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Abstract

The radar signal processing for sea navigation environments is useful for target de-

tection and target localization, because a response in short time is requiered. The

research on this area has been focused on variants of Constant False Alarm Rate

(CFAR) detectors and sea clutter modeling. CFAR detectors are used in digital sig-

nal processing applications to extract targets from background in noisy environments.

Others examples of applications are: image processing, medical engineering, power

quality analysis, features detection in satellite images, Pseudo-Noise (PN) code detec-

tors, among others. This thesis presents a hardware architecture that implements six

variants of the CFAR detector based on linear and non-linear operations for radar ap-

plications and, it details the selection of these six variants and its parameter selection.

Since some implemented CFAR detectors require sorting, a linear sorter based on a

First In First Out (FIFO) schema is used. This sorter is capable of discarding the oldest

datum and inserting the incoming data while keeping the rest of the data sorted in a

single clock cycle. The sorter is composed of identical processing elements, thus it

can be easily adapted to any data lengths, according to the specific application needs.

This FIFO sorting process is described by four different parallel functions that exploit

the natural hardware parallelism.

The proposed CFAR hardware architecture can be used as a specialized module

or as a co-processor for Software Defined Radar (SDR) applications. The linear sorter

can be used as a coprocessor or as a module in specialized architectures that contin-

uously require to process data for non-linear filters based on order statistics.
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The results of implementing the CFAR hardware architecture on a Field Programmable

Gate Array (FPGA) are presented, discussed and compared against other works. Also,

results of implementing the linear sorter on a FPGA are presented and compared

against other reported hardware based sorters. Scalability results for several sorted

elements with different bit widths are also presented.



Resumen

El procesamiento de señales de radar para entornos de navegación marítima, es útil

para la detección y localización de blancos, donde se requiere un tiempo de respuesta

en un lapso corto de tiempo. La investigación en el área de detección de blancos

en señales de radar, se ha enfocado a la búsqueda de variantes del detector CFAR

(Constant False Alarm Rate) y al modelado del ruido marítimo, obteniendo buenos

resultados teóricos. Los detectores CFAR son usados en el procesamiento digital de

señales, con el fin de detectar blancos en entornos marítimos, donde las condiciones

ambientales existentes representan ruido añadido a la señal de interés. Sin embargo,

los detectores CFAR también son usados en aplicaciones de procesamiento de imá-

genes, ingeniería médica, análisis de calidad de potencia, detección de características

en imágenes satelitales, detectores de códigos PN (Pseudo-Noise), entre otras aplica-

ciones. Esta tesis presenta una arquitectura hardware que implementa seis variantes

del detector CFAR basados en operaciones lineales y no lineales, además, detalla la

selección de éstas seis variantes y la selección de sus parámetros. Ya que algunos

detectores CFAR requieren ordenamiento, es usado un ordenador lineal basado en un

esquema FIFO (First In First Out). Este ordenador es capaz de mantener una serie

de datos ordenados, descartando el dato más antiguo e insertando un nuevo valor

en su lugar correspondiente; realizando todas estas operaciones en un solo ciclo de

reloj. El ordenador puede ser adaptado a cualquier longitud de datos, de acuerdo a las

necesidades de la aplicación. Este ordenador está compuesto de elementos proce-

sadores idénticos, cuyo funcionamiento es descrito por cuatro funciones concurrentes.
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La arquitectura hardware CFAR propuesta puede ser usada como un modulo es-

pecializado o como un coprocesador para aplicaciones de Software Defined Radar

(SDR). Por otro lado, el ordenador lineal puede ser usado como un coprocesador o

como un modulo especializado en diseños que requieran procesar datos de manera

continua o para filtros no lineales basados en estadísticas de orden.

Los resultados de la implementación de la arquitectura hardware CFAR propuesta

y del ordenador lineal, ambos funcionando en un FPGA (Field Programmable Gate Ar-

ray) son reportados, discutidos y comparados contra otros trabajos similares. También,

resultados de escalabilidad para el ordenador para diferentes tamaños de palabras y

cantidad de elementos ordenados son presentados.
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Chapter 1

Introduction

This dissertation presents the design, implementation and validation on a Field Pro-

grammable Gate Array (FPGA) of a versatile architecture for some linear and nonlinear

Constant False Alarm Rate (CFAR) detectors. These CFAR detectors are used in

digital signal processing applications to extract targets from background in noisy envi-

ronments, e.g. target detection in radar environments, image processing, medical en-

gineering, power quality analysis, features detection in satellite images, Pseudo-Noise

(PN) code detectors and Code Division Multiple Access (CDMA) wireless networks.

Although there are multiple CFAR detector applications, the investigation and this dis-

sertation are focused on radar topics.

1.1 Problem Approach

Navigation radars simplify the navigation in maritime environments. Unfortunately the

weather conditions (clutter), thermal noise from radar devices, pulse jamming or other

undesired echo received by the radar represent a problem because they add noise to

the target signal. The problem of detecting these target signals in background noise of

unknown statistics is also a common one in other sensor systems such as air radars

and sonars.

1



2 CHAPTER 1. INTRODUCTION

Adaptive digital signal processing techniques are often used to remove noise and to

enhance the detectability of targets in many situations. It is important for signal pro-

cessing systems to operate in non-stationary background noise environments with a

predetermined constant level of performance i.e., in signal processing terms, the ob-

jective is to maintain a low constant false alarm rate. A possible solution that can be

used to overcome the problem of noise added to the target signal is the CFAR detector,

which sets a threshold adaptively, based on local information of total noise power. The

threshold in a CFAR detector is set on a cell by cell basis, using estimated noise power

by processing a group of reference cells surrounding the cell under investigation [1, 2].

There are various CFAR techniques proposed in the radar literature to deal with differ-

ent problems present in radar applications. These techniques require linear operations

(such as getting the average, the major or minor of a set of values) or nonlinear oper-

ations like sorting and selecting a value before performing a linear operation. These

different techniques have been developed in order to deal with two situations that had

required careful investigation. These problems are presented in regions of clutter tran-

sitions and multiple target situations. The first situation occurs when the total noise

power received within a single reference window changes abruptly, leading to exces-

sive false alarm or target masking. The second situation is encountered when there are

two or more closely spaced targets in the reference cells, leading the CFAR detector

to report only the strongest of the targets [2].

These situations mentioned in the literature shown that although the theoretical aspects

of CFAR detectors are very advanced [2, 3, 4, 5, 6], there are few practical digital im-

plementations. Traditionally, analog implementations have been used in radar systems

for several years. In recent times, developments in programmable logic have made

practical to explore digital implementations of CFAR and other algorithms to support

the Software Defined Radar (SDR) paradigm. SDR systems can be implemented us-

ing programmable logic to accommodate various radar sensors for different detection

conditions. This means they can be changed in run-time either by control of stored

software or by downloading new functions [7, 8]. Using a configurable architecture im-
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plemented on an FPGA, is an alternative to avoid the functional-fixed hardware since

it allows the modification of certain parameters of the CFAR detectors.

Using a configurable architecture helps to meet the real-time target detection require-

ment and provides SDR support. This real-time performance of adaptive digital signal

processing algorithms is not achieved by general purpose processors or digital signal

processors (DSPs) due to the high computational load of these digital processing algo-

rithms. Both, general purpose processors and DSP do not meet the high computational

requirements involved in radar signal processing chain because they are exceeded by

the intrinsic requirements of the CFAR detectors. The intensive computational require-

ments due to the high data rate in radar signal processing cannot be met only by tech-

nology advances i.e., smaller transistor area and thus speed improvements; but also by

designing specialized architectures based on parallel computing [9]. However, when

selecting some of these detectors to be implemented comes up the question: What

detector should be selected?. Until now, there is not an optimum detector capable of

dealing with the different situations explained above. A CFAR detector has a better per-

formance for certain situation, meanwhile for other different situation a distinct CFAR

detector has a better performance that the previous one. The CFAR performance is

also affected by changing some of its characteristics like the false alarm desired. For

these reasons, having a flexible CFAR detector implemented on a configurable archi-

tecture, capable of changing some of its characteristic or even changing the algorithm

in run-time is an alternative to deal with different situations, providing real-time target

detection and SDR support.

1.2 Objective

1.2.1 Main Objective

As a CFAR detector that can be considered optimal under any environmental circum-

stances has not been proposed yet, the objective of this research work is to design and

implement a hardware architecture for different CFAR detectors, able of modify some
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of its parameters providing robustness to the target detection process, and being suit-

able to be implemented in SDR systems. The performance of the resulting architecture

must meet the high data rate needed in the radar signal processing chain.

1.2.2 Secondary Objectives

• Design an architecture that uses few FPGA area resources for the CFAR detec-

tors implemented.

• Select or design a sorting scheme for nonlinear detectors.

• Analyze the trade-off of the CFAR detectors, in order to help in the selection for

being implemented on a hardware architecture.

1.3 Methodology

The following is an enumeration of the steps needed to accomplish the goals and to

solve the problem:

1. For the developing of this investigation it was needed to understand radar basics.

2. Search and select linear and nonlinear CFAR detectors for being implemented

as well as to understand the principal CFAR terms.

3. Select the most commonly used CFAR detectors and those whose characteristics

were similar for being implemented.

4. Search in the literature a sorting hardware schema for the nonlinear detectors,

providing some ideas for the design of a custom sorting schema.

5. Design and test the CFAR detector architecture in basis on the custom sorter

schema designed.

6. Test the CFAR detector architecture for several configurations used in radar ap-

plications and test the sorting schema for various scalability configurations.
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1.4 Thesis Overview

The rest of the dissertation is organized as follows:

• Chapter 2 provides a theoretical fundament introduction to radar concepts as

well as its functionality principles. The target detection process, CFAR linear and

CFAR nonlinear detectors are explained.

• Chapter 3 gives an overview of CFAR theoretical works and their implementa-

tions on systolic and specialized architectures. Also, the hardware sorters avail-

able in the literature are reviewed.

• Chapter 4 explains the proposed CFAR hardware architecture and its specifica-

tions according to the radar requirements. Also, the sorter schema designed as

an algorithm with some functionality examples is explained.

• Chapter 5 presents the sorter scalability synthesis and performance results. The

CFAR detector synthesis results and its general performance are presented too.

• Chapter 6 summarizes the thesis and the conclusion and future work are pre-

sented.
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Chapter 2

Theoretical Aspects

New radar techniques and applications have fueled the continuous growth of radar

since its conception in 1930. During the World War II, countries like United States,

United Kingdom, Germany, Soviet Union, France, Italy, Japan and Netherlands led the

radar development. In the following years radar development was mainly concentrated

on aspects that were not completed during the war. Among these developments are

high-power stable amplifiers, Moving Target Indicator (MTI), pulse compression, Syn-

thetic Aperture Radar (SAR), cognitive radar and SDR systems.

2.1 Radar General Aspects

The radar (acronym for Radio Detection And Ranging) systems use electromagnetic

waves for detection and location of reflecting objects such as aircrafts, ships, space-

craft, vehicles, people, weather formation, and terrain. In the case of moving objects

it helps to identify their distance, altitude, direction and/or speed. The radar operates

radiating energy into space and detecting the echo signal reflected from an object. Al-

though the echo is usually very weak, it can be amplified. The reflected energy that

is returned to the radar not only indicates the presence of a target, but by comparing

the received echo signal, with the signal that was transmitted, its location can be deter-

mined. Radar can perform its function at long or short distances and under conditions

impervious to optical and infrared sensors [1].

7
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The basic principle of radar is illustrated in figure 2.1. A transmitter generates an elec-

tromagnetic signal that is radiated to the environment by an antenna. A portion of

the energy of this signal is intercepted by a target and reradiated in many directions.

Some of the reflected energy, that is directed toward the radar, is received by the same

antenna and it is sent to the receiver. At the receptor, the electromagnetic signal is

digitized and raw data are obtained which are ready to be processed. These data are

processed to detect the presence of a target and determine its location. A single an-

tenna is usually used on the time-shared basis for both transmitting and receiving when

the radar waveform is a repetitive series of pulses.

Figure 2.1: Radar signal processing system.

In order to understand the main radar characteristics, a brief introduction to these con-

cepts is needed.

Radar Waveforms

Radar systems are normally divided into operational categories based on energy trans-

mission methods: pulse method, continuous wave method, and frequency modulation

method. The pulse method is the most common for transmitting radar energy. The

other two methods are used in special applications.
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Continuous wave radar uses the Doppler effect to detect the presence or speed of

an object moving toward or away from the radar. It is used by fire control systems to

track fast moving targets at close range. In frequency modulated radar, the energy is

transmitted as radio frequency waves that continuously vary, increasing and decreasing

from a fixed reference frequency. It is used in aircraft altimeters that gives a continuous

reading of the altitude above the earth. Depending on the pulsed radar, the energy

transmitted might vary from less than 1 microsecond to 200 microseconds. The time

interval between transmission and reception is computed and converted into a visual

indication of range in distance. This kind of radars is widely used in the navy [1].

Carrier Frequency

The carrier frequency is the frequency at which the radio-frequency energy is gener-

ated. The main factors influencing the selection of the carrier frequency are the de-

sired directivity and the generation and reception of the necessary microwave energy.

The higher the carrier frequency, the shorter the wavelength and hence the smaller

antenna required. The problem of generating and amplifying reasonable amounts of

radio-frequency energy at extremely high frequencies is complicated by the physical

elements.

During the World War II, letter codes such as S, X, and L, were used to designate the

distinct frequency bands used. The original purpose was to maintain military secrecy;

but the letter designations were continued after the war as a convenient means to

readily denote the region of the spectrum at which the radar operates. For example,

letters S, X, and L denote the frequency ranges: 2-4 GHz, 8-12 GHz and 1-2 GHz

respectively [10].

Range to a Target

The range, or distance, to a target is found by measuring the time the radar signal

takes to travel to the target and turn back to the radar, as shown in figure 2.1. Although
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target location in angle, the target’s velocity and the target nature can also be found

by the radar signal, the measurement of range is still one of its most important func-

tions. There are no competitive techniques or systems that can accurately measure

long ranges in both clear and adverse weather as well as can radar systems [1].

The range to a target can be determined by the time TR it takes the radar signal to

travel to the target and goes back. Electromagnetic energy in free space travels with

the speed of light, c = 3 x 108 m/s. Thus the time for the signal to travel to a target

located at a range R and return back to the radar is 2R/c. The range to a target is then:

R =
cTR

2
(2.1)

Maximum Unambiguous Range

Once the signal is radiated into space by a radar, sufficient time must elapse to allow

all echo signals to return to the radar before the next pulse is transmitted. The rate at

which pulses must be transmitted, is determined by the longest range at which targets

are expected. If the time between pulses Tp is too short, an echo signal from a long-

range target might arrive after the transmission of the next pulse and be mistakenly

associated with that pulse rather than the current pulse transmitted earlier. This can

result in an incorrect and ambiguous measurement of the range. Echoes that arrive

after the transmission of the second pulse are called second-time-around echoes (or

multiple-time-around echoes). Such an echo would appear to be at a closer range

than the actual one, and its range measurement could be misleading if it were not

known to be a second-time-around echo [1]. The range beyond which targets appear

as second-time-around echo is the maximum range, Run, and is given by:

Run =
cTp

2
=

c

2fp
(2.2)

where Tp is the pulse repetition period = 1/fp and fp is pulse repetition frequency (PRF),

usually given in Hertz or pulses per second.
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Pulse Repetition Frequency

The rotation of a radar antenna through 360o lasts some seconds. During this rotation

time several hundred pulses are emitted. The pulse repetition frequency is defined as

the number of pulses transmitted per second. It is necessary that the transmitted pulse

must be separated by long non-transmitting time periods, allowing the pulse to travel

to the target and return as a reflected echo, observing the maximum unambiguous

range. Otherwise, transmission would occur during reception of the reflected echo of

the preceding pulse, meaning multiple-time-around-echoes. With the antenna being

rotated, the beam of energy strikes a target for a relatively short time. During this time,

a sufficient number of pulses must be transmitted in order to receive sufficient echoes

to produce the necessary indication on the radarscope. With the antenna rotating

at 15 revolutions per minute (RPM), a radar set having PRF of 800 Hz will produce

approximately 9 pulses for each degree of the antenna rotation [1, 10].

Pulse Length

Pulse length is defined as the duration of the transmitted radar pulse and it is usually

measured in microseconds and denoted by τ . The minimum range at which a target

can be detected is determined largely by the pulse length. If the target is so close to

the transmitter that the echo is returned to the receiver before the transmission stops,

the reception of the echo will be masked by the transmitted pulse. In this case, a

short pulse is attractive since strong transmitter signal is not radiating when the weak

pulse echo signal is being received [1]. Many radar sets are designed for operation

with both short and long pulse length. Many of these radar sets are shifted automati-

cally to the shorter pulse length on selecting the shorter range scales. On other radar

sets, an operator can select the radar pulse length in accordance with the operating

conditions. Radar sets have greater range capabilities while functioning with the longer

pulse length because a greater amount of energy is transmitted in each pulse [10]. Fig-

ure 2.2 shows a pulse waveform example of a pulsed radar that exemplifies the PRF,

pulse length, the radio-frequency energy generated to form the pulse and a target echo.
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Figure 2.2: Radar pulse waveform example.

Range Resolution

Range resolution is a measure of capability of a radar set to detect the separation

between those targets on the same bearing but having small difference in range. This

range resolution R0 is given by:

R0 =
cτ

2
(2.3)

If the leading edge of a pulse strikes the target A at a slightly greater range while the

trailing part of the pulse is still striking a closer target B, the reflected echoes of both

targets will appear as a single elongated image on the radarscope.

There is a relationship among the pulse length, range resolution and detection range.

The maximum detection range is sacrificed by using a shorter pulse length and a better

range accuracy and range resolution are obtained. A long pulse length results in a poor

range accuracy and range resolution, but the detection range is increased [1].

Radar Envelope

The amplitude of the reflected signal echoes is obtained from the target or other objects

as function of the time. This amplitude is proportional to the range to the target. The

mentioned function is known as the radar echoes envelope. This envelope is generated

after a pulse emitted by the radar is sampled. Each sample represents a discrete range
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to a target and it is called range cell while the set of these samples is called a range

silhouette. The minimum amount of range cells depends on the radar range resolution

desired [11]. Figure 2.3 exemplifies a range silhouette.

Figure 2.3: Range Silhouette composed by the radar echoes envelopes

2.1.1 The Simple Form of the Radar Equation

The radar equation relates the range to the characteristics of the transmitter, receiver,

antenna, target, and the environment. It is useful not only for determining the maximum

range at which a particular radar can detect a target, but it can serve as a way for

understanding the factors affecting radar performance. The simple form of the radar

equation expresses the maximum radar range Rmax, it is given by:

Rmax =
[

PtGAeσ

(4π)2Smin

] 1
4

(2.4)

where :
Pt = Transmitted power, W

G = Antenna gain

Ae = Antenna effective aperture, m2

σ = Radar cross section of the target, m2

Smin = Minimum detectable signal, W

The radar cross section is the property of a scattering object, or target, that measures

how detectable an object is with a radar. It represents the magnitude of the echo signal
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returned to the radar by a target. Except for the target’s radar cross section, the other

parameters of the simple form of the radar equation are under the control of the radar

designer. This equation states that if long ranges are desired, the transmitted power

should be large, the radiated energy should be concentrated into a narrow beam (large

transmitting gain), the echo energy should be received by a large antenna aperture

(also synonymous with large gain), and the receiver should be sensitive to weak sig-

nals [1].

Since there are several components that perform different actions in the signal pro-

cessing radar chain, it is necessary to focus only in the target detection process link.

In order to do this, a general block diagram for radar systems is explained.

2.1.2 General Radar Block Diagram

The operation of a pulsed radar may be described with the aid of the block diagram

in figure 2.4, which exemplifies a set of radar components. The radar carrier signal

is produced at low power by the waveform generator, which is the input to the power

amplifier. A pulse modulator turns the transmitter on and off in synchronism with the

input pulse in order to generate the pulse waveform. The amplifier amplifies the origi-

nal signal produced by the waveform generator and this amplified signal is delivered by

the antenna in order to be radiated into space. The duplexer allows a single antenna

to be used on a time-share basis for both transmitting and receiving. The input echo is

received by the low-noise amplifier. The mixer and the local oscillator convert the radio

frequency (RF) signal of the echo to an intermediate frequency (IF) where it is amplified

by the IF amplifier. The IF amplifier is followed by the second detector, whose purpose

is to assist in extracting the signal modulation from the carrier. The combination of the

IF amplifier, second detector and video amplifier act as an envelope detector to pass

the pulse modulation (envelope) and reject the carrier frequency. The combination of

IF amplifier and video amplifier is designed to provide sufficient amplification, or gain,

to raise the level of the input signal to a magnitude where it can be seen on a display,

such as cathode-ray tube (CRT), or to be input to a digital computer for further pro-
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cessing. At the output of the video amplifier, a decision is made whether or not a target

is present. The decision is based on the magnitude of the output of the video amplifier.

This process decision for target detection is made by the CFAR detector. The output

of the CFAR detector is displayed in a PPI, or plan position indicator. The PPI is a

presentation that maps in polar coordinates the location of the target in azimuth and

range [1].

Figure 2.4: Radar block diagram

Although it is not shown in figure 2.4, the pulse integration is one important part in radar

operation. The pulse integration is the process of adding the echo pulses from the tar-

get in order to obtain a greater signal-noise-ratio (SNR) before the detection decision

is made. Many techniques have been considered in the past to provide integration of

pulses. Integration that is performed in the radar receiver before the second detector

is called predetection integration or coherent integration. On the other side, integration

after the second detector is known as postdetection integration of noncoherent integra-

tion.

Once the link where the target detection is performed inside the processing radar chain

(CFAR detector block) has been located, we can focus on the target detection problem

and the CFAR detector.
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2.2 Target Signals Detection

In practice, the simple radar equation form does not adequately predict the range per-

formance of modern radars. It is not unusual to find that when equation 2.4 is used,

the actual range might be only one half that predicted. The failure of the simple form of

the radar equation is due to:

1. The statistical nature of the minimum detectable signal (usually determined by

receiver noise).

2. Fluctuations and uncertainties in the target radar cross section.

3. The losses experienced throughout a radar system.

4. Propagation effects caused by the earth’s surface and atmosphere.

The statistical nature of the receiver noise and the target cross section requires that

the maximum radar range be described probabilistically rather than by a single number.

Thus the specification of range must include the probability that the radar will detect

a specified target at a particular range, and with a specified probability of making a

false detection when no target echo is present. The range of a radar, therefore, will be

a function of the probability of detection, Pd, and the probability of false alarm, Pfa [11].

The prediction of the radar range cannot be performed with arbitrarily high accuracy

because of the uncertainties in many of the parameters that determine the range. Even

if the factor affecting the range could be predicted, the statistical nature of the radar

detection and the variability of the target’s radar cross section and other effects make it

difficult to accurately verify the predicted range. The Neyman-Pearson criterion applied

to the radar envelope with a fixed or adaptive threshold (CFAR detector) are used for

performing the detection of targets in a noisy background [1].
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2.2.1 Neyman-Pearson Criterion

The Neyman-Pearson criterion is used in binary detection problems, also known as

binary hypothesis test, like the radar detection. On this case, there are only two cases

or states: target present and target absent:

• H0 Null hypothesis that refers to only noise echo.

• H1 Alternative hypothesis that refers to noise echo with target echo.

The null and the alternative hypothesis must be tested against the two possible states:

δ0 and δ1 that represent the target absent and target presence respectively. The combi-

nations of the two hypothesis and the two possible states make four possible situations:

1. H0 is true having selected δ0. This combination indicates that there are only

noisy echoes and it has been selected target absent. This means a successful

no detection.

2. H1 is true having selected δ1. This combination indicates that there are noisy

echoes plus a target and it has been selected target presence. This means a

successful detection.

3. H0 is true having selected δ1. This combination indicates that there are only noisy

echoes and it has been selected target presence. This means a false alarm.

4. H1 is true having selected δ0. This combination indicates that there are noisy

echoes plus a target and it has been selected target absent. This means a

missed detection.

The false alarm and missed detection are known as type I error and type II error re-

spectively. In a radar system, it is desirable to avoid type I errors or to keep false alarms

in an acceptable level while maximizing correct detection.

The set of samples from a range silhouette can be grouped in two sample sets: the

data set representing noise echo (H0) and the data set representing the noise echo
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with target echo (H1). From these two data sets, it can be obtained their pdf (probability

density function): f0(x) and f1(x). The pdf f0(x) represents the probability of only noise

echo presence and the pdf f1(x) the probability of noise echo plus target echo (Pd).

Graphically (figure 2.5), these two pdf have an intersection area that represents the

false alarm probability (Pfa). A detection threshold level helps to delimit the false alarm

area. In general, the threshold is set a function of the interference level to control the

number of false alarms [11].

Figure 2.5: Pdf representing the Neyman-Person criterion.

2.2.2 Radar Signals Detection in Noise Presence

The radar detection of echo signal from targets is performed by the Neyman-Pearson

criterion and establishes a threshold at the output of the receiver. If the receiver output

is greater than the established threshold, it is declared a target presence (state δ1);

otherwise it is declared a target absence (state δ0). The noise presence can be caused

by weather conditions (clutter), thermal noise from radar devices, pulse jamming or

interference. If the fixed threshold level is set properly, the receiver output would not

exceed the threshold if only noise is present, but the receiver output would exceed the
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threshold if along with noise, a target is present. If the threshold level were fixed too

low, noise alone might exceed it, situation called false alarm. If the threshold is fixed

too high, only strong target echoes would be able to exceed it and weak target echoes

might be not detected, situation called missed detection. In early radars, the threshold

level was set based on radar operator judgment.

In figure 2.6 there is a range silhouette example of the output of a radar receiver where

the fixed threshold line is represented by the horizontal dashed line and the adaptive

threshold is represented by the dashed-dotted line. For this example, suppose that the

value of the signal at points A and B are targets plus noise and C and D are just noise.

The signal point A is detected correctly by the fixed threshold, while B is not strong

enough to be detected and therefore it is missed. The noise from signal point B is weak

because of the negative noise that was added to the original signal strength. Signal

points C and D are false alarms, and they are increased because of the presence of

positive noise. Signal point B could be detected if the fixed threshold was lower, but

this might increase the false alarms. The selection of a proper fixed threshold is a

compromise that depends upon how important it is to avoid the mistake of failing to

declare a target presence (missed detection) or falsely indicating the presence of a

target when none exists (false alarm). On the other hand, with an adaptive threshold,

the signal points A and B, which exceed the threshold level, can be detected correctly,

while C and D are assumed to be noise because they do not exceed the threshold [1].

In order to maintain the false alarm rate at a constant value, the threshold has to be var-

ied adaptively. This is achieved when the CFAR detector automatically adapts (raise or

reduce) the threshold level, thus avoiding overload of the automatic detection system.

A constant false alarm rate is achieved at the expense of a lower probability detection

of desired targets. Also CFAR produces false echoes when clutter there is nonuni-

form, suppresses nearby targets and decreases the range resolution. The detection

probability and false alarm probability are specified by the system requirements.
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Figure 2.6: Example of a radar receiver range silhouette with fixed and adaptive thresh-

old.

2.3 CFAR Detector

The need for a CFAR detector was recognized when the early automatic detection and

tracking systems were installed as add-ons to existing radar with not moving target in-

dicators (MTI) and poor MTI did not have a good clutter rejection. CFAR is needed for

maintaining operation for automatic detection and tracking systems. If CFAR were not

used in radar, it would cause excessive false alarm due to noise or clutter, decreasing

the automatic detection and tracking system performance.

Several algorithms have been proposed for the CFAR detection module. The most

commonly used CFAR algorithms are cell averaging (CA-CFAR) [12], greatest of (GO-

CFAR) [13], smallest of (SO-CFAR) [14], generalized order statistics cell averaging

(GOSCA-CFAR), generalized order statistics greatest of (GOSGO-CFAR) and gener-

alized order statistics smallest of (GOSSO-CFAR) [5]. Figure 2.7 shows a general block

diagram of a CFAR detector.

The CFAR detector consists of two sliding windows that surround the cell under test.

Both, lagging and leading windows have N = 2n reference cells, M = 2m guard cells and

a cell under test. Each cell stores an input sample and such values are right shifted

when a new sample arrives. The CFAR detector is applied over the sliding window
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Figure 2.7: Generic CFAR Detector.

of P = N+M+1 cells, which represent the sampled data of the discrete ranges, i.e.

the range cells. The spacing between the cells is equal to the radar range resolution

(usually the pulse width). The reference cells are used to compute the Z statistic

meanwhile the guard cells are incorporated in order to avoid interference problems

in the noise estimation. Depending on the technique, the Z statistic computing can

be linear or nonlinear operation. A scaling factor α and the Z statistic are used to

obtain the threshold. The scaling factor depends on the estimation method applied

and the false alarm required according to the application. It is also related to the noise

distribution in the radar environment. The resulting product αZ is directly used as the

threshold value that is compared with the cell under test (CUT), to determine if the CUT

is declared a target. The Neyman-Pearson hypothesis can be modeled by the following

equation:

H1 : y = d + g

H0 : y = g
(2.5)

where H1 and H0 are the target present and target absent of the Neyman-Pearson

hypothesis; d represents the target signal and g the environmental noise component.

The target decision is made according to the criterion represented by:
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e(y) =

⎧⎪⎨
⎪⎩

H1, CUT ≥ αZ

H0, CUT < αZ

(2.6)

If the values of the CUT exceed the αZ statistic, then the target present is declared,

i.e. the CFAR detector outputs 1 if a target is present, otherwise outputs 0:

e(y) =

⎧⎪⎨
⎪⎩

1, CUT ≥ αZ

0, CUT < αZ

(2.7)

The method to obtain the Z statistic from the reference window might be based on

linear or nonlinear operations. When the method is based on linear operations it can

be called a CFAR linear detector, and when it is based on nonlinear operations it can

be called a CFAR nonlinear detector [15]. These different detectors allow to modify

the detection performance according to different environmental situations present in

radars.

2.3.1 Linear Detector

The most common linear detectors are the CA-CFAR, GO-CFAR and SO-CFAR. These

detectors calculate the arithmetic mean of the amplitude contained in the Y1 lagging

cells and Y2 leading cells from the CUT. The CA detector estimates the arithmetic

mean, the GO and SO take the major and minor values of Y1 and Y2, respectively.

Equations 2.8, 2.9, 2.10 summarize these three linear operations for the Z statistic:

Z =
1
2
(Y1 + Y2) (2.8)

Z = max(Y1, Y2) (2.9)

Z = min(Y1, Y2) (2.10)
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These three linear operations are represented in the figure 2.8, which shown how the

Y1 and Y2 obtain the arithmetic mean from the lagging and leading cells.

Figure 2.8: Linear CFAR detectors.

2.3.2 Nonlinear Detector

Several nonlinear detectors are based on order statistics, which consist in arranging in

ascending order the random variables X1, X2, X3, ..., Xn−1, Xn. Therefore the sequence

achieved is:

X(1) ≤ X(2) ≤ X(3) ≤ .... ≤ X(n−1) ≤ X(n) (2.11)

The indexes between parentheses indicate the rank-order number for the X (i). The

idea on the rank-order filters is to select a value X(k), where k ε {1, 2, 3, ... ,n-1, n}

from the sequence in equation 2.11 and then to use this X (k) value as a sample of the

sorted data.

Among the nonlinear detectors that use the rank-order operation are: OSCA-CFAR,

OSGO-CFAR and OSSO-CFAR [4]; and their generalized form called GOSCA-CFAR,

GOSGO-CFAR and GOSSO-CFAR detectors [5]. These order statistic detectors need

to perform a rank-order operation over the leading and lagging reference cells, i.e.

sort the reference cells values and then select the k-th sorted value. The rank-order

parameter k can be deliberately selected among the sorted values. The GOSCA-
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CFAR, GOSGO-CFAR and GOSSO-CFAR detectors, perform the selection of the k-th

(Y(1)) and i-th (Y(2)) sorted value from the leading and lagging cells, respectively. Once

these two values have been selected, the Z statistic is calculated in a similar way as

the linear detectors, as shown in the three following equations:

Z =
1
2
(Y(1) + Y(2)) (2.12)

Z = max(Y(1), Y(2)) (2.13)

Z = min(Y(1), Y(2)) (2.14)

These nonlinear operations are represented in the figure 2.10, which shows how the

Y(1) and Y(2) obtain the k-th and the i-th value from the lagging and leading cells and

then performs the linear operation.

Figure 2.9: Nonlinear CFAR detectors.

The difference between the generalized detectors and the OSCA-CFAR, OSGO-CFAR

and OSSO-CFAR detectors is that laters only perform the selection of the k-th sorted

value from both the leading and lagging cells. Therefore, OSCA-CFAR, OSGO-CFAR

and OSSO-CFAR can be considered a special case of their generalized counterpart

when k = i.
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Other nonlinear detectors found in the radar literature are the order statistic (OS-

CFAR) [3] and trimmed mean (TM-CFAR) [2] detectors. The OS-CFAR detector per-

forms the rank-order operation over all 2n reference cells unlike the generalized detec-

tors that perform a rank-order operation over the lagging cells and other rank-order op-

eration over the leading cells. The Z statistic is only the k-th sorted value (figure 2.10).

Figure 2.10: Order statistic CFAR detector.

The TM-CFAR detector performs more complex operations than the others detectors.

First, it sorts the 2n reference cells, then with the sorted data it discards the T1 greatest

and the T2 smaller cells and the rest of the sorted data within this no discarded range is

added. The statistic Z is formed by averaging the 2n-T1-T2 remaining reference cells.

Equation 2.15 shows how the Z statistic is calculated once the reference cells have

been sorted:

Z =
1

N − T1 − T2

N−T2∑
n=T1+1

X(n) (2.15)

where N = 2n reference cells used in the sorting operation. Figure 2.11 shows the T1

greatest and the T2 smallest reference cells trimmed after the sorting operation.

2.3.3 CFAR Detectors Considerations

There are several problems that must be considered when a CFAR detector is devel-

oped. These problems that have been issue for investigation are: CFAR loss, clutter

edges, multiple targets situations and radar range resolution.
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Figure 2.11: Trimmed mean CFAR detector.

CFAR Loss

The greater the number of reference cells used in CFAR better is the estimate of the

background clutter or noise and the less is the loss in detectability (SNR), i.e. the

greater of reference cells used the detection probability approaches to the optimum

detector based on fixed threshold. However, there is a limit to the number or reference

cells that can be used in practice since the clutter must be relatively homogeneous

over the reference cells. Since there are only a finite number of reference cells, the

estimate of the noise or clutter is not precise and there will be a loss in detectability.

The CFAR loss is defined as the additional SNR needed to obtain the same detection

performance as the associated with the fixed threshold detector where the interference

level is known i.e. the SNR required when the CFAR is employed divided by the SNR

required for the fixed threshold detection. This loss is decreased when the reference

window size is increased and the loss is increased when the Pfa is decreased [1].

Clutter Edges

As the reference cells pass over the leading and lagging cells of a patch of clutter

(clutter transition), not all the reference cells contain clutter; so the threshold will be

lower than when all reference cells contain clutter. False alarms, therefore, can result

at clutter edges. Threshold crossing from the clutter edges can be reduced by summing

the lagging and leading cells separately and using the greater of the two to determine

the threshold, i.e., use a GO-CFAR detector [2].
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Multiple Target Situations

When there are one or more targets within the reference cells along with the primary

target in the CUT, the threshold is raised even in the absence of any clutter, and the

detection of the primary target in the CUT might be suppressed. Order statistics detec-

tors handle the multiple nearby target situations. Similar situations are presented when

targets mask the presence of other targets (mutual target masking) or when extended

targets occupy several resolution cells (self target masking), masking themselves by bi-

asing the threshold level. These situations may be suppressed with the implementation

of guard cells [2].

Range Resolution

Generally, two equal amplitude targets can be resolved if they are separated in range

each 0.8 radar pulses. However, usual CFAR detectors considerably degrade the range

resolution so that two equal targets can be resolved only if they are spaced greater than

2.5 pulse width. One reason for the poor resolution is that the range cells adjacent to

the test cell are not used as part of the reference cells since the target energy in the

test cell spills over to nearby cells and affects the threshold [1].

2.4 Summary

This chapter has covered the main theoretical aspects of radar and target detection.

The radar signal processing chain demands a high computational performance in or-

der to achieve its real-time constraints. The radar equation does not predict the range

performance accurately due to the statistical nature of the radar echoes received and

the uncertainties in many of the radar equation parameters. With the help of CFAR

detectors the detection can be performed.

Although, a CFAR detector that can be considered optimal under any environmental

circumstances has not been designed yet, each one of the presented detectors has

advantages and disadvantages, and may be optimal under particular environmental
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conditions. Furthermore the detection performance is altered by varying the number of

references cells, guard cells, the CFAR detector, the k-th rank-order sample, the trim-

ming values T1 and T2 and the false alarm required (represented by the scaling factor

α) [2]. In order to give robustness to the target detection process in radar applications,

a scheme which supports some of these detectors, and allows changing the param-

eters that alter the detection performance is helpful for adapting the CFAR detector

according to the environmental conditions.

In the next chapter, a review of the related work is presented, including the theoretical

aspects, some implementations of the CFAR detector and, sorting schemes proposed

for performing the rank-order operation in nonlinear detectors.



Chapter 3

Related Work

The radar target detection literature has been mainly focused on theoretical aspects.

Several works have been focused on improvements of performance on target detection,

development of different statistical noise models and CFAR detectors modifications for

different environmental situations. In recent years digital hardware implementations for

CFAR detectors have been suitable for being implemented, in spite of intensive com-

putational and the high data rate requirements in radar signal processing. These digital

implementations have been focused in systolic and specialized architectures since they

meet the intensive radar requirements. This chapter presets the more relevant related

works in both CFAR theoretical and CFAR implementations available in the literature.

Also it covers related works about hardware sorters since sorting is needed in the

CFAR nonlinear detectors implemented, in order to perform the rank-order operation.

3.1 CFAR Detectors

In the radar literature, the CFAR detectors can be found like first order detectors, refer-

ing to linear detectors; and order statistics detectors, refereing to the nonlinear detec-

tors. These detectors have been developed in order to deal with different environmental

conditions and target situations (multiple target situations and clutter transitions), trying

to achieve a better detection performance while maintaining the false alarms in a low

level.

29
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3.1.1 First Order Statistic

The conventional CFAR algorithm is the CA-CFAR detector proposed by Finn and

Johnson in [12] being the first detector proposed in the radar literature. CA-CFAR

detector is the optimum CFAR detector (maximizes detection probability) in a homoge-

neous background when reference cells contain independent and identically distributed

observations governed by an exponential distribution. However, the CA-CFAR detec-

tion performance degrades in multiple target situations and regions of power transi-

tions. Both situations result in an excessive number of false alarms i.e. an inferior

behavior in nonhomogeneous situations [2].

Hansen in [13] proposed the GO-CFAR detector in order to maintain a constant false

alarm rate at clutter edge (regions of power transitions). Some studies have shown that

during clutter power transitions a minor increase of the CFAR loss can be expected in

the false alarm rate in the worst case when the lagging cells contain radar echoes from

clear background (without target) the leading cells contain echoes from high clutter re-

gions. This is simple because the detector includes only the clutter samples present

in the reference cells to estimate the noise power in the worst case [2]. However its

detection performance in multiple target situations is quite poor, suffering mutual target

masking and being incapable of resolving closely spaced targets.

The SO-CFAR detector was introduced by Trunk in [14] trying to prevent the suppres-

sion of closely spaced targets (target masking). This detector resolves the primary

target in multiple target situations when all the interferers are located in either the lead-

ing or lagging cells. However, SO-CFAR has undesired effects when interfering targets

are located in both halves of the reference cells. Also, its detection performance de-

grades if interfering targets are located in both leading and lagging reference cells [2].

An analysis of some CFAR detectors in homogeneous and nonhomogeneous back-

ground is performed by Gandhi and Kassam in [2]. Their work has been taken as

one of the reference works in the CFAR literature due it analyzes the detection perfor-
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mance in multiple target, clutter edges and nonhomogenous situations for five different

detectors: CA-CFAR, GO-CFAR, SO-CFAR, OS-CFAR and TM-CFAR. Referring to the

linear detectors, Gandhi and Kassam conclude that the linear detectors exhibit serious

performance degradation in nonhomogeneous noise background. According to [2], the

false alarm rate increases considerably at clutter transition regions, and target masking

is experienced in multiple target situations when the CA-CFAR detector is used. On

the other hand, the performance of GO-CFAR detector is better in regions of clutter

transitions than the other linear detector analyzed, although its performance in multiple

target situations is poor. Finally, the unique advantage of SO-CFAR detector is when a

cluster of radar targets appears in the reference cells, i.e. a multiple target situation.

3.1.2 Order Statistic

Rohling in [3], proposed the use of order statistics and rank-order operators to improve

the CFAR detection performance in situations where the linear detectors fail. In the

same work, Rohling proposes the OS-CFAR detector which has better performance

specially in cases where more than one target is present within the reference cells or

where there are clutter edges. Also his result shows that window sizes of about N =

24...32 and more are applicable, the k-th value should be greater than N/2, and the

difference N-k should not be less than the double of the target length in the reference

cells in order to avoid two targets from being mutually masked.

Elias-Fusté et al. [4] proposed two modified OS-CFAR detectors that require less pro-

cessing time than the OS-CFAR detector and combine the GO-CFAR and SO-CFAR:

OSGO-CFAR and OSSO-CFAR detectors. The OSGO-CFAR has all the advantages

that OS-CFAR presents, requiring only a half of the OS-CFAR processing time. A

generalization of these detectors are presented by You He in [16]: GOSCA-CFAR,

GOSGO-CFAR and GOSSO-CFAR detectors. The generalized detectors are more ro-

bust than the detectors proposed in [3] and [4] because of the selection of the k-th and

i-th rank-order sample and, because they require a half of the time for performing the

sorting action compared with OS-CFAR. GOSCA-CFAR detector posses the best de-
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tection performance in both homogeneous background and multiple target situations.

The GOSGO-CFAR has the same performance as the OS-CFAR and provides good

transition clutter protection[5]. If the number of interfering targets in the reference cells

is equal to the greatest interfering targets allowed, then the performance of these gen-

eralized processors are better than the OS-CFAR detector.

As mentioned in the previous section, Gandhi and Kassam [2] perform a detection per-

formance analysis of two nonlinear CFAR detectors in multiple target, clutter edges

and nonhomogeneous situations. According to their results, OS-CFAR detector perfor-

mance is relatively unaffected if the clutter area is less than the length of all reference

cells as long as the number of clutter samples present in this reference cells set is

greater than N-k. The OS-CFAR detector can handle until five targets if the k-th sam-

ple is chosen correctly. The TM-CFAR detector has a slightly better performance in

homogeneous background for isolated targets compared with the OS-CFAR detector

and, in nonhomogeneous background only few higher ordered range cells need to be

averaged in order to get a good detection performance. Also, they propose the use

of adaptive versions of OS-CFAR and TM-CFAR called adaptive order statistic AOS-

CFAR and variability trimmed mean VTM-CFAR. This idea is widely developed in [17],

[18], and [19]. These works explore the use of a data-dependent rule for varying the

number of samples that are required for the processing when the VTM-CFAR detector

is used. The AOS-CFAR consists on choosing the k-th sorted value according to the

outcome of a hypothesis test, which attempts to detect presence of a clutter region

within each set of reference cells. Others works have proposed other CFAR detectors

using different techniques:

• Excision (Ex-CFAR) detectors discard the reference cells whose value exceeds

certain threshold.

• Censoring detectors (like TM-CFAR) once sorted the reference cells, they discard

the greatest (or the smallest) sorted values and then perform an operation, like

CMLD (Censored Mean Level Detector) and MX-CMLD (Max Censored Mean

Level Detector).
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• Hybrid approaches that combine one or more traditional CFAR detectors in one

by fusioning their output, or by selecting the most appropriate output, or even with

image processing techniques.

• Other techniques used include Bayesian, Biparametric Gaussian, Hofele and

Weibull statistics, morphological operations, weighted averaging, logarithmic de-

tectors, clutter maps, Ll filters, among others.

3.2 CFAR Hardware Architectures

In the FPGA and radar literature, there are few FPGA architecture implementations,

either based on systolic or specialized architectures, reported for CFAR detectors.

3.2.1 Systolic Architectures

One of the first systolic architectures for CFAR detectors was presented by Hwang and

Ritcey in [20]. In this work, they proposed a systolic array capable of supporting two

order statistics detectors: CMLD and MXCMLD CFAR. The first detector censors the

largest reference samples sorted and then adds the remaining samples, meanwhile the

second one gets the maximum of the sum of the remaining samples from the lagging

and leading cells, after being censored. This systolic architecture is very versatile, and

can accommodate a wide class of CFAR detector due to its nature. A modified OS-

CFAR systolic architecture is presented in [21] by Han. This systolic architecture must

be continuously fed in order to support the real-time processing demand. This architec-

ture has less PEs, less interconnections, less gates and two times higher throughput

than the architecture presented in [20]. Han also proposes a systolic architecture for

the OSGO-CFAR and OSSO-CFAR detectors by slightly modifying the OS-CFAR sys-

tolic architecture. The throughput rate of this architecture is the same as the original

proposed OS-CFAR, using less hardware resources.



34 CHAPTER 3. RELATED WORK

Behar et al. in [22] presented a parallel systolic architecture for a CFAR detector with

adaptive post-detection integration (API). This detector sorts and censors the refer-

ence cells in a similar way as the TM-CFAR detector does. The CFAR detector for

this architecture was developed, analyzed and synthesized in a systolic architecture in

order to detect targets in presence of pulse jamming. This proposed architecture has

a linear structure, specially designed for real-time implementation of this API CFAR

and it uses four sequential blocks of processing for: sorting, censoring, integration and

comparison. These four blocks are constructed by five processing elements, which

perform different logical operations. Other similar works are presented in [23] and [24]

using as basis the work presented in [22] replacing one or two sequential blocks used

in the signal processing. These architectures were targeted for different jamming levels

and background models and they are using the odd-even transportation as a sorting

scheme.

3.2.2 Specialized Architectures

Among the specialized architectures, Torres et al. [9] presented an architecture for CA-

CFAR, GO-CFAR and SO-CFAR detectors. This architecture implements the average

computations with two accumulating processing elements (APE) and a configurable

threshold processing element (CTPE). These APEs compute the sum of their corre-

sponding reference cells (lagging and leading) and the CTPE computes the threshold

operation (cell-averaging, greatest of and smallest of). This architecture uses 12 bits

for data, 32 reference cells, 8 guard cells and the internal temporal data of 18-bits pre-

cision in the accumulator for the worst case, and it has an operation frequency of 120

MHz achieving 840 MOPS (millions of operations per second) on a XC2V250 Virtex-II

FPGA device.

In [25], Wei et al. presented an FPGA implementation of a matched filter with an OS-

CFAR detector, focused on the adaptive pseudo noise (PN) code acquisition. In this

work, the OS-CFAR detector uses the bubble sorting algorithm to find the k-th biggest

sample in the reference cell. This OS-CFAR detector uses 16 bits for data, 16 reference
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cells and none guard cell. The resulting architecture with matched filter and OS-CFAR

detector is implemented on a XCV400E Virtex-E FPGA device with a maximum clock

frequency of 205 MHz. Other specialized architecture of a CA-CFAR detector is pre-

sented in [26]. This architecture is implemented on a XC9600 FPGA device and it was

tested with 8-bits for each of the 16 reference cells. Its implementation consists of a

storage circuit of 17 shift registers of 8-bits each one, two accumulator circuits, eight 8-

bits adders, a multiplier circuit and an 8-bit comparator. Area results and performance

were not reported.

3.2.3 Other Implementations

A patented artificial intelligence system called ES-CFAR (Expert System) was pre-

sented in [27] by the AirForce Research Laboratory in U.S. This system intelligently

senses the clutter environment. By a set of rules along with a voting scheme, this

system selects and combines, by an expert system, the most appropriate CFAR detec-

tor(s) to produce detection decisions that will outperform a single detector. This expert

system is based on five CFAR detectors: CA-CFAR, GO-CFAR, SO-CFAR, OS-CFAR

and TM-CFAR. ES-CFAR can be considered within the knowledge-based radar signal

and data processing paradigm [28].

Other implementation developed by the the AirForce Research Laboratory was pre-

sented in [29]. This work presents the development of a 450-processors, 6-boards

embedded signal processing system that provides 400 MFLOPS (millions of floating

point operations per second) for the radar processing chain. Within this computer the

target detection in a CFAR module achieves 9 MFLOPS.

In [30] it was presented a tool for target detection. This work shows a variation of CA-

CFAR, GO-CFAR and SO-CFAR combining the use of morphological filters (erosion

and dilatation) to improve the detection in PPI radar images. Also this implementation

uses some clutter models (Gausssian, Weibull and K distributions) combined with a

specific CFAR detector in order to obtain the minimum probability of false alarms com-
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bined with the maximum probability of detection. The statistic estimation is performed

by determining the correlation coefficient, mean and standard deviation of the range

cells.

Finally, in [31] was proposed an architecture that consists in multiple SIMD (single

instruction multiple data) modules in order to achieve the high demands of the radar

signal processing chain. This architecture makes all the computations needed for the

radar beam forming, radar pulse compression, Doppler filters, envelope detection and

CFAR detection. The CFAR module can work on one, two, three or more dimensions,

requiring a throughput of 20 MOPS/PE with a bandwidth of 256 MB/s.

3.3 Hardware Sorters

Sorting is one of the most important operations performed by computers. Given their

practical importance, algorithms for sorting data have been the focus of extensive re-

search, resulting on several software algorithms proposed to address specific prob-

lems [32]. For certain applications, like median filters, Asynchronous Transfer Mode

(ATM) switching, order statistics filtering and, in general, continuous data processing,

sometimes software only implementations of sorting algorithms do not achieve the re-

quired processing speed [33].

In order to speed up the sorting operation, some custom hardware architectures have

came up. These hardware sorters can be grouped into two kinds of architectures: sort-

ing networks, including some systolic architectures, and linear arrays. The main idea

behind sorting networks is to sort a block of data passing through a network of PE

connected in such way that each datum takes its corresponding place. Linear sorters

are based on the idea that data to be sorted come in a continuous stream one datum at

a time; each datum is inserted into its corresponding place in a register group (sorting

array) at the same time that one of the stored datum is deleted.
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Figure 3.1.a represents the sorting network idea, where data are firstly stored and then

sorted by a sorting network in a parallel fashion. The gray blocks represent the first and

last stored data. The first stored datum is the first element leaving the file register, i.e.

like in a First In First Out (FIFO) scheme. Figure 3.1.b represents the linear sorter idea,

where the stored data are always sorted, thus the first and last datum are merged inside

of the sorting array. On these sorters, a deleting mechanism must be used in order to

free space for incoming data. Some examples of these mechanisms are deleting the

oldest datum, selecting one datum or deleting the greatest or the smallest one.

Figure 3.1: Sorting network (a) and Linear sorter (b) architectures.

3.3.1 Network Sorters

The sorting networks are based on a network constituted by several PEs, which con-

sists on a comparator, located in the nodes of the network. The goal of each PE is to

sort two input data in ascending (or descending) order by placing the larger (or smaller)

datum in a specific output. This technique supposes that a block of data is available for

being sorted in parallel fashion. Sorter networks can be pipelined in order to reduce

their critical path and latency, thus resulting in a better throughput. The disadvantage

of this approach is that the network can potentially require a large number of PEs and,
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depending on the algorithm, several clock cycles for sorting the whole block of data.

On the other hand, if one input datum changes, the whole block of data must be re-

sorted. The efficiency of these sorters can be measured by its total size (PEs amount)

and by its depth (maximum number of PE from input to output). Both metrics are highly

dependent on the number of data the architecture can sort. Figure 3.2 shows an eight

elements input sorting network example, of 24 PEs size and depth of 6. Each PE is

represented by two interconnected nodes.

Figure 3.2: Sorting Network Example.

3.3.2 Network Sorters Related Work

In [34], Batcher was the first to introduce the concept of sorting networks. In his work he

presented the odd-even merging and bitonic networks. The odd-even merging network

consists of two networks that sort all the data contained in odd and even positions

separately, applying an interactive rule. The bitonic network works, similarly to the

odd-even, merging two monotonic sequences, one in ascending order and the other in

descending order. These two monotonic sequences are built by sorting the input data

in ascending and descending lists, and merging them. The nodes of both networks
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are built using PEs. The odd-even network can only sort an N fixed number of data. If

N changes, the network must be rearranged. For this reason Kuo and Huang in [35]

proposed a modification of the odd-even sorting network. They proposed a network

that can sort any M input data smaller than N, which is the maximum number of data

that the network can sort.

In [36] Tabrizi and Bagherzadeh use a different sorting scheme: basically, they use

a tree as a network implemented in an Application-Specific Integrated Circuit (ASIC),

where the leaves of the tree are the inputs and the root node is the output. This scheme

works in a PISO (Parallel Input-Serial Output) fashion, thus requiring several clock cy-

cles to flush the tree after the beginning of the process.

In [37] Hirschil and Yaroslavsky three different sorting architectures were proposed.

One of these architectures does not work as a sorting network neither it sorts the

elements; instead it ranks the input data. This Parallel Rank Computer (PRC) receives,

in a parallel fashion, a vector of N numbers and produces their ranks in two clock

cycles. The rank of each number is calculated by comparing every pair of numbers

and summing the comparison values.

3.3.3 Linear Sorters

Linear sorters are useful when the sorting data streams and where sorting operation

must be carried out after each input datum is received. Linear sorters are composed of

a group of cells, each of them capable of deciding if an internal register should hold its

current value or update it, either using the input datum or a datum stored in adjacent

cells. The advantages of this approach are that it uses fewer area resources and data

are always sorted. Figure 3.3 shows a linear sorter example, which inserts the input

datum in its corresponding place and, as its deleting mechanism discards the greatest

datum stored.
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Figure 3.3: Linear Sorter Example.

3.3.4 Linear Sorters Related Work

The other two sorting architectures proposed in [37] are based on shift register ar-

chitectures operating in a FIFO scheme. One of these architectures, called Serial

Rank Computer (SRC), includes two attributes: value and rank. The incoming data

are arranged according to their arrival sequence accompanying each number with its

calculated rank. The other architecture, a Serial FIFO Sorter (SFS), stores an input

vector of data in the order that it is received. This scheme is different from regular

FIFO schemes as it keeps the data ordered by magnitude, still data leave the sorter in

a FIFO fashion.

A Very-large-scale integration (VLSI) sorter implementation was presented in [33] by

Colavita et al. They proposed a shift register architecture based on a Basic Sorting

Unit (BSU) which contains two registers to store the data and an associated tag, a

comparator, and a small logic circuit. This implementation is able to continuously pro-

cess an input data stream while producing a sorted output in the same way. The data

are sorted according to the tags preserving the order of words with identical tags.
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Chin-Sheng and Bin-Da Liu in [38] proposed a sorter that uses a column of N PE to

progressively sort N data. These PE are composed of two registers, and a Compare-

Swap Cell (CS), which is built by a comparator and a swap unit and they are layout in

cascade so their outputs are attached to the inputs of their successors. The idea of

the PE is to allow the previous data being held by the PE or shifted to the successor

PE at each clock cycle. In [39], Lluís Ribas et al. proposed a sorting array (linear

shifter) built on data-slice cells. This scheme requires minimal control logic and it is

easily expandable. The idea of this sorter is based on the insertion sorting algorithm,

which for every unsorted datum, looks for the right position in the sorted list in order to

perform the insertion of the unsorted datum into its corresponding place. This archi-

tecture only shifts data to one direction, discarding the smallest datum. The data-slice

cell is composed of a multiplexer, a register and a comparator, resulting in a compact

and simple architecture. A similar sorting scheme was proposed in [40], where data

contained in the sorting array can be left o right shifted depending if the datum is going

to be inserted or deleted. Both, the datum to be inserted and the one to be deleted are

specificated by an input signal. To perform the inserting or deleting process, the cell

performs four basic operations: shift right, shift left, load and initialize.

3.4 Summary

This chapter has covered the main theoretical related works about CFAR detectors.

These detectors deal with different situations like clutter transitions, multiple target sit-

uations, homogeneous or nonhomogeneous background. Even though in the literature

can be found more than 30 different detectors, only a few ones are used due to its sim-

plicity when they are implemented in analogical systems. The most common detectors

are the linear detectors because they only require computing an average, which does

not require a lot of time. On the other hand, although nonlinear detectors, like the order

statistics, require more processing time because they perform a sorting operation; they

have a better performance than linear detectors.
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In the literature reviewed, there are few CFAR detectors implementations reported,

and almost all these works are implemented using systolic architectures. These sys-

tolic architectures perform the sorting operation on the basis of several PE working

in parallel, taking some time to complete their work i.e., they use a network sorting

scheme. Specialized architectures that explore nonlinear CFAR detectors using other

sorting schemes have not been developed, neither architectures that support modifi-

cations of CFAR parameters in run-time.

In the hardware sorting literature, there are two main families: network and linear

sorters. The network sorters need to have all the data available in order to perform

the sorting, while the linear sorters insert a new datum inside of a sorted linear struc-

ture. Network sorters are not recommended for continuous data stream due if one

datum is altered, then it is needed to resort all the data block previously sorted. On the

other hand, linear sorters do not perform efficiently the sorting over data blocks. In the

reviewed works, there can be found several approaches of both sorting families, useful

for different applications.

In next chapter it is proposed the CFAR hardware detector architecture, which uses

a FIFO linear sorter in order to support nonlinear detectors and the incoming data in

stream fashion coming from the radar processing chain. The CFAR hardware architec-

ture supports six different CFAR detectors in one architecture, taking advantage of the

similarities of these six variants. The supported detectors are: CA-CFAR, GO-CFAR,

SO-CFAR, GOSCA-CFAR, GOSGO-CFAR and GOSSO-CFAR. Also, the next chapter

analyze the trade-off for trying of implementing the TM-CFAR and OS-CFAR detectors

as well as for modifying the parameters of these detectors.



Chapter 4

Proposed CFAR Hardware

Architecture

As shown in previous chapters, a CFAR detector that can be considered optimal under

any environmental circumstances has not been designed yet. The idea of the research

work is to develop a hardware architecture for CFAR detectors that provides robust-

ness to the target detection process in radar environments as well as to explore these

detectors for being implemented in an specialized architecture. An architecture that

supports several detectors, allowing to change both the CFAR detector used and the

detector’s parameters is a solution for dealing with several situations presented in radar

applications. The CFAR hardware architecture developed is presented on this chapter.

Some of its parameters can be changed in off-line work and other parameters can be

changed during execution time. For performing the sorting operation needed for the

rank-order selection, a linear insertion sorter based on a FIFO schema is presented

too, as part of the CFAR architecture. Also the selection analysis for the implemented

detectors is presented.

4.1 Architecture Specifications

The specifications that the architecture must meet are presented as well as the radar

characteristics which was employed for the design of this work.

43
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4.1.1 Transmitter-Receiver Used

This work was developed for a commercial non-coherent pulsed radar [11] which transmitter-

receiver characteristics are:

• Band X

• Frequency 9410 MHz

• PRF 3 KHz,750 Hz, 375 Hz

• Pulse Width 0.07 μs, 0.28 μs, 0.9 μs

• Range Resolution 10.5 m, 42 m, 135 m

• Range 1.5 mn, 24 mn, 96 mn

• Bandwidth 20 MHz

• Antenna Rotation 24 RPM

• PPI Resolution 4096x4096 pixels

4.1.2 CFAR Detector Architecture Requirements

Given the radar characteristics mentioned, the signal processing radar chain must pro-

cess information of both target detection and other previous process, as explained in

section 2.1.2, figure 2.4. According to the available radar characteristics, an antenna

rotation time lasts 2.5 seconds (24 rotations each 60 seconds). During this time, the

radar antenna completes a 360o rotation sampling its environment. The radar takes a

sample of the returned echoes approximately each 0.087o, i.e. 4096 samples are taken

during one rotation. Each one of these samples are digitized by the radar in 4096 dif-

ferent discrete values (ranges cells) i.e. a range silhouette is formed each 0.087o and

it has 4096 discrete values. Therefore a total of 16,777,216 (4096x4096) samples are

digitized during a rotation. These samples must be processed in 2.5 seconds inside the

whole radar signal processing chain in order to meet real-time processing. As these

data are generated they are stored and shifted in the reference, guard and cell under

tests in order to perform the target detection.
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Independently of the PRF, the same amount of data is generated. For a PRF of 3 KHz,

a range silhouette is formed by the echoes received each 1.8310 generated pulses;

and for a 750 Hz and 375 Hz PRF, the range silhouette is formed by 0.4557 and 0.2288

echoes respectively.

In general, putting in together the processing time constraints and the need for a flex-

ible architecture, the CFAR hardware architecture detector must meet with the next

requirements:

Real-time processing The resulting architecture must be able to process the 16,777,216

samples in less than the 2.5 seconds, giving time to other processes to perform

their functionality.

Modifications of CFAR parameters The architecture must be able to change the CFAR

parameters in execution time or change its parameters in off-line work.

Selection of CFAR detector in execution time The resulting architecture must be able

to change its functionality among some CFAR detectors previously explained in

chapter two.

Low area requirements The architecture must take advantage of the similarities among

the CFAR detectors implemented in order to use the same functional units.

In order to present clearly the proposed CFAR hardware detector, the sorter schema

used is firstly introduced then it is defined the CFAR detectors implemented and the

reasons of selecting these detectors and the parameters that might be altered are

exposed. Later the general CFAR architecture is presented.

4.2 Linear Insertion Sorter

In the CFAR detector, each range cell (either reference, guard or CUT) stores an input

sample. The first sample received is the first sample to leave the reference window,

performing a FIFO functionality. When a new sample is going to be introduced into

the detector, the stored samples are right shifted, discarding the oldest stored sample
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(the right most reference cell). This action makes an empty space for the new sample.

When all cells in the reference window have their stored samples, the Z statistic is

calculated and the detection process is performed according to the equation 2.7 pre-

sented in chapter 2. The same process (inserting, shifting and Z statistic estimation)

is performed as long as new samples are introduced into the CFAR detector, i.e. the

CFAR detector works in a stream fashion.

The CFAR architecture presented uses a sorter in order to perform the sorting oper-

ation needed in the order statistic detector. A sorting network schema is not used

because it uses high hardware resources. Although further improvements can be

achieved in these network schemas, the cost is increased by the amount of PE and

their interconnection complexity, making these networks difficult to translate into hard-

ware architectures [39]. Some of these improvements consist on pipelining the network

in several stages or a kind of network folding, so data are recirculated through the net.

The costs of these improvements is adding some extra circuitry and increasing time

latency. Also, the main disadvantage of sorting networks is that if one input datum

changes, the whole block of data must be resorted; which make them unpracticable for

applications that require processing data in a stream way. On the other hand, although

in hardware linear sorter literature there are several schemas for performing the sort-

ing operation, there is only one architecture that works in a FIFO fashion [37]. The

architecture requires n+1 PEs in order to sort n values, requiring two memory levels

for each PE and working on both falling and raising clock edges. These characteristics

make the sorter need more circuitry and a long signal stabilization time. Due these

characteristics some simple ideas of other linear sorters implemented in [37], [38], [39]

and [40] were considered for developing a new linear sorter [41].

4.2.1 FIFO Insert Sort Algorithm

The linear sorter used is based on the insertion sort algorithm. The algorithm performs,

for every unsorted datum, a procedure that looks for the appropriate position in the sor-
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ted list to insert the input data [39]. The algorithm is presented in the next pseudo-code:

Function 1 InsertSort
Require: Incoming Data each Clock Cycle
Ensure: D =Incoming Data

1: i ⇐ 0
2: while (i < n) AND (D > R[i]) do
3: R[i] ⇐ R[i + 1]
4: i ⇐ i + 1
5: end while
6: R[i − 1] ⇐ D

The algorithm inserts incoming data in the vector R of infinite length. However, in prac-

tice this characteristic can not be met, thus a deleting condition must be used. In [39],

the condition used for deleting is to erase the smallest stored datum, meanwhile in [40]

the data to be erased is indicated by an external input signal.

The linear sorter used in this architecture uses a FIFO scheme as deleting condition,

allowing the incoming datum to be inserted in its corresponding position. In order to

achieve this FIFO-like functionality, it is necessary to keep a life period value for each

sorted data. If the datum is shifted, then its corresponding life period value is shifted

with it. The life period value is increased by one every time that a new datum is inserted.

When the life period value has expired, that is, when it reaches a value equal to the

number of elements in the array, the corresponding datum is discarded, making an

empty space in the vector and thus allowing the insertion of a new datum. In order to

meet this FIFO functionality, three different actions may be performed for keeping the

array sorted:

1. Shift the datum stored in the array and its corresponding life period value to the

left size.

2. Shift the datum stored in the array and its corresponding life period value to the

right size.

3. Hold the data and its corresponding life period value.
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To know the direction the data should be shifted to, every element in the array must

know on which side, on relation to itself, the datum that is going to be discarded is

located. Also, it must know on which side the incoming datum must be stored. This

whole functionality can be achieved by creating an array of PEs, called Sorting Basic

Cell (SBC). The behavior of an i-th SBC can be described by the functions 2, 3, 4 and

5. In order to understand these functions some variables must be described: CNT[i]

represents the life period value of the i-th SBC, R[i] the data stored on the i-th SBC, cnti

is a flag that indicates that life period value from a SBC to the right has expired. D_right

and D_left are the output ports to the right and left sides of the SBC respectively. The

first function is shown next:

Function 2 SBC_SendData
Require: Incoming Data each Clock Cycle
Ensure: D =Incoming Data

1: if R[i] < D then
2: D_right ⇐ R[i]
3: D_left ⇐ D
4: else
5: D_right ⇐ D
6: D_left ⇐ R[i]
7: end if

The first function SBC_SendData is in charge of sending to its left and right neighbors

the currently stored value and the incoming data, D_left and D_right SBC respectively.

If the first condition is met, it indicates that this SBC must send to its right its current

value (R[i]) and to the left the incoming datum, otherwise its current value must be

send to its left and the incoming datum to the right.

Function 3 SBC_ResetPeriodLife
Require: Incoming Data each Clock Cycle
Ensure: D =Incoming Data

1: if (CNT [i] = 0) OR ((R[i] < D) XOR (cnti = 1)) then
2: if (R[i] < D) AND R[i + 1] ≥ D then
3: CNT [i] ⇐ 0
4: end if
5: if (R[i] ≥ D) AND R[i − 1] < D then
6: CNT [i] ⇐ 0
7: end if
8: end if
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The first condition of SBC_ResetPeriodLife checks if the CNT[i] value must be updated

while the inner conditions check for those cases where the SBC’s counter must be set

to zero. This action takes place when the incoming datum will be stored on the i-th

SBC therefore setting the life period value to zero is needed.

Function 4 SBC_UpdateValues
Require: Incoming Data each Clock Cycle
Ensure: D =Incoming Data

1: if (CNT [i] = 0) OR ((R[i] < D) XOR (cnti = 1)) then
2: if R[i] < D then
3: R[i] ⇐ R[i + 1]
4: CNT [i] ⇐ CNT [i + 1]
5: else
6: R[i] ⇐ R[i − 1]
7: CNT [i] ⇐ CNT [i − 1]
8: end if
9: end if

In the SBC_UpdateValues function the first condition checks if the R[i] value must

be updated by the value coming from its left o right neighbor as indicated by the

second condition. Even though the first condition is the same as the one shown in

SBC_ResetPeriodLife function, they are separated because there is a priority order,

if both conditions are met then only the SBC_ResetPeriodLife function should be per-

formed.

Function 5 SBC_PropagateFlag
Require: Incoming Data each Clock Cycle
Ensure: D =Incoming Data

1: if CNT [i] = 0 then
2: cnti ⇐ 1
3: else
4: cnti ⇐ 0
5: end if

The final function, SBC_PropagateFlag, checks if the life period value of the SBC has

expired. The flag, cnti, is used by the functions as one of the conditions checked to

update the SBC.
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In order to fulfill the FIFO sorting functionality, the SBCs must be interconnected (fig-

ure 4.1) in a simple linear structure, called sorting array. This linear structure can be

easily expandable as long as needed depending on the number of range cells needed.

Figure 4.1: Sorting array structure.

For each incoming data D, one of the SBCs must discard its value. At the same time,

all the SBCs hold their previous value, or store the value coming from the cell to the left

or to the right. Only one clock cycle is needed to perform these actions (discarding the

oldest data, holding data, right or left shifting). Under this FIFO sorting functionality,

there are three insertion cases that are considered and solved by the SBC (shown in

figure 4.2, where the gray cell indicates the data to be discarded) are:

1. The datum value is inserted to the left of the cell that discards its stored value

(Rn−2). In this case data from Ri to Rn−2 must be shifted to the right side in order

to make an empty space for the incoming datum. Then this incoming datum is

inserted in Ri.

2. The incoming datum value is inserted to the right of the cell that discards its

stored value (R3). In this case data from Ri to R3 must be shifted to the left side

in order to make an empty space for the incoming datum. Then this incoming

datum is inserted in Ri.

3. The incoming datum is inserted at the same position of the discarded value i.e.

Ri. The rest of the cells hold their values.
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Figure 4.2: Insertion cases inside the sorting array.

4.2.2 Sorting Base Cell Architecture

Each SBC has a register with synchronous load to store the data, a counter with syn-

chronous reset and load to store the period life value of the datum, a comparator, four

2-1 multiplexers and control logic. Figure 4.3 shows how each one of these elements

are connected inside of the SBC.

Figure 4.3: SBC internal architecture.
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The SBC internal control logic consists of four boolean equations, three of them are

in charge of governing the register, the counter, and two of the four multiplexers. The

other two multpliexers are governed by the comparator output (p i). The load signal

allows both the register and the counter to update their values by an external source,

while the reset signal sets the counter to certain initial value. The LR signal allows to

receive the period life value and the value stored from the left or right SBC. As it was

mentioned, the pi signal is the other one that governs the other two multiplexer. This

signal is asserted when the comparator condition is met and it is in charge of sending

the correct datum to be inserted to the left and right SBC.

Figure 4.4 shows how two SBC must be interconnected in order to assemble them in

the sorting array structure shown in figure 4.1.

Figure 4.4: Connection example of two SBCs.

The four internal equations can be viewed as representations of the conditions func-

tions explained in the previous section. The first of these equations is equation 4.1. It

detects and propagates to the left, information about if the life period value of one of

the SBCs to the right has expired as indicated by the SBC_PropagateFlag function:

cnti = cnti+1 + cnt (4.1)

where signal cnt indicates when the life period value has expired inside of one SBC and

cnti+1 is the flag coming from the SBC immediately to the right, as shown in figure 4.5.
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The cnti+1 signal has the information about whether or not the life period value has

expired in one of the n-i SBCs placed on the right side of the i-th SBC. This functionality

is simply the boolean operator OR.

Figure 4.5: Propagation of signal cnti inside the sorting array.

The second equation of the internal control logic is used as a condition in the function

SBC_ResetPeriodLife and in SBC_UpdateValues function:

load = (pi ⊕ cnti+1) + cnt (4.2)

where pi is the comparator output, cnt indicates when the life period value has expired

inside of one SBC and cnti+1 is the flag coming from the SBC immediately to the right.

This equation controls when the register (R[i]) and the counter (CNT[i]) inside the SBC

must be updated either by the left or right neighbour, i.e. load a new value. This

equation states that load signal is asserted when either one of the next three cases is

met:

1. When the value stored on the SBC is the oldest in the sorting array, i.e. cnt = 1.

2. When a incoming datum value is greater than the value stored inside the SBC

and when none of the life period values of the right SBCs has expired, i.e. p i = 1

and cnti+1 = 0.

3. When the incoming datum value is smaller or equal than the value stored inside

the SBC and when one of the life period values of the right SBCs has expired,

i.e. pi = 0 and cnti+1 = 1.
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When the first case is met, this means that an update operation must be performed

in order to discard the oldest value in the array. The second and third cases are rep-

resented by the boolean operator XOR and they indicate from when it must start and

until where it must stop the updating operation of the SBC values. This functionality is

shown in the look-up table (LUT) 4.1 as a truth table.

pi cnti+1 cnt load
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Table 4.1: Truth table for equation 4.2

The origin of the data (left or right side) is selected by the internal equation 4.3, which

is used in function SBC_UpdateValues.

LR = pi · load (4.3)

where pi is the comparator output as described by condition in the SBC_SendData

function and the load signal is the result of the equation 4.2. This equation controls

where the values that must be inserted come from (left or right side). When the load

signal is asserted, it allows to the pi signal decide from which side the values must be

inserted. If the incoming value is greater than the one stored in the SBC, it means that

the right value must be inserted inside the SBC making a left shifting action in order

to preserve the values sorted; otherwise, if the incoming value is not greater than the

one stored in the SBC, it means right shifting action must be performed. This equation

functionality is simply the boolean operator AND.
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The fourth equation that represents the function SBC_ResetPeriodLife is:

reset = load · [(pi−1 · pi) + (pi · pi+1)] (4.4)

where pi is the comparator output as described by condition in the SBC_SendData

function. The signals pi+1 and pi−1 correspond to the right and left SBC neighbors

respectively. The load signal is the result of the equation 4.2. This signal is only

asserted in the SBC that will take the incoming datum D. Therefore it controls when

the counter must be set to zero, providing a proper life period value for the new datum.

According to the equation, there are two cases when this must occur:

1. When it is allowed to write in the register and counter, i.e. load is asserted, the

left SBC value is minor than the value of the incoming datum and the value of the

SBC is major or equal than the value of the incoming datum.

2. When it is allowed to write in the register and counter, i.e. load is asserted, the

SBC value is minor than the value of the incoming datum and the value of the

right SBC is major or equal than the value of the incoming datum.

If either of these two conditions is met the internal reset signal for the counter will be

asserted. The functionality is shown in the look-up table 4.2.

There are some considerations that must be taken into account to ensure proper be-

havior and to perform correctly the insert sort algorithm. Before performing the insert

sort algorithm, all registers Ri must be initialized to zero, while life counter values CNT

must be initialized according to CNT[i] = i. This is achieved by adding an external reset

signal to the register and the counter. Other consideration is that the leftmost pi+1 sig-

nal’s value is always 1 and the rightmost pi−1 signal’s value is 0. This can be viewed

as the leftmost datum having the largest value while the rightmost has the smallest

one. Finally, the CNT counter word size depends on the sorting array’s length, being a

function of �log2 n� where n is the sorting array length.
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load pi−1 pi pi+1 reset
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Table 4.2: Truth table for equation 4.4

4.2.3 Sorting Array Example Functionality

Figure 4.6 and figure 4.7 exemplify how the SBC’s control signals work in two differ-

ent situations. In both figures, the first row contains the sorted data currently stored

in the sorting array, the second row contains the corresponding life period values and

the following rows contain the control signals values needed to perform the insertion

operation. The gray column indicates the oldest data to be discarded, whose life period

value is 12. Different clock cycles are represented by different tables in the same figure.

Only one SBC can have the reset signal (equation 4.4) asserted at each clock cycle.

When one SBC asserts the reset signal, it means that this SBC is where the incoming

datum D will take place in next clock cycle. The cnt signal is only asserted when the

SBC’s life period value has reached the same value of the sorting array length, mean-

ing that this is the oldest datum stored (it is showed by the gray columns). Similarly to

the reset signal, only one SBC can have the cnt signal asserted at each clock cycle.

Note how cnti signal is propagated through the sorting array to the left side once it is

activated according to equation 4.4. Although LR signal is always calculated according

to equation 4.3, it is only considered when in the same SBC the load signal is asserted.
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Figure 4.6 exemplifies how the SBC’s control signals work at each clock cycle allowing

the sorting array to perform the sorting algorithm. Different clock cycles are repre-

sented by different tables in the same figure. This figure illustrates the three previously

mentioned insert cases (figure 4.2) in a 3 steps sequence. In this example there is a

given sorted sequence (figure 4.6.a). At the first clock cycle the incoming datum value

is D = 2. The control signals take their corresponding values allowing the inserting,

shifting and deleting operations. Note that at this moment, the incoming datum has not

been inserted yet and the oldest datum is still in the sorting array. At the next clock

cycle the sorting array is updated (figure 4.6.b) and the second incoming datum D =

18 is also inserted in its corresponding position performing similar actions as the first

incoming datum. In this case, there is another datum inside of the sorting array which

has the same value. When this case occurs the new datum is inserted to the left side

of the datum with the same value, having the oldest datum always at the right most po-

sition. This behavior is because the SBC has the comparator unit which performs the

comparison in a strictly minor than fashion between its stored datum and the incoming

datum. Finally, in figure 4.6.c, the incoming datum value is D = 11 which is placed in

the SBC that just discarded its datum.

Figure 4.7 exemplifies how the SBCs must be initialized. After the reset signal is as-

serted, all the stored data in the SBCs take a zero value, while the period life values

are set according to CNT[i] = i (figure 4.7), i.e. the SBC position inside the sorting

array. This special initialization for the CNT[i] is because it is always needed to discard

only one datum from the sorting array in order to make possible the insertion operation.

At this moment, the incoming data value is D = 6, thus the control signals take their

value in order to perform the insertion of this datum. Like in the previous example, in

the next clock cycle, D = 6 is inserted and the datum that has the oldest life period

value is deleted, following the sorter normal functionality. Figures 4.7.b - 4.7.f show

the insertion process after the initialization, being D = {3, 5, 0, 1, 4} the respective in-

coming datum value sequence for these figures. Note that in figure 4.7.d the incoming

datum value D = 0 is inserted in the left most side of the sorting array and the rest of
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Figure 4.6: Sorting array example functionality.
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Figure 4.7: Sorting array example initialization.
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the values are shifted. Note that, although the value of this incoming datum is similar

to the rest of the initialization values, its period life value is reseted and increased in

figures 4.7.e and 4.7.f. This is similar to the behavior showed in figure 4.6.b where the

incoming datum inserted has the same value that one stored in the right SBC.

4.3 CFAR Detectors and Parameters Selected

Once the sorter schema was designed, it continued the analysis for the hardware ar-

chitecture for several detectors, taking as a reference the linear sorter implemented.

Since keeping the values sorted does not affect the averaging process needed in the

linear detectors, the CA-CFAR, GO-CFAR, SO-CFAR detectors can be considered for

the architecture. The other detectors considered were: OS-CFAR, TM-CFAR, GOSCA-

CFAR, GOSGO-CFAR and GOSSO-CFAR. Also the parameters that vary their detec-

tion performance were taken into account: number of reference and guard cells, the

k-th and i-th rank-order samples, the trimming values T1 and T2 and the scaling factor

α.

4.3.1 CFAR Detectors Selection

Firstly, two different schemas for using the sorting structure needed in the order statistic

detectors were considered:

1. Using a sorting array for each lagging and leading reference cells and shift reg-

ister for the guard cells and CUT. Figure 4.8 shows an example of this schema

with two guards cells and the CUT, which values are stored in the shift registers

meanwhile the reference cells values are stored in two sorting arrays. In this

schema the lagging and leading reference windows can be clearly distinguished.

2. Using only one sorting array for both reference cells, guard cells and CUT. Fig-

ure 4.9 shows an example of this schema. Note that in this schema the CUT and

the lagging and leading windows are mixed in the sorting structure.
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Figure 4.8: Example schema analyzed using two sorting arrays and shift register.

Figure 4.9: Example schema analyzed using one sorting array.

The schema with two sorting arrays has the advantage that both reference windows

are clearly separated. For this approach, computing the average needed in CA-CFAR,

GO-CFAR and SO-CFAR detectors is easier than for the one sorting schema. Also, the

k-th and i-th rank-order selection for the GOSCA-CFAR, GOSGO-CFAR and GOSSO-

CFAR detectors is favoured. This is due to these six detectors perform their calculation

in separately reference windows. The one sorting array schema favours the k-th rank-

order selection for the OS-CFAR detector and the trimming operation of TM-CFAR

detector. This is because these detectors perform their operations over the whole

reference window, taking these values as one set. Besides, if the schema were im-

plemented, it would require a mechanism for ignoring the CUT and the guard cells,

because they do not take part in the computation in TM-CFAR and OS-CFAR detec-

tors.
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If the first schema were used for the OS-CFAR and TM-CFAR detectors, it would be

needed one extra operation: perform a merge sort action of both sorting arrays in or-

der to have only one set of sorted data, given that these two detectors perform their

respective operation over the whole reference window. On the other hand, if the sec-

ond schema were used for the other detectors, it would be necessary to implement

other mechanism (as well as the mechanism for discarding the CUT and guard cells)

for distinguishing the values that belong to the lagging window and the other ones that

belong to the leading window. The cost implementation of these three mechanisms

(the merge sort operation, the discrimination of lagging and leading cells and the dis-

crimination of CUT and guard cells) demands high area resources. There are network

sorters that perform the merge sort action but, as it was mentioned in section 4.2, they

use more hardware resources. Beside, for distinguishing each cell (CUT, guards cells

and the cells that belong to the lagging and leading cells), the mechanism for discrim-

ination could be an n-1 multiplexer for each cell that wants to be discriminated, where

n is length of the sorting array, which is high hardware resources consuming too.

4.3.2 CFAR Parameters Selection

Referencing to the parameters of the CFAR detectors, the k-th and i-th rank-order sam-

ples can be easily implemented in both schemas as well as the scaling factor α. These

three parameters can be implemented achieving a modification of their values in run-

time. The trimming values T1 and T2 of TM-CFAR are complicated to be implemented

even if they were not modified in run-time. Figure 4.10 exemplifies this situation with

four clock cycles sequence represented by figure 4.10.a - figure 4.10.d. In this figure,

a one sorting array structure is used, supposing that it has been used only one sorting

array. The values inside the cells are the values stored and the values below are the

life period values corresponding to the above cells. The example supposes that T1 =

3 and T2 = 3 for the four cases and the incoming data values are D = {3, 1, 10, 6} for

each subfigure on this sequence. The reference cells and the CUT are represented

by grey cells. Note how these cells move inside the array at different clock cycles in

different SBCs.
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Figure 4.10: Example of some cases for the TM-CFAR detector implementation in a

one sorting array structure.

In figure 4.10.a the trimmed values (the three major and three minor values) are clearly

distinguished. The CUT and the guard cells are mixed among the values that must be

added according to equation 2.15, therefore the discarding mechanism must discard

these mixed values. In figure 4.10.b, the three major values are not the three values

that must be trimmed because one reference cell is included. In fact, in this case the

fifth value from the right size shown in figure 4.10.b must be taken as trimmed value.

Similar cases occur in figures 4.10.c and 4.10.d. In order to perform the computing

of the Z statistic for the TM-CFAR detector, the discarding mechanism must be able

to detect if the cell is a CUT, a guard cell, trimmed reference cell or a reference cell

used in the Z statistic computing. Using n-1 multiplexers of each one of the cells is a

high cost solution for supporting the TM-CFAR detector in the hardware architecture,
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making it not suitable for practical implementation. Thus, both the TM-CFAR detector

and the one sorting array structure were discarded for the final architecture.

Six of the seven detectors left perform their operation over the leading and lagging

window separately. The only detector that need both reference windows in order to

perform its operation is OS-CFAR. For incorporating this detector it is needed a merge

sorting mechanism that requires high area resources too. Besides it is impractical to

implement the merge sort network for only one detector at the cost of area resources.

Therefore, the OS-CFAR was also discarded.

At this point of the analysis, the CFAR detectors to be implemented have been se-

lected as well as the sorting array structure in basis of the designed linear sorter. The

CA-CFAR, GO-CFAR, SO-CFAR, GOSCA-CFAR, GOSGO-CFAR and GOSSO-CFAR

detectors are the ones to be supported by the architecture. The k-th and i-th rank-order

and the scaling factor α can be altered during run-time and be supported by the archi-

tecture too. The amount of reference and guard cells is the only parameter that has not

been analyzed yet, in order to know if they can be altered during run-time. Figure 4.11

shows a simple example that illustrates the functionality needed if the amount of refer-

ence and guard cells were modified in run-time during a sequence of four clock cycles.

The incoming data values for each subfigure on the sequence are D = {3, 4, 7, 1}. In

the first cycle (figure 4.11.a), there are two sorting array structures (reference cells)

of four elements and four shift registers (guard cells). In order to move from the first

cycle to the second cycle (figure 4.11.b) it is needed to add a new SBC for maintaining

the four values stored, allowing the incoming datum to be stored on each sorting array.

Also in this cycle, it must be discarded a shift register in both reference windows. Note

that in the leading sorting array there are incorporated the two values stored in the shift

register, and in the lagging sorting array, no one of the stored values are discarded.

This functionality is not performed by the designed linear sorter, because it always in-

serts and discards only one value at the same time. Therefore for implementing the

variation in run-time of the amount of reference and guard cells, the FIFO function-

ality of the linear sorter should be altered. For moving from the second cycle to the
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third cycle (figure 4.11.c) it is needed to discard two SBCs and to incorporate two shift

registers. At the same time, the lagging sorting array must discard two values and in-

corporate the incoming one, and the leading sorting array must discard only one value

and incorporate two new ones. A similar case occurs in the final transition between the

third and fourth dock cycles.

Figure 4.11: Exemple of modification in run-time of the amount of reference and guard

cells.

Although the amount of reference and guard cells used in the CFAR also alter the target

detection performance, it is uncommon that both parameters are altered during run-

time. Besides the changes previously explained in run-time are more factible if partial or

total dynamic reconfiguration inside the FPGA is used. These run-time reconfigurations

(RTR) are a method of computing using FPGAs that exploit the ability of the FPGA

to embed new hardware configurations [42]. In RTR techniques, an FPGA changes

configurations from phase to phase of a computation as in figure 4.11. Therefore, for

the uncommon change of both parameters in run-time and the insertion and deletion of

hardware elements, the modification of both parameters was not used; instead these

parameters can be modified in offline work, i.e. they are parameterizable.
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4.4 CFAR Detector Architecture

With the CFAR detectors selected for the architecture and the parameters that can be

altered in run-time, the CFAR detector architecture is presented. The CFAR detector

architecture, figure 4.12, consists of two SBC’s sorting arrays for 2n reference cells,

2m+1 shift registers for the guard cells and CUT, which is at the middle of these regis-

ters. Also, the architecture has two n-1 multiplexers that perform the rank operation for

the lagging and leading sorting arrays, needed in GOSCA-CFAR, GOSGO-CFAR and

GOSSO-CFAR detectors. Given that the reference cells values are ordered, the k-th

and i-th values can be selected by the control signals Sel-k and Sel-i respectively. The

result of this selection is the Y(1) and Y(2) values needed in the nonlinear operations

shown in equations 2.12, 2.13 and 2.14.

For the linear operations presented in equations 2.8, 2.9 and 2.10, it is needed to

add all the values stored in the leading and lagging sorting arrays for computing the

average. In order to perform this operation, it is not necessary to add all values each

time that one value from the sorting array is inserted and deleted. Once a value is

inserted and other one deleted, the preceding result can be used to compute the next

result without adding all values. Only by adding and subtracting the newest and oldest

values respectively, the next result is obtained. This whole operation can be performed

by the PE Accumulator, which computes the average of Y1 and Y2 values on each

sorting array. The PE Accumulator, figure 4.13, consists of an adder, which receives

the incoming value, a subtracter, connected to one of the multiplexers which selects

the oldest value stored in sorting array, a register to store the accumulated and a left

shifter that performs the division needed to compute the average Yn value. Because

of the left shifter, only amount of reference cells that are power of two multiple can be

used.
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Figure 4.12: CFAR detector architecture.
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Figure 4.13: PE accumulator.

The oldest value stored in the sorting array is gotten by the n-1 multiplexer whose con-

trol line value is generated by a priority decoder. The input of this decoder is a data bus

formed by the cntn signals coming from the SBC in the sorting array and the output bus

is SelOldest (Select Oldest), as shown in figure 4.14. The cnt signal indicates when

the life period value has expired in only one SBC’s, i.e., the oldest value that must be

subtracted and passed to the shift registers.

Figure 4.14: Priority Decoder and its connection with the sorting array.
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Two 2-1 multiplexers perform the selection between Y1 and Y(1) from the lagging win-

dow and Y2 and Y(2) from the leading window. The selection is performed by the one

bit signal SelOp (Select Operation). An ALU-like module provides the three modali-

ties for computing the Z statistic: the average, the maximum and the minimum of the

rank-order or the accumulated value. The desired modality is chosen using the con-

trol signal SelDet (Select Detector) established either manually by the user or by an

automatic control expert system. A multiplier scales up the Z statistic with the scaling

factor α and a comparator decides whether a target is present or absent as indicated

by equation 2.7.

The control signals, SelDet and SelOp can be grouped into a data bus in order to per-

form the selection among the six detectors with their corresponding operations with

only a data bus. The arithmetic precision of scaling factor α can be modified in off-line

work.

In this architecture, on each clock cycle, values flow from the lagging sorting array, to

the shift registers and to the leading sorting array. In order to begin the target detection

processing, a reset signal must be applied to the SBC in order to initialize the counters

inside of the SBCs and PE Accumulators. Once data begin to flow as mentioned

above, N+M+1 clock cycles of latency are required for having all the values stored in

the sorting arrays and in the shift registers. After this latency time, the architecture

produces a valid output for each clock cycle allowing the continuous operation of the

target detection process.

4.5 Summary

This chapter presented a CFAR hardware architecture, which is parameterizable in

terms of its reference cells, guard cells and arithmetic precision and capable of chang-

ing in run-time the values of k-th, i-th rank-order factors and the scaling factor α and

select six different CFAR detectors: CA-CFAR, GO-CFAR, SO-CFAR, GOSCA-CFAR,

GOSGO-CFAR and GOSSO-CFAR.
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The architecture uses a linear insertion sorter based on a FIFO schema. The linear

insertion sorter is composed of an array of identical PEs called SBCs, wich implements

the insert sort algorithm in a compact and efficient way by performing a number of tasks

in a single clock cycle. The architecture is based on four functions whose character-

istics are translated into four boolean equations, working as an internal control logic

for each of these processing elements. The linear sorter can be easily adapted to any

length and data width according to specific application needs.

Also, this chapter has analyzed the trade-off for implementing the TM-CFAR and OS-

CFAR detectors taking as reference the designed linear sorter. Both detectors need a

schema for merging the two sorted arrays, like a merge sort sorting network. Merging

both arrays need a lot of area resources and the issues concerned with the trimmed

values make the TM-CFAR detector too expensive to be implemented in terms of area

resources. It is recommended to explore dynamic reconfiguration in order to implement

this detector as well as for modifying the amount of guard and reference cells.
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Chapter 5

Implementation and Results

This chapter shows the results of the linear sorter compared against other sorter works

as well as scalability results for different combinations of word sizes and sorting array

lengths. It also shows the synthesis result of the CFAR hardware architecture imple-

mented and results with distinct amount of guard and reference cells.

5.1 Implementation

The CFAR hardware architecture was developed for a commercial X-band non-coherent

radar, whose characteristics were described in section 4.1.1. The linear sorter and

the CFAR hardware architecture were modeled in VHDL (VLSI Hardware Description

Language) using Active-HDL 7.1 for simulation. The simulation was performed on a

notebook whose characteristics are:

• Intel Core 2 Duo Processor at 2.20 GHz

• 2 GB in RAM

• Windows XP Professional.

Once both architectures were validated, they were synthesized with Xilinx ISE 9.1 and

targeted for different FPGA devices for comparison purpose. The CFAR hardware

architecture was targeted for a Nallatech XtremeDSP Development Kit PCI board, with

73
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a Xilinx’s Virtex-4 XC4VSX35 FPGA device. This board was installed on a personal

computer whose characteristics are:

• Intel Pentium 4 Duo at 2.20 GHz

• 1 GB in RAM

• Windows XP Professional.

5.2 Implementation Results

This section shows the results, comparison and discussion for both the linear sorter

proposed and the CFAR detector. Also, the section shows hardware complexity equa-

tions for comparison purpose for both architectures. These equations shows the amount

of hardware elements (multiplexors, comparator, registers, adders and multiplicators)

in order to make fair comparisons with other related works.

5.2.1 Linear Sorter

For the purpose of validation and comparison against other works, the linear sorter ar-

chitecture was targeted for different FPGA devices. The design was also synthesized

for a more up to date FPGA device in order to show results for scalability. Table 5.1

summarizes the FPGA hardware resource utilization and timing performance for the

proposed linear sorter and other related sorters, using a Virtex-II. Table 5.2 shows a

comparison of the linear insertion sorter against other works in terms of the number of

hardware elements they require. In the table 5.2, n refers to the amount of data being

sorted.

Data for the Bitonic, Odd-Even, Column, and Shifter sorters were taken from [39],

while data for the SFS, PRC, and SRC sorters were taken from [37]. Note that a direct

comparison between the FIFO linear insertion sorter and other sorters is not possible,

except by the SFS sorter which performs the same FIFO functionality.
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It is important to emphasize that the proposed linear sorter differs from other sorters

as it implements a FIFO-like scheme where the oldest datum in the sorting array is dis-

carded to make room for every incoming data. Although this sorter performs the same

FIFO functionality of the SFS presented in [37], they differ in their internal functionality.

The SFS stores an input vector of data in the order that it is received, discarding the

oldest datum. At each clock cycle, one datum enters taking its corresponding place

inside the sorter according to its value and other datum leaves the sorter. These two

characteristics are met by the linear sorter too. Also, both sorters need to store the

value age or life period value. The difference between the linear sorter and the Serial

FIFO Sorter is that, the SFS sorter consists of two levels of memory elements: main

and auxiliar; meanwhile the linear sorter only requires one memory level. Moreover,

the SFS needs n+1 cells to sort n elements, requiring an overflow cell. On the other

side the linear sorter needs only n cells to sort n elements. Although the SFS and the

proposed sorter operate in one clock cycle, the SFS works during both clock edges:

rising and falling edges. During the rising edge the incoming datum is inserted by shift-

ing the needed data to the overflow cell side, having n+1 sorted elements. In the next

falling edge the oldest stored datum in the n+1 cells is discarded by shifting since the

position of the overflow cell until the oldest datum. The proposed linear sorter is able to

decide if it is needed to shift to the left or to the right side in one clock cycle instead of

performing two shifting operations, allowing a major signal stability in order to access

the data stored in the sorting array.

Even though the proposed FIFO linear sorter is not the fastest among all the sorters

shown in table 5.1, it uses less hardware resources (gates, FFs and LUTs count) than

the SFS sorter that performs similar functions. The SFS sorter is faster than the pro-

posed linear sorter, but this SFS sorter needs longest clock period to ensure the signal

stability. Both sorters are able to discard a datum and to insert a new datum in a single

clock cycle while maintaining the rest of the data sorted. Network sorters on the other

hand would require a large number of clock cycles to sort the data even if only a single

datum is replaced.
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Although the Bitonic and Odd-Even sorters have a greater maximum operation fre-

quency and a smaller latency than the proposed FIFO scheme, they need to re-sort

the data once a datum has changed. This make them impractical for continuous data

processing. Also both sorters require less time to sort the n data than the linear sorters,

however they require that all data to be sorted are available at the same time, which is

not always possible specially in applications that produce data in a stream fashion, like

CFAR detectors. Moreover they require a larger number of hardware elements.

According to table 5.2, the linear shifter requires the least quantity of hardware ele-

ments, followed by the column shifter. Although the linear insertion sorter requires

more hardware elements than the column shifter, it is capable of sorting n data in the

same amount of clock cycles, similar to the linear shifter and the SFS sorter. Also,

the proposed linear sorter requires less hardware elements than the SFS, even though

they differ in their internal functionality.

Table 5.3 shows the scalability results, in terms of amount of slices, FFs, LUTs and

maximum operation frequency, of the linear sorting architecture for the Virtex-4 device.

For this comparison, different word sizes and sorting array length combinations were

used. The scalability data results are grouped by number of sorted elements (amount

of SBCs) and their word size in bits. For clarity, figures 5.1 and 5.2 show the maximum

operation frequency and LUTs scalability results in graphs. In figure 5.1, by increasing

the sorting array size, the number of LUTs used grows more than twice as the SBC

amount is increased at the same proportion. One exception for this is when a 16 bits

word size is used and the sorting array is increased from 128 to 256 elements. The rest

of the data grows at the same rate. Figure 5.2 shows the maximum frequency operation

results when the number of SBCs is increased for the same word size. Generally, the

8 bits sorter has the best performance, except by the 8 bits 64 elements sorter. In this

case a 12 bits sorter for the same element number is faster than the others, followed

by the 24 bits sorter. The 24 bits sorter is slightly slower than the other ones, but for a

register file of size 256, its performance declines more that the other sizes.
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Figure 5.1: LUTs Comparison Results.

Figure 5.2: Maximum Operation Frequency Comparison Results.

5.2.2 CFAR Detector

The CFAR hardware architecture was targeted for a Xilinx’s Virtex-4 XC4VSX35 FPGA

device. As it was explained in chapter 4, the CFAR detector architecture is parameter-

izable in terms of its reference cells and guard cells. The architecture was synthesized

for several configurations of reference and guard cells, but the result for the same

amount of reference cells varies slightly when different guard cells are used. Table 5.4
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summarizes the results of the FPGA hardware resources utilization for the maximum

amount of guard cells (four cells at each side of the CUT) with different amount of refer-

ence cells. Also this table shows the throughput measured in millions of operations per

second (MOPS) and the required processing time for the radar data set of 4096x4096

samples. All these four configurations use 12-bit for data. In fact, a common con-

figuration used for most radar-based applications with a good performance-accuracy

trade-off is that one that uses 12-bits for data, 32 reference cells and 8 guard cells [1],

which is shown in the third row.

Ref. Cells Slices LUTs FF Speed Throughput Processing
Amount Count Count Count (MHz) (MOPS) Time (msec)

8 315 266 581 256 5,888 64
16 602 423 1,147 218 8,502 77
32 1,364 690 2,637 198 14,058 84
64 2,790 1,260 5,430 165 22,275 99

Table 5.4: Results for eight guard cells and some combinations of reference cells.

The proposed architecture requires 84 milliseconds to process a radar data set of

4096x4096 samples, which is 30x times faster than the required theoretical processing

time of 2.5 seconds needed for this application parameters; thus this module can be

potentially used in radars with much higher resolution or CFAR processor with larger

N and M values, i.e., the amount of reference and guard cells. In fact, with a greater

configuration of the CFAR detector of 14-bits of data, 64 reference cells and 8 guard

cells, the architecture has a maximum operation frequency of 165 MHz, requiring 97

milliseconds to process the same data amount. This configurations is 25x times faster

than the theoretical required processing time.

In [9] the proposed CFAR detector uses only three linear processors, yet it does not im-

plement the sorting functionality. In [25] a nonlinear CFAR detector was implemented

with only one nonlinear detector. Since [9] and [26] and [25] do not perform the same

functionality, a direct comparison between our proposed CFAR architecture and other

architectures is not possible. Nevertheless, a parallelism grade can be applied be-
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tween [9] and the proposed architecture. This grade can be the architecture’s through-

put measured in MOPS. Concurrently our architecture performs N+7 arithmetic oper-

ations per clock cycle, while the other architecture performs only 7 arithmetic opera-

tions. This means that for the CFAR detector configuration and the maximum opera-

tion frequency of this implementation, the architecture achieves a throughput of 14,058

MOPS, as shown in table 5.4. The throughput achieved in [9] is 840 MOPS on a

XC2V250 Virtex-II. For throughput comparison purpose, the CFAR hardware detector

architecture was also synthesized for this last FPGA device, getting a throughput of

7,526 MOPS which is nine times better. This is the result of the sorting schema used

to support the rank-order operation, since each SBC used for storing the values in a

sorted way requires two operations and the number of SBC used is proportional to the

number of reference cells used.

In table 5.5 a comparison of the CFAR hardware detector against other works in terms

of the number of hardware elements they require is shown. In this table p refers to the

amount of cells in a reference window (section 2.3), i.e., the sum of reference cells (N),

guard cells (M) and CUT, P = N+M+1. The clock cycles refer to the latency required to

process the data and the delay elements refers to hardware elements that are needed

to store data.

CFAR Detector Hardware Complexity
Number of Hwang [20] Han [21] Behar [22] Torres [9] Proposed

Comparators 2P+1 2P+1 3(P2+P+4)/2 2 N+2
Multiplexors 2P+1 2P+1 P2+P+2 1 4N+7

Delay Elements 8P+5 5P+7 2P2+2P+1 P 2P+M+2
3-input Adders 0 P-1 0 0 0
2-input Adders 2P 2 P+2 3 3

Multiplicator 1 1 1 1 1
Clock Cycles 2P+3 P+3 2P+2 P P

Table 5.5: Comparison with others CFAR detector architectures.

Data for Hwang and Han architectures were taken from [21], data for Behar architecture
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were taken from [22] and data for Torres from [9]. A direct comparison among these

CFAR detector architectures is not possible, because they implement different CFAR

detectors and Hwang, Han and Behar architectures are systolic designs. Beside the

Behar systolic architecture implements a two dimension CFAR detector (p rows and q

columns), thus it needs more hardware elements. However, data shown in table 5.5

were obtained considering that q = 1 in formulas given in [22].

The architectures in [20] and [21] implement the OS-CFAR, OSGO-CFAR and OSSO-

CFAR detectors. In [22] it is used a censored technique over the sorted samples and

then the uncensored samples are added. The architecture presented in [9] implements

the CA-CFAR, GO-CFAR and SO-CFAR detectors in an specialized architecture. Even

though that the proposed architecture implements a sorter functionality, it has the same

latency than the architecture in [9] which only implements three of the six detectors

that the proposed architecture does. Also, both architectures use the same amount

of adders and multiplicators. Due the proposed CFAR architecture performs a sorting

functionality, it uses more comparators than in [9], which does not perform this func-

tionality. Among the other three systolic architectures, the proposed CFAR architecture

uses lower number of comparators, delay elements and adders, but it uses higher

amount of multiplexors. However, compared with the systolic architectures presented

in [20] and [21], the proposed solution implements the OSGO-CFAR and OSSO-CFAR

detectors with a minor amount of hardware elements.

5.3 Architecture Validation

For validate the results of the CFAR hardware architecture, the CFAR detector was

implemented in software using C language for modeling the six detectors that the pro-

posed architecture uses. The input data, i.e. range silhouettes, for both cases were

obtained from radar scans. Each radar scan consists on several range silhouettes.

Figure 5.3 shows a range silhouette example of two thousand samples. Both imple-

mentations were fed by the radar data and then their corresponding outputs were com-

pared, i.e. when the CFAR hardware architecture performs an erroneous detection or
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miss detection. Since the proposed architecture has various parameters that modify

the detection performance, a complete validation for several combination of different

values of k-th, i-th rank-order factors and the scaling factor α is difficult to estimate,

since, this is a task that corresponds to the CFAR designer. However, some tests are

included on this work.
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Figure 5.3: Radar receiver range silhouette example.

For these tests it was used a typical CFAR configuration i.e. 12-bits for data, 32 refer-

ence cells and 8 guard cells and the k-th and i-th rank-order samples = 12. According

to [2] a value of 0.75n has the best detection performance, where n is the size of the

lagging and leading windows. The value used for the scaling factor was α = 0.95.

However, an exact fixed point representation for the scaling factor is not suitable for the

CFAR hardware detector. Therefore, a scaling factor of α = 0.9501953125 was used

in the proposed architecture. This approximation is very close to the previous value of

0.95 which was used for the software implementation.

Figure 5.4 shows the resulting threshold calculated by the six CFAR detectors imple-
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mented in C language, using as input the radar receiver range silhouette shown in

figure 5.3. For clarity purpose, the six CFAR detectors are shown in different graphs

containing the linear and nonlinear detectors. Figure 5.5 shows the resulting thresh-

old calculated by the proposed CFAR hardware architecture. At first glance, there are

not significant differences among the threshold calculated by the different implemen-

tations. However, there are small differences between the thresholds calculated in

software and hardware. Figure 5.6 shows these differences at each sample between

the C language implementation and the proposed CFAR hardware architecture. Note

that the x-axis scale, indicating the difference between the software implementation

and the CFAR hardware architecture, is in mV meanwhile the thresholds calculated for

both implementations are in V. This difference is caused by an error in the scaling fac-

tor fixed point representation and the average computing need on the linear detectors.

In order to compare the CFAR hardware architecture against the software implementa-

tions using an exact and an approximation of the scaling factor value, 1,063,936 radar

samples were tested and compared. Table 5.6 shows the differences between the

CFAR hardware architecture using α = 0.9501953125 and the software implementa-

tion using α = 0.95 and α = 0.9501953125. The radar range silhouettes were tested

for each CFAR detector, getting the total of errors or differences compared with the

hardware implementation and the percentage of this differences.

α = 0.95 α = 0.9501953125
Detector Errors Error Percentage Errors Error Percentage

CA-CFAR 166 0.02096% 31 0.00291%
GO-CFAR 149 0.02049% 18 0.00169%
SO-CFAR 166 0.02132% 15 0.00141%

OSCA-CFAR 118 0.01513% 0 0.0%
OSGO-CFAR 132 0.01711% 0 0.0%
OSSO-CFAR 168 0.02002% 0 0.0%

Total 1,224 - 64 -
Average 204 0.01917% 11 0.00100%

Table 5.6: Comparison results with exact fixed point number and non exact fixed point
number of 1,063,936 radar samples.
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Figure 5.4: Radar receiver range silhouette and thresholds calculated by the software

implementation.
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Figure 5.5: Radar receiver range silhouette and thresholds calculated by the proposed

architecture.
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Figure 5.6: Difference among each one of the CFAR detector implemented in software

and hardware.
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5.4 Discussion

This chapter has presented the implementation results of the linear sorter and the

CFAR detector proposed in this thesis. The linear sorter has been compared against

other hardware sorters (linear and networks), but only a direct comparison is possible

with the SFS sorter. For a same FPGA device, amount of data sorted and word size,

the proposed linear sorter uses less hardware elements than the SFS sorter. Although

the SFS is faster than the proposed linear sorter, the former uses both clock edges to

perform its functionality, which is not a good design practice for digital systems.

The scalability results of the proposed sorter shows that by increasing the sorting array

size, the number of hardware elements used grows more than twice when the amount

of SBC needed is increased in power of two. The maximum operation frequency is

above of 120 MHz in all configurations, excepting the greatest one.

The proposed CFAR hardware architecture uses few hardware resources and it has a

maximum operation frequency of above 160 MHz for complex CFAR detector configu-

rations, achieving a performance 25x times faster than the theoretical processing time

of 2.5 seconds required for the radar. Also, for more complex CFAR configurations, it

is achieved a higher throughput measured in MOPS. Compared with other works, the

proposed CFAR architecture implements more CFAR detectors in one schema. It also

uses less hardware resources than systolic architectures and it has a minor latency

time.

The implementations results of the CFAR hardware architecture shows that an error is

introduced because of the truncation of the scaling factor and the average computation

needed in CA-CFAR, GO-CFAR and SO-CFAR detectors. The CA-CFAR detector is

the more affected by the error introduced by the average computation, because of it

needs to compute the average of the 2n reference cells in spite of n cells that are used

in GO-CFAR and SO-CFAR detectors. However, when the scaling factor used has an

exact fixed point representation these error are reduced.
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The threshold computed by the CFAR hardware architecture and the software imple-

mentation have a small differences that represent less than 0.02%. However, in spite of

the error introduced, the target detection difference against a software implementation

are not significant, and they are highly reduced when the scaling factor desired has an

exact fixed point representation.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

CFAR detectors are used in signal processing applications to extract target signals from

noisy backgrounds. For radar applications, the theoretical aspects of CFAR detectors

are advanced, with a number of CFAR schemas proposed for several environment

conditions. As no optimal CFAR detector has been proposed, for practical implemen-

tations, a versatile processing architecture that is able to switch among different CFAR

detectors and performs in real time is required. General purpose processors and DSP

are not suitable for implementing these CFAR detectors in SDR systems, because

they do not meet the high computational requirements of performance and flexibility

required in these systems. This thesis proposed a specialized architecture as an alter-

native in order to support the workload of radar processing chain. The proposed archi-

tecture allows to select among six CFAR detectors (CA-CFAR, GO-CFAR, SO-CFAR,

OSCA-CFAR, OSGO-CFAR and OSSO-CFAR), scaling factor α and the k-th and i-th

rank-order sample in run-time, and it is parameterizable in the amount of guard and

reference cells, giving robustness to the target detection process.

In order to support the nonlinear processing, the architecture performs a linear inser-

tion sort based on a FIFO schema. The linear sorting operation is performed with an

array of PE called SBC, which offers a compact and practical solution for the rank-order

91
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operation. The linear sorter is based on four functions whose characteristics are trans-

lated into four boolean equations, working as an internal control logic for each of these

processing elements. The architecture can be easily adapted to any length and data

width according to specific application needs. The nature of this sorter exploits the

parallel properties of the insert sort algorithm and achieves excellent performance due

to the use of identical processing elements that perform a number of tasks in parallel

without the need of a complex control unit.

The CFAR hardware architecture exploits the parallel nature of the CFAR signal pro-

cessing and it can be easily extended to accommodate larger CFAR detectors as re-

quired by more demanding applications. Thus, this high performance, yet compact,

architecture can be used as a specialized processing module or as a co-processor in

the radar processing chain for conventional systems or even in SDR systems.

The main contributions of this research work are:

• A compact digital implementation of six variants of CFAR detectors, that is able

to modify some of its parameters improving the detection performance needed in

navigation radars.

• A hardware architecture for target detection, suitable for being implemented in

SDR applications and due its high data rate, is able to perform the radar detection

task, avoiding to be a bottle neck for future digital implementations of the whole

radar signal processing chain.

• A small sorter for applications that are fed in a continuous fashion and need to

access to all the sorted values, commonly used in rank-order filtering techniques.

• An analysis of the implementation of detectors that performs its operations over

all samples in the reference window taking them as one set.
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6.2 Objectives Review

The main objective of this work was: the design and the implementation of a hardware

architecture for different CFAR detectors, able to modify some of its parameters. This

main objective was accomplished because the resulting architecture implements six

distinct variants of CFAR detectors in a single hardware architecture, and it is capable

of modifing some parameters in run-time or in off-line work. The modification of these

parameters improves the detection performance needed in navigation radars. Also, the

proposed architecture supports the high data rate involved in the radar signal process-

ing chain.

As one of the secondary objectives established, the resulting architecture uses few

hardware resources, even with greatest configurations of the CFAR detector. This is

result of the compact sorting processing element and the similarities among the CFAR

detectors implemented, i.e., the operation of averaging, selection of the greatest or

smallest values.

The resulting architecture implements a linear sorter based on a FIFO schema. This

sorter was implemented in order to deal with the nonlinear detectors implemented,

which was another secondary objective.

The last of these objectives was to analyze the trade-off of implementing the CFAR

detectors and the modification of its parameters. This was accomplished by analyzing

and then selecting the parameters that can be altered in run-time or in off-line work.

This analysis suggests the use of partial or total dynamic reconfiguration in order to

implement the modifications of all CFAR’s parameters.
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6.3 Future Work

This thesis also gives the basic ideas for the future implementation of other CFAR de-

tectors and the modification of the amount of reference and guard cells in run-time.

This work proposes the exploration of partial or total dynamic reconfiguration in order

to implement the OS-CFAR and TM-CFAR detectors as well as for modifying its param-

eters. However, a discarding or selecting mechanism can be implemented in order to

modify the amount of reference and guard cells. Once this mechanism is implemented,

other CFAR detectors that work in only one reference window can be supported by the

same linear structure.

This work can be tested in real radar environments like in systems that use SDR for

performing the radar signal processing chain. Also the proposed architecture can be

tested substituting the traditional CFAR analogical implementations.

The proposed architecture works in a one dimension, i.e., over the samples rows of the

4096x4096 matrix of a PPI. There are some architectures like in [22] that process the

data in reference windows of two dimensions (columns and rows of the matrix). The

proposed architecture can be modified to process data in two dimensions, specially

the linear sorter architecture can be redesigned in order to work with two dimension

windows, allowing to insert and discard more than one value in the same clock cycle.
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