in table 2.1, figures were taken from [9]. 
 
 
2.2 MOS transistor modeling 
 
In the first chapter, a simple model of MOS transistor was presented, as it can be seen 
from table 2.1, a VCCS is represented with two nullator-norator pairs. The way to obtain 
the model presented in figure 1.11 is considering that the negative terminals of a VCCS 
are connected to the same node, as it can be seen in figure 2.1. 
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VCVS   

VCCS  
 

CCVS   

CCCS  
 

Table 2.1 Representation of controlled sources 

 

G D

S

gm

 
Figure 2.1 Simple model of MOSFET 

 
Then, making use of nullors’ properties, when a nullator and a norator are parallel 
connected, they can be considered as a short circuit, this way, simple model of MOS 
transistor is obtained. 
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When more complex models of transistors are required, like the small signal model 
presented in figure 2.2, as it appears on [10], elements should be added to obtain a 
complete equivalent. 
 

gmVbs
Cgs

Cgd

gmVgs

Cbs

Cdb

G

B

S

D

ro

 
Figure 2.2 MOS transistor model using VCCS´s 

 
Let’s consider, for example, the case when adding parasitic capacitors and output 
conductance of MOS transistor, in this case, a resistance and two capacitors are added 
to the model, obtaining representation of figure 2.3. 
 

 
Figure 2.3 MOSFET model considering parasitic elements 

 
If the resistance given for contacts is added to the model of figure 2.3, then the 
equivalent observed in figure 2.4 is obtained 
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Cgd
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Figure 2.4 MOS transistor model considering contacts resistances 

 
If substrate terminal wants to be taken into account, and the elements associated to this 
terminal are needed to be added to the model, then representation of figure 2.5 is 
obtained. 

 
Figure 2.5 MOS transistor model considering substrate terminal and contacts resistances 

 
When dealing with symbolic analysis, having short expressions is preferred, because 
these can give easier information to be interpreted, than bigger ones. So a simple 
representation of MOS transistor could be more useful to have a better understanding 
of circuit behavior. But it depends on the application, the necessary model to be 
employed. 
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2.3 Modeling other devices using nullors 
 
2.3.1 Operational amplifier 
 
It is known that input impedance of an operational amplifier is very large, ideally infinite, 
and output impedance, is ideally zero, for this reason, a nullor can be efficiently used to 
represent this device [3], as it can be seen in figure 2.6. 
 

 
Figure 2.6 Equivalent of opamp using nullor 

 
 
2.3.2 Operational transconductance amplifier (OTA) 
 
This device, represented with its nullor equivalents, can be seen in figure 2.7, from this 
figure, the voltage across the conductance gm is just the differential voltage at the input 
port because the voltage across each nullator is zero. 
 

V+

V-

Iout

V+

V-

Iout
gm

 
Figure 2.7 Equivalent of OTA using nullor 

 
 
2.3.3 Current feedback operational amplifier (CFOA) 
 
The nullor equivalent for this device is presented in figures 2.8. Open loop CFOA 
should have these characteristics [3]: 
Infinite impedance at non-inverting input. 
Zero impedance at inverting input. 
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Zero impedance at output. 

 
Figure 2.8 Equivalent of CFOA using nullor 

 
 
2.3.4 Current conveyors 
 
The current conveyor (CC) is a universal active device whose derivations are known as 
first generation CC (CCI), second generation CC (CCII), and third generation CC 
(CCIII). In [5] several of these current conveyors using nullors are presented and here 
repeated to show these structures. Their parasitic resistance at the terminal X (Rx) is 
included, so symbolic NA can be performed.  In next figures these nullor equivalents of 
current conveyors are presented. 
 

   
a)     b) 

1

1

1

1

1

1 1

X

Y

Z+

ICCI+    
c)     d) 

 
Figure 2.9 Equivalents of current conveyors using nullors a)CCI+ b)CCI- c)ICCI+ d)ICCI- 
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Y

X Z-Rx

CCII-  
a)    b) 

   
c)    d) 

Figure 2.10 Equivalents of current conveyors using nullors a)CCII+ b)CCII- c)ICCII+ d)ICCII- 
 

   
a)    b) 

1

1

1 1

X

Y

Rx

Z+

1

1

1

ICCIII+   

1

1

1 1

X

Y

Rx

Z-

1

1

1

1 1

ICCIII-  
c)    d) 

Figure 2.11 Equivalents of current conveyors using nullors a)CCIII+ b)CCIII- c)ICCIII+ d)ICCIII- 
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2.4 Data structure generation 
 
In this section, the method that will be used throughout this Thesis will be presented, 
which consist in employing nullors to model devices, so they can be used with nodal 
analysis (NA) formulation. 
 
The procedure that should be followed to create the NA formulation (i=Yv) to obtain a 
symbolic expression for a circuit is: 
 
1) Model all circuit elements (active devices [5], controlled sources and independent 
voltage sources), by using nullors. In [5] and [11], the modeling processes using nullor 
equivalents include grounded  admittances as much as possible, because they have 
only one entry in the NA formulation [12], while floating ones may have up to four 
entries requiring more computational work [1]. 
 
2) Number all nodes in circuit, because they will be used as indexes in further steps. 
Also label nullators and norators. 
 
3) Describe the interconnection relationships of norators Pj, nullators Oj. 
 
4) Now two sets should be created, because they will allow indexing at Y matrix and 
creating i and v vectors. Also two tables are listed, enumerating admittances within the 
circuit which will be used to fill admittance matrix. 

a. Set ROW: It contains all nodes (ordered) calculated by using the interconnection 

relationships (IR’s) and properties of the norator, whose nodes (m,n) are 

virtually short-circuited. These indexes are associated to rows and are used to 

fill vector i and the admittance matrix Y. 

b. Set COL: It contains all nodes (ordered) calculated by using the IRs and 

properties of the nullator, whose nodes (m,n) are virtually short-circuited. These 

indexes are associated to columns and are used to fill vector v and the 

admittance matrix Y. 
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c. Tables for admittances: Admittances are structured into two tables: Table A 

consists of all nodes (ordered), and in each node is the sum of all admittances 

connected to it. Table B consists of all floating admittances and its nodes (m,n). 

 
5) Use sets ROW and COL to fill vector i and v, respectively. To fill the admittance 

matrix Y: if in Table A, a node is included in sets ROW and COL (Cartesian product 
described in [13]), introduce that admittance(s) in Y with the corresponding row 
(from ROW index) and column (from COL index). For each floating admittance 
connected between nodes (m,n) in Table B, search node m in set ROW and node n 
in set COL (do the same but now search n in ROW and m in COL), if both nodes 
exist that admittance is introduced in Y with the corresponding row (from ROW 
index) and column (from COL index), and it is negative. 

 
 
2.5 Illustrative example. 
 
A small circuit will be used as an example to clarify the steps that should be followed. In 
this case, it is a non inverting amplifier, shown in figure 2.12 
 

 
Figure 2.12 Non inverting amplifier 

 
To substitute elements in circuit of figure 2.11 we start using model for transistors that 
appears in figure 2.3. For the case of the DC sources, the terminals between they are 
connected must be grounded. For the independent AC voltage source, the model using 
nullors of figure 2.13 will be employed. 

26 



 

 
Figure 2.13 Nullor-based model for voltage source 

 

Now the equivalent circuit for the non inverting amplifier is presented in figure 2.14, 

where the nodes connected to the DC voltage sources have been grounded, and the 

AC source at input has been substituted by the equivalent of figure 2.13. 

 

Figure 2.14 Non-inverting amplifier using nullor equivalents 

 

As it can be seen in figure 2.14 the capacitors Cgd2 and Cgsb where taken out, the 

former because of the short circuit connection due to the diode connection, and the 

latter because of the result of grounding the biasing DC voltage source. 

 

It can also been appreciated that nodes have been enumerated and norators and 

nullators have been labeled. 
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Now that the circuit is ready to be analyzed, the next steps can be presented. 

 

Let’s start describing the nullators and norators interconnection relationships by using 

two tables, which are now presented. 

 

Nullator (O) Associated nodes 

O1 (1,2) 

O2 (2,3) 

O3 (4,5) 

O4 (5,6) 

O5 (8,0) 

 

Norator (P) Associated nodes 

P1 (2,0) 

P2 (3,5) 

P3 (4,5) 

P4 (6,7) 

P5 (7,8) 

 
Continuing with the steps now sets COL and ROW (named after column and row) will 
be created, they are constructed from previous tables. 
 

Once the interconnection relationships (IR) have been defined, now it has to be 

checked which of norators and nullators are virtually connected, allowing a reduction in 

the order of the matrix. 

 

For norators, P1 is virtually grounded; P2 and P3 are virtually connected and the same 

case applies for P4 and P5. 

In case of nullators, O1 and O2 can be related in a unique set, the same case is for O3 

and O4, and O5 is virtually grounded. 
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As it can be seen on tables, for the case of nullators, node 7 is not listed, but it has to 

be considered in COL set, which also happens for node 1 in norators considering this, 

the ROW and COL sets can be defined as: 

ROW = {(1),(3,4,5),(6,7,8)} 

COL = {(1,2,3),(4,5,6),(7)} 

 

Now tables corresponding to admittances (A and B tables) should be created, the first 

one (A) contains admittances that are connected to each of the nodes (excluding datum 

node) and the second (B) corresponds to elements that are floated, that is, those 

elements whose nodes are not grounded. 

 

In this way, tables A and B are presented as: 

 

Table A Table B 

Nodes  Admittances 

1 1 

 

Once the sets and tables are ready, the next step can be applied. 

 

To formulate the Cartesian product, ROW and COL sets are combined, for the present 

case; we have then the next combinations, corresponding to each of the entries of Y 

matrix. 

 

 

2 sCgs1+sCgd1 

3 gm1 

4 gm2 

5 go1+go2+sCgd1+sCgd2+sCgs2+sCgs3 

6 gm3 

7 sCgd3+sCgdb+go3+gob 

8 gmb  

Floating 
admittances 

Nodes 

sCgd1 (2,5) 

sCgd3 (5,7)  
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(1,1)+(1,2)+(1,3) (1,4)+(1,5)+(1,6) (1,7) 

(3,1)+(3,2)+(3,3)+ 

(4,1)+(4,2)+(4,3)+ 

(5,1)+(5,2)+(5,3) 

(3,4)+(3,5)+(3,6)+ 

(4,4)+(4,5)+(4,6)+ 

(5,4)+(5,5)+(5,6) 

(3,7)+(4,7)+(5,7) 

(6,1)+(6,2)+(6,3)+ 

(7,1)+(7,2)+(7,3)+ 

(8,1)+(8,2)+(8,3) 

(6,4)+(6,5)+(6,6)+ 

(7,4)+(7,5)+(7,6)+ 

(8,4)+(8,5)+(8,6) 

(6,7)+(7,7)+(8,7) 

 

According to this table representing Y admittance matrix, there are elements of tables A 

and B that correspond to entries of this matrix, in the case of table A, each of the 

elements correspond to a pair, that is 1 represents (1,1), 2 represents (2,2), etc. 

 

For elements of table B there are two cases, the first one is if the entry is considered as 

it appears, let’s take for instance Cgd1, which is connected between nodes (2,5), but it 

can also appear as connected between nodes (5,2), in both cases, the sign with which 

it entries the matrix is negative. 

 

Then, filling in the matrix, we have:  

 

1 0 0 

gm1-sCgd1 gm2+go1+go2+sCgd1+sCg

d2+sCgs2+sCgs3 

-sCgd3 

0 Gm3-sCgd3 go3+gob+sCgd3+sCgdb 

 

Matrix Y is filled, but in order to have the system i=Yv complete, two vectors are 

necessary, one for currents and one for the variables to look after (voltages). 

 

Voltages correspond to COL set, so the voltage vector is v =[v1,2,3,v4,5,6,v7]T

The current vector is i=[vin, 0, 0]T which was created after checking which independent 

current sources are connected to each of the sets of nodes inside the ROW set. 

30 



 

Now the complete structure corresponding to the circuit can be presented 
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As it can be seen, the generated system corresponds to a 3 x 3 admittance matrix. 

 

To solve this last system of equations, different methods can be employed, for example, 

determinant decision diagrams (DDD). [14]-[16]. 

 

 

2.6 Conclusion 

 

As it has been seen in this chapter, nullor is useful to model different devices, such as 

MOS transistor and other active devices like opamps or current conveyors.  

 

In this chapter, a nodal formulation was presented, where it was observed the 

usefulness of modeling using nullors, which allow using only nodal analysis. The 

method was illustrated by using a circuit as example.  
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Chapter 3. Simplification approaches 
 
 
 
 
 
 
 
 
 
3.1 Non dominant elements discrimination 
 
There are different approaches to neglect non dominant elements within circuits, which 
allow simplifying symbolic expressions, in order shorter results easier to be handled can 
be obtained. 
 
These approaches can be considered as methods to implement simplifications before 
(SBG), during (SDG) or after the generation (SAG) of symbolic expressions [12]. 
 
 
3.1.1 Simplification before generation 
 
This method is based on the reduction of the original circuit, so the symbolic 
computations are performed on the simplified circuit [1]. 
 
Some heuristics can be considered to perform simplification before generation. For 
example, it can be taken into account that output conductance of MOS transistor is 
smaller than its transconductance [8], so it can be neglected in the circuit being 
analyzed. 
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Also, if the output conductance of a MOS is set in the output of a stage it should be 
taken into account (for those multi-stage amplifiers), if it is set in an input branch it could 
be taken away.  
 
Some elements could also be taken away, like those capacitors belonging to transistors 
connected in a diode configuration, or any other element parallel-connected to a short 
circuit.  
 
The gate to source capacitance tends to be larger than gate to drain capacitor [17] so 
Cgs capacitor could be considered and Cgd neglected. 
 
However those capacitors are usually smaller than compensation or load capacitors, 
and could be discarded if the latter are present. 
 
If a MOS transistor is used for biasing it could not be taken into account for the global 
symbolic expression. 
 
There exists also an approach given by the signal-path approximation (SPA) to perform 
SBG, taken from reference [17] it can be summarized as: 
 
Model each MOST and independent voltage sources with their nullor-based model, and 
do not include parasitic capacitors and output conductance for MOST diode connected. 
Then reconstruct the circuit so it can be observed which elements are not connected to 
the signal path and then neglected. Finally, nodes containing more capacitors, and 
which are closed to the output node, are considered, discarding those nodes with few 
capacitors connected to them. 
 
 
3.1.2 Simplification during generation  
 
It is applied in the formulation process of the system of equations of a network [17] 
trying to generate directly the simplified expression. 
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There are techniques proposed on [23], [24], [25] that don’t generate the exact 
expression but directly build the wanted simplified expression by generating the terms 
one by one in decreasing order of magnitude, until the approximation error gets a 
defined value [8]. 
 
 
3.1.3 Simplification after generation 
 
Usually, simplification after generation is used once the complete expression has been 
generated in an expanded format [1]. 
 
There are also some approaches to perform SAG, one is based in comparing numerical 
values for each parameter, to improve the interpretability of the expressions [18]. This 
comparison is done to neglect some elements which are compared to larger ones.  
 
Another approach consist in heuristically consider that the transconductance of a MOS 
transistor operating in saturation is about 100 times larger than its output conductance, 
neglecting the latter. 
 
Terms can also be eliminated from symbolic expression by cancelling common symbols 
between two terms into a sum of products by carrying out a quotient operation [17]. 
 
The moment matching lays in the simplification categories, and it works from the 
computation of the symbolic transfer function. The final expression is an order reduced 
one, but the symbolic expressions might increase. 
 
In order the topics of the last chapter and the approach given for neglecting non 
dominants terms can be exemplified, a circuit will be next presented. 
 
 
 
 
 

34 



3.2 Illustrative example 
 
The circuit used to exemplify the procedure is a p-Miller amplifier, represented in figure 
3.1. 
 

 
Figure 3.1 Miller amplifier 

 
As it was established in last chapter, elements of a circuit should be substituted by their 
equivalents using nullors, so a NA formulation can be performed, this way, Miller 
amplifier using nullors can be represented as it appears on figure 3.2. 
 
As a first approach of SBG, it can be seen that according to figure 3.1, there is a 
transistor diode connected, so, it can be appreciated that capacitor Cgd2a is short 
circuited in figure 3.2, this way; it can be eliminated. 
 
In the same way, capacitors Cgs4 and Cgs5 are in parallel with a short circuit, which is 
a result of grounding those nodes, used for biasing, so those capacitors can be taken 
away and not considered for the symbolic expression. 
 
It can also be noted that Mb equivalent was not taken into account, because it is a 
transistor used for biasing. 
 
Redrawing the circuit again, without the capacitors, it appears on figure 3.3 
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Figure 3.2 Miller amplifier using nullor equivalents 

 

 
Figure 3.3 Equivalent circuit for Miller amplifier 
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Parting from circuit on figure 3.3 the ROW and COL sets for this circuit are: 
ROW = {(1),(3,4,5),(6,7,8),(9,10),(11,12,13)} 

COL = {(1,2,3),(4,5,6),(7,12),(9),(13)} 

And the admittance tables for the circuit are: 
 
Table A Table B 

Nodes  Admittances 

1 1 

2 sCgs1a+sCgd1a 

3 gm1a 

4 go1a+go2a+sCgd1a+sCgd2b+sCgs2a+sCgs2b 

5 gm2a 

6 gm2b 

7 go1b+go2b+sCgd1b+sCgd2b+sCc+sCgd3+sCg
s3 

8 gm1b 

9 go1a+go1b+gm1a+gm1b+go5+sCgd5+sCgs1a
+sCgs1b 

10 gm5 

11 gm4 

12 gm3 

13 go3+go4+sCgd3+sCgd4+sCc+sCL  

Floating 
admittances 

Nodes 

sCgd1a (2,4) 

sCgd1a (2,9) 

gm1a (3,9) 

sCgd2b (4,7) 

go1a (4,9) 

sCc+sCgd3 (7,13) 

gm1b (8,9)  

  
Then the admittance matrix Y is: 
 

1 0 0 0 0 

gm1a-sCgd1a go1a+go2a+sCgd1a+s

Cgd2b+sCgs2a+sCgs2

b+gm2a 

-sCgd2b -gm1a-go1a 0 

0 gm2b-sCgd2b go1b+go2b+sCgd1b+sCgd

2b+sCdg3+sCgs3+sCc 

-gm1b -sCc-sCgd3 

-sCgs1a-gm1a -go1a 0 go1a+go1b+gm1a+gm1

b+go5+sCgd5+sCgs1a+

sCgs1b 

0 

0 0 gm3-sCc-sCgd3 0 go3+go4+sCc+sCg

d3+sCgd4+sCL 
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And vectors for current sources and voltages are: 
v =[v1,2,3,v4,5,6,v7,12,v9,v13]T

i=[vin, 0, 0,0,0]T

 
In this case, the voltage transfer function representing amplifier gain will be considered, 

so v13/vin should be found, we get a symbolic expression consisting in 119 terms in 

numerator and 2147 in denominator, so simplifications are seen as a solution to try to 

get a shorter expression for this circuit.  

 

To make a comparison between the resulting expression and the result obtained 

through a numerical simulation of the circuit, values are substituted into the expression, 

and then plotted. The two graphs can be seen in the figure 3.4, which shows that there 

is an agreement between both results. 

 

 
Figure 3.4. Output generated from symbolic transfer function, and comparison with numerical simulation 
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The phase response of the resulting expression is also compared to the one obtained 

through numerical simulation, the plot corresponding to this result can be seen in figure 

3.5. 

 
Figure 3.5 Phase response of Miller amplifier 

 

In order to try to reduce this expression, a simplification before it is generated can be 

carried out. To achieve this, three resistors can be taken away (go5, go1a and go2a), 

which are connected in the first branch of the circuit, getting the configuration that 

appears on figure 3.6. 

Generating the nodal formulation for system i=Yv again, and solving to get the voltage 

gain, a new expression is obtained, but it is still very large, because it has 83 terms in 

numerator and 174 in denominator  

 
In the circuit analyzed, capacitors of compensation and load are of larger order than 

parasitic capacitors, which allows neglecting these. 

 

Once again, transfer function is obtained, parting from the circuit without parasitic 

capacitors, it is now: 
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           (3.1) 
 
 

 
Figure 3.6 Miller amplifier after taking resistors out 

 

Expression (3.1) has 6 terms in numerator and 24 in denominator, so it is significantly 

shorter than the first expression obtained, but it can still be done a little shorter, if a 

simplification after generation (SAG) is applied. 

 

For this case, the way to get a shorter expression is neglecting those terms whose 

magnitude won’t contribute significantly to the result; so, let’s see which values could be 
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taken away. When the numerical simulation was held, some values were obtained; 

these are which can be seen next 

 

 
 

From these values, it can be noted that the transistor transconductance is bigger than 

output transistor conductance, taking this into account to reduce the expression, and 

grouping similar terms we can get the expression (3.2). 

 

                                   (3.2)

 

 

In this last expression, there are four terms in numerator and eight terms in 

denominator, which is a significant reduction from the original one, obtained using al 

terms. 

 

A comparison between expression 3.2 and the response given for the circuit in HSPICE 

is presented in figure 3.7, so it can be seen that there is still an agreement between 

these two plots. The difference between the two plots is a result of taken away 

elements.  In figure 3.8, it can also been seen the phase response for this amplifier and 

the comparison done with the numerical simulation. 
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Figure 3.7 Comparison of plots resulting from simplified expression and numerical simulation 

 

 
Figure 3.8 Phase response given for reduced expression of Miller amplifier 

 

Finally, a table to summarize the results of simplifying expressions will be presented, 
where the number of terms in the expression can be seen, along with the method used 
to simplify it. 
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Number of terms in 

numerator 
Number of terms in 

denominator 
Expression 

Complete 119 2147 

First simplification before 
generation  

83 174 

Second simplification before 
generation 

6 24 

Simplified before and after 
generation 

4 8 

Table 3.1 Reduction of terms in symbolic expression 

 
 
3.3 Conclusion 
 
In this chapter, some heuristics were presented, which allow reducing symbolic 
expressions, so they can be easier to be interpreted. 
 
There are different approaches for these simplifications, if a reduction on the circuit is 
performed, it is considered as a simplification before generation. If the simplification 
occurs when the circuit is being analyzed, it is considered as a simplification during 
generation. If the reduction is carried out when the expression has already been 
obtained, it is a simplification after generation. 
 
A circuit was used as an example to illustrate the usefulness of these simplification 
approaches, and the agreement between plots comparing the result when using a 
numerical simulator and the obtained expression gives us the idea that the procedure is 
correct. 
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Chapter 4. Behavioral model generation of 
analog circuits  
 
 
 
 
 
 
 
Considering what was mentioned in last chapters, some circuits will be analyzed 

following the given methodology. 

 

4.1 Common source amplifier (resistive load) 

 

A single transistor amplifier will be the first example presented here, it is the known 

inverter topology given by an amplifier with a resistive load and common source, the 

circuit at transistor level is presented in figure 4.1. 

 

 
Figure 4.1 Common source amplifier 

 

Using the model of transistor given in figure 2.3 and the model for voltage source at 

input taken from figure 2.13, the equivalent circuit is obtained, where it can be 

appreciated (figure 4.2) that there are two nullors. 
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Figure 4.2 Nullor equivalent circuit of common source amplifier 

 

As there are just few elements in this circuit, all of them will be taken into account to 

obtain the voltage transfer function of it. 

 

Creating COL and ROW sets as already explained, we have: 

COL ={(1,2,3),(4)} 
ROW={(1),(3,4)} 
 

Meanwhile, the tables where admittances are listed are here presented. 

 

Table A Table B 

Nodes  Admittances Floating 
admittances 

Nodes 

1 1 

2 sCgs+sCgd sCgd (2,4)  
3 gm 

4 sCgd+gL+go  
 

According to what was mentioned, the admittance matrix should be filled, performing a 
Cartesian product between COL and ROW sets, by doing this and filling in the 
adequate positions of the Y matrix, the system of equations corresponding to this 
amplifier is: 
 

 
And solving for V4/Vin, the transfer function corresponding to this circuit is: 
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         (4.1) 

These result agrees with the one presented in [19]. A graph resulting from expression 

(4.1) can be seen in figure 4.3. And the phase response given for this result is given in 

figure 4.4 

 

 
Figure 4.3 Symbolic and numeric results for common source amplifier with resistive load 

 

 
Figure 4.4 Phase response for common source amplifier with resistive load 
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4.2 Common source amplifier (active load) 
 
A second single-ended stage circuit corresponds to the amplifier depicted in figure 4.5. 

As it is shown, the load resistance has been replaced by a transistor, using this as an 

active load. 

 

 
Figure 4.5 Common source amplifier with active load 

 
This circuit will be substituted by the equivalents given for nullors, obtaining the circuit 

of figure 4.6 

 

Vin
1 Cgs1

Cgd1

gm1

go1

1 2

3

4Cgs2

gm2

go2

O1

P1
O2 P2

O3 P3

5

 
 Figure 4.6 Common source amplifier with active load 

 

As it can be appreciated, capacitor Cgd2 doesn’t appear in figure 4.6 because of the 
short circuit connection present in M2. 
 
Let’s now formulate the nodal analysis for this circuit. So the corresponding sets and 
tables should be obtained. 
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In first instance, COL and ROW sets are formulated, and they are as it can be see now. 
 
COL ={(1,2,3),(4,5)} 
ROW={(1),(3,4,5)} 
 
Tables for admittances are: 
 
Table A Table B 

Nodes  Admittances Floating 
admittances 

Nodes 

1 1 

2 sCgs1+sCgd1 sCgd1 (2,5)  
3 gm1 

4 gm2 

5 sCgd1+sCgs2+go1+go2 
 
Now, formulating the CSE, we have: 

 
 
The voltage transfer function given for this system is: 

      (4.2) 
 
And a graph that illustrates the plot of this expression compared to one obtained 
through a numeric simulation is presented in figure 4.7, and the comparison for phase 
response is given in figure 4.8: 
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Figure 4.7 Symbolic and numeric results for common source amplifier with active load 

 

 
Figure 4.8 Phase response for common source amplifier with active load 

 

Another example corresponding to one stage amplifiers is given by a differential pair. 

This will be presented now. 
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4.3 Differential pair 

 

The circuit representing differential pair can be seen in figure 4.9 

 

 
Figure 4.9 Differential pair 

The equivalent circuit for differential pair when using the nullor equivalents can be seen 

in figure 4.10. 

 

 
Figure 4.10 Differential pair equivalent circuit using nullors 
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From circuit in figure 4.10, it can be seen that conductances go1 and go2 were taken 

away, trying to obtain a reduced expression. Sets and tables for this circuit are 

obtained, these are: 

ROW and COL sets: 
 
ROW ={(1),(2),(4,7,8),(6,9,12),(10,11)} 
COL = {(1,3,4),(2,5,6),(7,8,9),(10),(12)} 
 
Tables for admittances: 
 
Table A Table B 

Nodes  Admittances 

1 1 

2 1 

3 sCgs1+sCgd1 

4 gm1 

5 sCgs1+sCgd1a 

6 gm1a 

7 sCgd1+sCgs2+sCgs2a+sCgd2a 

8 gm2 

9 

Floating 
admittances 

Nodes 

sCgd1 (3,7) 

gm1 (4,10) 

sCgs1a (5,10) 

sCgd1a (5,12) 

gm1a (6,10) 

sCgd2a (7,12) 

go1a (10,12)  
gm2a 

10 sCgs1+sCgs1a+sCgdt+gm1+gm1a+go1a+got 

11 gmt 

12 go1a+go2a+sCd2a+sCgd1a  
 

The compact system of equations is: 

 
 

And solving for transfer function V12/Vin we get expression (4.3). 
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In figure 4.11 there are plots to compare the results given for a numeric simulator and 

one obtained after numerical values were substituted in expression (4.3). The response 

obtained for phase can be seen in figure 4.12. 

 

 
(4.3) 

 

 
Figure 4.11 Symbolic and numeric results for differential pair amplifier 
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Figure 4.12 Phase response for differential pair amplifier 

 

Now a three-stage circuit is presented. 

 

 

4.4 Uncompensated amplifier 

 

 
Figure 4.13 uncompensated amplifier 
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Substituting the circuit of figure 4.13 by using the nullor equivalents of each of the 

elements, the circuit of figure 4.14 is obtained. 

 

Vin1

1

gm2

go2

1 3

9

gm4

go4

10

6

gm3

7

in2
1

2 8

gm5

go512

V4

gm1

gm7

14

13

gm6

go6

gm9

17

gm8

16Cp1
Cp2

CLgo7
go9

go8

5

11

15

18

O1

P1

O10 P10
O2 P2

O3P3

O4 P4

O5 P5

O6

P6
O7 P7

O8 P8

O9 P9 O11 P11

Figure 4.14 Uncompensated amplifier using nullors 

 

As mentioned beforehand, drain-source transconductances were employed only in 
those branches corresponding to outputs (this circuit can be seen as a series of stages, 
each of those having and output). This way, the transconductances that were left are 
go2, go4, go5, go6, go7, go8 and go9. As it can be observed from figure 3.24, all 
parasitic capacitors were taken away, because the contribution to poles was mainly 
given capacitors named as Cp1, Cp2 and the load capacitor, CL. 
 

And the sets COL and ROW for this circuit are: 

ROW ={(1),(2),(4,5,6),(7,9,10),(11,12),(13,14,15),(17,18)} 
COL = {(1,3,4),(2,8,9),(5,6,7),(10,13),(11),(15,16),(18)} 
 

And the tables corresponding to this circuit are: 
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Table A Table B 

Nodes  Admittances 

1 1 

2 1 

3 0 

4 gm1 

5 0 

6 gm3 

7 gm4 

8 0 

9 gm2 

10 go2+go4+sCp1 

11 go2+go5 

12 gm5 

Floating 
admittances 

Nodes 

gm1 (4,11) 

gm2 (9,11) 

go2 (10,11) 

gm8 (16,18) 
  

13 gm6 

14 gm7 

15 go6+go7+sCp2 

16 gm8 

17 gm9 

18 go8+go9+sCL  
 

Constructing the system of equations corresponding to this circuit, we have: 

 
 
By solving this system, as in the case of the Miller amplifier, a very large expression is 
obtained, so, SAG should be performed.  
 
After reducing the expression for the transfer function, the new one obtained is: 

 
(4.4) 
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Comparing the responses between the symbolic expression we have obtained and that 
given by an Hspice simulation we get the next graphs for magnitude and phase: 
 

 
Figure 4.15 Symbolic and numeric results for uncompensated amplifier 

 

 
Figure 4.16 Phase response for uncompensated amplifier 
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4.5 Asymptotic Waveform Evaluation approach 
 
As it was observed in previous chapters, when the number of elements in a circuit 
increases, so does the resulting expression, increasing also the order of it. In chapter 
one, the Padé approach was presented, which allows approximating a curve by using 
moments (Aymptotic Waveform Evaluation). 
 
In this chapter, two examples will be presented to show how this method can be 
employed to obtain a reduced expression in some order. 
 
 
4.6 Miller amplifier with AWE approach 
 
Miller amplifier was presented in chapter 3 to illustrate the proposed method for the 
nodal formulation. Now it will be used to exemplify the approximation given by 
moments. 
 
The expression representing Miller amplifier when using numerical values has a 
numerator of third order and a denominator of fourth order, which is now presented.  
 

(4.5) 
 
In this case, the only symbolic variable to be used will be s, to show how this method 
can be employed. 
 
To compute moments in order Padé approximation can be used, equation 1.10 will be 
here required, this way, first four moments resulting from expression (4.5) are: 
 

 

 

57 



 

 

 
Using these moments, system of equations (1.16) is created, so coefficients named b 
can be obtained. This system of equations is now presented. 

 
 
And solving this last system of equations, values of coefficients for denominator are 
calculated, these are: 

 
 
Using these values and those required moments, coefficients for numerator can be 
found, and they are: 

 

 
Once all the values are ready, the new transfer function representing Miller amplifier is: 

   (4.6)
 

 
Performing a comparison between this last expression and graph given by the HSPICE 
simulation of the circuit, the plot of figure 4.17 is obtained. The phase response 
comparison can be observed in figure 4.18. 
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Figure 4.17 Response given for Miller amplifier with AWE approach 

 
 

 
Figure 4.18 Phase response given for Miller amplifier with AWE approach 
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4.7 Uncompensated amplifier with AWE approach 
 
In figure 4.10 this amplifier was presented, and the expression resulting after its 
analysis. In this case, a numerical expression with only a symbolic variable representing 
it is found, which is: 

(4.7) 
 
As it can be seen, this is a fifth-order expression in both, numerator and denominator; it 
will be reduced to a second order expression, using Padé approximation. 
 
For this purpose we have to calculate the moments, which are: 
 

 

 

 

 

 

Creating system given by expression (1.16) we have: 

 
 
Solving this system, we obtain b coefficients: 

 

 
Which can be used along with appropriated values of moments to calculate a 
coefficients: 
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Then using the a and b coefficients, the order reduced system is: 

  (6.4)
 

And making a comparison between response given by a numerical simulator for this 
amplifier and that obtained from last expression, the plot showed in figure 4.19 is found. 
The phase response comparison for this approach can be seen in figure 4.20. 
 

 
Figure 4.19 AWE approach for uncompensated amplifier 

 

 
Figure 4.20 AWE approach for uncompensated amplifier (phase response) 
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4.8 Conclusion 
 
Several examples of amplifiers where presented along this chapter, used to illustrate 
the method of nodal analysis formulation, and also the way to obtain reduced 
expressions through simplifications. 
 
According to the graphs, it can be seen that there is an agreement in the results 
obtained when using a numerical simulator (Hspice) and when employing the proposed 
formulation to obtain symbolic expressions. 
 
Asymptotic Waveform Evaluation represents a good method when reducing order of 
expressions. However in symbolic analysis it can be used only when dealing with semi-
symbolic expressions, because the process of obtaining moments makes growing the 
length of expressions. 
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Chapter 5.  Symbolic noise analysis 
  
 
 
 
 
 
 
 
 
5.1 Noise analysis in amplifiers 
 
It is important to perform noise analysis in circuits, because noise can determine the 
amplitudes of signals a circuit is able to manage. Noise is also related to parameters 
like power dissipation, speed and linearity [20]. 
 
There are different noise models used in circuit simulators, among those, BSIM models 
are often taken as a reference. In Spice2, for example, there are different models for 
flicker and thermal noise, according to the level. In table 5.1 these models are 
presented [21]. 
 
As it was seen in previous chapters, nullor is useful when modeling MOS transistor, in 
figure 5.1 a model of a transistor is shown, where sources of flicker and thermal noise 
are added to this device, this model can be used to obtain noise characteristics of 
circuits containing MOS transistors [9]. 
 

)(
2__

fI d

)(
2__

fV g

 
Figure 5.1 MOS transistor with associated noise sources 
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Table 5.1 Spice models for noise [22] 

 
 
Using model of figure 5.1, noise analysis will be performed on amplifiers through this 
chapter, obtaining output noise of these circuits. The method employed in the previous 
chapters will be used to obtain the expressions. 
 
 
5.2 Common source amplifier 
 
Let’s start analysis with common source amplifier with resistive load, whose transistor 
representation appears on figure 4.1, and the nullor equivalent using model for noise 
analysis is seen in figure 5.2 

 

 
Figure 5.2 Equivalent for common source amplifier 
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In this case, the noise source for the transistor ( ) can be represented by two 

components, one used for thermal and the second for the flicker noise, meanwhile, the 
resistor includes a source to represent the thermal noise on it. 

_______
2 1MIn

 
Sets ROW and COL corresponding to this circuit are: 
ROW={(1,2)} 
COL ={(2)} 
 
And the table for admittances in this circuit is: 

 

Table A 

Nodes  Admittances 

1 gm 

2 gL  
 

The equation that represents the output noise voltage can be found using ROW, and 
COL sets and admittance table as: 

[gL]2[V1,2]= [ + ]                           
_______

2 1MIn

_______
2 RLIn

 
Then, for this circuit, the output noise voltage per unit bandwidth is: 
 

22
__________

2 41
3
24, L

L
mn R

R
kTg

fCoxWL
KgmkToutV ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⋅⋅+=   (5.1) 

 
Simulating the response of this circuit in Hspice, we get the graph of figure 5.3, where it 
can also be observed the response given by plotting the symbolic expression (5.1) 
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Figure 5.3 Numerical and symbolic expression responses (common source amplifier with resistive load) 

 
 
5.3 Common source amplifier with active load 
 
Now, applying analysis to an amplifier with a transistor as a load (active load), which is 
shown at transistor level on figure 4.5. After substituting the transistors by its equivalent 
with noise sources, circuit of figure 5.4 is obtained. 
 

 
Figure 5.4 Equivalent circuit for common source amplifier, using model of transistor for noise 

 
 
ROW and COL sets should be obtained for this circuit, and these are: 
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ROW: {(1,2,3)} 
COL: {(1,2)} 
 
and the table for admittances is: 
 
Table A 

Nodes  Admittances 

1 gm2 

2 go2+go1 

3 gm1  
 
Filling the admittance matrix and the vectors for voltages and currents, the system 
corresponding to this inverting amplifier is: 

[ + ]=[gm2+go2+go1][V
_______

2 1MIn

_______
2 2MIn 1,2]                                                      

 
By solving this system, the noise at output can be expressed as: 

V1,2 =  =([ + ])/( )  (5.2) 
__________

2 ,outVn

_______
2 1MIn

_______
2 2MIn

22
2

2
2 )1()()( gogogm ++

 
The graphs comparing the response between the symbolic obtained expression and 
Hspice simulation can be seen in the figure 5.5. 
 

 
Figure 5.5 Numerical and symbolic expression responses (common source amplifier with active load) 
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5.4 Non-inverting amplifier 
 
Now a non inverting amplifier is presented. This circuit is shown in figure 2.12. The 
equivalent circuit using nullors is depicted in figure 5.6. 
 

 
Figure 5.6 Equivalent circuit for non inverter amplifier using noise sources 

 

Finding ROW and COL sets for this circuit we get: 
ROW = {(1,2,3),(4,5,6)} 
COL={(2,3,4),(6)} 
 
and the table for admittances is: 
 
Table A 

Nodes  Admittances 

1 gm1 

2 gm2 

3 0 

4 gm3 

5 gmb 

6 go3+gob  
 
So the system of equations representing this circuit is: 
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And solving for voltage at output  , the response is given as: 
_________

6,5,4
2

nV

 

  (5.3) 
Using numerical values for this expression in order a comparison with an Hspice 
simulation of the circuit can be done, the graph of figure 5.7 is obtained. 
 

 
Figure 5.7 Numerical and symbolic expression responses (non-inverting amplifier) 

 
 

5.5 Differential pair 
 
The circuit representing differential pair can be seen in the figure 4.7. Substituting this 
circuit by its equivalent using noise sources of MOS transistor, the circuit of figure 5.8 is 
obtained. 
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Figure 5.8. Equivalent circuit for differential pair using noise sources 

 
ROW and COL sets are for this circuit are given by: 
ROW = {(1,2,3),(4,7,8),(5,6)} 
COL={(2,3,4),(6),(8)} 
 
And the admittances tables are: 
 
Table A Table B 

Nodes  Admittances 

1 

Floating 
admittances 

Nodes 

gm1 

2 gm2 gm1 

3 0 

4 gm2a 

5 gmt 

6 got+gm1+gm1a+go1a 

7 gm1a 

8 go1a+go2a  

(1,6) 

go1a (6,8) 

gm1a (6,7)  

 
The system corresponding to this circuit is now presented: 
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Comparing the response obtained with numerical values for expression 5.4 and the 
simulation performed in Hspice, the graphs of figure 5.9 can be observed: 

 

 
Figure 5.9 Numerical and symbolic expression responses (differential pair amplifier) 

 
 
5.6 Miller amplifier 
 
Miller amplifier is represented in figure 3.1. Meanwhile, the circuit equivalent with the 
noise sources associated to it can be seen in the figure 5.10. 
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Figure 5.10 Equivalent circuit for Miller amplifier 

 
ROW and COL sets are given by: 
ROW = {(1,2,3),(4,5),(6,7,8),(9,10,11)} 
COL={(2,3,7),(5),(8,10),(11)} 
 
And the admittances tables are: 
 
Table A Table B 

Nodes  Admittances 

1 gm1a 

2 gm2a 

3 0 

4 gm5 

5 gm1b+go1b 

6 gm1b 

7 gm2b 

8 go1b+go2b 

9 gm4 

10 gm3 

11 go3+go4  

Floating 
admittances 

Nodes 

gm1a (1,5) 

gm1b (5,6) 

go1b (5,8)  
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The nodal analysis formulation corresponding to this circuit is: 
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And solving this system of equations to obtain the output noise voltage, the resulting 
expression is: 
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 (5.5) 
 
The graph comparing the response given by Hspice and the symbolic expression can 
be seen in the figure 5.11. 
 

 
Figure 5.11 Numerical and symbolic expression responses (Miller amplifier) 
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5.7 Uncompensated amplifier 
 
The circuit corresponding to this amplifier can be observed in figure 4.10, the equivalent 
circuit with nullors and the associated noise sources appears in figure 5.12. 

 
ROW and COL sets are given by: 
ROW = {(1,2,3),(4,5,8),(6,7),(9,10,11),(13,14)} 
COL={(2,3,4),(6),(8,9),(11,12),(14)} 
 
And the admittances tables are: 
Table A Table B 

Nodes  Admittances 

1 gm1 

2 0 

3 gm3 

4 gm4 

5 gm2 

6 gm1+gm2+go2 

7 gm5 

8 

Floating 
admittances 

Nodes 

gm1 (1,6) 

gm2 (5,6) 

go2 (6,8) 

gm8 (12,14)  

go2+go4 

9 gm6 

10 gm7 

11 go6+go7 

12 gm8 

13 gm9 

14 go8+go9  
 
The system of equations corresponding to this circuit is: 
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By solving this system of equations for output voltage, the expression is: 
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Figure 5.12 Equivalent circuit for uncompensated amplifier using noise sources 

 
The graph in figure 5.13 corresponds to the response given in Hspice and the plot 
corresponding to expression 5.6. 

75 



 
Figure 5.13 Numerical and symbolic expression responses (uncompensated amplifier) 

 
 
5.8 Conclusion 
 
There exist different models used to represent noise in circuits, in this chapter; a model 
based on nullors to represent noise in MOS transistor was presented. 
 
The noise-based model for MOS transistor was substituted in amplifier circuits, so a 
noise at output expression could be found. 
 
It was observed that the plots are in a good agreement with the graph obtained with a 
numerical simulation. So it can be said that the symbolic expressions representing 
noise at output of the circuit are correct.    
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General conclusions 
 
In the first chapter there were presented different methods that have been used to 
obtain symbolic expressions of circuits, those methods include graph, flowchart and 
analytical methods. In that chapter it was also introduced the topic concerning to 
asymptotic waveform evaluation, which allows, with the use of moments reducing the 
order of expressions.  
 
In first chapter, there was a briefly introduction to nullor concept, but it was in the 
second chapter where this element was considered to model different active devices, 
such the opamp, ota or current conveyors, but most importantly the MOS transistor, 
which can have different representations according to the necessary application.   
 
It was in second chapter, where a methodology to perform nodal analysis was 
presented, allowing the substitution of MOS transistors by the nullor equivalents and 
then performing pure nodal analysis, taking advantage of the reduction of order of 
matrices due to the properties of nullors. A circuit was presented in this chapter to 
illustrate the way an amplifier can be treated by using the mentioned methodology. 
 
In the third chapter, some techniques were introduced, which can be used to perform 
simplification of symbolic expressions before they are created, during the process of 
formulation or after it. Most of these techniques are based on heuristics, which are the 
result of knowledge on circuit behavior under different conditions, such biasing, position 
of transistor in the circuit or region of operation of MOS transistor. Making use of such 
techniques allows the reduction of symbolic expressions and then obtaining 
expressions easier to be handled, as it was shown with the use of a circuit as an 
illustrative example in this chapter. With the use of a numerical simulator and the 
agreement presented with the expressions obtained through the given methodology, it 
could be appreciated that the result obtained through symbolic analysis is correct. 
 
In the fourth chapter, several examples of amplifiers were presented, varying from a 
small circuit to a larger one, where it could be appreciated the usefulness of neglecting 
some elements to create a reduced expression having the result an acceptable 
behavior compared to the response given by a numerical simulator. 
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In this chapter, two examples using Padé approach were analyzed, it was seen the 
usefulness of this technique when dealing only with a symbolic variable, because if this 
methodology is employed having a semi-symbolic or fully symbolic expression, it leads 
to an exponential grow of symbolic terms making the result very difficult to be 
interpreted or handle. 
 
In last chapter of this Thesis, the already given methodology was employed to obtain 
the output noise of the amplifiers being analyzed throughout this work. The obtained 
result was possible due to the employment of an adequate model of MOS transistor 
with the appropriated noise sources attached to it. 
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Appendix 
 
Algorithm implementation 
 
To employ the method given in chapter two to create the system of equations 
representing nodal analysis i=Yv, it can be done via a computational implementation, 
taken into account the steps already presented. To observe how this algorithm should 
be implemented, a flow chart is now depicted, in which the necessary steps to obtain 
the symbolic expressions are presented. 
 

Begin

Read data 
from netlist 

file

Create data structure and new netlist including 
new elements

Order and enumerate nodes of new netlist

Create tables of admittances

Create ROW set, through the elimination of 
grounded nullators, and the association of  

virtually connected ones.

Create COL set, through the elimination of 
grounded norators, and the association of 

virtually connected ones.

Create Y matrix and i and v vectors

Solve the 
system and 

present 
results

Finish  

83 



The algorithm is implemented using Maple, because it can deal directly with symbolic 
expressions. 
 
As it was written down, for the first step of the algorithm, it is necessary to read data, in 
this case, the elements of the circuit are read from a netlist with .sp or .cir extension, 
which are files used for Spice simulations. 
 
In second step of algorithm, a new netlist is created, where the nullor model of 
transistors and independent voltage sources are used, also, the dc voltage sources are 
grounded. 
 
Parting from the new netlist, composed of nullors (norators, nullators) and any other 
passive device, each of these elements is set in a structure where the nodes of each of 
these elements, along with their value are listed. These structures will allow the correct 
management of elements, so they could be ordered in tables for admittances and in the 
case of nullors, they could be used to create ROW and COL sets. 
 
For the third step of flow chart, once the data structures are ready, in the structure 
corresponding to admittances, it should be found which of the elements have a 
connection to datum node and any other node within the circuit, to create table A, 
where elements connected to each of the nodes of the circuit are enumerated. 
 
Also in this step, elements connected between two nodes should be found, to create 
table B, corresponding to floating admittances. 
 
For the next step, in the structure of nullators, it ought to be found which of these 
elements are connected to ground, in order they could be eliminated. Then a cycle 
should be implemented to look for nullators with a common connection, so they could 
be grouped to form COL set. 
 
Almost the same should be done with norators, it should be found which of them are 
grounded connected to discard them, and those virtually connected should be together 
to create ROW set. 
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Once the ROW and COL sets have been created, perform a Cartesian product between 
these two sets, in order Y matrix can be formed. Also form v and i vectors, to have the 
i=Yv system complete. 
 
Then, solve the system for the required parameter and present the results. 
 
 
Software in Maple 
 
To exemplify the software developed to obtain symbolic expressions, some fragments 
of Maple code will be showed in this section. 
 
 
File reading and creation of data structure 

 
 
What we can see in this code, is how to read a file, using command readline, employing 
this command, each line within the file is read, and it is interrupted when the line reads 
a “.END” inside the file. 
 
It can also be seen how to form the data structure that will allow the creation of the new 
netlist, it is done by creating a structure for each of the different elements of the original 
circuit, that is, resistors, capacitors, transistors, sources, etc.  In the code presented, we 
see how resistor structure is created, that is, each element of the circuit is listed into a 
corresponding structure where similar elements are grouped, each having an index, the 
associated nodes and numerical values. 
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For the case of non NA compatible elements, they are substituted by their equivalents 
using nullors, and these new elements are used in the new netlist, including the addition 
of new nodes resulting of the substitution of nullor equivalents. 
 
Also in the new netlist, elements that were connected originally to a DC voltage source 
are grounded, so it can be seen which of those can be neglected (in case of nullators 
and norators).   
 
Once the new netlist has been created, the different nodes of it are sorted, because 
they will be used as indexes for ROW and COL sets and taken as a reference for 
admittance tables. In this case, a fragment of the code for sorting the nodes is 
presented. 

 
 
Now the tables for admittances should be created, and this is done by checking the 
node connections of each of these elements, to know whether they are connected to 
ground or between two nodes (floating admittances) 
 
A piece of code where it is verified which admittances are connected to each node can 
here be seen. 

 
 
In the case of enumeration of floating admittances, the code is here presented. 
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For the creation of COL and ROW sets, it should be verified which nodes of nullators 
and norators have a terminal connected to ground, so they could be neglected, it also 
should be verified which of these elements are sharing a node, so they can be set 
together in sets corresponding to column and row of i=Yv system. 
 
A fragment of the corresponding code can be seen now. First, the elimination of 
grounded nodes is presented. 

 
 
Now the union of nullators is presented, at least a part of the entire procedure to 
perform this action. 
 

 
 

 
The same kind of procedure is performed for norators. 
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Once sets ROW and COL have been created, it is now possible to do Cartesian product 
to fill Y matrix. Cartesian product is now presented. 
 

 
To fill the admittance matrix, these procedures are followed: 
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Then the vectors for current sources and voltages (variables) are created, which can be 
seen next. 

 
 

 
 
Finally, the solution for the system should be found, which is realized with this 
command. 
 

 
 
Then the desired expression is found among the solution given by linsolve command 
results. 
 
The same procedure as the one presented in this appendix should be followed to 
implement an algorithm to obtain output noise of circuits. 
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