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Noviembre, 2015

Tonantzintla, Puebla

Supervisor:
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que aprend́ı desde aquél mes de mayo del año 2001 con mi culto maestro, hoy mi

venerado padrino.

Para:

Mi venerada esposa: Karina Garćıa (te amaré. . . siempre),
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Nuestra culta madrina: Elodia Popoca (ya no triste),
Nuestro culto padrino: Genaro Medina (siempre contento)

Muchas gracias. . .

Antes de que me despida de su honorable presencia, yo quiero invitar a to-

dos los mexicanos que aprendan esta hermosa y verdadera lengua (u otra de esta

tierra mexicana) que da un corazón honesto lejos de la mentira de la historia. . . y,

cuando tengan la lengua nahuatl, ustedes podrán conversar con nuestro amo Dios, la

naturaleza, y todo el universo. . .



Resumen

El uso de un robot para acceder a lugares peligrosos para las personas es común

y necesario en estos tiempos. De la misma manera, los sistemas de más de un robot

conocidos como Sistema Multi-Robot (abreviado MRS por sus siglas en inglés) son

también comunes en la época actual y ventajosos con respecto a los primeros, esto

debido a la posibilidad de operación simultánea y redundante que ofrecen. Nuestra

motivación para realizar este trabajo es programar un sistema compuesto por varios

robots autónomos, móviles y homogéneos que puedan detectar minas explosivas en un

campo donde se presume que hay estos dispositivos dañinos, aunque la localización

exacta y el número de dichos dispositivos sean desconocidos.

Un sistema como este ayudaŕıa a evitar que la gente que habita en lugares con

remanentes de explosivos sufra mutilación o muerte por alguno de estos dispositivos

dañinos. Además, el mecanismo subyacente a esta operación puede llevarse a otros

dominios de asignación automática de un conjunto de recursos y tareas a un conjunto

de procesadores, máquinas o robots, para lo cual, la comunicación constante entre

las máquinas es un requerimiento indispensable.

Pero, ¿qué sucede si estas máquinas fallan y no pueden realizar las tareas en-

comendadas? Una posible solución es que si hay más máquinas habilitadas disponibles,

éstas puedan atender las tareas que las máquinas que fallaron no pudieron realizar.

La detección de las causas de falla o la corrección misma de una falla en un robot

están fuera del alcance de este trabajo; sin embargo, consideramos los casos en los
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que las fallas evitan que los robots se mantengan comunicados entre śı y causan que

el objetivo del grupo de robots no se pueda completarse.

En los Sistemas Multi-Robot con asignación de tareas del trabajo relacionado

casi siempre se supone una comunicación infalible. Para llevar a cabo este trabajo,

nosotros nos enfocamos en proponer una solución a fallas que se reflejen en la pérdida

de comunicación en un Sistema Multi-Robot con Asignación de Tareas. Esto se logra

mediante el uso de un mecanismo que hemos denominado shaking calls.

Nosotros proponemos un Sistema Multi-Robot centralizado y temporalmente

decentralizado en caso de ser necesario, que incluye a un servidor que tiene la

función de asignar tareas a un conjunto de robots mediante un protocolo de

comunicación, mismo que reasigna tareas en caso de que haya fallas tanto en los

robots como en el servidor. Para ello se estudian tres casos particulares de fallas:

que existan robots que pierdan la comunicación con el servidor y no la recuperen;

que existan robots que pierdan la comunicación con el servidor y la recuperen; y que

el servidor pierda totalmente la comunicación con los robots y la restablezca poste-

riormente. En el último caso, el sistema pasa temporalmente a ser decentralizado

dado que el servidor no puede cumplir con su función de asignación de tareas.

Para el funcionamiento del Sistema Multi-Robot se utilizan instantáneas del

ambiente en combinación con el mencionado protocolo de comunicación, y un al-

goritmo de tipo voraz para la asignación de tareas. Dado que la pérdida de co-

municación puede ocurrir en cualquier momento una vez iniciadas las operaciones,

la asignación de tareas no puede realizarse desde un inicio y se considera de tipo

dinámico.

Si bien nuestro algoritmo de asignación de tareas no busca realizar la asig-

nación óptima, nosotros suponemos una independencia funcional entre el algoritmo

de asignación y el protocolo de comunicación, por tanto, es posible combinarlo, con

otros algoritmos de mayor eficacia con nuestro sistema como se demuestra con la

incorporación al Algoritmo Húngaro para asignación de tareas para sistemas multi-
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robot. Cabe mencionar que consideramos que cada tarea se compone de demandas,

lo que quiere decir que cada tarea debe ser atendida en repetidas ocasiones por robots

diferentes.

Los resultados que mostramos en este documento corresponden a simulaciones

en el ambiente de simulación Webots comparando los casos de fallas contra simula-

ciones sin falla alguna. Estos resultados demuestran la resiliencia a las fallas que

ocasionan pérdida de comunicación de nuestro sistema porque a pesar de que

éstas ocurren, nuestro sistema es capaz de completar el mayor número de tareas en

el caso que el número de demandas sea mayor o igual al número de robots (es decir,

que los robots que fallaron no pudieron realizar las demandas de tareas encomen-

dadas), o bien, completar todas las tareas en caso que el número de robots sea mayor

al número de demandas. Finalmente, nótese que nuestro trabajo puede aplicarse a

cualquier Sistema Multi-Robot con asignación de tareas que requiera tolerancia a

fallas, por lo que la motivación expuesta al inicio de este resumen es sólo una de sus

posibles aplicaciones.



Abstract

The use of robots for accessing dangerous places for people is common and nec-

essary nowadays. Systems with more than one robot known as Multi-Robot Systems

(abbreviated MRS) are common in the present time and they offer advantages to the

latter because of their capability to operate simultaneously and redundantly. Our

motivation for achieving this work is programming a system composed by several

autonomous, mobile and homogeneous robots capable of detecting explosive mines

in a field where it is presumed there are these harmful devices, though their exact

location and their number are unknown.

A system such as this might avoid people who inhabit in places that have

explosive remnants suffer mutilation or are killed by the explosion of mines and

these harmful devices. Also, the underlying mechanism of this operation can be

applied to other domains of automatic assignment of a set of resources or tasks, to a

set or processors, machines or robots, for which the communication is a mandatory

requirement.

But, what happens if these machines fail and they are not able to achieve the

committed tasks? A possible solution is that if there are more capable machines

available, they might serve the tasks that the failed machines could not achieve. The

detection of the causes of failure in a robot as well as the correction itself of these

failures are beyond the focus of this work; however, we consider the cases where the

failures, whichever their cause, prevent the robots to keep communicated and caused

viii
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that the goal of the group of robots can not be accomplished.

In the revised related Multi-Robot Task Allocation systems, communication is

supposed to be mostly infallible. In this work we propose a solution to failures which

result in the loss of communication in a Multi-Robot Task Allocation system. This

is achieved by using a mechanism that we have called shaking calls.

We propose a centralized Multi-Robot System that can be temporarily decen-

tralized if necessary, which includes a server with the function of allocating tasks

to a set of robots through a communication protocol which reassigns tasks

in case there exist faults on both, robots and the server in three particular cases of

failure: there exist robots that lose communication with the server and the commu-

nication is not recovered; there exist robots that lose communication with the server

and later the communication is recovered; and that the server completely loses com-

munication with robots and subsequently the communication is restored. In the

latter case, the system temporarily becomes decentralized since the server can not

fulfill its function of task allocation.

In order to operate, the Multi-Robot System uses snapshots of the environ-

ment in combination to the afore-mentioned communication protocol and a greedy

Algorithm for task allocation. Since the loss of communication might happen at any

time during operations, the task allocation can not be solved at the beginning and

is considered dynamic.

While our task allocation Algorithm does not have the purpose of finding the

optimal assignment, we assume a functional independence between the assignment

Algorithm and the communication and protocol making it possible to combine it

with other more effectiveness algorithms as it is demonstrated in this work by incor-

porating the Hungarian Algorithm for Task Allocation in Multi-Robot Systems. It

is worth to mention that we consider each task is composed by demands, this means

that each task must be attended in repeated times by different robots.
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The results shown in this research are simulations performed in the Webots

simulation environment, comparing cases of failures against simulation of ideal sit-

uations. These results demonstrate the resilience to failures that cause loss of

communication of our system because, despite failures happen, our system is able

to complete as many tasks as possible in the case that the number of demands is

greater or equal to the number of robots (i.e., robots that failed were not able to

achieve the demands of committed tasks), or complete all tasks when the number of

robots is greater than the number of demands. Finally, note that our work can be

applied to any Multi-Robot Task Allocation system that requires fault tolerance,

so the motivation exposed at the beginning of this abstract is just one of its possible

applications.
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Chapter 1

Introduction

1.1 Motivation

Explosive mines represent a danger even though they were created and located

for war conflicts nowadays ended. In the report of the year 2013 of L&CMM, short

term for Landmine and Cluster Munition Monitor 1, it is reported that there were

3,628 victims during 2012, from which 1,066 were fatal casualties caused by the

remains of explosive devices in 62 countries: Afghanistan, Colombia and Yemen in

first, second and third place, respectively, in number of victims. It is necessary to

highlight that most of these victims were not related to the military.

The number of undetected mines currently grounded in post-conflict countries

is unknown. However, it is estimated that at least 59 countries have mined fields,

according to the L&CMM organization. The process of detection and remotion

of explosive remnants is made by qualified personal and sophisticated equipment

such as metal detectors. Initially motivated for investigating a robotic solution to

this problem, we propose a feasible solution for mine detection using a Multi-Robot

System that will help to reduce the risks of people who is exposed to, inhabit near

or have to traverse fields that were once mined. The problem is investigated in this

research using a scenario where a team of autonomous robots have to search mines

1http://www.the-monitor.org

1
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within an enclosed environment, and a number of repeated inspections or demands

in charge of different robots are combined into a hypothesis about the presence of

mines at a target position or region.

Multi-Robot Task Allocation (abbreviated MRTA) is not new and different

approaches have already been proposed in the literature, as we will revise in Chapter

2. However, there exist failures that will result in communication issues. We consider

communication failures as an abstraction of other kind of failures. Thus, consider,

for instance, there exist radio interference or a stuck robot for a mechanical problem

or for a drained battery while trying to reach its goal. This robot will eventually

lose communication with the system and the tasks currently assigned will never

complete. This situation might certainly cause that the goal of the system cannot

be accomplished. These cases of failures in underlying MRTA algorithms have been

poorly studied in these approaches. Most of the proposed solutions, as far as we

know, assume that the members of a robot team are able to communicate using a

reliable system. And it is precisely in this niche where our work is circumscribed:

how to propose a mechanism to deal with communications fails among

the members of a robot team that can enrich MRTA algorithms.

It is also worth to mention that MRTA is an abstraction that can be extrap-

olated to many other domains beyond the design of demining robot teams. For

instance, in domestic or service scenarios, automated robots might look for products

located in shelves in order to fulfill several users’ orders.

From now on, we will call “communication failures” to any failure in a set of

robots from a MRS that will result in lose of communication with the rest of the

system. Note that these kind of failures might be very common in a real-world

scenario, and that they can be the result of several external factors that we will

not treat in this work. Instead, we show one feasible solution to deal with these

failures by proposing a mechanism that will reassign and complete tasks whenever

required. Note that the proposed mechanism is independent of the task allocation
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algorithm used, therefore, the mechanism might be set to work with other algorithms

if required.

1.2 Problem definition

In this section we begin by introducing some conditions in order to understand

our objectives and methodology. The complete definitions, the formal definition and

assumptions are given in Sections 2.1, 4.1 and 5.1, respectively.

1.2.1 Considerations and hypothesis

Below we describe the conditions and properties considered in this research:

• The environment represents a mined field on the ground, without obstacles,

delimited and previously divided into m parts not necessarily of equal size.

• The m partitions are abstractions of tasks to be allocated to the robots.

• Each task is composed by at least x and at most y demands (x < y).

• The tasks and their demands are announced by a central server which

assigns tasks to the robots. This function can be temporarily transfered or

assigned to the mobile robots in case of interruption of communication, and

reassigned to the central server when communication is recovered, including all

pertinent updates of the system if any.

• There exist n homogeneous, autonomous and mobile robots in the system, to

which demands are allocated. These robots conform the multi-robot system.

• There exists a communication mechanism among robots, and between

robots and the central server. There exists, also, a positioning and orienta-

tion mechanism for the location of the robots.
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• Each robot is able to detect using its own sensors (sensors available in the

market, for example, metal detectors or temperature detectors), the presence

or absence of objectives and the result must be reported to the central server.

• A task can have one and only one of two possible states: “open” (while the

task has unsolved demands) or “close” (when a minimum number of demands

has been completed).

• A task will remain “open” in case of disagreement of results reported by robots

in different demands of the task, in such case. A demand for a task cannot be

allocated to the same robot twice.

• The overall goal of the multi-robot system is achieved when there exists a

minimum number of demands for each and all of the existing tasks (i.e.,

all task are in the state “close”); or when a maximum run time is reached.

• There are two measures to be taken into account: the time required for the sys-

tem to complete all the tasks (or reach the maximum run time) and the overall

accumulated distance traveled by the robots, called metrics of completion

time and total distance, respectively.

We state here the hypothesis underlying this research:

A simple mechanism based on the exchange of continuous messages or “shaking

calls” is enough for ensuring the resilience to communication failures of a MRS in a

context of a MRTA problem.

1.2.2 Task Allocation in a Multi-Robot System

Task allocation refers to assign a set of jobs or tasks to a set of robots following

some optimality criterion, since the execution of any task has an associated cost. The

calculations where the optimal case (i.e., the overall minimum cost, for example)
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require to compute all possible combinations of allocating task to robots in

order to obtain the optimal result. Note that the computation of combinations

implies a very high computational cost in the order of O(n!). Thus, Muti-Robot

Task Allocation from the perspective of a single robot can be modeled as an instance

of the Traveling Salesman Problem (Miller et al., 2007). There exist suboptimal

solutions for this problem which implies the use of heuristics and the computational

order is set to polynomial (O(nk)).

Furthermore, imagine the tasks are created in run time; or have a due time;

or a task is never achieved because the robot which was assigned had a failure; in

such case, the task allocation is considered to be dynamic, making the problem

even more complicated. The dynamic task allocation of m tasks among n robots, it

is known to be NP-hard problem (Miller et al. (2007), Dasgupta (2011)).

These conditions and hypothesis are specially relevant when dealing with task

allocation algorithms intended to operate on physical robots. In this case, robots

must be able to deal with common failures and constraints that are not necessarily

considered in simulated experiments. These failures and constraints are, for instance,

vision and local sensing only in the vicinity of the robots; limited processing capabil-

ities, storage, sources of power and communication, noise and uncertainty in sensors

as in actuators of the robots, just to mention a few examples.

1.3 Objectives

The main goal of this research is to propose a mechanism for dealing with

communication failures, as a counterpart to Algorithms for task alloca-

tion with multiple demands for a multi-robot system, implement it and

evaluate it.

The set of particular goals that have been defined for the achievement of the
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general goal are enumerated below.

1. Propose and design a greedy Algorithm for task allocation with multiple de-

mands relying on a fully reliable communication mechanism.

2. Implement previous Algorithm using the Webots c© simulation environment.

3. Propose and design an extension to the previous Algorithm and adapt it to

cases with failures in the communication when at most one third of robots fail

and when the central server fails.

4. Implement the second Algorithm using the Webots c© simulation environment.

5. Evaluate the performance of all variations of our proposed algorithms using

standard metrics of completion time and total distance.

1.4 Methodology

Below we revise briefly the methodology that was followed for the achievement

of our goals.

• Design a greedy Algorithm for task allocation with multiple

demands

As a basis for comparison or baseline, a centralized greedy Algorithm was

proposed and implemented for task allocation with multiple demands. For

allocating a task, a matrix of costs (where the rows correspond to robots and

columns to tasks) is calculated based on two aspects: (1) the ratios of distance

between a robot and a task, and (2) the current battery level of the robot. The

assigned task corresponds to the minimum value in the robot’s row. The matrix

is updated according to current robots’ locations and battery levels and known
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tasks’ locations. All these values are stored in tables (one for tasks and one for

robots) in the central server. The tables and tasks allocations are transmitted

to the robots in the system through the explicit communication system. The

robots and the central server share the most up-to-date tables. When a task

is assigned to a robot, it starts its way to the task’s location based on its copy

of the table of robots. In this case, the stop criterion is to complete all tasks.

• Implement an Algorithm using the Webots c© simulation

environment

For testing whether the first Algorithm is successful, a simulation environment

is required. The Webots c© simulator has been selected for this purpose, which

is capable of simulating multiple robots, the environment and the tasks. Results

are obtained varying the number of tasks and robots (in combinations of 3, 6, 9

and 12 robots and 4, 8, 12 and tasks), and are analyzed in metrics completion

time and total distance.

• Design an extension to previous Algorithm for dealing with failures in the

communication mechanism

With the task allocation Algorithm ready, the mechanism that deals with lose

communication is implemented. Three cases of failure are considered: (1)

at most a third part of mobile robots lose communication and there is not

recovery; (2) at most a third part of mobile robots lose communication and

there is later communication recovery; and (3) the server loses communication

and later recovers. These cases were simulated by sending to the robots special

codes in order to: (1) stay at current location, fail definitively and cease all

communications when a failure without recovery is required; (2) stay at current

location and fail during a period of time in which communication is lost and

eventually recovers for the case of failure with recovery; and (3) the central

server disables its transmitter in order to avoid sending any messages for a

period of time and eventually, it restores communications by reenabling the
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transmitter. The task allocation algorithm is executed by both, by the server

whenever a robots fails; and by the robots when the server is unavailable and

the robots must self-assign tasks.

• Implement the fault-tolerant mechanism using the Webots c© simulator

The mechanism that deals with communication failures along with the task

allocation Algorithm is tested in a simulated environment. The previously

generated environments (second step) are used again for testing this mech-

anism. New results were obtained using the previous combinations of tasks

and robots and they were compared against the results obtained using the

Algorithm without failures using the metrics mentioned above. The resulting

mechanism (which deals with communication failures) is called “shaking calls”.

Note there are three cases of failure to be considered, so is the number of

simulations per environment to perform.

• Evaluate the performance of our mechanism with respect to reliable communi-

cations

Our mechanism is compared against the Algorithm’s performance without com-

munication failures based on the specified metrics (c.f. Subsection 1.2.1, last

item). In terms of the achievement of a global goal, all the metrics are in-

creased due to the failures and tasks reassignations. However, in most cases,

the mechanism enable robots to finish all the required tasks.

On the other side, when a robot fails out of three robots used, specifically

in failures without recovery, the MRS completed as many tasks as possible

since by definition all tasks are composed by three demands, thus there are

unfinished tasks left by the failing robot (completion time grows while total

distance decreases). The obtained results demonstrate that even though our

mechanism is not the more efficient than other task allocation Algorithms, is

effective because it is able to recover from failures by reassigning tasks.
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1.5 Contributions

The main contributions of this research are summarized below.

1. A fully functional greedy Algorithm for dynamic task allocation that can be

incorporated to a module capable of dealing with communication failures.

2. A communication protocol required for coordination among robots based on

the exchange of messages.

3. An operable mechanism (shaking calls) capable of dealing with communication

failures independent of the task allocation algorithm.

1.6 Outline

The rest of this document is organized as follows. Chapter 2 includes all the

theoretical basis that supports our research. Chapter 3 shows all the relevant related

work and a comparison with the proposed research. Chapter 4 gives a formal defini-

tion and establishes boundaries of our work. Chapter 5 proposes the mechanism for

dealing with communication failures and the communication protocol for data ex-

change. Chapter 6 presents our experiments, results and interpretations. Finally, in

Chapter 7, our conclusions, contributions and recommendations about future work

in order to deepen into extensions of this research are discussed.



Chapter 2

Foundations

In this Chapter, we revise relevant definitions as well as underlying notions of

this research: in Section 2.1 we introduce important concepts and definitions; we

present a widely accepted taxonomy for multi-robot task allocation is presented in

Section 2.2; in Section 2.3 we review different techniques applied to the problem

of task allocation; in Section 2.4 we expose issues concerning communication among

robots. Finally in Section 2.5, we discuss the criteria that are important to determine

if an environment where a muti-robot system is deployed is static or dynamic.

2.1 Basic definitions

We begin this section by defining concepts required for understanding the mean-

ing of this work.

2.1.1 Tasks and demands

Definition 1. A task is an abstraction of a finite set of actions (behaviors) executed

by a machine on a target.

Gerkey and Matarić (2004) have also stated that a task is a subgoal required

to achieve a global goal.

10
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In our case, robots are the machines and tasks are points within an environ-

ment that must be visited by robots. Figure 2.1 shows an example of six tasks

distributed within an environment represented as a 20 × 20 units square.

Figure 2.1: Tasks (τi) distributed within an enclosed environment. From: Munoz-
Meléndez et al. (2012)

Definition 2. A task is said to be executable if previous conditions (such as avail-

ability, order of execution of tasks and time requirements) were achieved or are under

execution (Botelho and Alami, 1999).

Definition 3. A Dynamically Assigned Task is a task that fulfills at least one

of the following conditions: it is created, discovered, assigned or reassigned during

execution time; or the number of these tasks is unknown a priori ; or the tasks

have an expiration or due time, priority or partial order requiring changes from

the conditions initially known.

Definition 4. A demand is defined as a requirement of an operation by a robot on

or at a target (task) (Munoz-Meléndez et al., 2012).

In this work, a demand is one visit to a point (task) in the environment that
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must be executed by a robot. We require a minimum number of visits by different

robots to each task in the environment in order to complete the task. We will refer

to a visit by the name demand from now on.

2.1.2 Robots and behaviors

Definition 5. A behavior is the state or set of states that match one’s robot action

(for instance processing information, interaction with an object, moving).

Note that according to definitions 2 and 5, behavior is not equivalent to task.

However, note that one or more behaviors might be required in order to fulfill a task.

Definition 6. A Multi-Robot System, abbreviated MRS, is any set which has

more than one autonomous robot working for a common goal. A group of robots is

homogeneous if their individual capabilities are identical. Otherwise the group

of robots is heterogeneous, and their different capabilities complement the tasks

they can achieve (Cao et al., 1997).

In this research we assume a homogeneous multi-robot system.

2.1.3 Communication

Definition 7. Communication in a MRS is the capability of robots for exchang-

ing information in order to coordinate their actions.

Communication can be explicit or implicit. Explicit communication means

the robots have a direct mechanism for exchanging messages in an ordered way

and it usually involves a protocol, for example, wireless radio communication. Im-

plicit communication requires that each robot be aware of the actions that other

robots perform in the environment (Trojanek et al., 2007), for example information

transmitted trough a trail of virtual pheromone.
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Definition 8. A protocol is a convention of rules for exchanging any kind of in-

formation in a communication scheme between nodes in a network. For our case, the

network is the MRS and the nodes are the robots and server of the system.

In this work we assume explicit radio communication and a communica-

tion protocol is required for exchanging information.

2.1.4 Failure and recovery

In the state-of-the-art literature, failure is rarely mentioned, since algorithms

for MRTA rarely deal with any kind of failure. Thus we have to introduce a definition

for this concept. We propose two kinds of failures in a MRS: robot-related failure

(attributed to hardware or software problems but not its capabilities that are assumed

to fulfill the requirements for the tasks’ execution) and environmental failure

(caused by factors that are external to robots and which might cause misbehavior of

robots).

Definition 9. A failure is any reason or cause that has prevented a task from

being achieved.

We consider a communication failure as any failure that results on the inter-

ruption in the communications in a MRS. Note that these failures might be caused

by both, robot-related failure and an environmental failure.

Definition 10. Recovery is the action of returning to a operational status for

all members that conform the MRS.

In this research we deal with both, cases where failures are definitive, and cases

where failures are temporary and thus, the recovery and reincorporation of robots to

the MRS are possible.
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2.1.5 Centralization and decentralization

Definition 11. A MRS is said to be centralized if and only if there is a unique

single point of calculation and/or repository of knowledge of the entire environment

and decisions about actions of the systems are based on that knowledge. If this

condition is not met, the system is said to be decentralized.

Note that single points existing in centralized systems are more prone to failures

since there is a bottleneck in their unique point of control.

A fully centralized approach utilizes a single machine to coordinate the entire

system. This approach is best suited for applications involving static environments

or when global knowledge of the environment is available. On the other hand, in

decentralized systems calculations and decisions are made by single robots based on

the perception each robot has of a partial environment (Dias et al., 2006).

In this research we use a centralized approach since the work application is

mine detection, meaning each mobile robot is under constant danger because the

location of the mines is unknown and could explode at any time. A server located

in a safe place nearby the mined field that is in charge to calculate and assign tasks

to robots is considered in our scheme.

2.2 Multi-Robot Task Allocation and taxonomy

Definition 12. Multi-Robot Task Allocation, abreviated MRTA, is a system

composed by m tasks (or subgoals) to be achieved by n available robots with a

known and required skill (or ability) optimizing some criteria in a given period

of time.

It is important to emphasize that there are a number of MRS applications,

such as foraging, where robots usually look for objects of interest until one ob-

ject is found. In this problem, the robots have to collect the objects to contribute
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to an overall goal for the MRS. The main difference between foraging multi-robot

systems and MRTA is that in the second problem, there is a specific calculation

(optimization) of how the work is divided into available robots, taking into ac-

count the robots’ capabilities and restrictions; environment; communication; among

other key features, considerations that are not taken into account in applications of

foraging robots.

A widely accepted taxonomy in MRTA problems is proposed by Gerkey and

Matarić (2004). They present three dimensions for classifying the Multi-Robot Task

Allocation problem that are detailed below.

-The number of tasks a robot is able to execute at a given time, this is single-

task robots (ST) versus multi-task robots (MT). A single-task robot accomplish

one and only one task per turn, whereas a multi-task robot is able to execute more

than one task simultaneously.

-The number of robots that are necessary to complete a task: single-robot

task (SR) versus multi-robot task (MR). A single-robot task requires interaction

of one and only one robot to be considered as accomplished. On the other hand,

a multi-robot task requires more than one robot to be fulfilled.

-The nature static or dynamic of the tasks: instantaneous assignment (IA)

versus time-extended assignment (TA). Instantaneous assignment means that

all the tasks are assigned once and there will not be further changes to these

assignments. Time-extended assignment considers changes might happen over

time.

The final class of a multi-robot system is given in any possible combination of

these three dimensions. For instance: ST-SR-IA stands for a multi-robot system

with robots that can perform only one task at a time, one robot is enough for

achieving a task and the task assignment is made at the beginning and will not

change as time passes over.
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Our research work is a ST-MR-TA problem: Single Task robot because a

robot is able to perform one and only one task at a given time; Multi-Robot task

since the domain require the fulfillment of more than one demand per task by different

robots; and Time-extended Assignment because we consider communication failures

which lead to dynamic assignments in run-time.

2.3 Task assignment techniques

In this section we review the most significant techniques that have been pro-

posed so far for the problem of MRTA.

2.3.1 Greedy assignment

This simple technique of assignment tries to solve the task allocation problem

(find the global optimum) by choosing the local optimum (minimum in this case)

in each iteration in a reasonable time. However, this technique lacks of further

sightseeing even when there is an obvious global optimum. Greedy assignment is

based on greedy scheduling algorithms, for instance Brassard and Bratley (1996)

propose the example described below.

Consider a single server which has a finite fixed number n of customers to serve.

Each customer i expends a known time ti in the system, 1 ≤ ti ≤ n. The objective

is to minimize the average time that a customer spends in the system by minimizing

the total time spent in the system by all the customers.

Let n=3 be customers, with t1=5, t2=10 and t3=3.

Table 2.1 illustrates how much time is spent by customers in the system when

they are served at different turns. Note that a customer’s time is added to time

of customers who are before in order. Also note that order 312 is optimal in time,
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whereas 213 is the worst. So, if we have to minimize the time the last customer

spends in the system, we have to minimize the time that previous customers spend

in the system. Therefore, the Algorithm is simple: at each iteration add to the end

of the schedule the remaining customer with shortest time.

Order T
123: 5+(5+10)+(5+10+3) =38
132: 5 + (5+3)+(5+3+10)=31
213: 10+(10+5)+(10+5+3)=43 ← worst case
231: 10+(10+3)+(10+3+5)=41
312: 3+(3+5)+(3+5+10)=29 ← optimal
321: 3+(3+10)+(3+10+5)=34

Table 2.1: All possible cases of order in a greedy example, where T represents the
overall time spent by the customers. From Brassard and Bratley (1996)

As it can be seen, a greedy Algorithm can either minimize or maximize a given

criterion of optimality. In case of MRTA, one optimal criterion is, for example, the

Euclidean distance from tasks to robots.

The example seen in this section has been proven by the authors to be optimal

(see Section 6.6.1, Brassard and Bratley (1996)). However, this Algorithm considers

static conditions such a fixed number of customers and static time of attention. As

a matter of fact, this information is not always available in real world applications.

2.3.2 Hungarian assignment

This Algorithm was proposed by Kuhn (1955) for n workers and n jobs and

later revised by Munkres (1957) to be used for n workers and m jobs. It has been

recently revisited for robots and tasks by Lenagh (2013).
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The Algorithm has these steps:

Let n and m be a set of workers and a set of jobs, respectively. Each job has

a specific cost (for instance time or distance) for each worker.

Step 0. A matrix called matrix of costs is created with rows representing

workers and columns representing jobs. Each element of the matrix represents the

cost of assigning worker n to job m. Let k=min(n,m).

Step 1. For each row in the matrix, find the minor entry and subtract it from

every value in that row.

Step 2. Find a zero in the new matrix and mark it (put an asterisk on it: 0*)

if there is not a marked zero in the same column or row. Repeat this instruction for

all entries in the matrix.

Step 3. Mark each column containing a marked zero. If the number of marked

columns is equal to k then the marked zeros (0*) indicate the optimal assignments

and the Algorithm ends; else, go to step 4.

Step 4. Find a non marked zero and prime it (put an apostrophe on i: 0’).

If there is no marked zero in the row containing a primed zero go to step 5; else,

mark the row and unmark the column containing this marked zero. Repeat this

instruction until there are not unmarked zeros. Find the minimum in the unmarked

entires. Go to step 6.

Step 5. Change primed zeros to marked zeroes as follows. Let Z0 represent

the primed zero (found in step 4); let Z1 represent the marked zero in the column

of Z0 (if any); let Z2 represent the primed zero in the row of Z1 (there will always be

one). Continue until there are not marked zeroes in a primed zero column. Unmark

each marked zero, mark each primed zero, unprime them and unmark every line in

the matrix, return to step 3.

Step 6. Add the value found in step 4 to each entry of a marked row and
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subtract it from each entry of unmarked columns. Return to step 4 without any

change to the matrix.

Table 2.2 illustrates the operation of the Hungarian Algorithm using these sets:

Workers = {a, b, c}, Jobs = {p, q, r}.

2.3.3 Market-based assignment

The principle of a marked-based mechanism is to settle a market where tasks are

for sale and robots act as selfish agents in search for individual profit. These robots

are paid for tasks they achieve and they pay with some electronic currency for the

resources they consume (Kalra and Martinoli, 2006). A market-based mechanism

tries to optimize overall execution time and added costs. This objective is achieved

by using a bidding protocol for the task assignment (Geppert et al., 1998).

The auction/bidding Algorithm works as follows:

Step 0. A dedicated agent or one of the robots auctions tasks during a finite

period of time (auction period).

Step 1. During the auction period, each robot bids for winning cheaper tasks,

taking into account the execution time and costs.

Step 2. All bids are announced and exchanged by robots, once received, these

bids are taken into account for assigning a task.

Step 3. The best bidder is chosen and the auctioned task is, therefore, assigned

to the winning robot. If a tie happens, there should be an untie mechanism based

for instance on the robot’s id or on its hierarchy.

Step 4. If there are left unassigned tasks, go to step 0, else finish auctions.
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Matrix of costs Step 0 Step 1

Step 2 Step 3 Step 4

Step 6 Step 4 Step 5

Step 3 Step 4 Step 6

Step 4 Step 6 Step 4

Step 5 Step 3 Assignments

Table 2.2: Example of Hungarian Algorithm by steps on a 3×3 matrix. The assign-
ments correspond to the zeros with an asterisk in the last matrix: task r is assigned
to worker a; task q is assigned to worker b; and task p is assigned to worker c. From:
http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html
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The market-based mechanism can be either, centralized or decentralized as we

detail in the chapter that reviews the state of the art. Also note that if there are

tasks created at run time, the auction/bidding Algorithm resumes.

2.3.4 Stochastic assignment

In this section we review the Vehicle Routing Problem, abbreviated as VRP,

in order to model the stochastic queuing according to Bullo et al. (2011):

1. A team of m vehicles is required to provide service to a set of n demands in a

2-dimensional space.

2. Each demand requires a certain amount of on-site service.

3. The goal is to compute a set of routes that optimizes the cost of servicing

(according to some quality of service metric) the demands. Note that new de-

mands are created dynamically, thus, this assignment is also known as Dynamic

Vehicle Routing (DVR). See Figure 2.2.

The VRP is modeled trough a queuing model known in the literature as the

m-vehicle Dynamic Traveling Repairman Problem (m-DTRP) defined as follows:

consider m vehicles free to move, at a constant speed v, within R2. Demands are

generated in a bounded and convex set Q, called the environment. A location of a

demand becomes known at its arrival epoch; thus, at time t we know with certainty

the locations of demands that arrived prior to time t, but future demand locations

form an independent and identically distributed sequence.

At each demand location, vehicles spend some time s ≥ 0 in on-site service,

then, a served demand is removed from the system once one of the vehicles has

completed its on-site service. The system time of demand j, denoted by Tj, is defined
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Figure 2.2: Example of Dynamic Vehicle Routing (DVR): left and middle: vehicles
are assigned to customers and the routes planed are represented respectively as tri-
angles, circles and lines. Right: the DVR problem is how to re-allocate and re-plan
routes when new customers (new circles) appear. From Bullo et al. (2011)

T
∗

:= T π∗ = inf
π∈P

T π∗ (2.1)

Formula 2.1. The optimal time (T
∗
) is equal to the time of the optimal policy (T π∗)

which is the infimum of the times of all policies π ∈ P. From Bullo et al. (2011)

as the elapsed time between the arrival of demand j and the time one of the vehicles

completes its service.

A policy for routing the vehicles is said to be stable if the expected number of

demands in the system is uniformly bounded at any time. Let P be the set of all

causal, stable, and time-invariant routing policies and T π be the system time of a

particular policy π ∈ P. The m-DTRP is then defined as the problem of finding an

optimal policy π∗ ∈ P (if one exists) as indicated in formula 2.1.
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2.4 Communication techniques

As we mentioned in Subsection 2.1.3, the members of a MRS require an explicit

mechanism of communication. In this section, we explain methods for transmitting

information in a network. Also, a brief explanation about how to deploy a network

for fulfilling the requirements of communication of this work.

2.4.1 Unicast versus broadcast methods

Unicast means that a message is transmitted to only one possible destination

through a unique identification (address) in a network. The specific use of unicast is

transmitting information to only one robot in the required case, for example, a task

assigned to a robot concerns only to that robot. In broadcast, contrary to unicast,

a message is sent to all possible destinations within a network simultaneously. A

specific application of the broadcast method is to transmit the tasks’ location to

all robots in one step of transmission. There is not a method better than other, a

suitable method is rather selected depending on what kind of messages that are to

be transmitted in a network.

Gerkey and Matarić (2002) highlight the inefficient waste of bandwidth of trans-

mitting unicast messages to every and each robot in a MRS compared to broadcast.

However, an arguable statement is that not every robot should receive every mes-

sage transmitted in the system and that discarding third parties’ messages also might

cause local overhead to a robot.

Our work uses both methods of communication, unicast and broadcast, de-

pending on the type and application of information to be transmitted.
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2.4.2 Ad-hoc and infrastructure wireless networks

An ad-hoc wireless network is a kind of network whose communication does

not rely on a device such as an access point or a router as an intermediary. This

gives a sense of decentralization since all the nodes (hosts) that compose the network

are interconnected directly through their wireless network interfaces. However, the

wireless network interfaces have usually limited power transmission. Figure 2.3 (left)

shows an ad-hoc wireless network where all the nodes are laptops. Note the lack of

an intermediary device connecting wirelessly the laptops.

An infrastructure wireless network requires an intermediary central device

(access point or wireless router) that connects and provides connectivity and

security to all the nodes in the wireless network. Also, an access point interconnects

wired and wireless networks. Finally, their detachable antennas can be substituted

by high gain antennas that provide a wider range of communication. Figure 2.3

(right) shows a wireless network connected to a wired network through an access

point.

2.4.3 Communication network deployment

In our work, robots are mobile and autonomous. We have chosen the Koala

robot for experimentation. This model of robot have been simulated within the

Webots c© environment, that provides realistic models of common robotic platforms.

In a real world scenario an ad-hoc network is the simplest wireless network.

However, as this work uses a centralized system, a significant coverage of the envi-

ronment is required. Therefore an infrastructure network will be deployed with an

access point connected to the server which assigns tasks to robots. A private IP

C-class network version 4 is enough for addressing up to 254 hosts including all

three mobile robots and the central server.
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Figure 2.3: Two kinds of network: ad-hoc (left) and infrastructure (right).
From: http://www.bb-elec.com/Learning-Center/All-White-Papers/Wireless-
Cellular/How-to-Make-Devices-Communicate-in-a-Wireless-Worl.aspx

In case of unicast, a specific IP address is used for each host (server and

robots), whereas broadcast subnet address (X.X.X.254 ) is used when broadcast is

required.

Concerning the simulated environment in this research, the simulated robots

have wireless radio mechanisms equivalent to an ad-hoc network. The receiver and

transmitter modules for the robots in the simulator have 100 channels available

and they do not require any other module equivalent to a wireless access point for

establishing communication.

In the case of unicast transmission, channels 0 through 99 are used for

allocating one channel per robot. In case of broadcast, channel -1 is used and all

receivers will catch the message despite their tuned channel.
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As stated in Section 1.4, we model the communication failures in robots as

follows: failures without recovery by sending a special code to the robots “designated”

to fail to terminate operations; and failures with recovery by sending a special code

to the robots “designated” to fail in which case robots cease all communications for

a period of time. In the case of failure with recovery of the server, it will cease to

send messages by disabling temporarily its transmitter and latter reenabling it. All

calculations of time of failure are exposed in Subsection 6.1.3.

2.5 Dynamic and static environments

In order to differentiate a static versus a dynamic environment in the MRTA

problem, at least one of the following conditions must be held in order to be consid-

ered as a dynamic environment:

1. Tasks are created, reassigned or known during run time.

2. Tasks have a due time, expiration and/or priority.

3. Tasks’ locations are unknown or unavailable.

4. Any change to any starting plan for scheduling tasks is made.

5. Robots’ failures during run time might happen.

6. Unexpected obstacles might be present in the environment.

7. An uncharted or partially known environment is used.

8. Communication is considered unreliable.

9. Communication failures force any previous allocation.
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2.6 Summary

• We conclude this chapter by reminding that we have defined concepts that are

required to understand this research in Section 2.1.

• Our work is considered a ST-MR-TA (Single-Task robot, Multi-Robot task,

Time-extended Assignment) according to the taxonomy given in Section 2.3

• We also revised important algorithms for allocating task: a greedy approach;

Hungarian assignment; market-based assignment; and stochastic assignment in

Section 2.3.

• We have stated the use of unicast and broadcast in our work and how we

modeled the failures of communication in Section 2.4.

• We give a list of conditions to distinguish between static and dynamic environ-

ments. Our case namely fills the condition that online reassignment of tasks is

necessary due to communication failures, as presented in Section 2.5
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State of the art

In this chapter we revise the most significant literature of our field. We present

a taxonomy of the multi-robot task allocation problem in Section 3.1; we revise the

related work of muti-robot systems and the techniques proposed for task allocation

in Sections 3.2, 3.3, 3.4 and 3.5, according to the previously mentioned taxonomy in

Section 2.2; and finally, we summarize key features of related work and compare our

work with respect to related work in Section 3.6.

3.1 Taxonomy for related work

For practical purposes, we have divided the related work in the three dimensions

introduced by Gerkey and Matarić (2004) and presented in Section 2.2. Note that

there are eight different divisions, depending on the combinations given.

1. Single-Task robots - Single-Robot tasks - Instantaneous Assignment

(ST-SR-IA). Robots serve one task at a given time, tasks are served by robots

only once, and there is only one round of assignations (static environment).

2. Single-Task robots - Single-Robot tasks - Time-extended Assignment

(ST-SR-TA). Robots serve one task at a given time, tasks are served by

robots only once, and there are more than one round of assignations (dynamic

28
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environment).

3. Single-Task robots - Multi-Robot tasks - Instantaneous Assignment

(ST-MR-IA). Robots serve one task at a given time, more than one robot

is required to serve a task, and there is only one round of assignations (static

environment).

4. Single-Task robots - Multi-Robot tasks - Time-extended Assignment

(ST-MR-TA). Robots serve one task at a given time, more than one robot

is required to serve a task, and there are more than one round of assignations

(dynamic environment).

5. Multi-Task robots - Single-Robot tasks - Instantaneous Assignment

(MT-SR-IA). Robots serve more than one task at a given time, tasks are

served by robots only once, and there is only one round of assignations (static

environment).

6. Multi-Task robots - Single-Robot tasks - Time-extended Assignment

(MT-SR-TA). Robots serve more than one task at a given time, tasks are

served by robots only once, and there are more than one round of assignations

(dynamic environment).

7. Multi-Task robots - Multi-Robot tasks - Instantaneous Assignment

(MT-MR-IA). Robots serve more than one task at a given time, more than

one robot is required to serve a task, and there is only one round of assignations

(static environment).

8. Multi-Task robots - Multi-Robot tasks - Time-extended Assignment

(MT-MR-TA). Robots serve more than one task at a given time, more than

one robot is required to serve a task, and there are more than one round of

assignations (dynamic environment).
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There are no works reported in these categories: ST-MR-IA, MT-SR-IA, MT-

SR-TA, and MT-MR-IA and for that these categories are not included in next

sections.

3.2 Single-Task robots - Single-Robot tasks -

Instantaneous Assignment (ST-SR-IA)

Lagoudakis et al. (2005) propose a theoretical study of a multi robot system.

The tasks (points in the environment which must be visited by robots) are known

previously by the robots, however, a robot only knows its own location and does

not know the other robots’ locations.The robots exchange bids for tasks in rounds.

The bids are proportional to the distance between a robot and a task: the “small-

est” bid is the winner. Finally, when there are no tasks left, each robot computes

its shortest path for reaching those tasks and begins its visiting route. This work

supposes a decentralized and communicated system because there is no auctioneer

who announces the tasks: the robots exchange bids through messages. Nevertheless

the system is not dynamic since all robots know the tasks’ location and tasks are

attended only after they were allocated. According to Gerkey and Matarić (2004),

this is a ST-SR-IA problem.

3.3 Single-Task robots - Single-Robot tasks -

Time-extended Assignment (ST-SR-TA)

Botelho and Alami (1999) propose one of the earliest works of multi-robot task

allocation: M+. They show a study of a hybrid approach combining reasoning ability

and reaction for a simulated multi-robot system. The tasks are boxes which are

carried from their original locations, transported through defined paths and relocated
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to their new locations by the robots. Tasks are divided and mapped in case of

failure or cooperative exchange trading. A global planner is always required for

tasks execution and a local snapshot of a changing environment is held by each

robot. An overlap exists between the task currently executed and the plan for the

task to be executed next in a look ahead way. The M+ protocol is defined by three

behaviors: allocation (refines and assigns tasks according to election by the current

context), cooperative reaction (invoked by the failing robot when there are flaws in

the execution of the task, it updates the state of the world, it manages the exchange of

information between robots, controls replanning and asks for help if needed) and task

execution (distributively controls the synchronization between robots and actions).

Note that cooperative reaction can reassign an unachieved task previously assigned

and for that three key features are supposed: a decentralized system, a changing

environment and explicit communication among robots. It is worth to remark that

the failing robot never loses communication with the system, in fact, the robot itself

asks for help whenever needed. In Figure 3.1 there is snapshot of the simulated

environment. According to Gerkey and Matarić (2004), this MRS is a ST-SR-TA

problem.

Matarić et al. (2003) use both simulated and real robots. The tasks are fire

alarms that can be activated at unpredicted times and unknown locations. The

robots must approach these alarms for turning them off. The overall coordination

formulation is divided into three parts: bid feature that determines the ability to

perform a task based on the state of the robot; task allocation mechanism that

determines which robot should perform a particular task based on bidding; and

robot controllers that determine appropriated actions for each robot based on the

commitment of the current task of the robot.

Fire alarms are simulated using sound signals. The bids are proportional to

the sound intensity of the fire alarm perceived by the robots and depending on the

distance between the alarm and each robot. In this case, because of the unknown
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Figure 3.1: Simulated environment of M+. The robots move along lanes that connect
“stations” where they pick-up and put-down boxes. From: Botelho and Alami (1999).

location of the alarms (tasks) and random time they activate, it is supposed a dy-

namic environment; since the robots bid for tasks and exchange those bids that means

the scenario corresponds to a decentralized system; finally, communication among

robots is a mandatory requirement for the exchange of bids. For the taxonomy given

by Gerkey and Matarić (2004), this problem fits into the category of a ST-SR-TA

problem.

Viguria et al. (2007) present another market-based work. In this case, the tasks

are unknown points in an environment. There are two kinds of robots: auctioneers

and bidders. In each auction a task is auctioned by only one auctioneer robot which

has a token, meanwhile all other robots are bidders for that task. Later, the token is

given to another robot which has more tasks to be auctioned or kept by the current

robot. Tasks are discovered during run time. Since the tasks are unknown, this

system is dynamic and there is explicit communication among robots for exchanging
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bids. Also, this system is considered decentralized because there is no a unique robot

assigning tasks. In the taxonomy given by Gerkey and Matarić (2004), this system

is a ST-SR-TA problem.

Seow et al. (2010) propose a system where there are no mobile autonomous

robots but agents. These agents reside in taxis which bid for customers (tasks) who

are to be transported. The environment is a road network previously known by all

the agents. A central announces a task’s location to all available agents in the nearby

area, then the available agents bid according to the distance between the taxi and

the task location. A main feature of this work is that agents negotiate previously

assigned tasks which are exchanged if agreed, thus the system is decentralized. This

work has explicit communication, since all agents communicate decisions. Finally,

the number of customers and their location is unknown, therefore, this system is also

dynamic. This work is considered as a ST-SR-TA problem according to Gerkey and

Matarić (2004).

Dahl et al. (2009) use a vacancy chain scheduling. One example of vacancy

chain is in bureaucracy: an employee with high post retires leaving a vacancy filled

with an employee with lower post than the first, then a second vacancy is created

and the chain continues. This system uses indirect instead of explicit communication

among robots. In this case, there are circuits with more than one robot each. In one

edge of the circuits there is a provider of objects the robots must carry to another

edge of the same circuit. Because the number of carried objects is unknown in the

beginning, this system is considered dynamic. A schematic of the operation is seen

in Figure 3.2. This research is ST-SR-TA problem, according to Gerkey and Mataric

Gerkey and Matarić (2004).
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Figure 3.2: Vacancy chain simulated environment. The robots must carry objects
(tasks) from sources to sinks. From: Dahl et al. (2009)

3.4 Single-Task robots - Multi-Robot tasks -

Time-extended Assignment (ST-MR-TA)

Munoz-Meléndez et al. (2012) propose a multi-robot system that inhabit a

divided environment. These divisions (tasks) must be processed (visited) by robots

more than once. Visits are considered demands to accomplish a task. Each task can

be visited by only one robot at a given time. The robots generate a transition matrix

in which the Euclidean distances between available tasks are computed, as well as a

state vector where a robot calculates the Euclidean distance to each available task.

The matrix and the vector are multiplied giving as result a queue of sorted tasks for

each robot. Then the robots bid for the tasks following the ordered queue. If a robot

does not win any task, it will remain idle until the robot wins one available task. This

work supposes a reliable explicit communication among robots for exchanging bids.

Also, this system is decentralized because there is not a central manager. Finally,



Chapter 3. State of the art 35

the system is dynamic (stochastic) because the availability of a task is not known

with certainty since the beginning and unavailable tasks are not considered in a bid

round at a given time. In the taxonomy of Gerkey and Matarić (2004) this research

is a ST-MR-TA problem.

Lenagh (2013) extends the work of Munoz-Meléndez et al. (2012) by adding the

robots’ batteries level to calculations. In this case, the location of tasks is unknown

and are detected during run-time. As previously done in the work of Munoz-Meléndez

et al. (2012), the robots generate a transition matrix in which the Euclidean distances

between pairs of available tasks are computed and a state vector where a robot

calculates the Euclidean distance to each available task. The matrix and the vector

are multiplied giving as result a queue of sorted tasks for each robot. Then the

robots bid for the tasks following the ordered queue. As this research is an extension

to Munoz-Meléndez et al. (2012) has the same properties: explicit communication

between robots, is decentralized and dynamic. As well, the taxonomy by Gerkey and

Matarić (2004): this is a ST-MR-TA problem.

Miller et al. (2007) use muti-robot task allocation with a swarm-like system. A

swarm has mobile entities (agents) which search and interact with objects of interest

or targets (tasks). Since a single entity cannot achieve the whole interaction over the

target, more entities are required. When a target is discovered, its existence, priority

and location are communicated by pheromone. Other members of the swarm interact

over the target until completion, then the members resume their search for targets.

The behaviors and capabilities of the agents of this system are: deploy (the

agents are deployed upon request of a central manager, but the manager does not

supervise the agents); search and discover (agents perform a blind search for targets,

if a target is discovered it is marked with pheromone indicating priority); commu-

nicate (when an agent discovers a target, the agent must communicate the target’s

existence in a peer-to-peer manner to other agents within its communication range);

task selection (one agent stores information about uncompleted tasks in a list and
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chooses the tasks it will execute by establishing a path); execution of tasks (when

reaching a task’s location, the agents perform the required actions for achieving the

task or share it with other agents and when its part is over, resume the search for

targets).

The cited work has the following features: it is dynamic, since the agents do

not know the tasks’ location; there exists explicit communication even tough it is

limited; and it is decentralized because the robots are autonomous and they have to

discover the tasks. Note also that a single agent only performs a part of the task and

it is analogous to the concept of demand used by Munoz-Meléndez et al. (2012). This

is a swarm-like research, however, in the taxonomy by Gerkey and Matarić (2004),

this system matches a ST-MR-TA problem.

The work of Dasgupta (2011) is similar to the work of Miller et al. (2007)

that uses a swarm-like system. An object of interest or target is considered as a

task. The robots must interact (discover, consume or carry to a nest) on tasks. The

task is considered complete when a minimum of four robots have interacted with

the task, analogous with the previous demand concept. Each robot uses three lists

of tasks: allocated-task list (contains information of discovered tasks, it is updated

during run-time, it is sorted according to some heuristics and the robot resumes

search behavior if this list is empty); visited-task list (contains the tasks previously

executed by the robot and these tasks must be ignored if rediscovered); completed-

task list (contains closed tasks and those tasks must be ignored if rediscovered).

Four heuristics are proposed. This work is also dynamic, decentralized and explicit

communication exists between robots. As previously as with Miller et al. (2007) this

research is a ST-MR-TA problem according to Gerkey and Matarić (2004).
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3.5 Multi-Task robots - Multi-Robot tasks -

Time-extended Assignment (MT-MR-TA)

Bullo et al. (2011) propose a theoretical study of algorithms and task allocation

to dynamic routes. They also deal with movement restrictions for real robots or vehi-

cles. Their main objective is not an optimal allocation of tasks but an optimal route

for the robots given demands of visits created during run-time. They also deal with

with these scenarios: explicit communication, without explicit communication be-

tween robots and time constraints policies. This research is very exhaustive. Gerkey

and Matarić (2004) consider this work as a MT-MR-TA problem.

3.6 Comparison of related work

We summarize all previously mentioned works in Tables 3.1 and 3.2 in some

comparable settings defined in Chapter 2. Note for example, similarities in the

use of simulated robots and tasks. Almost every work reports one demand per

task (single-robot task), however, there are few works (such as Miller et al. (2007),

Munoz-Meléndez et al. (2012) and our research) that address problems where a task

is divided into demands (multi-robot task).

Note also that Lagoudakis et al. (2005) use an instant-assignment scheme by as-

signing the tasks only once, meanwhile, all the other works consider a time-extended

assignation of tasks meaning that their environments are dynamic. Also, note how

all work which report the use of explicit communication always considered it flawless,

the aspect where the main difference with our research relies: we assume that any

failure that causes the loss of communication in a MRS results in a task reassigna-

tion.
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Botelho and Alami (1999) deals with failures if a robot can not achieve its task,

however, the robot never loses communication and is able to ask for help through

the communication system. While we look for tasks completion, other works assume

a reliable communication and look for an efficient task allocation algorithm. Fur-

thermore, we assume that our mechanism might complement existing task allocation

algorithms, so we focus our research in the communication field by analyzing differ-

ent cases of failures as we expose in Chapter 5. The Tables shown are by no mean

an exhaustive and complete comparison.

3.7 Summary

• We revised the most significant related work to our research according to the

taxonomy introduced in Section 2.2.

• There are key differences in related work with our research: the communications

field is poorly addressed or not addressed at all. We consider failures and task

reassignation when robots fail and lose communication with the system.

• We presented a comparative chart with key features in order to highlight our

problems and contributions.
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(¡0.30m),
medium
(¡2m) or big
(¿2m)

Number of
robots

Task assign-
ment

Number of
tasks

Number of
demands
per task

Requirements:
Reliable
or unreli-
able

Among
robots

Bullo
et al.
(2011)

Decentralized Theoretical
algorith-
mic study

Not applica-
ble

m vehicles Dynamic k (called
services)

1 Not men-
tioned

Both:
with and
without
explicit

Not re-
ported

MT-MR-TA No results reported but a
study to calculate the op-
timal route for reaching
places that arise in run-
time (demands) which also
must serve a task

Lenagh
(2013)

Decentralized Simulated Medium Groups
of 5, 10,
15 and 20
robots

Dynamic 6, 12, 18 and
24

At least 3,
at most 5

Reliable Yes

400m
2

(20 x 20 m)

ST-MR-TA Comparison with a greedy
Algorithm, Hungarian and
repeated bids of task allo-
cation

Dasgupta
(2011)

Decentralized Simulated Small Experiments
with 9,
18 and 27
robots

Dynamic 20, 24 At least 4 Not men-
tioned

Yes

12.25m
2

ST-MR-TA Results of a cooperative
foraging scheme and com-
parison with 4 different
heuristics

Seow et al.
(2010)

Decentralized Simulated Big Fleet:
1000 and
nego-
ciation
groups of
5, 10, 15
and 20
agents

Dynamic Not men-
tioned

1 High
speed
reliable

Yes

150km
2

(15 x 10 km)

ST-SR-TA Comparison against a cen-
tralized system of task as-
signment

Botelho
and Alami
(1999)

Decentralized Simulated Not men-
tioned

3 Dynamic 10 1 Not men-
tioned

Yes Not men-
tioned

ST-SR-TA Experiments of docking
stations connected to rails
which the robots move
containers from one sta-
tion to another

Lagoudakis
et al.
(2005)

Decentralized Theoretical
study of
routes

Not men-
tioned

n robots Static Not men-
tioned

1 Not men-
tioned

Yes Not applica-
ble

ST-SR-IA The tasks’ location is
known and the number
of robots but not their
location; the robots bid
for the all the unassigned
tasks and when assigned,
a route is drawn to reach
the tasks’ locations

Table 3.1: Related work comparison
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Authors,
year

System:
centralized
or
decentralized

ROBOTS TASKS COMMUNICATION Area of the
environment

Class in the
taxonomy by
Gerkey and
Matarić (2004)

Results
Robots:
simulated
or phys-
ical or
theoretical
study

Size of
robots by
length: small
(¡0.30m),
medium
(¡2m) or big
(¿2m)

Number of
robots

Task assign-
ment

Number of
tasks

Number of
demands
per task

Requirements:
Reliable
or unreli-
able

Among
robots

Matarić
et al.
(2003)

Decentralized Simulated
and physi-
cal

Medium 10 robots
simulated
and un-
known
number
of real
robots

Dynamic Not men-
tioned

Not men-
tioned

Not men-
tioned

Yes 100 grids
(10x10) in
simulation
and not
mentioned
the real
environment
dimensions

ST-SR-TA Location of tasks are
not known at start time,
tasks arise at runtime and
robots bid a estimated
(heuristic) of the distance
of the task. Comparison to
four strategies by combin-
ing two axes: commitment
and coordination

Miller
et al.
(2007)

Decentralized Simulated Not men-
tioned

18 robots Dynamic 20 At least 3,
4 for con-
firmation

Not men-
tioned

Yes, lim-
ited

2500 grids
(50x50)

ST-MR-TA Comparisons among four
heuristics for dynamic al-
location of tasks with a
minimum number of de-
mands

Dahl et al.
(2009)

Decentralized Simulated Medium 5 and 6
robots

Dynamic Not men-
tioned

1 Not men-
tioned

No

96m
2

(12 x 8 me-
ters)

ST-SR-TA There exist two chains
with of 3 robots each: a
high priority and low pri-
ority for a basis case, other
two experiments removing
a robot from each chain
and reports convergence
time in the later cases

Viguria
et al.
(2007)

Decentralized Simulated Medium Experiments
with 3 and
5 robots

Dynamic Experiments
with 3, 5, 7,
9, 15, 20, 30
and 40 tasks

1 Reliable Yes

1, 000, 000m
2

(1000 x 1000
meters)

ST-SR-TA Compares 3 algorithms:
no local plan against 2 with
planning which are closer
to the optimum than the
first

Our
research

Centralized
in a server
or decen-
tralized
on multi-
ple robots
if needed

Simulated Medium
(robot
Koala Sil-
ver)

Robots
simu-
lated 3,
6, 9 and
12

Dynamic Experiments
with 4, 8,
12 and 16

3 Unreliable Yes

400m
2

simulated
(20x20
meters)

ST-MR-TA We use flawless simu-
lations as a basis and
compare with three
cases of failures: robots
fail without recover;
robots fail with recover;
and the central server
fails with recover

Table 3.2: Related work comparison (continued)



Chapter 4

MRS: formal definition and first

Algorithm

This chapter begins by describing formally our system. It includes the formal

settings of the environment and a formal definition of sets of tasks and robots in

Section 4.1. In Section 4.2, we present the technical features of the environment,

robots and tasks, as well as the robots’ sensor capabilities. We introduce our first

Algorithm in Section 4.3. A problem encountered in the first batch of simulations:

collision avoidance among robots, and the solution to collisions is presented in

Section 4.4. Finally, in Section 4.5 we summarize the content of the current chapter.

4.1 Formal definition of the problem

The formal definition of the problem states as following:

1. Let ε ⊂ R2 be an environment delimited and divided into m partitions not

necessarily of equal size.

2. Let A = {ai : 3 ≤ i ≤ n} be a set of n processors: 1 fixed (server) and n-1

mobile (robots) which move within ε.

3. Each mobile processor or robot ai has associated these attributes: position at

41
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a given time t, pai(t) ∈ ε; level of its battery at a given time t, bai(t) with

0 < bai(t) ≤ 100; and a unique identifier idai .

4. Let T = {τk : 1 ≤ k ≤ m} be a set of m tasks which are abstractions of the

partitions of the environment ε.

5. Each task τk has associated these attributes: a unique identifier idτk ; its

position in the environment, pτk
∈ ε; a number of demands that compose

the task, ndτk ∈ Z; number of demands of the task that have been served,

sdτk ∈ Z; and a boolean value dispτk
that denotes if the task is available or

not. A robot is able to serve a task once only.

6. Let Topen = {τk ∈ T : sdτk < ndτk} be the set of incomplete tasks or open

tasks.

7. Let Tclosed = T \ Topen be the set of complete tasks or closed tasks.

8. Let Tunavailable = {τk ∈ Topen : dispτk
= FALSE} be the set of unavailable

tasks.

9. Let dik(t) =‖ pai(t) − pτk
‖ be the Euclidean distance between robot ai and

task τk ∈ T in a given time t.

10. There is a mechanism of explicit communication for passing messages

between robots and server, and among robots, which may suffer of failures

during run time.

11. The stop criterion is Topen = ∅, i.e., there is not any open task or a maxi-

mum run time is reached (operation time ≥ maximum run time).

12. Task allocation is considered dynamic if tasks have a due time, if tasks are

created during run time or if communication failures might happen, among

other causes, as stated in Section 2.5.
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13. Starting time and finishing time correspond to the machine time when all

the simulations begin and end respectively.

14. Idle timeai is any period of time when robot ai is not serving a task and it is

waiting for an available task to serve. This period of time is bounded by two

events: when the task allocation Algorithm indicates to a robot to begin its

current idle time (time(start current idle period)); and when the task allocation

Algorithm assigns a task to the robot (time(finish current idle period)). At the

end of the simulation the server accumulates all individual times into a global

unique value.

15. Avoidanceai is any period of time when robot ai detours from its original path

in order to avoid a collision with other robots. Its boundaries are two events:

when an object in front of the robot is detected (time(start current avoid-

ance request)); and when the avoidance routine is finished (time(finish current

avoidance request)). As with idle time, this time is accumulated at the end of

the simulation by the server into a global unique value.

4.2 Simulated environment

The simulation environment Webots c© by Cyberbotics meets all the technical

requirements mentioned in this section.

4.2.1 Dimensions and features

In this section we provide technical descriptions of the environment, robots and

tasks, as they are represented in the Webots c© simulation environment. Figure 4.1

illustrates the dimensions of these elements.
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Figure 4.1: Dimensions of environment ε (20×20 meters, 400m2), robot ai
textcolorao(english)(0.30×0.30 meters, 0.09m2) and task τk (0.20×0.20 meters,
0.04m2). The robots detect with a compass the North Pole located in the upper
side of the environment ε for orientation purposes

Environment

The simulated environment ε is the place where all the mobile robots are de-

ployed along with the tasks. This environment has the following features set for all

the possible scenarios involved in our experiments:
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1. From now on, all the distance measures are given in meters unless stated oth-

erwise.

2. The environment ε is a two-dimensional square with 20 meter long per side

and it is located over the axes x and z.

3. The x axis has these properties: x ∈ R, bounded in the [0,20] interval. The

z axis is perpendicular to, and has the same properties of the x axis. The

(0,0) coordinates lay on the upper left corner of the environment ε and the

(20,20) coordinates lay on the bottom right corner of the environment. The

Webots c© simulation environment uses three axes thus simulations are done in

three dimensions, however, the plane corresponding to the surface over which

the robots move uses axes x and z, while the axis y corresponds to “up” and

“down” the mentioned surface (see Figure 4.2). The origin of positive coordi-

nates is just a convention defined by us.

Figure 4.2: Right hand rule for simulated environments. The y axis is not used in
our simulated environments. From https://share.ehs.uen.org/node/8473

4. There is a designated north pole located in the upper side of the environment

ε.

5. The environment ε has no physical delimitations such as walls, therefore it

is considered non-convex, i.e., the robots are able to go beyond the limits of
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the environment, however, a task is never located outside the environment’s

boundaries.

Robots

The set A contains the server and the mobile robots. The robots have the

following features:

Figure 4.3: Simulated Koala robot with built-in infra-red sensors. From
https://www.cyberbotics.com/guide/section3.5.php

1. All mobile processors are shaped according to the robot model Koala created

by The K-Team.

2. The footprint of the Koala robot is 0.30×0.30 meters (see Figure 4.1), reported

by the manufacturer, (medium size according to the comparison in Tables 3.1

and 3.2.

3. The Koala robot is a 6-wheeled vehicle with differential drive and two degrees

of freedom, therefore, the Koala robot is considered a non-holonomic vehicle.
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The radius of all wheels is 0.0425 meters (4.25 centimeters).

4. The Koala robot has 16 built-in infra-red proximity sensors spread on the left

and right sides and on the front and rear, see Figure 4.3. For this research,

we only use 8 out of 16 infra-red sensors located in the front of the robot (4

at each hemisphere) with an approximate scope of 1 meter and field of view of

60 degrees of opening detection as shown in Figure 4.4. As stated before, the

environment ε does not have static obstacles, however, the robots themselves

appear as obstacles for other robots, thus, these infra-red sensors are used for

detecting partners.

Figure 4.4: Dimensions and field of view of the 8 infra-red sensors located in the
front of the robot that are used for detecting partners: opening of about 60 degrees
and scope of approximately 1 meter

5. All the robots have two communication devices: Receiver and Emitter: their

function is receive and send messages, respectively, in a full-duplex communi-

cation. They are set as Radio type, and originally set with unlimited range.

6. All mobile robots have two location devices: Compass and GPS. These devices

are sensors of orientation and localization, respectively.
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Central server

• As previously stated, there exists a server. This processor is also a Koala robot

and it is located, for our purposes, outside the environment ε. It will remain

static at any time. Its functions are: coordinate and assign tasks to the robots,

reassign tasks if necessary, keep all records of progress, and send the exit signal

to the robots, thus, making the MRS a centralized system.

Tasks

Finally, the tasks in set T have all the following features:

1. All the tasks have static coordinate points (x,z ) in the environment ε. In order

to be reached by robots, the tasks are expanded to squares of 0.20 meters per

side with the points being in the center of the squares.

2. A task is considered as visited by a robot if the GPS of the robot reports a

coordinate within the task’s square, see Figure 4.5.

4.3 Task allocation Algorithm

Our first particular objective requires the implementation of a task-allocation

Algorithm. Since this is not the core of our research, we decided to implement a

greedy Algorithm. In this section we define two mandatory parts for proposing our

Algorithm: the data structures and the Algorithm itself.

4.3.1 Data structures

As we formally defined in Section 4.1, each task is composed by specific at-

tributes. We propose the use of a Table of m rows and a column of the required data
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Figure 4.5: The robot perceives a task if x’ ∈ [x−0.1, x+0.1] and y’ ∈ [y−0.1, y+0.1],
where (x,y) are the coordinates of task τk and where (x’, y’ ) represent the location
of the robot

type for each of the attribute composing a task. The structure is illustrated in Table

4.1.

For the robots we also propose a Table of n rows for the data structure following

the formal definition of Section 4.1 with a slightly difference: since the robots’ data

is constantly updated, we want to know which tasks have been served and which

task is currently served by a robot, so we include these two extra attributes: record

of attended tasks and currently attended task. See Table 4.2.

Notes:
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Attribute Name in data
structure

Datatype

Identifier id integer from 0 through m-1
Position (x coordinate) coord x real in the [0,20] interval
Position (z coordinate) coord z real in the [0,20] interval
Number of demands: nd integer from 0 through number of

demands
Attended demands: ad integer from 0 through number of

demands
Available task disp boolean value

Table 4.1: Data structure for storing data related to tasks

Attribute Name in data
structure

Datatype

Identifier id integer from 0 through n-2
Position (x coordinate) pos x real
Position (z coordinate) pos z real
Battery level bat real in the (0,100] interval (%)
Record of attended tasks record vector of m boolean values
Identifier of currently at-
tended task

current task integer from 0 through m-1

Table 4.2: Data structure for storing data related to robots

1. The identifier only reaches the number of processors minus one (n-1 ) because

the server requires to store data related to mobile robots only.

2. The record of server tasks corresponding to the number of task served by the

robot is set to one (1) if the task has been served, meanwhile if the task has

not been served the entry is set to zero (0).

Finally, we require a calculation matrix in order to decide which task assign to

which robot. This matrix is updated each time a task is assigned. The matrix has n-

1 rows, corresponding to the number of mobile robots and m columns corresponding

to the number of tasks. Each entry stores the Euclidean distance between mobile
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robot ai and task τk divided by the battery level of robot ai in a given time t, thus

the data type is a positive real number. See Table 4.3.

Robot \ Task τ1 τ2 ... τk−1 τk
a1 2.53 83.26 ... 10.04 0.28
a2 14.11 70.03 ... 92.01 84.09
... ... ... ... ... ...
ai−1 86.27 78.17 ... 12.08 30.62
ai 34.67 78.84 ... 10.66 60.14

Table 4.3: Matrix of calculations

Note that the battery level must be greater than zero at any time for

avoiding a division-by-zero error. This condition was defined in Section 4.1

4.3.2 The first Algorithm

We propose a greedy Algorithm for task allocation based on assigning the task

corresponding to the minimum value of the robot’s row in the matrix of calculations.

Note that no failures have been considered so far, thus, the only stop criterion is that

all tasks must be closed. See Algorithm 4.1.

On the other hand, the Algorithm (4.2) which operates in each mobile robot

is very simple: the mobile robots will only visit the tasks’ locations the server has

assigned to them and request new tasks as they fulfill the tasks they have visited.

It is worth to mention that the mobile robots use a local planner for them

to move. This planner (function) receives the coordinates of the assigned task, the

robot’s current coordinate (from the GPS) and orientation (from the Compass) in

order to calculate a straight path to the task’s location, which is updated as the robot

moves toward its goal. The planner also considers the infra-red sensors as we stated
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previously in Subsection 4.2.1.2 for detecting other robots, and, if detected, the

planner along with the protocol stated in Subsection 5.2.3 coordinates with other

robots for avoiding collisions. See Section 4.4 for a detailed explanation in this

matter.

Now we define the three required metrics used by our algorithms:

1. Completion time is the overall time of the program execution in seconds.

This metric is measured by the server only. See formula 4.1.

Completion time = finishing time− starting time (4.1)

(Unit: seconds)

2. Total distance is the cumulative Euclidean distance traveled by each mobile

robot in the MRS. At the beginning, this metric is set to zero (0) for each

robot. Every time a task is assigned to a mobile robot, the robot travels in

the environment from its current position to the destination position where the

task is located, the robot measures that distance using the formula 4.2.

dik(t) = dik(t)+ ‖ pai(t)− pτk
‖ (4.2)

(Unit: meters)

When all tasks are closed the mobile robots report their traveled textitdistanceai

to the server which collects in the overall total distance metric as seen in for-

mula 4.3.

Total distance =
n−1∑
i=1

distanceai (4.3)
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(Unit: meters)

3. Idle time is the cumulative time of all the moments a mobile robot enters in

idle state. At the beginning, this metric is set to zero (0) for each robot. Each

robot calculates its own idle time calculated with formula 4.4.

idle timeai = idle timeai+time(finish current idle period)−time(start current idle period)

(4.4)

(Unit: seconds)

As with total distance, the mobile robots report their idle timeai to the server

which calculates the overall idle time metric with the formula 4.5

Idle time =
n−1∑
i=1

idle timeai (4.5)

(Unit: seconds)

4.4 Collisions cases

We encountered some issues when testing our first Algorithm that have to

be solved before dealing with communication issues: collisions might happen among

robots. Then a solution to this problem was designed and implemented. For practical

issues, we consider two kinds of detection for robots derived from their obstacle

detection capabilities, as stated in Subsection 4.2.1.2 that are described below.
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Algorithm 4.1: Greedy Algorithm for task allocation: server
Input : Positions (coordinates) of tasks (pτk

) and robots (pai
)

Output: Set of closed tasks (Tclosed) and metrics of Completion time, Total distance

and Idle time

1 begin

2 Table of tasks is created with coordinates of tasks pτk
, all number of demands

(ndτk
) are set to a constant c, all served demands (sdτk

) set to 0 and all

availability flags (dispτk
) set to TRUE;

3 Table of robots is created with coordinates of robots pai
, all battery levels (bai

) are

set to 100, all entries of record vector set to 0 and all current tasks (current taskai
)

set to 0;

4 Topen = T;

5 while Topen 6= ∅ do
6 Wait until a robot ai requests a new task τk;

7 Update the Matrix of calculations with the distances from robots to tasks

(dik(t)) at the current time;

8 Find the minimum value of row i corresponding to a column of an unassigned

task τk and assign the task τk to robot ai;

9 Update dispk = 0;

10 Update current taskai = k;

11 if there are no available tasks then

12 Set state of robot ai is idle;

13 else

14 Robot ai fulfills its assigned task;

15 Update coordinates pai
;

16 Update battery level bai
;

17 Update record vectorai
corresponding to task τk to 1;

18 Increment ndτk
and decrement sdτk

;

19 if ndτk
=0 and adτk

=c then

20 Move τk from Topen to Tclosed;

21 else

22 Set dispτk
to 1;

23 end

24 end

25 end

26 Send termination signal to all robots ai;

27 Receive partial metrics of distance and idle time from robots;

28 Sum partial metrics of distance and Idle time into Total distance and Idle time;

29 Calculate Completion time;

30 end
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Algorithm 4.2: Greedy Algorithm for task allocation: mobile robots
Input : Positions (coordinates) of tasks (pτk

)
Output: partial metrics of distance and idle time

1 begin
2 Set distance to 0;
3 Set idle time to 0;
4 Receive initial task τk from server ;
5 while NOT termination signal received do
6 if task τk received then
7 Move towards pτk

;
8 Fulfill τk;
9 Request new task to server ;

10 else
11 Enter idle state;
12 end

13 end
14 Send partial metrics of distance and idle time to server ;

15 end

4.4.1 Single perception

Single perception means only one robot detects (detecting robot) other

robots (detected robots). If a detecting robot detects a partner, it sends a mes-

sage in a restricted range asking for position and course (orientation) of its in-range

neighbors, it waits during some time (wait-for-a-response time) for them to respond.

In return, the detected robots send an acknowledge message responding the requested

data if they are alive, then the detecting robot calculates probable collisions with all

near detected robots and it decides if it has to surround its partners or stop for let-

ting them pass. In the case the wait-for-a-response time is over, the perceiving robot

surrounds the obstacle, assuming the other robots are dead, idle or have finished all

their tasks and their program has already exited. From these kinds of perception we

can identify three cases:

1. Catch up collision: if a detecting robot approaches detected robots from

behind (the difference of their orientation angles is in the range from -30 to
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30 degrees), the detecting robot stops for a while allowing the other robots to

move away. See Figure 4.6(a).

2. Lateral collision: if a detecting robot approaches detected robots from their

left or right side (the difference of their orientation angles is in the range from

-150 to -30 degrees for left side, and from 30 to 150 degrees for right side), the

detecting robot also stops for a while allowing the other robots to move away.

See Figure 4.6(b).

3. Default case: finally, if a detecting robot does not receive response because the

detected robots have finished their assigned tasks or have failed, the detecting

robot surrounds the detected obstacles without transmitting more messages.

(a) Catch up (b) Lateral collision

Figure 4.6: Single perception cases: (a) Catch up. The green robot detects and asks
for its location and orientation of the red robot. The green robot determines it has
to stop. (b) Lateral collision. The red robot detects and asks for its location and
orientation of the green robot. The red robot determines it has to stop. Lines and
arrows represent robots’ paths, whereas circles represent their goals (tasks)
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4.4.2 Multiple perception

On the other hand, multiple perception involves more than one detecting

robot, that means they detect each other in a particular case of frontal collision. This

kind of perception involves two more steps of negotiation between robots for coordi-

nation: as in single perception, one robot detects parters and starts the negotiation

asking for position and course of its neighbors; they respond the requested data if

still no detection has happened, or requests position and course of their neighbors

otherwise; then, they coordinate with two more messages asking for a detour or stop.

For this kind of perception, the difference of their orientation angles is in the ranges

from -180 to -150 degrees, and from 150 to 180 degrees. We deal here with two cases:

1. Multiple perception with two robots: the detecting robots coordinate

their movements in order to surround each other on the same side detour. See

Figure 4.7(a).

2. Multiple perception with more than two robots: the detecting robots

coordinate their movements in such way that some robots (the least number in

some flow direction) have to stop meanwhile the robots in counterflow surround

the robots that have stopped. Say one robot goes left and two robots go right,

the robot going left has to stop, meanwhile the robots going right surround the

stopped robot. See Figure 4.7(b).

Note that this kind of perception requires a mandatory negotiation between

at least two alive robots, otherwise, this situation is considered as single perception

even though a frontal collision is foreseen.

4.4.3 A new metric

We have defined previously three metrics in order to record the overall progress,

however, considering that the time required for avoiding collisions might affect all
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(a) Catch up (b) Lateral collision

Figure 4.7: Multiple perception cases: (a) Two robots. Two robots detect each other
and negotiate the side turn. (b) More than two robots. Three robots detect each
other and negotiate that the blue robot must stop until the green and red robots
have surrounded the blue one. Lines and arrows represent robots’ paths, whereas
circles represent their goals (tasks)

metrics: the Completion time, Total distance and Idle time we need to measure the

time invested by robot to solve collisions. Thus, we propose a new metric called

avoidance time given by formula 4.6.

avoidanceai = avoidanceai + time(finish current avoidance request)−
time(start current avoidance request)

(4.6)

(Unit: seconds)

As with other metrics, the mobile robots start with the avoidance time set to

zero (0) and by the end of the simulation, they report their avoidance timeai to the

server which calculates the overall avoidance time metric with the formula 4.7
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Avoidance time =
n−1∑
i=1

avoidance timeai (4.7)

(Unit: seconds)

4.5 Chapter summary

• We stated all previous properties of the environment, robots and tasks in Sec-

tion 4.1.

• Our robots are equipped with: infra-red sensors for detecting other robots; GPS

for location of the robot itself and detection of the tasks’ area; and compass for

orientation. Also, the robots have a transmitter and receiver radios in order to

establish the communication mechanism. (Section 4.2).

• We designed a greedy Algorithm for Task Allocation. The description includes:

data structures; metrics; and we have also described the path planner in Section

4.3.

• We studied and solved five cases of collisions avoidance: catch up; lateral col-

lision; frontal with two robots; frontal with more than two robots; and the

default case. The last case is the only one for which there is not any exchange

of messages, in the rest of cases the message exchange is mandatory (Section

2.4).



Chapter 5

Extensions for failure recovery

The development of mechanisms for dealing with communication failures in

MRTA problems is the main research point of this work. We classified the expected

failures in Subsection 2.1.4. This chapter describes the proposed solution to the

communication problem by defining first which cases of robots’ failures might hap-

pen in our work in Section 5.1. Then we propose solutions by establishing a new

Algorithm and an ad hoc communication protocol among robots for dealing with the

failures; also an information exchange scheme in Section 5.2 is presented. We close

by highlighting the main ideas of this chapter in Section 5.3.

5.1 Cases of failures proposed

We begin this section by reminding the formal definition of the problem given

in Section 4.1 which establishes the need of explicit communication in MRS, com-

munication which may suffer from failures. Also, we identify two kinds of processors:

the stationary server and the mobile robots, both of them have one receiver and one

emitter in order to exchange messages. Below we list the main assumptions, in terms

of communication, for our MRS.

60



Chapter 5. Extensions for failure recovery 61

5.1.1 Assumptions

1. At the beginning of any deployment of the MRS, all processors (server and

mobile robots) are fully functional because a human supervisor has prepared

all the equipment previously.

2. A human supervisor is always aware and is located next to the server, thus,

if a failure of server happens, the supervisor can reactivate the server in order

to generate a global report. However, the human supervisor is unable to enter

into the environment, meaning that the human supervisor can not control any

robot during run time.

3. All communications are flawlessly working in order to start operations.

4. Neither the server nor the mobile robots know the number of tasks or the num-

ber of robots in the system before starting operations. We consider our mech-

anism scalable so the number of robots and tasks is different from environment

to environment. The number of robots is known until there is an exchange of

messages indicating starts of operations. The tasks’ data is logically registered

in a file held by the server.

5. The processors know their identifier when they wake up and use a unique chan-

nel related to that identifier for receiving messages through unicast method,

or though broadcast in any channel. The processors are capable of emitting

messages in any channel by unicast method, or by broadcasting messages in all

channels at once.

6. We define start operations as the time when all robots enter in operation

mode.

7. The total amount of mobile robots can decrease but it cannot increase. The

total amount of robots equals the number of mobile robots reported at the
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start of operations. Also, the mobile robots must report their initial location

in the environment.

8. The mobile robots and the server must exchange data whenever an update has

been made. The required data are the Table of tasks and the Table of robots

(see Subsection 4.3.1).

9. There exists a reciprocal mechanism in the server and mobile robots for check-

ing if their counterpart is operational: every 30 seconds the server will send a

hello message in broadcast and the operational robots will answer in unicast

to the server with a hello message ACKnowledge which includes their current

location in the environment and battery level (see Subsection 5.2.3).

10. We say the status of a mobile robot is dead when it fails and does not recover;

asleep if it recovers eventually during run time; finished if it has accomplished

all its possible tasks; idle if there are no available tasks for it to be assigned;

or else, alive. On the other hand, the server has the status of alive or asleep.

11. We use the term maximum run time introduced in Section 4.1. Note that

this stop criterion must last longer than completion time, in order to allow

to mobile robots to accomplish as many tasks as possible. The server has the

function of calculating the maximum run time and send a termination program

message to all active robots in the system.

12. We define operation time line as a period of time bounded by two events: a

MRS starts operations and ends, either way, by closing all tasks or a maximum

run time is reached. In both cases, the metric completion time equals the time

that lasts the operation time line for the system being.

13. If there is a change in the environment, it triggers an instant task assignment

round. Such events are, for example: when a robot just finished an assigned

task with a number of demands left (i.e., the task is still open); and when a
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robot fails leaves an open task that must be reassigned. Note that during the

first assignment round always there are at least n-1 available robots and at

least m open tasks.

14. From now on, for short, we will call robots to mobile robots and server to

the static processor. Also, the receiver and the transmitter will be referred as

Rx and Tx, respectively.

5.1.2 Single cases of failure

The cases we study in this subsection are called single, i.e., one or several

failures of the same type (see cases in Section 1.4) might happen during a simulation,

however more than one case of failure can not happen simultaneously in a simulation

environment. Multiple failures are not currently addressed and we explore some ideas

to deal with them in the future (see Section 7.4). The cases we deal with in this

research work are detailed below.

1. Robots failure without recovery. The first case we study happens when

a robot ceases all communications with its partners or with the server, and

communication is never resumed. The server takes into account 3 consecutive

unanswered hello packets (90 seconds or more without communication) by a

robot.

2. Robots failure with recovery. As with failure without recovery, a robot

stops responding to 3 consecutive hello packets(90 seconds or more without

communication is elapsed). However, in this case the robot will resume re-

sponding to hello packets at some point of the operation time line.

3. Server failure with recovery. In this case, the robots take into account if

the server ceases to broadcast 3 hello packets (send messages for a period of 90

seconds or more). Note it is assumed the server will recover at some point of the
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operation time line since human intervention is available as we mentioned in

Subsection 5.1.1, therefore, a server failure without recovery is not considered.

5.2 Proposed solutions to cases of failures

In this section we give solutions to the single cases of failure described in Sec-

tion 5.1, first in a descriptive manner, later in the application of algorithms and a

communication protocol.

5.2.1 The Shaking Calls mechanism

We named this integral system Shaking Calls since we require all messages

sent in any direction to have a mandatory acknowledge (or handshake). These ac-

knowledges ensure in a bidirectional way that any message was received and guaran-

tees that the sender has knowledge of the receipt of its request. Furthermore, there

exists a message broadcast every 30 seconds (calls) from the server which robots

must reply. The main function of this message is to know if a robot has failed giving

the server the opportunity of reassigning the robot’s task, or, as we describe in this

section, that the server has failed, since the robots are aware of these messages also.

We describe below the solutions for each one of the three cases of communica-

tion failure exposed in Subsection 5.1.2.

1. Proposed solution to robots failure without recovery. Once the server has

considered a robot as dead, the server simply reassigns the unaccomplished

tasks left by the dead robot if it was not in idle state. If so, dead robots are

not considered in further tasks assignments.

In order to simulate this case of failure, we program the server with a key

message (die robot) which produces an abnormal termination of the designated-
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to-fail robots. In a real environment, factors such as radio interference, radio

limited range or another cause inherent to the robots’ malfunction may happen

in order to trigger this kind of failure.

2. Proposed solution to robots failure with recovery. For this case, the solution is

based on the case robots failure without recovery: the server assumes a robot is

dead, although the robot is asleep and will eventually recover communication,

thus, the status is reset to alive so a robot shall be considered in an instant task

assignment round and in further tasks assignments. Note that in this case, an

instant task assignment round applies because at least one robot is supposed

to be available (the robot that just woke-up) and an environment change has

happened.

For simulating this case of failure, a message of the type sleep robot (for at least

90 seconds) has to be sent from the server to the designated-to-fail robot. The

robot does not move and is not able to respond any incoming message during

the time of sleep. After that period, the robot must reestablish communication.

An intermittent interference may require this recovery mechanism in a real

environment.

3. Proposed solution to server failure with recovery. If during the pre-defined

(c.f. Section 5.1.2, item 3) period of time the server is considered off-line, the

robots shall wait for the server to reestablish communication in the usual way

indicated by Algorithm 4.1. However, we propose a temporal decentralization

of the MRS contrary to the centralized system stated in Subsection 4.2.1: the

robots shall be able to self-assign tasks in order to continue operations, and

later, when the communication recovers, the server will receive the up-to-date

data and reassume its functions.

The server has to cease all communications with the robots to simulate this

kind of failure for at least 90 seconds. Meanwhile, the robots will self-assign

tasks (with the same greedy Algorithm of task allocation that executes in the
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server) and broadcast their updates each time a task is served or self-assigned.

A temporary token passes from robot to robot and it has the function of

identifying the robot with the last update, i.e., the last robot to make a change

in the system. The robot with the token has the responsibility of updating the

tables in the server when it comes on-line again. It is worth to remark that,

if when dealing with this case of failure a robot fails too, i.e. while the server

is in the offline status, the situation will not be properly detected. This case

of failure is considered multiple and is beyond the scope of this research. An

unexpected reboot in a physical server during run-time are examples of the

application of this case of recovery in a real environment.

Note that it is mandatory that there is always a processor (server) capable of

sending hello messages through broadcast meanwhile the robots answer with

acknowledges (c.f. Subsection 5.1.1, item 9), thus, the task allocation algorithm

might be decentralized but not the fail tolerant mechanism since every single

robot should be connected with its partners, giving as a result a complete graph

scheme if the robots were the vertices and the connections were the edges.

All these solutions fulfill our previous assumption that this system is considered

dynamic since if any of these three cases happens, a task reassignation procedure

must be initiated.

5.2.2 Algorithmic solutions

We begin this subsection by highlighting the condition that the task as-

signment Algorithm is totally independent of the communication fault-

tolerant mechanism and vice versa. Furthermore, theoretically, if we substituted

the task assignment Algorithm (without changing the data structures) in order to

achieve a more efficient allocation scheme, there shall not be effects in the execution

of the communication fault-tolerant mechanism.
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The algorithms proposed use threads of parallel processing. There are four

threads in the server Algorithm: for broadcasting hello messages; for receiving in-

coming messages and sending ACKs; a timer that stops when the maximum run

time is reached and stops all operations; and for task allocation that assigns tasks

to robots through messages. Meanwhile, there are three threads in the robots Algo-

rithm: for receiving incoming messages and sending ACKs; for detecting the absence

of hello messages received which trigger the self-assignment routine; and the main

which executes the path planner. Note these threads are specified as parallel while

in our Algorithms and some lines in their statement are invoked from the reception or

transmission of messages in the protocol description from Subsection 5.2.4. All pro-

posed solutions in Subsection 5.2.1 are now described as algorithms in this section.

See algorithms 5.1 and 5.2.

5.2.3 An ad hoc protocol

For a correct operation of algorithms 5.1 and 5.2, we define a communication

protocol for exchanging all pertinent data among all processors of the proposed

system shaking calls.

We establish some conventions prior to show the protocol. We define the di-

rection type as the flow direction of the generated message from the generator to

the recipient, being only three and identified by the type number:

1. From server to robot.

2. From robot to server.

3. From robot to robot.

Finally, we abbreviate Broadcast as BC and Unicast as UC. See Table 5.1.
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Algorithm 5.1: Fault tolerant Algorithm for communication failures: server

Input : Positions (coordinates) of tasks (pτk
) and robots (pai);

Parallel while indicates a separate thread of processing
Output: Set of closed tasks (Tclosed) and metrics of Completion time,

Total distance, Idle time and Avoidance time
1 begin
2 Table of tasks is created with coordinates of tasks pτk

, all number of
demands (ndτk) are set to constant c, all served demands (sdτk) set to
0 and all availability flags (dispτk

) set to TRUE;
3 Table of robots is created with coordinates of robots pai , all battery

levels (bai) are set to 100, all entries of record vector set to 0 and all
current tasks (current taskai) set to 0;

4 Topen = T;
5 Set my Rx channel ;
6 Calculate and set maximum run time;
7 parallel while 1 do
8 if maximum run time reached then
9 goto END (end program);

10 end

11 end
12 parallel while 1 do
13 Listen to incoming messages through Rx in channel my Rx channel

OR any broadcast ;
14 if robot ai did not acknowledge 3 consecutive hello then
15 Set status of robot ai as dead;
16 Set dispai.current task as TRUE (available for reasignation);

17 else
18 if status of robot ai is dead AND ai did acknowledge at least

1 hello then
19 Set status of robot ai as alive (assigns task to this robot);
20 end
21 if update received from robot ai then
22 Update ndτk , sdτk and dispτk

from Table tasks and pai , bai
and current taskai from Tablerobots ;

23 end
24 Send requested data (task assignation, tables of tasks and

robots) through robot’s ai Rx channel;

25 end

26 end
27 parallel while 1 do
28 Send hello through Tx in broadcast ;
29 Sleep 30 seconds;

30 end

31 end
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Algorithm 5.1: Fault tolerant Algorithm for communication failures: server
(continued)

32 begin
33 parallel while Topen 6= ∅ do
34 TASK ASSIGNMENT: ;
35 Update the Matrix of calculations with the distances from robots to

tasks (dik(t)) at the current time;
36 Find the minimum value of row i corresponding to a column of an

unassigned task τk and assign the task τk to robot ai;
37 Update dispk = 0;
38 Update current taskai = k;
39 if there are no available tasks then
40 state of robot ai is idle;
41 else
42 (Robot ai completes its assigned task);
43 Update coordinates pai ;
44 Update battery level bai ;
45 Update record vectorai corresponding to task τk to 1;
46 Increment ndτk and decrement sdτk ;
47 if ndτk=0 and adτk=3 then
48 Move τk from Topen to Tclosed;
49 else
50 Set dispτk

to 1;
51 end

52 end
53 Send tables of task and robots through Tx in broadcast;

54 end

55 end

Algorithm 5.2: Fault tolerant Algorithm for communication failures:
robots

Input : Positions (coordinates) of tasks (pτk
) and robots (pai);

Parallel while indicates a separate thread of processing
Output: partial metrics of distance, idle time and avoidance time

1 begin
2 Set my Rx channel ;
3 Set my token as FALSE;
4 Set distance to 0;
5 Set Idle time to 0;
6 Set avoidance time to 0;
7 Receive initial task τk from server ;

8 end
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Algorithm 5.2: Fault tolerant Algorithm for communication failures:
robots (continued)

9 begin
10 parallel while 1 do
11 Listen to incoming messages through Rx in channel my Rx channel

OR any broadcast ;
12 if server did not send 3 consecutive hello then
13 Set server status as asleep;
14 if I fulfilled my current task τk then
15 Broadcast my updates related to τk;
16 else
17 Advance towards pτk

;
18 Fulfill task τk;

19 end
20 goto SELF ASSIGNMENT;

21 else if hello received from server then
22 if my token = TRUE then
23 Send updates to server (tables of tasks and robots);
24 end
25 Set server status as alive;

26 else
27 Execute requested action (send hello ACK, die or sleep);
28 end

29 end
30 parallel while NOT termination signal received do
31 if task τk received then
32 Move towards pτk

;
33 Fulfill τk;
34 Request new task to server ;

35 else
36 Enter idle state;
37 end

38 end

39 end
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Algorithm 5.2: Fault tolerant Algorithm for communication failures:
robots (continued)

40 begin
41 SELF ASSIGNMENT: parallel while server status = asleep do
42 Update the Matrix of calculations with the distances from robots to

tasks (dik(t)) at the current time;
43 Find the minimum value of row i corresponding my id of an

unassigned task τk and self assign the task τk ;
44 Update dispk = 0;
45 Update current taskai = k;
46 if there are no available tasks then
47 my state is idle;
48 else
49 Fulfill my assigned task τk;
50 Update coordinates pai ;
51 Update battery level bai ;
52 Update record vectorai corresponding to task τk to 1;
53 Increment ndτk and decrement sdτk ;
54 if ndτk=0 and adτk=3 then
55 Set dispτk

to 0;
56 else
57 Set dispτk

to 1;
58 end
59 Broadcast my updates related to τk (table of task and table of

robots);
60 Set my token as TRUE;

61 end

62 end
63 while NOT termination signal received do
64 if my state is not idle then
65 Move towards my self-assigned τk;
66 Fulfill task τk;

67 else
68 Set my state as idle;
69 Wait until received update;
70 if my status of server = asleep then
71 set my token as FALSE;
72 end

73 end

74 end
75 Send partial metrics of distance, idle time and avoidance time to

server ;

76 end



Chapter 5. Extensions for failure recovery 72

Note that the number of task is used in a wider way than just assigning a task.

It is used also to indicate to a robot to enter in idle state, asleep state, finish state

and even in dead state. The server will instruct to a robot to enter in any of the

mentioned states whenever a timer for simulating a failure has elapsed. Also, the

server will enter in asleep state and return to alive state depending on events of that

timer, for which we require to add this timer to the new Algorithms (5.1 and 5.2).

Transmitting TASK-TABLE (see Table 5.1) and ROBOT-TABLE happen in

very special cases since these tables can be sent through broadcast in both: when the

server publishes an update of the conditions of the environment; and in the case of

Server failure with recovery, the robot with the last up-to-date tables sends the tables

through unicast to the server. The same situation happens with the Direction type:

usually, the server sends the tables to the robots (type 1), but when the server has a

failure, the robots publish any update to these tables resulting from self-assignment

events decided by themselves (type 3). Note that, again, the robot with the last

up-to-date tables sends the tables to the server (type 2). See these special cases in

Table 5.1.

We proposed the protocol detailed in Table 5.1 in such a way that every re-

ceived message will have a mandatory ACKnowledge. This mechanism (known

as handshaking in networking jargon) will ensure the minimum proof that the

counterpart has received the first sent message or else, take some action such as

retransmitting the message, in order to guarantee the same knowledge about

the environment or at least the more recent version of it.

5.2.4 Protocol description

In this section we describe the operation of the proposed communication pro-

tocol of Subsection 5.2.3.
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Code Parameters Parameter BC or Direction
type UC type

PREAMBLE idai integer in [0..n-2] interval BC 2
pai (0) coordinate pair (real,real)
bai (0) real in (0,100] interval

PREAMBLE-ACK m-1 integer: number of tasks BC 1
n-2 integer: number of robots
Rx channel of server integer in [0..99] interval

HELLO consecutive number integer > 0 BC 1
HELLO-ACK idai integer in [0..n-2] interval UC 2

pai (0) coordinate pair (real,real)
bai (0) real in (0,100] interval
consecutive number integer > 0

TASK-TABLE Table of tasks Table of tasks Both All
TASK-TABLE-ACK idai integer in [0..n-2] interval UC 2
ROBOT-TABLE Table of robots Table of robots Both All
ROBOT-TABLE-ACK idai integer in [0..n-2] interval UC 2
TASK-ASSIGNATION number of task integer in [-10..m-1] interval UC 1

sleep time real: time in seconds (1)

TASK-ASSIGNATION-ACK number of task integer in [-10..m-1] interval UC 2
TASK-FINISHED number of task integer in [1..m] interval UC 2

idai integer in [0..n-2] interval
TASK-FINISHED-ACK number of task integer in [0..m-1] interval UC 1
ALL-FINISHED partial idle time real: time in seconds UC 2

partial avoidance time real: time in seconds 2
partial distance real: distance in meters

ALL-FINISHED-ACK idai integer in [0..n-2] interval UC 1
COLLISION idai integer in [0..n-2] interval BC 3
COLLISION-ACK idai integer in [0..n-2] interval UC 3

pai (t) coordinate pair (real,real)
orientation real in (-180,180] interval

DETOUR idai integer in [0..n-2] interval UC 3

case of detour integer in [-1..1] (2)

DETOUR-ACK idai integer in [0..n-2] interval UC 3

Table 5.1: Proposed Ad hoc protocol for exchanging data. Notes: (1) This is the case
when a robot is required to sleep during a specific period of time. If there is no such
case, for instance a task assignation, the parameter sleep time is set to zero. (2) This
message will be generated only if collision avoidance is detected by multiple robots.
The robot which starts coordination requests to its parter(s) to avoid collision by
cases: 1, detour to the right; 2, detour to the left; or 3, stop

• PREAMBLE. All robots send a report to the server including their current

locations so the server is able to fill the Table of robots. Also the number of

the PREAMBLE messages received by the server equals the number of robots

(n-1 ) in the environment (line 3 of Algorithm 5.1).

• PREAMBLE-ACK. The server informs the robots how many tasks and robots
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there are. Also it indicates the channel through which the server will be lis-

tening incoming messages by UC (line 6 of Algorithm 5.1; line 2 of Algorithm

5.2).

• HELLO. The server asks periodically the robots to report if they are alive.

The consecutive number included in this message is required for knowing what

version of the environment the system has (line 27 through 30 of 5.1).

• HELLO-ACK. The robots acknowledge HELLO messages by reposting the

consecutive number received if their version of the environment matches the

server’s version; if the consecutive number posted by the robot is less than

this, the robot has a previous version; if the robot posted a higher consecutive

number, the server has been asleep and requires updates. The robot’s position

and battery level go to the Table of robots as updated data (lines 11 and 27 of

Algorithm 5.2).

• TASK-TABLE and ROBOT-TABLE. These messages are considered as an

snapshot of the environment. It is exchanged among all possible parts when-

ever is necessary, as described in Subsection 5.2.1 (line 53 of Algorithm 5.1;

line 59 of Algorithm 5.2).

• TASK-TABLE-ACK and ROBOT-TABLE-ACK. Acknowledge that the counter

part has received TASK-TABLE and ROBOT-TABLE.

• TASK-ASSIGNATION. The server after having run the task allocation Algo-

rithm informs the robot its assigned task. The robot moves toward the task’s

location since it has a copy of Table of tasks. Also, it is used for instructing a

robot a change of state: enter idle, die, sleep or finish (lines 38 through 40 of

Algorithm 5.1).

• TASK-ASSIGNATION-ACK. The robot acknowledges the receipt of a TASK-

ASSIGNATION message by confirming its assigned task.
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• TASK-FINISHED. A robot confirms to the server whenever it has accomplished

a task by letting know the server which task has been completed (line 34 of

Algorithm 5.2).

• TASK-FINISHED-ACK. The server acknowledges to the robot the task it just

finished.

• ALL-FINISHED. A robot reports its metrics to the server once it received a

message of TASK-ASSIGNATION finish (line 75 of Algorithm 5.2).

• ALL-FINISHED-ACK. The server acknowledges the robot has delivered its

individual metrics.

• COLLISION. A robot a that has detected an obstacle with is infra-red sensors

asks which robots are within a radius of 1 meter of its location in order to

calculate possible collisions.

• COLLISION-ACK. A robot b responds with its id, location and orientation

to a parter who has asked for these data. In the counterpart, the robot a

which started the negotiation (with a COLLISION message) computes a pos-

sible collision and determines if DETOUR message is required because it has

also received a COLLISION message from robot b, implying multiple percep-

tion cases (Section 4.4). If not, robot a applies solution to collisions by single

perception cases explained in Section 4.4.

• DETOUR. Subject only in case of multiple perception detected. The robot a

which began negotiation indicates its partner(s) an evasive action explained in

Section 4.4.

• DETOUR-ACK. Acknowledge of the robot(s) that received a DETOUR mes-

sage.
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5.2.5 State diagram: server

This subsection describes in detail of the state machine of the shaking calls

mechanism. See Figure 5.2.

Figure 5.1: State machine: server

• State Ready. The server reaches this state after receiving (Rx) a preamble

message from all robots transmitted in BC. With the number of robots, the

server is able to initialize table of robots and the table of tasks is created by

reading a file containing their locations. This state has the function of send-

ing (Tx) hello messages to the robots and receiving (Rx) their correspondent

acknowledges.

• State Assign. The server runs the task allocation algorithm in this state by

receiving (Rx) a message of task finished. Then it determines the next task

the robot should serve or if it goes to idle state. Note that if a robot has a

communication failure, State Ready sends a signal to this state in order to
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reassign the unserved task. This state transmits (Tx) the tables of tasks and

robots in BC and the task assigned in UC for each robot.

• State End. The server arrives to this state if all tasks are closed (Topen = ∅)
or if the maximum run time is reached. In both cases the server must send

(Tx) a termination signal in BC to the robots, indicating the overall end of

operations.

• Mobile Processors. Note this is not a state but destinations and origins of

messages of the robots.

5.2.6 State diagram: robots

As a counterpart for the state diagram of the server, we also include the state

diagram for the robots. See Figure 5.2.6.

• State Idle. The robots begin operations by receiving (Rx) the acknowledge to

the preamble from the server. The robots set the transmission and reception

channels and are aware of the number of tasks and robots in order to receive

(Rx) the tables. This state reports to the server if a task has been served

by sending (Tx) a message of task finished, acknowledges (Tx) incoming (Rx)

hello messages and starts self assignation state if it detects that the server is

off-line. When an task assignment has been made by either, the Self assign

State or by receiving (Rx) it from the server, the Path planner State activates.

• Self assign State. This state is reached only if the robots detect that the

server is off-line and as long as the server keeps that status. If a task is self

assigned, it is started the path planner State.

• Path planner State. When a task is assigned, the robot initiates this state by

establishing the goal’s coordinates (task location). In this state the processors
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Figure 5.2: State machine: robots

detect obstacles and send (Tx) messages to other robots in order to avoid

collisions.

• End. The robot enters this state by receiving (Rx) a termination signal trig-

gered by two possible reasons: the tasks are all closed or the maximum run

time is reached.

• Mobile and Static Processors. They are not states but destinations and

origins of messages as indicated.
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5.3 Summary

• We defined the cases of failure treated in this research: robots fail without

recovery; robots fail with recovery; and server fails with recovery. Al these are

cases of simple failures, i.e., only one case of failure happens in a simulated

environment. See Section 5.1.

• We have described the solutions given to the cases of failure stated above by

asking periodic responses from the robots and detecting the lose of communi-

cation among the robots and the server. If failures happen, the MRS makes

use of the mechanism shaking calls. The mechanism includes a communication

protocol and a task allocation Algorithm, both specified in Section 5.2 and

independent one of each other.



Chapter 6

Experiments and results

This chapter describes the simulations performed as part of our research. We

also discuss the importance of the initial conditions of the environment for tests, and

treat the effect of using random-generated environments in Section 6.1. Later, we

cover the results we obtained in simulated environments by using controlled environ-

ments for tests in Section 6.2 and compare with our basis (simulated environments

without failures) how the shaking calls mechanism is able to solve and reassigns tasks

when communication failures happen in Section 6.3. Finally, we end by summarizing

the ideas presented in this chapter in Section 6.4.

The goal of these experiments is to demonstrate how our mechanism is re-

silient to failures that lead to loss of communication in a MRS instead of proposing

an efficient task allocation Algorithm. This work gives a feasible solution of task

reassignation if failures happen. We base our results on four metrics specified in

Chapter 4 (completion time, total distance, idle time and avoidance time). We also

show how the mechanism reassigns tasks to robots by showing Gantt charts for the

basis and the three cases of failure in the same simulated environment (i.e., same

location of tasks and same initial location of robots).

80
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6.1 Setup

In this section we describe all the hardware and software required for achiev-

ing our set of experiments, how we calculate the maximum run time along with

the periods of failures in an environment and finally we state how we named every

environment of our experiments.

6.1.1 Technical specifications

All simulated environments with their respective cases were run in batch mode

in a computer with the following features:

• AMD 8-core CPU, model FX-8350

• 4 gigabytes of DDR3 RAM memory running at 1600 MHz

• AMD Radeon GPU, model R7 240 with 2 gigabytes of DDR3 RAM memory

• Microsoft Windows version 7 Professional operating system

• Cyberbotics Webots version 8.0.5 with PRO trial version

• The server was simulated as a Koala robot with Supervisor mode.

• The robots were simulated as Koala robots with differential wheels mode in-

cluding all nodes mentioned in Subsection 4.2.1.2

6.1.2 Environmental conditions

As it is usually the case for testing algorithms of MRTA such as Munoz-

Meléndez et al. (2012) and Lenagh (2013), algorithms are tested establishing condi-

tions that can be registered and repeated, and varying only a few number of param-

eters to see how the performance of the algorithms change.
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In our case, the conditions that are fixed are initial conditions of the environ-

ment, i.e., number of tasks and demands per task, and their positions, as well as

initial locations of robots. Then we vary the number of tasks, ranging from 4 up to

16 with increases of 4, and run for each number of tasks, simulations involving a fix

number of robots, ranging from 3 to 12 with increases of 3.

For each combination, for instance, 4 tasks and 3 robots or 16 tasks and 9

robots, we run a number of repetitions in order to obtain more significant results.

For each combination we run 5 repetitions varying the initial conditions of the envi-

ronment and then we average the results of these combinations to plot one value for

the corresponding combination.

The first alternative to test our algorithms was to generate randomly 5 envi-

ronments. However we soon realized that the spatial distribution of tasks and robots

within the environment is an element that can impact the global metrics scored by

the system in unexpected ways. This situation cannot enable us to distinguish clearly

if metrics are impacted by environmental conditions or as a result of the solution to

task allocations.

In order to test our algorithms, we decide to use controlled environments vary-

ing the combinations tasks-robots as explained above, but using for the repetitions

environments with a similar distribution of tasks and robots.

In this section we provide more details about the sensitivity of metrics to the

spatial distribution of tasks and robots. See Figure 6.1 for an example of an initial

setup of a randomly-generated environment with 3 robots and 4 tasks and see Figure

6.2 also for a controlled environment for the same conditions.

Using randomly-generated environments robots score bigger values of metrics

due to the variability in the distances between tasks compared with these distances

in controlled environments where tasks were meant to be located equidistant. Some

of the results of this set of results are compared in Appendix D. Also we realized
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Figure 6.1: Simulated random-generated environment with 4 tasks (gray circles) and
3 robots (colored boxes)

that the completion time calculated using randomly-generated environments may

give us a bound and find a suitable formula for the calculation of the maximum run

time for controlled environments. See Sub-subsection 6.1.2.2 in order to see how we

calculated the maximum run time.

Figure 6.2, gives an example of location of tasks for a 4-task environment. Later,

when the number of tasks is increased, these locations are taken as a base for placing

the tasks around (i.e., around these places taken from the 4 tasks environments are

placed for 8, 12 and 16 tasks, with a separation of 2.5 meters when aligned or parallel

to an axis or about 3.5 meters diagonally).
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Figure 6.2: Simulated controlled environment with 4 tasks (red squares) and 3 robots
(colored boxes), environment a

Examples of metrics of controlled versus random environments

A common situation that might happen in random environment is a robot

starting operations in idle state over a task and another robot could not reach the

task location, resulting in a long-time run of the avoidance routine by trying to reach

that location. As a result of these delays the results for all metrics increase making

the random-generated environments inconvenient for our demonstrative purposes.

Figure 6.3 shows an example of the results of controlled and random environ-

ments for 3 robots comparing completion time. Note that the random-generated

environments present a sustained growth resembling a linear slope meanwhile the

controlled environments keep a lower slope because of a more uniform distribution
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of the tasks in completion time. This metric was taken as a basis for calculating the

Maximum run time as we discuss below.
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Figure 6.3: Comparison of completion time metric for 3 robots in controlled and
random environments. The increase of the standard deviation is due to factors such
as avoidance collisions and idle time metrics

Maximum run time

It is worth to remind that one stop criterion for our system was a maximum run

time specified in formal definition (c.f. 4.1 item 11). To start, we proposed the use

of a specific constant called alpha (α) of 665 seconds, calculated as the approximate

time invested by a robot to go across the main diagonal of a proposed environment

at a fixed speed of 1 rad/sec; the missing parameter in formula 6.1 is the radius of a

(Koala) robot’s wheel that is 0.0425 meters (4.25 centimeters):

linear velocity = angular velocity ∗ radius (6.1)
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Units:

linear velocity: meters/seconds

angular velocity: radians/seconds

radius: meters

The application of formula 6.1 gives a speed of 0.0425 meters/sec. Now note

that in a square of 20 meter by side the hypotenuse (or main diagonal) is approx-

imately of 28.28 meters and from formula 6.2, we obtain the time of 665 seconds

using formula 6.3.

velocity =
distance

time
(6.2)

Units:

velocity: meters/seconds

distance: meters

time: seconds

time =

⌈
distance

velocity

⌉
(6.3)

Units:

time: seconds

velocity: meters/seconds

distance: meters

Once calculated the maximum time for crossing an environment invested by

a robot, we propose now a linear formula for estimating the maximum operation

time by taking into account the number of robots, tasks and demands in a certain

environment with formula 6.4.
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maximum run time =

⌈
α ∗ number of demands ∗ number of tasks

number of robots

⌉
(6.4)

Units:

maximum run time: seconds

Where the number of tasks and robots varies from environment to environment;

however, we have fixed the number of demands to 3 as shown in Table 3.2.

The calculated maximum run time with formula 6.4 is plotted in Figure 6.4.

Note that the calculated maximum time overexceeds by approximately five times the

actual completion time obtained in a simulation for 3 robots and 16 tasks. This led

us to propose a second non-linear but logarithmic formula for exceeding only by an

upper bound of approximately 10 minutes (600 seconds) the completion time. The

new proposed formula is expressed by formula 6.5

maximum run time = b(log10(number of robots ∗ number of tasks)) ∗ α ∗ βc (6.5)

Units:

maximum run time: seconds

Where β is an adjustment coefficient constant and equals to 2.5 for 3 robots; 1.7 for

6 robots; 1.4 for 9 robots; and 1.5 for 12 robots. See the comparison in Figure 6.4.

As noted, formula 6.5 gives a closer approach for calculating the maximum run

time required as a forced program termination when maximum run time is reached.

All comparative graphics for the completion time in random-generated environments

and maximum run time calculated with formulas 6.4 and 6.5 are reported in Ap-
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Figure 6.4: Calculation of maximum run time for 3 robots with equations 6.4 and 6.5
compared with simulation results of random environments. Note that the formula
6.5 (red line) gives a close calculation of maximum run time compared with the
completion time (blue line) of random-generated environments

pendix A.

6.1.3 Simulation of failures

In this section we discuss the focus of our research: communication failures. We

already have defined how we simulate the communication interruptions in Subsection

5.1.2, however, we have not mentioned when the failures happen.

We base all our calculations of failure periods on the previous calculation of the

maximum run time as proposed in Subsection 6.1.2.2 since it is the upper boundary
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of time when the whole system is operative. We also stated that a third part (1/3)

of the total of robots would fail in our objectives in Section 1.3.

The server is programmed for losing communication only once in the run time.

For controlling our tests, we also decided that the periods of failures shall not be

calculated randomly but controlled, so a uniform distribution is proposed in formula

6.6 for robot failures without recovery and in formula 6.7 for robot failures with

recovery.

In the case when the server fails, the periods of failure are calculated identically

as if there were only 3 robots in the environment as can be observed in Figure 6.5. The

distribution (which resembles the Poisson distribution) was stated uniform because

there were initial experiments where the task allocation Algorithm served all tasks

even before a simulated failure in a robot would happen. Also note that our system

considers failures if there are three unanswered hello messages (90 seconds or more),

thus, the simulation of failures must be longer than this period of time.

time interval of failure =

⌊
Maximum run time

n-1
3

+ 1

⌋
(6.6)

time interval of failure =

⌊
Maximum run time

(n-1
3
∗ 2) + 1

⌋
(6.7)

Units:

time interval of failure: seconds

maximum run time: seconds

Where n-1 is the total of robots in the system (minus the server), and divided into

thirds (1/3). Examples for calculated uniformly distributed intervals for 6 robots (2

failures) and 9 robots (3 failures) are given in Figures 6.5 and 6.6 respectively.
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Figure 6.5: Distribution of interval of failure for 6 robots: 2 robots fail without
recovery

Figure 6.6: Distribution of interval of failure for 9 robots: 3 robots fail with recovery

For the first batch of simulations with failures we proposed formulas 6.6 and 6.7;

however, we realized sometimes that robots finished all their assigned tasks without

reaching the point of failure, so we made an adjustment to previous formulas and

proposed formulas 6.8 and 6.9 for failures without recovery and failures with recovery,

respectively, using the same variables and units.
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time interval of failure =

⌊
Maximum run time

2
n-1
3

+ 1

⌋
(6.8)

time interval of failure =

⌊
Maximum run time

2

(n-1
3
∗ 2) + 1

⌋
(6.9)

By applying formulas 6.8 and 6.9 we ensure that all possible failures for each

case of failure happen in the first half of the maximum run time. The resulting

distribution of failure intervals of time resembles a Poisson distribution (i.e., the

failures happen in the first half of the operation time line and they are not uniformly

distributed along the time line).

For example, using an environment that has 6 robots and 8 tasks, according to

formula 6.5 we calculate the maximum run time of 1,900 seconds; then we calculate a

time interval of failure of 316 seconds with formula 6.8 for the case of failure without

recovery and a time interval of failure of 190 seconds with formula 6.9 for the case

of failure with recovery. In the case the server fails with recovery, the maximum

run time is divided by 3 and the server failure lasts while the second period or time

interval of failure runs. In the latter example with the maximum run time of 1,900

seconds, the periods of failure last 633 seconds.

6.1.4 Summary of experiments

The dimensions of all simulated environments are 400 m2 in a 20 meter per

side as previously mentioned in Subsection 4.2.1. We have designed the use of 3, 6, 9

and 12 robots and 4, 8, 12 and 16 tasks in all possible combinations designating the

label beginning with the number of robots followed by the number of tasks. Every

possible combination has 5 different environments (the location of tasks change for

each of these environments) labeled with the suffix a through e, so for example 6-16e
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means that is an environment containing 6 robots with 16 tasks e.

• 3 robots with 4, 8, 12 and 16 tasks in 5 different environments.

• 6 robots with 4, 8, 12 and 16 tasks in 5 different environments.

• 9 robots with 4, 8, 12 and 16 tasks in 5 different environments.

• 12 robots with 4, 8, 12 and 16 tasks in 5 different environments.

All the possible combinations and changes of environments sum a total of 80

simulated environments and for each combination an average and standard deviation

are calculated for all metrics introduced in Chapter 4: completion time, idle time,

avoidance time and total distance. The same environment is used for the three

reported cases of simulations: environments without failures; environments with

failures and without recovery; and environments with failures and with recovery.

6.2 Comparison of global metrics

We present in this section graphics for the metrics completion time and total

distance for two Algorithms: our greedy Algorithm and the Hungarian Algorithm

(source code taken from 1 and modified from C# to C) and adapted by us for Time-

extended Assignment, comparing results for all cases (robots without failures, failures

of robots without recovery, failures of robots with recovery and failure of server with

recovery) and environments for 3 robots in Figures 6.7, 6.8, 6.9 and 6.10; for 6 robots

in Figures 6.11, 6.12, 6.13 and 6.14; for 9 robots in Figures 6.15, 6.16, 6.17 and 6.18;

and for 12 robots in Figures 6.19, 6.20, 6.21 and 6.22. We take the metrics reported

for the simulations of environments without failures, the ideal case, as a baseline for

every comparison.

1http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html
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Figure 6.7: Comparison of completion time metric for 3 robots without and with
failures and server with failures, greedy Algorithm
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Figure 6.8: Comparison of completion time metric for 3 robots without and with
failures and server with failures, Hungarian Algorithm
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Figure 6.9: Comparison of total distance metric for 3 robots without and with failures
and server with failures, greedy Algorithm
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Figure 6.10: Comparison of total distance metric for 3 robots without and with
failures and server with failures, Hungarian Algorithm
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Figure 6.11: Comparison of completion time metric for 6 robots without and with
failures and server with failures, greedy Algorithm

2 4 6 8 10 12 14 16 18

1,000

2,000

3,000

4,000

Number of tasks

C
om

p
le

ti
on

ti
m

e
(s

ec
on

d
s)

Baseline Hungarian Algorithm

Hungarian Algorithm failures (robots) without recovery

Hungarian Algorithm failures (robots) with recovery

Hungarian Algorithm failures (server) with recovery

Figure 6.12: Comparison of completion time metric for 6 robots without and with
failures and server with failures, Hungarian Algorithm
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Figure 6.13: Comparison of total distance metric for 6 robots without and with
failures and server with failures, greedy Algorithm
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Figure 6.14: Comparison of total distance metric for 6 robots without and with
failures and server with failures, Hungarian Algorithm
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Figure 6.15: Comparison of completion time metric for 9 robots without and with
failures and server with failures, greedy Algorithm

2 4 6 8 10 12 14 16 18

1,000

2,000

3,000

4,000

Number of tasks

C
om

p
le

ti
on

ti
m

e
(s

ec
on

d
s)

Baseline Hungarian Algorithm

Hungarian Algorithm failures (robots) without recovery

Hungarian Algorithm failures (robots) with recovery

Hungarian Algorithm failures (server) with recovery

Figure 6.16: Comparison of completion time metric for 9 robots without and with
failures and server with failures, Hungarian Algorithm



Chapter 6. Experiments and results 98

2 4 6 8 10 12 14 16 18

100

200

300

400

Number of tasks
T

ot
al

d
is

ta
n
ce

(m
et

er
s)

Baseline greedy Algorithm

Greedy Algorithm failures (robots) without recovery

Greedy Algorithm failures (robots) with recovery

Greedy Algorithm failures (server) with recovery

Figure 6.17: Comparison of total distance metric for 9 robots without and with
failures and server with failures, greedy Algorithm
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Figure 6.18: Comparison of total distance metric for 9 robots without and with
failures and server with failures, Hungarian Algorithm
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Figure 6.19: Comparison of completion time metric for 12 robots without and with
failures and server with failures, greedy Algorithm

2 4 6 8 10 12 14 16 18

1,000

2,000

3,000

4,000

Number of tasks

C
om

p
le

ti
on

ti
m

e
(s

ec
on

d
s)

Baseline Hungarian Algorithm

Hungarian Algorithm failures (robots) without recovery

Hungarian Algorithm failures (robots) with recovery

Hungarian Algorithm failures (server) with recovery

Figure 6.20: Comparison of completion time metric for 12 robots without and with
failures and server with failures, Hungarian Algorithm
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Figure 6.21: Comparison of total distance metric for 12 robots without and with
failures and server with failures, greedy Algorithm
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Figure 6.22: Comparison of total distance metric for 12 robots without and with
failures and server with failures, Hungarian Algorithm
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It can be observed that in all the figures corresponding to completion time

for 6 and more robots (Figures 6.11, 6.15 and 6.19, greedy), the time increases

above the baseline in almost all combinations of robots and tasks for any case of

failure, however, it can be seen that there are some cases (12 robots and 16 tasks, for

example) where the time lasted in the simulation of failures of robots with recovery

almost overlaps the baseline. A similar situation happens with the failure of server

with recovery for 3 robots where the failure of server with recovery (black line) also

overlaps with the baseline (blue line). We claim that the shaking calls system helps

the greedy task allocation Algorithm to find a better allocation during run-time by

reassigning, for example, a task to a closer robot than the robot that failed and was

supposed to serve this task, resulting in a faster time for the completion time metric

and a shorter distance for the total distance metric.

On the other side, the reported distance for the case of failures of robots without

recovery in all combinations of robots and tasks (red line) is always less than the

baseline (blue line) since the robots that fail will not complete all their due distance

for achieving all the tasks (all the tasks were served for 6, 9 and 12 robots). However,

the distance for the case of failures of robots with recovery almost overlaps to the

baseline because the task allocation Algorithm works similarly in both cases.

Note a special case for 3 robots for completion time (Figure 6.7) the maximum

run time is reached because the number of robots equals the number of demands

per task, meaning that in some point when one robot (one third of the number of

robots) fails and does not recover. It is worth to remind that a robot is able to serve

a demand once (c.f. Section 4.1, item 5), and 3 demands are required for closing a

task, if a robot fails during run time is able to serve some of the assigned tasks but

not all. In most cases, the robots that remained operative were able to complete half

(or less) the tasks only.

Another special case is the reported distance for 3 robots in Figure (6.9) for

failures without recovery (red line) is less than the baseline (blue line) since the robot
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that fails will not travel all its due distance for achieving all the tasks.

Note that the metrics for the case of failure of server with recovery seems to

behave, in almost all cases, the same as the failures of robots. This means that the

task allocation Algorithm works similarly in the robots and in the server.

The graphics for the metrics idle time and avoidance time can be consulted in

Appendix B.

6.3 Dealing with failures

Tables 6.23 and 6.24 show Gantt charts of how our mechanism (shaking calls)

reassigns tasks when failures happen with and without recovery. With respect to

these tables it is worth to remark:

• The Gantt charts are processor-oriented, or robot-oriented in this case: the

tasks are the colored bars, meanwhile the idle time is represented by a black

bar and the square pattern bar represents when a robot is in the state dead.

• All environments with the exception of the one represented in Table 6.23 (a) are

“finishable”, meaning that there exists enough robots for attending all demands

(and all tasks) in the environment even though failures happen.

• The case of the environment represented in Table 6.23 (b) is “non-finishable”

because a minimum of 3 demands are required for closing the tasks. However,

one out of 3 robots fails without recovery during operation time and the other

robots are not able to attend more than one demand per task, leaving two open

tasks. This situation happens in all environments containing only 3 robots and

failure without recovery. For this reason the stop criterion is the maximum run

time.
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• In the case of failure of the server with recovery (for example in Table 6.23(d))

the colored square pattern indicates the period of failure of the server. Mean-

while, self-allocation among robots might happen in order to continue opera-

tions in the MRS.

A detailed report of all simulations with failures is available in Appendix C.

6.4 Summary

• We presented our experiments layout and basis in Section 6.1 for a first batch

of randomly-generated simulated environments and a new tasks’ distribution of

controlled environments. The randomly-generated environments were not used

for all the cases of failure; however, it gave us a key feature for the controlled

environments: the maximum run time required as a stop criterion for our

system.

• Two Algorithms were used for testing purposes: our proposed greedy Algorithm

and an adaptation of the Hungarian Algorithm (see Subsection 2.3.2 for a

detailed explanation of this Algorithm). The Hungarian Algorithm gave overall

more efficient results than the greedy Algorithm. Our purpose of making this

comparison was to show that the task allocation algorithm is independent of

the shaking calls mechanism (see Subsection 5.2.2). Using both Algorithms

robots were able to finish all tasks in all cases of failures, except in

the case of failure of robots without recovery where the number of

robots equals (or is less than) the number of demands per task.

• Our graphics illustrate how our mechanism does not look for making the more

efficient allocation but to be resilient to failures. Note that there is in general

a tendency for all graphics of metrics completion time and total distance with

both Algorithms. Even more, the Algorithms used for this work produce similar
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(a) baseline: without failures (b) robots fail without recovery

(c) robots fail with recovery (d) server fails with recovery

Figure 6.23: Comparison of Gantt charts of environment 3-4a: without failures (a);
failures of robots without recovery (b); failures of robots with recovery (c); and failure
of server with recovery (d). Red arrows represent start of the corresponding failure,
whereas green arrows represent recovery

allocations since the environments were the same for every single combination

and case of failure; however, the Hungarian Algorithm is more efficient in terms
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(a) baseline: without failures (b) robots fail without recovery

(c) robots fail with recovery (d) server fails with recovery

Figure 6.24: Comparison of Gantt charts of environment 6-8d: without failures (a);
failures of robots without recovery (b); failures of robots with recovery (c); and failure
of server with recovery (d). Red arrows represent start of the corresponding failure,
whereas green arrows represent recovery
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of the mentioned metrics by reducing time and distance.

• Even though, our task allocation Algorithm is inefficient compared with the

Hungarian Algorithm, the best scores for completion time and total distance

achieved using our greedy Algorithm for all tasks-robots combinations without

failures was for the scenario with 9 robots with 12 tasks with 915 seconds and

235 meters, respectively.

• Note that by increasing the number of tasks the metrics did not grew up too far,

this is due to the design of our environments where the tasks were located within

similar distances from each other (2.5 meters in parallel with axes distance and

about 3.5 meters in diagonal) taking the original 4 tasks environments’ location

as basis. The robots, however, had to avoid collisions whenever more than two

robots encountered each other, resulting in an increase of completion time as

well as avoidance time.

• The Gantt charts (Figures 6.23 and 6.24) included show examples of how shak-

ing calls reassigns tasks in case of failure in combination with the task

allocation Algorithm, which is, in fact, the main goal of this research work.
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Conclusions, contributions and

future work

We present in this chapter the pertinent conclusions derived from this research

work in Section 7.1, we highlight contributions in Section 7.3 and give recommenda-

tions for future research work in Section 7.4.

7.1 Conclusions

We remind the motivation and objectives of this research. Our main motivation

was to propose a mechanism to deal with communications fails among the members

of a robot team that can enrich MRTA algorithms.

We have proposed a mechanism for fault tolerance in the communica-

tion field as a complementary counterpart to a very simple greedy Algorithm in a

Multi-Robot Task Allocation scenario. Our work gives a simple yet powerful solution

to real world applications where all kind of interference and intermittent radio sig-

nals happen. Along with the fault tolerance mechanism, an ad-hoc communication

protocol was designed in order to fulfill the afore mentioned mechanism.

We think communication schemes should be studied more in depth in the fu-
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ture since any communication failure may lead a Multi-Robot System to misbehave.

Very few references of related work take failures or limited communication into ac-

count, focusing only in the optimality of the task allocation when designing the task

assignment Algorithm.

In some environments we found that a failure somehow helps the MRS to finish

earlier its tasks with respect to the time invested by the baseline Algorithm. This

situation illustrates a resilience advantage of our work against single task allocation

algorithms. Even though our system will invest longer time than others to accomplish

tasks if no failures occur, our mechanism for fault tolerance in the cases of failure

treated in this research ensures that all tasks will be served if the number of operative

robots remains greater or equal than the number of demands per task required for

serving a task and if the maximum run time is not reached.

Our fault tolerance mechanism is based on a periodic handshake among robots,

being enough for keeping the MRS communicated and replan task assignments due

to unexpected failures or recoveries during run-time. We stated the dynamic nature

of task allocation in the beginning of this document, this feature has been illustrated

for the unexpected changes in the environment that require that tasks are assigned

dynamically.

We highlight the functional independence between the task assignment Al-

gorithm and the fault tolerance mechanism by depending only on a shared data

structure when necessary, making possible an entire change of the task allocation

Algorithm if desired in order to achieve a more efficient task assignment scheme as

we have shown with the use of the Hungarian Algorithm adapted for our purposes

to work as a Time-extended Assignment task allocation Algorithm.

We have experimentally demonstrated that a simple mechanism introduced in

this research called Shaking Calls, is able to detect communication and robot fails

in a MRS using explicit communication, and it contributes to the achievement of the

global goal of the MRS in the context of a Multi-Robot Task Allocation problem.
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7.2 Limitations

The mechanism (shaking calls) works under the circumstances we have defined

previously. We summarize below the limitations of our work.

• We have proven that our mechanism works with combinations of tasks and

robots proposed in Subsection 6.1.4. However, we can not ensure the general-

ization of this mechanism by increasing the number of robots or tasks due to

the hardware limitations of the machine which runs the simulations.

• We state that shaking calls is functional on simulated robots and we assume

that this mechanism is able to operate in physical robots by including the use

of network communication protocols at the exchange of messages (for example

TCP or UDP). Also, in the simulated environment the transmitter and receiver

worked with an infinite range or coverage. Real-world scenarios present a prob-

lem and limitation in range due to metallic structures, electromagnetic noise

and interference.

• The mechanism is able to deal with single cases of failure.

• The path planner requires at any time the reading from the GPS and compass

sensors for localizing the robot. All GPS and compass sensors were assumed

accurate for every single robot in all simulated environments. Note that the

planner function should be replaced if this mechanism was to be used into

real-world applications.

• We have shown that the shaking calls mechanism is independent of the task

allocation Algorithm. However, it is worth to remark that both Algorithms

used in combination with our mechanism shaking calls utilized the same data

structures introduced in Subsection 4.3.1.
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7.3 Contributions

Below we enumerate the main contributions of this research.

1. A fully functional Algorithm for task allocation along with a communi-

cation failure tolerant mechanism for a Multi-Robot System in a dynamic

environment, both interoperable but functionally independent from each other.

2. A communication protocol for coordinating the Multi-Robot System as a

vital part of the communication failure tolerant mechanism that ensures passing

messages among robots through handshaking.

3. A simulated solution to radio interference, intermittent communications and

robots’ unexpected failures for a Multi-Robot System application in a real-

world scenario.

7.4 Future work

We recommend the next points as possible avenues of future research work.

1. We propose the use of a cluster of computers for simulating a larger (say 1600

m2) environment and increase the number of concurrent simulated robots in

operations (say above 100 robots). We advise and endorse the use of Cyber-

botics Webots c© as a research tool which is capable of simulating Multi-Robot

Systems of both homogeneous and heterogeneous sets of robots. According

to the manufacturer, the software can handle unlimited number of concurrent

simulated robots, however, the computer on which simulations were run might

lack of capabilities for simulating the proposed environment and robots.
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2. A second extension is the implementation of this research work using physical

robots. The cost of acquiring these physical robots is higher than the use of

a simulator, however, we suggest tests in a real-world scenario and simulating

communication failure as well as robot’s failures.

3. We suggest the design of a sort of predictive Algorithm for the task allocation:

idle robots in the environment could be dispatched and park near the task.

Thus, when tasks are available again, the idle robots should serve faster those

tasks.

4. We have studied single cases of failure, however, a real-world application is not

so simple. Extensions to the communications failure recovery scheme studied

in this research are suitable for dealing with more complicated cases of failures

such as combined cases of failures of robots and server in the same environment

and in a concurrent time.

5. Finally, we advice the decentralization of the task allocation function by rele-

gating to robots the self-assignment Algorithm. Nevertheless, we think a cen-

tralized scheme with shacking calls mechanism as well as data storage contain-

ing all required environment’s data is recommended because of the application

of the proposed MRS, in this case, mine detection.
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Figure A.1: Calculation of maximum run time for 3 robots with equations 6.4 and
6.5 compared with simulation results of random environments, greedy Algorithm
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Figure A.2: Calculation of maximum run time for 6 robots with equations 6.4 and
6.5 compared with simulation results of random environments, greedy Algorithm
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Figure A.3: Calculation of maximum run time for 9 robots with equations 6.4 and
6.5 compared with simulation results of random environments, greedy Algorithm
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Figure A.4: Calculation of maximum run time for 12 robots with equations 6.4 and
6.5 compared with simulation results of random environments, greedy Algorithm
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Appendix B

Graphics for metrics of idle time and avoid-

ance time for 3, 6, 9 and 12 robots with

greedy and Hungarian Algorithms
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Figure B.1: Comparison of idle time metric for 3 robots without and with failures
and server with failures, greedy Algorithm
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Figure B.2: Comparison of idle time metric for 3 robots without and with failures
and server with failures, Hungarian Algorithm
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Figure B.3: Comparison of avoidance time metric for 3 robots without and with
failures and server with failures, greedy Algorithm
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Figure B.4: Comparison of avoidance time metric for 3 robots without and with
failures and server with failures, Hungarian Algorithm
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Figure B.5: Comparison of idle time metric for 6 robots without and with failures
and server with failures, greedy Algorithm
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Figure B.6: Comparison of idle time metric for 6 robots without and with failures
and server with failures, Hungarian Algorithm
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Figure B.7: Comparison of avoidance time metric for 6 robots without and with
failures and server with failures, greedy Algorithm
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Figure B.8: Comparison of avoidance time metric for 6 robots without and with
failures and server with failures, Hungarian Algorithm
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Figure B.9: Comparison of idle time metric for 9 robots without and with failures
and server with failures, greedy Algorithm
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Figure B.10: Comparison of idle time metric for 9 robots without and with failures
and server with failures, Hungarian Algorithm
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Figure B.11: Comparison of avoidance time metric for 9 robots without and with
failures and server with failures, greedy Algorithm
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Figure B.12: Comparison of avoidance time metric for 9 robots without and with
failures and server with failures, Hungarian Algorithm
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Figure B.13: Comparison of idle time metric for 12 robots without and with failures
and server with failures, greedy Algorithm

2 4 6 8 10 12 14 16 18

1,000

2,000

Number of tasks

Id
le

ti
m

e
(s

ec
on

d
s)

Baseline Hungarian Algorithm

Hungarian Algorithm failures (robots) without recovery

Hungarian Algorithm failures (robots) with recovery

Hungarian Algorithm failures (server) with recovery

Figure B.14: Comparison of idle time metric for 12 robots without and with failures
and server with failures, Hungarian Algorithm
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Figure B.15: Comparison of avoidance time metric for 12 robots without and with
failures and server with failures, greedy Algorithm
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Figure B.16: Comparison of avoidance time metric for 12 robots without and with
failures and server with failures, Hungarian Algorithm
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Table C.1: Detailed report: 3 robots without failures, greedy Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 113 0 0 965
b 111 112 35 1145
c 119 1 139 1022
d 95 106 108 945
e 160 120 176 1718
Average 120 67 91 1159
Standard deviation 21 55 65 288
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 153 0 0 1525
b 136 0 0 1317
c 148 0 128 1349
d 152 321 0 1456
e 163 0 0 1725
Average 150 64 25 1474
Standard deviation 8 128 51 145
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 166 0 0 1460
b 162 30 93 1507
c 140 143 35 1292
d 175 493 0 1800
e 187 0 17 1926
Average 166 133 29 1597
Standard deviation 15 187 34 232
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 190. 0 0 1706
b 174 0 0 1609
c 174 0 17 1598
d 174 71 159 1556
e 170 0 111 1733
Average 176 14 57 1640
Standard deviation 6 28 65 67
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Table C.2: Detailed report: 3 robots without failures, Hungarian Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 114 0 0 895
b 112 105 32 1072
c 119 0 138 1008
d 107 0 136 1075
e 161 102 178 1700
Average 122 41 97 1150
Standard deviation 20 51 68 283
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 156 0 0 1424
b 163 142 37 1606
c 148 0 110 1318
d 149 625 38 1543
e 163 0 0 1703
Average 156 153 37 1519
Standard deviation 7 242 40 135
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 166 0 0 1442
b 164 33 127 1498
c 141 30 0 1368
d 175 285 0 1752
e 175 0 36 1591
Average 164 70 33 1530
Standard deviation 12 109 49 133
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 190 0 0 1661
b 169 0 0 1573
c 172 0 0 1612
d 173 64 171 1522
e 170 0 109 1706
Average 175 13 56 1615
Standard deviation 8 26 71 65
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Table C.3: Detailed report: 6 robots without failures, greedy Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 137 1042 56 1034
b 118 1057 0 775
c 130 705 101 990
d 134 1539 181 984
e 148 625 109 1043
Average 134 993 89 965
Standard deviation 9 323 60 97
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 233 42 35 1191
b 184 78 104 925
c 185 81 177 922
d 178 0 74 909
e 221 11 111 1187
Average 200 42 100 1026
Standard deviation 22 33 46 132
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 207 0 40 976
b 188 0 0 962
c 195 0 157 1145
d 168 0 68 829
e 230 15 140 1248
Average 198 3 81 1032
Standard deviation 20 6 59 147
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 192 0 34 1027
b 230 27 35 1122
c 214 106 19 1117
d 208 24 87 1123
e 263 0 51 1323
Average 221 31 45 1142
Standard deviation 24 39 23 97
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Table C.4: Detailed report: 6 robots without failures, Hungarian Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 127 683 0 834
b 118 1050 54 793
c 106 1041 56 743
d 110 593 90 841
e 131 894 127 1059
Average 118 852 65 854
Standard deviation 10 186 42 108
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 186 0 0 957
b 179 0 36 1007
c 185 0 180 900
d 187 0 203 1005
e 215 152 85 1046
Average 190 30 101 983
Standard deviation 13 61 79 50
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 191 8 16 957
b 204 62 16 891
c 195 10 166 807
d 183 28 182 883
e 226 0 129 1113
Average 200 22 102 930
Standard deviation 15 22 72 103
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 240 0 54 1190
b 201 123 111 942
c 202 0 0 1091
d 232 47 257 1117
e 266 0 65 1307
Average 228 34 97 1129
Standard deviation 24 48 87 120
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Table C.5: Detailed report: 9 robots without failures, greedy Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 143 1177 89 1047
b 121 1055 0 774
c 125 703 94 1019
d 153 844 470 1099
e 155 684 167 1165
Average 139 892 164 1020
Standard deviation 13 194 161 133
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 262 611 89 1144
b 212 546 144 836
c 250 660 418 952
d 232 785 111 1029
e 266 708 205 1269
Average 244 662 193 1046
Standard deviation 20 81 118 150
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 249 0 206 890
b 240 3 184 887
c 221 0 290 858
d 216 71 433 976
e 249 6 149 967
Average 235 16 252 915
Standard deviation 13 27 101 47
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 241 0 95 904
b 256 0 77 994
c 243 95 176 1154
d 243 0 201 921
e 270 64 136 1140
Average 251 31 137 1022
Standard deviation 11 40 46 106
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Table C.6: Detailed report: 9 robots without failures, Hungarian Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 115 1413 105 745
b 96 713 36 635
c 97 889 35 644
d 102 1126 75 724
e 101 835 132 707
Average 102 995 77 691
Standard deviation 7 248 38 44
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 237 564 0 996
b 213 582 232 921
c 246 752 606 1073
d 206 779 290 771
e 253 693 242 967
Average 231 674 274 946
Standard deviation 18 87 194 100
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 247 36 75 928
b 272 818 231 1036
c 217 18 248 902
d 241 18 547 972
e 281 324 168 1031
Average 252 243 254 974
Standard deviation 23 310 159 54
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 239 0 93 890
b 240 17 198 960
c 231 107 133 1080
d 220 0 155 899
e 230 0 21 880
Average 232 25 120 942
Standard deviation 7 42 60 75
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Table C.7: Detailed report: 12 robots without failures, greedy Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 162 1313 75 1023
b 125 1047 0 789
c 160 1353 249 1369
d 141 949 293 1094
e 160 651 220 1056
Average 150 1062 167 1066
Standard deviation 14 256 111 185
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 263 1150 112 960
b 238 880 99 1058
c 266 741 584 1205
d 220 852 135 941
e 277 1097 110 1104
Average 253 944 208 1053
Standard deviation 20 154 188 96
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 382 316 464 1121
b 341 488 629 1032
c 369 566 1057 1418
d 335 628 697 1051
e 393 501 344 1298
Average 364 499 638 1184
Standard deviation 22 104 243 150
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 352 619 345 1205
b 310 582 751 1431
c 294 151 187 1215
d 327 153 604 1097
e 311 229 109 1098
Average 319 346 399 1209
Standard deviation 19 209 244 121
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Table C.8: Detailed report: 12 robots without failures, Hungarian Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 99 2048 135 596
b 87 839 105 550
c 92 919 82 589
d 98 1647 102 668
e 104 1058 39 673
Average 96 1302 93 615
Standard deviation 6 468 32 48
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 190 1104 105 717
b 196 730 184 680
c 163 1177 196 567
d 161 1133 90 513
e 203 1047 0 711
Average 183 1038 115 638
Standard deviation 17 160 71 82
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 376 244 670 959
b 305 289 643 814
c 386 391 1330 1135
d 300 446 603 796
e 372 538 968 1001
Average 348 382 843 941
Standard deviation 37 106 276 125
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 227 0 171 655
b 268 75 89 746
c 277 50 241 824
d 273 0 419 879
e 282 208 221 856
Average 265 67 228 792
Standard deviation 20 76 109 82
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Table C.9: Detailed report: 3 robots with failures without recovery, greedy Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 75 0 0 1805
b 69 0 0 1805
c 78 0 89 1805
d 62 0 71 1805
e 98 118 128 1805
Average 76 23 57 1805
Standard deviation 11 47 50 0
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 96 0 39 2305
b 98 0 78 2305
c 95 0 37 2305
d 105 144 78 2305
e 97 0 0 2305
Average 98 28 46 2305
Standard deviation 3 57 29 0
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 120 0 137 2598
b 106 0 36 2597
c 96 0 60 2598
d 149 0 981 2598
e 132 0 0 2598
Average 121 0 242 2597
Standard deviation 18 0 371 0
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 130 0 58 2806
b 119 0 0 2806
c 133 0 179 2805
d 113 0 56 2806
e 125 0 75 2806
Average 124 0 73 2805
Standard deviation 7 0 58 0
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Table C.10: Detailed report: 3 robots with failures without recovery, Hungarian
Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 80 0 0 1795
b 69 0 0 1794
c 80 0 114 1795
d 63 0 74 1795
e 98 97 121 1794
Average 78 19 62 1795
Standard deviation 12 39 53 0
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 113 0 114 2295
b 118 0 154 2294
c 95 0 35 2294
d 98 279 38 2294
e 97 0 0 2294
Average 104 56 68 2294
Standard deviation 9 112 57 0
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 132 0 198 2587
b 107 0 39 2587
c 99 0 59 2587
d 116 0 133 2587
e 118 0 0 2587
Average 114 0 86 2587
Standard deviation 11 0 71 0
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 130 0 58 2795
b 120 0 0 2795
c 122 0 20 2795
d 113 0 55 2795
e 118 0 20 2795
Average 121 0 31 2795
Standard deviation 6 0 22 0
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Table C.11: Detailed report: 6 robots with failures without recovery, greedy Algo-
rithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 110 742 36 942
b 110 1241 38 1248
c 116 1052 228 1346
d 108 985 210 1103
e 121 569 152 988
Average 113 917 132 1125
Standard deviation 4 236 82 152
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 156 0 0 1197
b 150 56 61 1364
c 151 0 235 1169
d 154 0 159 1092
e 172 0 153 1130
Average 157 11 121 1190
Standard deviation 7 22 82 93
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 165 0 42 1181
b 148 0 0 1029
c 154 36 139 1305
d 126 59 201 997
e 170 0 35 1150
Average 153 19 83 1132
Standard deviation 15 24 74 110
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 202 0 82 1363
b 179 0 124 1367
c 160 3 230 1192
d 188 0 102 1482
e 196 0 41 1662
Average 185 0 115 1413
Standard deviation 14 1 63 155
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Table C.12: Detailed report: 6 robots with failures without recovery, Hungarian
Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 114 506 0 892
b 106 519 0 1012
c 84 1103 18 884
d 111 1366 135 1176
e 114 487 115 1085
Average 106 796 54 1010
Standard deviation 11 368 59 112
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 147 0 55 1155
b 144 67 49 952
c 136 38 92 923
d 129 11 144 883
e 188 0 125 1349
Average 149 23 93 1052
Standard deviation 20 26 37 176
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 176 0 101 1305
b 163 0 81 1130
c 160 0 94 1159
d 188 55 357 1295
e 178 0 95 1279
Average 173 11 146 1234
Standard deviation 10 22 106 74
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 199 0 170 1324
b 189 18 390 1336
c 136 119 80 1018
d 170 74 95 1186
e 205 0 251 1486
Average 180 42 197 1270
Standard deviation 25 47 114 158
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Table C.13: Detailed report: 9 robots with failures without recovery, greedy Algo-
rithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 91 2465 114 1461
b 94 1877 56 1046
c 92 2392 74 1459
d 133 2309 356 1459
e 95 2801 35 1459
Average 101 2368 127 1376
Standard deviation 16 297 117 165
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 228 344 239 1334
b 187 445 197 1216
c 195 411 269 1125
d 187 905 185 1176
e 274 539 268 1552
Average 214 528 231 1280
Standard deviation 33 198 35 152
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 225 80 177 1169
b 179 281 213 1020
c 168 303 172 967
d 199 293 445 1126
e 238 139 228 1174
Average 202 219 247 1091
Standard deviation 26 91 101 83
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 174 0 37 952
b 191 181 279 1090
c 221 324 235 1297
d 192 241 185 1175
e 195 0 174 1011
Average 195 149 182 1105
Standard deviation 15 130 81 121
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Table C.14: Detailed report: 9 robots with failures without recovery, Hungarian
Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 99 1039 45 773
b 98 726 57 655
c 89 1179 104 960
d 93 900 154 901
e 98 1063 34 743
Average 95 981 79 806
Standard deviation 4 155 45 110
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 196 371 16 989
b 190 586 308 1061
c 206 319 476 1177
d 150 444 265 856
e 250 431 318 1387
Average 198 430 277 1094
Standard deviation 32 90 149 180
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 213 240 134 1088
b 179 474 68 926
c 169 57 346 994
d 208 111 583 1170
e 210 178 195 1048
Average 196 212 265 1045
Standard deviation 18 145 184 83
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 188 0 37 1004
b 188 230 270 1091
c 207 325 342 1149
d 196 95 190 1009
e 204 0 337 1109
Average 196 130 235 1072
Standard deviation 8 129 113 57
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Table C.15: Detailed report: 12 robots with failures without recovery, greedy Algo-
rithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 131 2186 218 1565
b 84 2297 34 1031
c 88 2450 92 1370
d 108 1887 203 1193
e 119 2611 59 1613
Average 106 2286 121 1354
Standard deviation 17 245 75 220
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 206 2160 209 1383
b 185 724 185 963
c 184 1310 235 1032
d 167 1270 203 1022
e 219 1806 107 1362
Average 192 1454 187 1152
Standard deviation 18 491 43 181
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 313 201 389 1286
b 254 390 390 1137
c 239 535 517 1117
d 258 581 527 1206
e 332 423 421 1475
Average 279 426 448 1244
Standard deviation 36 132 60 129
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 337 471 555 1637
b 234 1942 225 1847
c 242 503 249 1301
d 251 816 461 1333
e 258 574 385 1814
Average 264 861 375 1586
Standard deviation 37 553 125 231
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Table C.16: Detailed report: 12 robots with failures without recovery, Hungarian
Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 88 1796 86 865
b 84 740 118 531
c 83 485 179 716
d 86 752 87 735
e 84 715 38 649
Average 85 898 102 699
Standard deviation 2 460 46 109
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 163 1092 97 788
b 156 800 88 788
c 145 955 262 614
d 149 763 334 827
e 202 1207 113 892
Average 163 963 179 782
Standard deviation 21 169 100 92
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 285 273 400 1260
b 238 223 404 996
c 265 1513 650 1105
d 256 288 632 894
e 280 383 628 1055
Average 265 536 543 1062
Standard deviation 17 491 115 121
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 247 28 313 977
b 247 224 124 719
c 217 102 187 845
d 199 753 348 1249
e 230 248 387 907
Average 228 271 272 939
Standard deviation 18 254 100 177
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Table C.17: Detailed report: 3 robots with failures with recovery, greedy Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 113 0 0 1551
b 99 669 0 1403
c 116 0 124 1539
d 101 0 122 1532
e 145 92 174 1805
Average 115 152 84 1566
Standard deviation 16 260 71 130
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 144 0 0 2036
b 140 0 58 1887
c 142 0 108 1971
d 149 200 0 2008
e 165 348 34 2068
Average 148 109 40 1994
Standard deviation 8 142 40 62
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 167 0 20 2285
b 157 0 0 2194
c 138 0 0 2020
d 173 0 140 2289
e 190 0 19 2328
Average 165 0 35 2223
Standard deviation 17 0 52 110
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 188 0 0 2512
b 175 0 96 2351
c 176 0 39 2260
d 167 0 57 2304
e 170 0 91 2296
Average 175 0 56 2344
Standard deviation 7 0 35 88
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Table C.18: Detailed report: 3 robots with failures with recovery, Hungarian Algo-
rithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 115 50 0 1283
b 110 189 34 1297
c 117 181 144 1293
d 98 146 166 1109
e 136 104 165 1383
Average 115 134 102 1273
Standard deviation 12 52 71 90
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 170 0 0 1904
b 155 145 159 1627
c 139 0 51 1441
d 134 539 20 1514
e 167 0 146 1789
Average 153 137 75 1655
Standard deviation 14 209 65 171
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 163 0 70 1847
b 160 0 39 1857
c 158 0 110 1860
d 152 0 36 1617
e 175 51 72 1793
Average 162 10 65 1795
Standard deviation 8 20 27 92
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 192 0 56 2048
b 184 0 40 1975
c 178 0 32 1879
d 159 0 59 1742
e 188 0 19 1992
Average 180 0 41 1927
Standard deviation 12 0 15 107
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Table C.19: Detailed report: 6 robots with failures with recovery, greedy Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 139 757 0 1051
b 119 975 36 1033
c 142 1046 184 1474
d 152 1916 369 1321
e 141 1584 76 1132
Average 139 1255 133 1202
Standard deviation 10 427 133 169
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 232 133 36 1550
b 181 82 89 1395
c 191 0 234 1428
d 183 45 113 1166
e 222 122 265 1529
Average 202 76 147 1413
Standard deviation 21 49 87 136
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 202 0 40 1328
b 191 0 0 1306
c 187 588 173 1377
d 177 0 168 941
e 221 299 119 1490
Average 195 177 100 1288
Standard deviation 14 235 69 184
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 257 351 150 1527
b 213 20 206 1136
c 237 600 178 1538
d 223 0 191 1402
e 255 89 79 1439
Average 237 212 160 1408
Standard deviation 17 230 44 145
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Table C.20: Detailed report: 6 robots with failures with recovery, Hungarian Algo-
rithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 149 1093 32 1027
b 120 946 32 804
c 127 1351 88 970
d 118 857 175 940
e 134 1214 165 1014
Average 130 1092 98 951
Standard deviation 11 178 62 80
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 184 47 17 1035
b 196 13 224 1053
c 201 107 237 1229
d 201 543 110 1141
e 236 29 183 1369
Average 204 148 154 1165
Standard deviation 17 200 82 123
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 193 50 73 987
b 189 119 73 961
c 180 32 18 958
d 219 27 305 1083
e 227 0 67 1079
Average 202 46 107 1014
Standard deviation 18 40 101 56
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 254 238 107 1240
b 220 4 120 1044
c 201 0 49 1115
d 236 229 465 1237
e 235 0 70 1313
Average 229 94 162 1190
Standard deviation 18 114 154 97

C21



Table C.21: Detailed report: 9 robots with failures with recovery, greedy Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 135 986 0 1124
b 142 1125 56 1159
c 140 1698 186 1429
d 161 1457 290 1307
e 168 1565 202 1334
Average 149 1366 146 1270
Standard deviation 12 268 104 113
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 259 670 145 1254
b 222 956 186 1184
c 254 619 446 1120
d 240 789 382 1154
e 284 765 389 1202
Average 252 759 309 1182
Standard deviation 20 115 120 45
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 252 87 79 1183
b 245 67 264 952
c 240 233 207 1155
d 252 217 517 1351
e 278 65 352 1160
Average 253 133 283 1160
Standard deviation 13 75 146 126
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 274 20 297 1298
b 228 58 82 1224
c 241 53 206 1174
d 217 89 235 998
e 281 19 188 1379
Average 248 47 201 1214
Standard deviation 25 26 70 128
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Table C.22: Detailed report: 9 robots with failures with recovery, Hungarian Algo-
rithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 114 1800 140 845
b 97 732 39 656
c 104 1369 72 900
d 115 1371 219 773
e 119 978 162 841
Average 110 1250 126 803
Standard deviation 8 367 64 84
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 278 926 300 1117
b 234 755 367 969
c 211 791 362 982
d 220 1010 193 911
e 275 934 143 1004
Average 244 883 273 997
Standard deviation 28 95 90 68
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 270 36 202 985
b 223 118 179 933
c 211 46 122 858
d 255 30 611 1122
e 283 259 247 1099
Average 248 98 272 999
Standard deviation 27 87 174 100
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 276 54 214 1021
b 216 98 57 853
c 238 13 151 961
d 237 82 288 1089
e 243 784 168 992
Average 242 206 176 983
Standard deviation 19 290 76 78
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Table C.23: Detailed report: 12 robots with failures with recovery, greedy Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 160 1507 36 1453
b 138 715 0 1316
c 153 1445 132 1398
d 139 1356 142 1500
e 171 1949 71 1122
Average 152 1394 76 1357
Standard deviation 12 396 54 132
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 276 981 41 1130
b 230 1200 72 1121
c 240 1584 340 1051
d 276 2115 464 1187
e 321 1698 342 1582
Average 269 1515 251 1214
Standard deviation 32 395 165 188
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 409 294 427 1371
b 354 916 656 1583
c 329 595 592 1221
d 326 988 980 1222
e 453 138 708 1355
Average 374 586 672 1350
Standard deviation 49 333 180 132
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 395 262 582 1459
b 303 684 398 1292
c 313 178 557 1182
d 282 317 404 941
e 298 314 475 1183
Average 318 351 483 1211
Standard deviation 39 173 75 168
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Table C.24: Detailed report: 12 robots with failures with recovery, Hungarian Algo-
rithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 102 2199 88 638
b 91 833 107 520
c 91 990 123 623
d 109 1553 123 580
e 105 797 75 683
Average 100 1274 103 609
Standard deviation 7 536 19 55
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 182 1373 113 781
b 208 1449 230 760
c 166 1067 38 596
d 166 1639 153 635
e 178 1240 104 716
Average 180 1354 128 698
Standard deviation 15 193 63 71
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 329 229 479 927
b 306 628 443 938
c 354 594 823 1097
d 353 275 1042 991
e 380 579 576 1101
Average 344 461 673 1011
Standard deviation 25 172 227 75
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 256 692 257 886
b 288 203 195 840
c 278 798 528 986
d 267 445 351 979
e 308 450 321 1039
Average 279 518 330 946
Standard deviation 18 209 112 72
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Table C.25: Detailed report: 3 robots, server fails with recovery, greedy Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 114 0 0 954
b 111 112 34 1131
c 120 8 194 1094
d 107 0 160 1091
e 161 88 163 1706
Average 123 42 110 1195
Standard deviation 19 48 78 262
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 153 0 0 1487
b 151 42 34 1365
c 147 0 74 1325
d 150 566 74 1564
e 163 0 0 1709
Average 153 122 36 1490
Standard deviation 6 223 33 139
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 163 0 0 1441
b 143 0 0 1300
c 149 0 34 1439
d 158 378 69 1532
e 175 0 34 1578
Average 158 76 27 1458
Standard deviation 11 151 26 95
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 193 0 33 1718
b 166 0 0 1443
c 173 0 0 1638
d 180 138 51 1659
e 169 0 53 1646
Average 176 28 27 1621
Standard deviation 10 55 23 93
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Table C.26: Detailed report: 3 robots, server fails with recovery, Hungarian Algo-
rithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 128 0 0 1269
b 112 111 34 1135
c 119 0 137 1020
d 106 138 154 1069
e 161 94 192 1670
Average 125 69 103 1233
Standard deviation 20 58 74 234
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 145 0 0 1286
b 150 0 36 1410
c 149 0 111 1327
d 151 572 93 1572
e 157 110 32 1360
Average 150 136 54 1391
Standard deviation 4 222 41 99
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 164 0 0 1389
b 168 268 37 1857
c 149 0 34 1439
d 158 368 68 1525
e 175 0 34 1584
Average 163 127 35 1559
Standard deviation 9 159 22 164
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 193 0 34 1704
b 166 0 0 1469
c 166 0 17 1511
d 170 56 77 1454
e 169 0 53 1676
Average 173 11 36 1563
Standard deviation 10 22 27 106
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Table C.27: Detailed report: 6 robots, server fails with recovery, greedy Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 134 1046 51 1118
b 120 958 16 945
c 146 1338 144 988
d 132 1366 251 1345
e 155 827 111 1272
Average 137 1107 115 1134
Standard deviation 12 212 82 155
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 233 54 18 1202
b 282 178 263 1334
c 258 63 319 1217
d 250 379 207 1367
e 287 483 56 1598
Average 262 231 173 1344
Standard deviation 20 172 117 142
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 62 0 0 1091
b 193 17 18 1023
c 187 0 17 1140
d 184 0 90 949
e 220 332 83 1226
Average 169 70 42 1086
Standard deviation 55 131 37 95
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 253 16 133 1238
b 213 13 0 1094
c 226 172 145 1411
d 204 5 132 1119
e 227 0 36 1251
Average 225 41 89 1223
Standard deviation 16 66 59 113
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Table C.28: Detailed report: 6 robots, server fails with recovery, Hungarian Algo-
rithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 129 755 95 954
b 108 733 197 914
c 102 1232 16 795
d 109 693 224 888
e 121 823 181 994
Average 114 847 143 909
Standard deviation 10 197 77 67
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 186 0 0 969
b 176 1 57 936
c 183 155 70 950
d 184 0 136 1196
e 235 190 164 1294
Average 193 69 85 1069
Standard deviation 21 85 58 147
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 190 185 18 1051
b 209 0 77 1097
c 176 0 72 990
d 210 126 130 1260
e 227 167 69 1315
Average 203 96 73 1143
Standard deviation 18 80 36 124
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 239 123 81 1181
b 207 0 53 1061
c 212 0 94 1230
d 229 0 166 1104
e 251 222 192 1509
Average 227 69 117 1217
Standard deviation 17 90 53 157
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Table C.29: Detailed report: 9 robots, server fails with recovery, greedy Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 209 3007 133 1224
b 170 2808 161 1209
c 196 2889 402 1478
d 171 2777 331 982
e 232 3124 164 1486
Average 196 2921 238 1276
Standard deviation 24 129 108 189
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 316 1205 142 1294
b 277 1372 192 1242
c 224 235 255 947
d 242 976 332 1007
e 277 948 218 1444
Average 267 947 228 1187
Standard deviation 32 389 64 185
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 268 3 107 1134
b 224 0 80 837
c 230 0 377 1027
d 185 147 127 824
e 268 0 187 1081
Average 235 30 176 981
Standard deviation 31 59 107 127
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 236 0 176 902
b 318 358 215 1392
c 248 351 36 1384
d 225 342 121 1139
e 248 49 151 1029
Average 255 220 140 1169
Standard deviation 32 160 60 194
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Table C.30: Detailed report: 9 robots, server fails with recovery, Hungarian Algo-
rithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 111 1796 194 948
b 95 610 166 767
c 109 2087 138 1224
d 87 1411 119 794
e 101 1035 37 660
Average 101 1388 131 879
Standard deviation 9 526 53 196
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 212 1337 117 982
b 186 961 264 869
c 208 702 208 790
d 181 692 325 840
e 260 1220 336 1072
Average 209 982 250 911
Standard deviation 28 263 81 102
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 270 45 95 1048
b 214 64 95 884
c 214 162 328 814
d 265 49 699 1130
e 226 103 44 969
Average 238 85 252 969
Standard deviation 25 44 244 113
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 248 0 93 1127
b 290 1481 191 1180
c 215 18 139 866
d 220 0 282 974
e 254 0 65 1018
Average 245 300 154 1033
Standard deviation 27 591 77 111
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Table C.31: Detailed report: 12 robots, server fails with recovery, greedy Algorithm

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 155 1702 39 1105
b 121 628 70 811
c 161 956 185 1223
d 156 1961 299 1465
e 180 2018 39 1621
Average 155 1453 126 1245
Standard deviation 19 560 102 282
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 256 231 132 1018
b 223 623 182 873
c 248 1147 470 1049
d 245 1341 499 1077
e 258 1421 204 1109
Average 246 953 297 1025
Standard deviation 13 455 155 82
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 387 830 381 1174
b 322 609 637 1057
c 336 733 1019 1570
d 327 416 871 1055
e 442 762 844 1366
Average 363 670 750 1244
Standard deviation 46 146 221 198
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 428 741 791 1698
b 299 128 371 1098
c 299 176 598 1096
d 332 228 552 1277
e 308 0 201 1231
Average 333 255 503 1280
Standard deviation 49 255 201 221
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Appendix D

Results for random environments for greedy

Algorithm
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Table D.1: Detailed report: 3 robots without failures, random environments

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 100 217 34 1057
b 105 317 50 1273
c 98 250 67 1078
d 109 230 0 1133
e 134 108 87 1390
Average 109 224 48 1186
Standard deviation 13 68 30 127
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 175 78 17 1793
b 187 248 139 1663
c 156 166 17 1456
d 126 288 17 1318
e 186 0 0 1705
Average 166 156 38 1587
Standard deviation 23 106 51 174
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 201 108 84 1901
b 236 0 17 2120
c 214 947 85 2346
d 208 63 17 1865
e 162 0 17 1426
Average 204 224 44 1932
Standard deviation 24 364 33 306
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 253 39 34 2301
b 268 147 77 2510
c 213 86 34 1865
d 214 0 0 1888
e 254 0 0 2438
Average 240 54 29 2200
Standard deviation 23 56 28 273
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Table D.2: Detailed report: 6 robots without failures, random environments

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 123 548 17 854
b 121 707 41 954
c 97 845 241 976
d 141 661 75 1066
e 151 621 151 999
Average 127 676 105 970
Standard deviation 19 99 82 69
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 224 29 34 1303
b 196 268 160 1063
c 172 264 52 1025
d 189 70 187 900
e 196 22 68 1183
Average 195 131 100 1095
Standard deviation 17 112 61 138
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 228 190 54 1327
b 259 0 96 1296
c 234 414 37 1624
d 242 33 35 1201
e 222 38 104 1133
Average 237 135 65 1316
Standard deviation 13 154 29 169
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 290 118 86 1664
b 307 349 156 1571
c 242 458 236 1420
d 299 86 123 1385
e 250 187 34 1432
Average 277 240 127 1494
Standard deviation 26 142 68 106
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Table D.3: Detailed report: 9 robots without failures, random environments

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 96 822 80 738
b 108 679 95 854
c 112 597 143 794
d 122 1040 120 927
e 131 668 196 1029
Average 114 761 127 868
Standard deviation 12 157 41 102
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 239 553 155 1089
b 240 782 172 1145
c 231 565 335 1054
d 231 698 287 1201
e 244 494 21 1054
Average 237 618 194 1109
Standard deviation 5 106 110 57
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 276 36 183 1152
b 298 285 170 1269
c 253 677 466 1454
d 271 111 188 1184
e 216 15 36 808
Average 263 225 209 1173
Standard deviation 27 245 140 211
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 296 0 152 1139
b 283 276 96 1211
c 258 64 159 1258
d 285 96 480 1148
e 275 342 75 1495
Average 279 156 192 1250
Standard deviation 13 131 147 130
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Table D.4: Detailed report: 12 robots without failures, random environments

4 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 119 468 38 795
b 138 925 192 1046
c 117 874 73 1150
d 154 1310 254 1168
e 152 701 176 1064
Average 136 856 147 1045
Standard deviation 16 278 80 133
8 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 304 1428 42 1330
b 294 963 393 1188
c 222 1117 249 888
d 260 648 362 1217
e 271 986 231 1096
Average 270 1028 255 1144
Standard deviation 29 252 124 148
12 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 427 766 481 1522
b 449 414 434 1627
c 363 691 557 1281
d 394 621 293 1168
e 335 362 502 955
Average 394 571 453 1311
Standard deviation 41 157 89 242
16 tasks
Environment TOTAL DISTANCE IDLE TIME AVOIDANCE TIME COMPLETION TIME

(meters) (seconds) (seconds) (seconds)
a 336 58 458 967
b 378 177 225 1068
c 366 400 207 1308
d 388 485 430 1138
e 358 182 354 1238
Average 365 260 335 1144
Standard deviation 18 157 103 121
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