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Abstract 

Emerging applications such as wireless communications continue to 

challenge RF/microwave filters with ever more stringent requirements as: 

smaller size, lighter weight, and lower cost. Ring resonators have been widely 

studied in the literature of filter applications because they are cheap and of 

easy fabrication. Due to the large size of these resonators, various techniques 

have been suggested in the literature to achieve miniaturization. Two main 

parameters which affect the frequency response of the ring resonators are the 

differences in the substrate’s thickness and tolerances in the dielectric 

constant of the substrate. A new miniaturization technique is introduced in this 

thesis. This novel technique is based on the use of vias to ground and 

interdigital capacitors. Vias to ground allow size reduction and eliminate 

harmonics. The addition of the interdigital capacitor to the electromagnetic 

structure greatly reduces the sensitivity to substrate thickness. The resulting 

resonators are highly miniaturized, cheap, of easy fabrication, of low 

sensibility to differences in the substrate’s thickness, and independent of the 

excitation orientation. Ultra High Frequency filters based on these novel 

electromagnetic ring resonant structures are presented.  

The growth of interest in metamaterials has recently led to novel and 

interesting theoretical possibilities for microwave, infrared and optical 

applications. One advantage of metamaterial structures is the size reduction. 

In this thesis, the design of a metamaterial (MTM) transmission line based on 

the negative magnetic coupling using the planar technology is presented. A 

spiral inductor and interdigital capacitor are used as basic elements to realize 

the MTM transmission line. Simulations are done using the full-wave 

simulator SONNET and measurements are perform using the Agilent PNA 

series microwave vector network analyzer (E8361A). 
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Resumen 

Las comunicaciones inalámbricas emergentes requieren que los filtros de 

microondas sean cada vez más pequeños, más ligeros y más baratos. Ya 

que son baratos y de fácil fabricación los resonadores de anillo han sido 

ampliamente estudiados en la literatura para aplicaciones de filtrado. Debido 

al gran tamaño de estos resonadores varias técnicas se han sugerido en la 

literatura para obtener miniaturización. Dos parámetros importantes que 

afectan la respuesta en frecuencia de los resonadores de anillo son las 

diferencias en el espesor del dieléctrico y las tolerancias de la constante 

dieléctrica del substrato. En esta tesis se propone una novedosa técnica de 

miniaturización, la cual está basada en el uso de una vía a tierra y un 

capacitor interdigital. La vía a tierra permite reducir el tamaño del resonador y 

elimina su segundo armónico. El capacitor interdigital reduce grandemente la 

sensibilidad que el resonador tiene con respecto al espesor del substrato. 

Los resonadores resultantes son altamente miniaturizados, baratos, de fácil 

fabricación, de baja sensibilidad a las variaciones del substrato y no 

dependen de la orientación con la cual son excitados. Usando estos 

novedosos resonadores se diseñan y fabrican filtros de ultra alta frecuencia. 

El creciente interés en metamateriales ha llevado a novedosas e interesantes 

posibilidades teóricas para posibles aplicaciones en los rangos de 

microondas, infrarrojo y óptico. Una de las ventajas de los metamateriales es 

la reducción de tamaño. En esta tesis, se presenta el diseño de una línea de 

transmisión metamaterial (MTM) la cual está basada en acoplamiento 

magnético negativo y hace uso de la tecnología planar. Los elementos 

básicos para realizar la línea de transmisión metamaterial son un inductor de 

espiral y un capacitor interdigital. Las simulaciones son hechas en el 

simulador de onda completa SONNET y las mediciones realizadas con el 

analizador de redes vectoriales Agilent PNA (E8361A). 
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Chapter I 

Introduction 

Ring resonators have been widely studied in the literature for filter 

applications. A ring resonator consists of a 360° closed-loop transmission line 

where a full-wavelength standing wave is excited. Due to the large size of 

these resonators, different techniques have been suggested in the literature 

to achieve miniaturization. In this work a new miniaturization technique is 

proposed by using a via to ground and an interdigital capacitor. Furthermore, 

it is well known that microwave resonators performance is very sensitive to 

tolerances in substrate thickness, which increases the tuning requirement of 

filters. In this work, it is shown that the addition of the interdigital capacitor 

reduces the resonators sensitivity to substrate thickness to about 1/7 of the 

original sensitivity. A 2-pole Butterworth and Chebyshev filters using the novel 

ring resonator are presented. The filters have fractional bandwidths of 6.1% 

and 14.6% and they are centered at f0= 0.53 and f0= 0.38 GHz respectively. 

In addition, a 4-pole quasi-elliptic filter (with a fractional bandwidth of 11% and 

center frequency of 0.53 GHz) using the highly miniaturized ring resonator is 

presented. Full design procedure, simulation and experimental results of the 

miniaturized filters are presented.   

Since the first practical demonstration on negative refractive index, 

metamaterial structures have been widely studied and proposed. A 

metamaterial is an artificial material which has negative permittivity and 

permeability in a specific frequency range. The first metamaterial structures 

are impractical for filter applications because their insertion losses in the 

allowed band are too high. Moreover, those structures are not compatible with 

planar circuit technology. The first planar metamaterial structures is based on 

the transmission line loaded with series capacitor and shunt connected 
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inductors [1]. Afterwards, planar metamaterial structures based on split ring 

resonators came into play for application in microwave bandpass filters [2]. 

Soon after, complementary split ring resonators were used for filter 

applications on planar technology [3]. In this work a metamaterial structure 

using planar technology is presented. This structure is based on a theoretical 

metamaterial unit-cell with serial capacitors connected to magnetically 

negative-coupled inductors [4]. This metamaterial transmission line is 

implemented in planar technology using the interdigital capacitor and spiral 

inductor and has metamaterial behavior for the desired band. A detailed 

design procedure, simulations and measurements are presented along with 

an effective parameter extraction procedure.  

 

1.1 Objective 

The objectives of this thesis are:  

1) To find a compact, inexpensive, easily fabricated and low sensitivity to 

substrate thickness resonating structure based on ring resonators and to use 

this structure to develop various kinds of UHF filters.  

2) To design and fabricate a metamaterial transmission line with negative 

magnetic coupling using the planar technology. 

 

1.2 Organization of this thesis 

In chapter II, the current state of the art of ring resonators and metamaterials 

are presented.  

Chapter III deals with the introduction of novel square ring resonators with via 

to ground and interdigital capacitor. The advantages of this novel ring 

resonator and the filters based on this resonator are also explained. 
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Chapter IV presents a complete design procedure for a Quasi-elliptic filter 

using the proposed ring resonator structure.  

Chapter V shows the design of a metamaterial transmission line based on 

negative magnetic coupling using planar technology (series capacitors and 

magnetic-coupled inductors). 

Finally, all the conclusions obtained from this thesis are mentioned in Chapter 

VI. 
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Chapter II 

Literature on ring resonators and metamaterials 

In this chapter, the current state of the art of the filters based on the 

ring resonators and metametarials is discussed. A detailed explanation 

on the microstrip ring resonator, modes of these resonators, and the 

available literature on the filters based on the ring resonators are 

presented. A brief review on the recent study of the metamaterials, 

applications of the metamaterials and the available literature on 

metamaterials are shown. 

 

2.1 Ultra High Frequency (UHF) applications 

Wireless communications systems have had an explosive evolution in the last 

years. Wireless systems are attractive because they are compact and avoid 

the usage of cumbersome wires. The electromagnetic spectrum is divided 

into several bands; one of them is Ultra High Frequency (UHF). UHF band 

has a frequency range from 0.3 GHz to 4 GHz (1–0.075 m), also called 

decimeter band. This band is divided into L-Band (1–2 GHz) and S-Band (2–4 

GHz). Most applications of these frequencies are: television, cellular 

telephony, local area networks (LANs) (Bluetooth, Zigbee, Wi-Fi), global 

positioning systems, radar operation, cordless telephones, automotive 

applications, satellite applications (control frequencies, time signals, 

meteorology, mobile communications, earth exploration, radio localization, 

radio diffusion), radio-astronomy, and aeronautics. 
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2.2 Microstrip ring resonators 

Wolff and Knoppik [5] explained the field theory of the ring resonator which 

describes the curvature effect on the ring resonant frequency using the 

magnetic-wall model. The resonant frequency of the ring resonator mainly 

depends on its dimensions and they are related as 2πr = nλg, where r is the 

mean radius of the ring resonator, λg is the guided-wavelength and n (an 

integer) is the mode number. The ring resonator is a simple circuit that has an 

integral multiple of guided wavelength which is equal to the mean 

circumference. Many complicated circuits can be derived using this simple 

resonator structure by cutting a slit, adding a notch, cascading two or more 

rings, placing multiple input and output lines, etc. It is very difficult to use the 

magnetic wall model to obtain the frequency modes of the square ring 

resonator due to its complex boundary conditions; as a consequence the 

square ring resonator has not a proper field theory derivation for its frequency 

modes, just as the annular ring resonator. The magnetic-wall model does not 

explain the dual-mode behavior very well. The magnetic wall model considers 

the ring as a cavity resonator with electric walls on the top and bottom and 

magnetic walls on the sides. It is assumed that there is no z-dependency and 

that the fields are transverse magnetic (TM) in the z direction. A solution of 

Maxwell’s equations in cylindrical coordinates is 

)cos()()( nkrBNkrAJE nnZ       (2.1a) 

)sin()()(
0

nkrBNkrAJ
rj

n
H nnr      (2.1b) 

)cos()()( ''

0

nkrBNkrAJ
j

k
H nn      (2.1c) 

where A and B are constants, k is the wave number, ω is the angular 

frequency, Jn is a Bessel function of the first kind of order n, and Nn is a 

Bessel function of the second kind of order n. J’
n and N’

n are the derivatives of 
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the Bessel functions with respect to the argument (kr). The boundary 

conditions are 

0H  at  
0rr        (2.2a) 

0H  at  
irr        (2.2b) 

where r0 and ri are the outer and inner radii of the ring. This leads to the 

eigenvalue equation 

0)()()()( 0

'''

0

' krNkrJkrNkrJ nininn       (2.3) 

where 

00 rk          (2.4) 

The resonant frequency of the ring resonator is calculated by using the outer 

and inner radii, r0 and ri of the ring.  

 

2.2.1 Frequency modes for ring resonators 

A transmission-line model which is unaffected by boundary conditions is used 

to calculate the frequency modes of annular and square ring resonators [5]. 

Figure 2.1 presents the one-port configuration of square and annular ring 

resonators. For a ring of any general shape, the total length l can be divided 

into l1 and l2 sections.  

   
    (a)                   (b) 

Figure 2.1. (a) Schematic of the one port square ring resonator and (b) 
annular ring resonator [6]. 
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For square ring resonators, the sections are considered to be transmission 

lines of Z1 and Z2 impedance.  The voltages and currents of both sections for 

a lossless transmission line are 

 ))0(()( 2,12,1

2,102,12,1

ZZ jj

eeVZV      (2.5a) 

))0(()( 2,12,1

2,1

0

0
2,12,1

ZZ jj

ee
Z

V
ZI      (2.5b) 

where 2,1

0

Zj

eV  is the incident wave propagating in the +Z1,2 direction, 

2,1)0(2,10

Zj

eV  is the reflected wave propagating in the -Z1,2 direction. )0(2,1 is 

the reflection coefficient at Z1,2 = 0, and Z0 is the characteristic impedance of 

the ring. 

Standing waves set up on the ring when a resonance occurs. The shortest 

length of the ring resonator that supports these standing waves can be 

obtained from the positions of the maximum values of these standing waves. 

These positions can be calculated from the derivatives of the voltages and 

currents in Equation (2.5). The derivatives of the voltages are 

1,2 1,21,2 1,2

0 1,2

1,2

( )
(0)

Z Zj jV Z
j V e e

Z
     (2.6) 

Substituting 1)0(2,1  into equations (2.5),  the voltages and currents can be 

obtained as 

)cos(2)( 2,102,12,1 ZVZV        (2.7a) 

)sin(
2

)( 2,1

0

0
2,12,1 Z

Z

Vj
ZI        (2.7b) 
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From equations (2.7) the absolute values of voltage and current standing 

waves are shown in Figure 2.2. From Figure 2.2, it is observed that the 

standing waves repeat for multiples of λg/2 on each section of the ring. In 

order to have the standing waves, the shortest section length has to be λg/2, 

which can be treated as the fundamental mode of the ring. For higher order 

modes, 

2
2,1

g
nl  for n = 1, 2, 3,…       (2.8) 

where n (an integer) is the mode number. 

The total length of the square ring resonator l is  

gnlll )( 21         (2.9) 

or in terms of annular ring 

rnl g 2           (2.10) 

where r is the mean radius 

 
Figure 2.2. Standing waves on each section of the square ring resonator [6]. 

 



9 

 

2.2.1.1 Modes of ring resonators 

The modes of the ring resonators can be obtained by different types of 

excitation and perturbation. The resonant modes of a coupled ring are divided 

into three types based on the type of excitation and perturbation: (1) regular 

mode, (2) forced mode (or excited mode), and (3) split mode.  

1. Symmetric input and output feed lines excite the regular modes. Figure 2.3 

shows the voltage maxima (x) for the first and second modes of the ring, due 

to the capacitive feed coupling. The voltage maxima are present at 0 and 

180°, and they will be present at the same place for higher order modes 

 
Figure 2.3. Voltage maxima for the two first modes of a ring [6]. 

2. The forced modes can be obtained by an open or a short. Gaps on the ring 

create an open type, due to the capacitive nature of an open there will be a 

voltage maximum where the open is placed. A thin conductor sheet on the 

substrate is used to create a short, the short will change the boundary 

conditions forcing equal voltages on both sides of the short being the resulting 

voltage values the minimum. When the open or short are located at an angle 

of ±90°, the standing wave patterns for even mode numbers will have 

minimum voltage values at the input and output feed lines; as a consequence 

there will be no energy transfer between input and output ports. For this 

reason, only odd mode numbers can exist in these forced modes. If the gap is 

located at 0 or 180° the ring will have regular resonant modes. 
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         (a)                (b) 

Figure 2.4. (a) Short and (b) open annular ring resonators [6]. 

3. Wolff [7] explained the split resonant mode in ring resonators, the split 

mode can be obtained with two different techniques: 1) Asymmetric feed 

lines, as its name implies this technique is based on asymmetric external 

excitation. Let’s consider the feed lines are placed at 180 and 0º as shown in 

Figure 2.4(a), an asymmetric feeding can be obtained by moving any of the 

feed lines to a different angle position. In other words, when the angle 

between the feeding lines is not 180°, a split mode is obtained.  2)  A split 

mode can be achieved by using the notch perturbations. When the microstrip 

line of the ring is wider or narrower at some regions of the ring, a split mode is 

obtained. The notch perturbation technique is based on the different 

characteristic impedances that a ring will have when its microstrip line width is 

not the same for the entire ring.  

 

2.3 UHF Filters 

Many miniaturization techniques have been reported for filter applications. In 

[8] a coupling gap elliptic-function band pass filter with microstrip ring 

resonator is presented. The ring is fed by a coupling gap at one port, and a 

tapped line at the other port. Figure 2.5 shows the layout of the filter. The 

perturbed stub is used for exciting the dual mode, the physical length of the 

ring is λ.  
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Figure 2.5. Structure of one coupling gap elliptic-function bandpass filter [8]. 

A filter with four identical arms and a square patch attached to an inner corner 

of the internal ring is presented in [9], the internal ring is attached to an 

external square closed ring by each one of its corners. Figure 2.6 shows the 

structure of this filter, the four gaps on the internal ring increase the 

capacitance resulting in size reduction. The filter consists of two square rings 

one inside the other, the square patch allows degenerate modes. 

 

Figure 2.6. Dual-mode microstrip filter [9]. 

A microstrip ring resonator using L-shape coupling arms is reported in [10]. 

The ring is fed by two orthogonal feed lines, the lines are connected to an L-

shape coupling arm as it is shown in Figure 2.7(a). The tuning stub extends 

the coupling stub to increase the coupling periphery. The asymmetrical 

structure perturbs the field of the ring resonator and excites two degenerate 

modes. Figure 2.7(b) shows the schematic of the L-shape feeding line. 
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              (a)       (b) 

Figure 2.7. Bandpass filter. (a) Layout. (b) L-shape coupling arm [10]. 

 

2.4 Metamaterials 

EM response in homogeneous materials is predominantly governed by two 

parameters. One of these parameters, ε(ω), describes the response of a 

material to the electric component of light (or other EM wave) and the other, 

μ(ω), to the magnetic component at a frequency ω. Both of these parameters 

are typically frequency-dependent complex quantities, and thus there are in 

total four numbers that completely describe the response of an isotropic 

material to EM radiation at a given frequency, 

)()()( 21 j        (2.11a) 

)()()( 21 j        (2.11b) 

For most materials, the two complex quantities ε and μ are the only relevant 

terms and hence dictate the response between electromagnetic wave and 

matter. Among the various fields of science, however, there are many other 

EM parameters used to describe the wave propagation that are related to the 

material parameters shown in equation 2.11 by simple algebraic relations; for 

example such quantities as the absorption or the conductance of a material 

can be redefined in terms of ε and μ. 
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A commonly used EM parameter is the index of refraction, which is defined as 

n(ω)2 = ε(ω)μ(ω). The index of refraction provides a measure of the speed of 

an EM wave as it propagates within a material. 

In virtually all the text books on the subject of optics or electricity and 

magnetism the refractive index is always assumed positive. But nature has 

hidden a great secret from us, first described by Russian physicist Victor 

Veselago [11]. Veselago realized that if a material were found that had 

negative values for both the electric and magnetic response functions, (i.e. 

ε(ω) < 0 and μ(ω) < 0), then its index of refraction would also be negative, 

n(ω) < 0. Although Veselago conjectured that naturally occurring materials 

with negative refractive index might be found or synthesized in naturally 

occurring materials, such materials have never been found. However, 

because artificially structured materials can have controlled magnetic and 

electric responses over a broad frequency range, it is possible to achieve the 

condition ε < 0 and μ < 0 in artificial composites and Veselago’s hypothesized 

material can, indeed, be realized. These artificially structured composites are 

known as metamaterials. 

  

Figure 2.8. Permittivity-permeability (ε-μ) and refractive index (n) diagram 
[12]. 
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A definition for metamaterial (MTM) is “artificial effectively homogeneous 

electromagnetic structures with unusual properties not readily available in 

nature” [12]. There are four possible sign combinations for the pair (ε, μ). 

These combinations are shown in Figure 2.8. 

Progress in the metamaterials has been rapid, MTM structures have negative 

behavior just for a limited frequency range. Different structures have been 

implemented for different frequency ranges. The scaling of artificial structures 

has already been demonstrated from radio frequencies to millimeter-wave, far 

infrared, mid-infrared, and near infrared wavelengths, spanning nearly seven 

orders of magnitude in frequency and they are shown in Figure 2.9. 

  
Figure 2.9. Demonstrated MTM works from RF to near optical frequencies 
[13]. 

LH media were predicted by Veselago [11] and it challenged the several 

fundamental phenomena: 
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1. Reversal of Doppler effect (shown in Figure 2.10(a)) 

2. Reversal of Vavilov-Cerenkov radiation (shown in Figure 2.10(b)) 

3. Reversal of Snell’s law (shown in Figure 2.11(a)) 

4. Reversal of Goss-Hänchen effect. (shown in Figure 2.11(b)) 

5. Reversal of the boundary conditions relating the normal components of the 

electric and magnetic fields at the interface between a conventional/RH 

medium and a LH medium (shown in Figure 2.12 and 2.13) 

    

        (a)          (b) 

Figure 2.10. Reversed phenomena in LH MTMs (a) Doppler effect and (b) 
Vavilov-Cerenkov radiation [12].  

    

     (a)           (b) 

Figure 2.11. Reversed phenomena in LH MTMs (a) Snell’s law and (b) Goss-
Hänchen effect [12].   
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Figure 2.12. Reversed lensing effect phenomena in LH MTMs [12].   

 

   

Figure 2.13. Reversed subwavelength focusing phenomena in LH MTMs [12].   

Shelby et al., [14] reported the first practical demonstration on a  negative 

refractive index and as a consequence the first practical artificial MTM 

structure. Negative refractive index transmission line implementations [15-18] 

which demonstrated sub-wavelength imaging and focusing were reported 

later. Metamaterial structures are based on two different techniques 1) split-

ring resonators and thin wires and 2) loaded transmission lines. Novel 

RF/microwave devices such as phase-shifters [19, 20], delay lines [21], 

waveguides [22], antennas [17, 23], stealth technology structures [24], power 

dividers [25], filters [26, 27], and couplers [28] have been implemented using 

these techniques. 
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Chapter III 

Miniaturized Ultra High Frequency (UHF) filters 

using square ring resonators 

In this chapter, miniaturized filters based on the square ring resonator 

(with via to ground) and interdigital capacitor are presented. At first, the 

introduction of square ring resonators and the effect of vias in these 

resonators are explained. Sensitivity analysis on substrate thickness is 

performed to choose the square ring resonators with the lowest 

sensitivity. Subsequently, the design procedure of Butterworth and 

Chebyshev filters using very-low-sensitivity square ring resonators are 

shown. Finally, the simulation and measurement results of the 

proposed filters using the resonators are presented. 

 

3.1 Square ring resonators 

There is a present desire for compact communication devices; a microstrip 

resonator is popular not just for its compact size, but also because of its high 

quality factor, sharp rejection, and low cost. The ring resonator is merely a 

transmission line formed in a closed loop, when the mean circumference of 

the ring is equal to an integral multiple of a guided wavelength a resonance is 

established. This can be expressed as 2πr = nλg (for n = 1,2,3,…), where r is 

the mean radius of the ring in meters, λg is the guided wavelength in meters, 

and n (an integer) is the mode number. This equation can be applicable to 

square rings, where l substitutes 2πr (l is the mean perimeter of the ring in 

meters). A schematic of the square ring resonator is shown in Figure 3.1. The 
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use of a forced-mode technique can result in the reduction of the ring 

resonant frequency value.  

Introduction of via to ground in the square ring resonator helps in removing a 

voltage maximum, this affects the resonant frequency of the resonator. 

Various ring resonators with via to ground were simulated using a full-wave 

EM simulator [29]. The via to ground was placed at a different position for 

each simulated ring resonator. Figure 3.1(a) & (b) depict the schematic of the 

square ring resonator with and without a via. Microstrip coupling is used for 

the excitation of the resonators. In order to have weak coupling at the input 

and output ports of the resonator the feed lines are kept distant from the ring 

to ensure that the resulting resonance is mainly due to the ring physical 

characteristics.  

If the via to ground is not present in the circuit shown in Figure 3.1(b), two 

voltage maxima would exist on the ring, one located where the via is, and the 

other at the opposite side of the ring.  Figure 3.2 shows the current 

distribution at the resonant frequency of the ring resonators with and without 

via.  The difference between the standing wave patterns is clearly observed. 

The elimination of a voltage maximum results in the decrease of the ring 

resonant frequency to half the original value as shown in Figure 3.3. The use 

of a via to ground will not only reduce the self-resonance to half the original 

value but also eliminates the high order resonance which is depicted in Figure 

3.3. The ring resonator with via to ground resonates at 1GHz and has a 

higher order resonance at 3 GHz. The conventional ring resonator has its 

self-resonance at 2 GHz and its higher order resonance at 4 GHz. In general, 

the resonances for the conventional ring resonators occur at fr = nl, where l is 

the physical length of the ring and n = 1,2,.., and for the ring resonator with 

via to ground at fr = nl/2, where l is the physical length of the ring and n = 

1,3,..,. 
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P 1 P 2

v ia

P 1 P 2

(a) (b)  
Figure 3.1. Layouts of square ring resonator (a) without via to ground and (b) 
with via to ground. 

 

  
      (a)                                                    (b) 

Figure 3.2. Current distributions on a square ring resonator (a) without (f0=2 
GHz) and (b) with via to ground (f0=0.98 GHz). 

 

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
-200

-180

-160

-140

-120

-100

-80

-60

 

 

S
2

1
 p

a
ra

m
e

te
rs

 (
d

B
)

  Close with via

 

 

Frequency (GHz)

  Close traditional

 
Figure 3.3. Simulated S21 parameters of a square ring resonator with (λ/2) 
and without via to ground (λ). 
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The advantage of using a via to ground for the square ring resonators has 

been shown, but the same effect is also applicable with the commonly used 

open ring resonator, as shown in Figure 3.4(a). The use of a via to ground is 

just a complex-implementation option for the open ring. The need for a better 

behavior of resonators with vias to ground takes us to the implementation of 

an open square ring resonator with a via to ground. Figure 3.4(a) shows the 

layout of an open square ring resonator, Figure 3.4(b) presents the same 

resonator with the addition of a via to ground. Figure 3.5 shows the current 

distributions of the resonators shown in Figure 3.4.  

P 1 P 2

v ia

P 1 P 2

(a) (b )  

Figure 3.4. Layout of an open square ring resonator (a) without via to ground 
and (b) with via to ground. 

It is interesting to note that the current distribution for the open square ring 

with a via to ground shows a spiral like behavior, and at the via there is a 

current maximum and a current minimum. From Figure 3.6, it is concluded 

that the use of a via to ground on ring resonators gives the additional 

advantage of size reduction compared to the conventional ring resonators. 

          

                                       (a)         (b) 

Figure 3.5. Current distribution on an open square ring resonator (a) without 
(f0=0.98 GHz) and (b) with via to ground (f0=0.66 GHz). 
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Figure 3.6. Simulated S21 parameters of an open square ring resonator (λ/2) 
and an open square ring resonator with via to ground (λ/3). 

Figures 3.7 (a) and (b) show the schematics of a close ring and open ring with 

a via to ground and an interdigital capacitor. Figure 3.8 presents the current 

distributions of the resonating structures shown in Figure 3.7. The current 

distribution of the open ring resonator with a via to ground takes the spiral 

form, despite the fact that the open resonator has a capacitive effect at the 

slot, the voltage maximum is not at the slot  as it is usually and the current 

intensity changes drastically from one side of the via to the other. Figure 3.9 

depicts the simulated transmission coefficient response of the proposed 

square ring resonators. It is observed that both the resonators resonate at a 

lower frequency by the introduction of the interdigital capacitor. The 

associated resonance for the closed square ring resonator with a via to 

ground and an interdigital capacitor is at λ/4 and for the open square ring 

resonator with a via to ground and an interdigital capacitor is λ/6. The 

proposed resonators are the miniaturized type of ring resonators. Another 

advantage of the novel resonators over the traditional open square ring 

resonator is that the novel resonators resonate at the same frequency when 

are fed vertically or horizontally. Figure 3.10(a) shows the simulated S21 

parameters of a close ring when the ring is fed horizontally and when the ring 

is rotated 90°. Figure 3.10(b) shows the simulated S21 parameters of an open 

ring when the ring is fed horizontally and when the ring is rotated 90°. 
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Figure 3.7. Layouts of square ring resonator with via to ground and interdigital 
capacitor (a) close ring and (b) open ring. 

 

 

                                       (a)        (b) 

Figure 3.8. Current distributions of a square ring resonator with via to ground 
and interdigital capacitor (a) close ring (f0=0.548 GHz) and (b) open ring 
(f0=0.372 GHz). 
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Figure 3.9. Simulated S21 parameters of a close square ring resonator with a 
via to ground and an interdigital capacitor (λ/4) and an open square ring 
resonator with a via to ground and an interdigital capacitor (λ/6). 
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(a)                                                     b) 

Figure 3.10. Simulated S21 parameters of rings when are fed horizontally and 
when the rings are rotated 90°. a) Close square rings. b) Open square rings. 

 

3.2 Sensitivity to substrate thickness 

The sensitivity to substrate thickness (SST) is “the percent change in the 

resonance frequency due to the change in the substrate thickness for a 

microwave circuit” [30].  SST is a very important parameter which plays a 

crucial role for filter applications because the response of the resonator is 

mainly affected by the differences in the substrate’s thickness and the 

tolerances in the dielectric constant of the substrate. A high sensitivity would 

increase the tuning-time of a filter. A long tuning-time increases the 

manufacturing cost. A low tuning-time or nil tuning-time is desirable. Coplanar 

filters are known to have lower sensitivity, as compared to filters in microstrip 

technology. The reason is that the electric field is concentrated on the surface 

for coplanar filters and for this cause the resonance is little affected by the 

substrate tolerances. Structures with very low sensitivity to substrate 

thickness such as novel dual-mode ring resonators [30] and superconducting 

microstrip filters with double spiral inductors and interdigital capacitors [31] 

have been proposed.   
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The ratio of variation in the center frequency per millimeter of substrate 

variation (∆f) is given by  

100
0

0

fh

f
f          (3.1) 

where ∆f0 is the variation of the resonance frequency, ∆h is the variation in 

substrate thickness, and f0 is given by 

2

0201
0

ff
f          (3.2) 

where f01 and f02 are the associated resonant frequencies of the resonator 

with different substrate thicknesses.  

In order to have low sensitivity to substrate thickness for the square ring 

resonators, an interdigital capacitor is introduced in the resonator. Analysis is 

performed by changing the substrate thickness and number of fingers in the 

interdigital capacitor. A square ring resonator with a via to ground at a center 

frequency of 1GHz is designed. RT-Duroid 6010 (εr = 10.8) substrate is 

chosen for the SST analysis.  Simulations are performed in a full wave 

electromagnetic simulator [29] for two different dielectric substrate 

thicknesses (h = 1.27 mm and h = 0.635 mm) and different number of 

interdigital-capacitor fingers. A schematic of the proposed square ring 

resonator with a via, used for the simulations, is shown in Figure 3.7. The 

dimensions of the fingers of the interdigital capacitor are: width of line 0.4 

mm, space between fingers 0.4 mm, length of lines 13.2 mm, and separation 

between ring and interdigital capacitor lines 0.8 mm. Figure 3.11 depicts the 

SST for different number of fingers in the interdigital capacitor. From the 

figure, it is clear that the smallest SST occurs for 11 fingers for the close 

square ring resonator with a via and an interdigital capacitor and the value of 

SST for 11 fingers is 0.46%/mm. The variation in resonant frequency for the 
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resonators with different substrate thickness is of 1.6 MHz.  The smallest 

sensitivity for the open square ring resonator with a via to ground and an 

interdigital capacitor occurs at 15 fingers, the value of SST is 0.23%/mm. The 

variation in frequency for the resonators with different substrate thickness is 

of 0.25 MHz. The increase in the number of fingers of the interdigital capacitor 

increases the associated ring capacitance resulting in the decrease of the 

associated ring resonant frequency.  
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Figure 3.11. SST vs. number of fingers for (a) close ring resonator (b) open 
ring resonator. 

 

3.3 Design of Butterworth and Chebyshev filters using ring 

resonators 

Most RF/microwave filters can be represented by a two-port network, where 

V1, V2 are the voltage variables and I1, I2 are the currents variables at ports 1 

and 2, ES is the source, and Z01 and Z02 are the terminal impedances. The 

two-port network and its variables are shown in Figure 3.12.  For a sinusoidal 

voltage source at port 1, the associated signal equation is given by  

)cos()( 11 tVtv         (3.3) 
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the complex amplitude of V1 is defined by 

jeVV 11          (3.4) 

 
Figure 3.12. Two-port network showing network variables [32]. 

A network can be characterized in high frequency by measuring the reflection 

and transmission of an electromagnetic wave at each port. The variables a1, 

b1, a2, and b2 are introduced, ´a´ indicates the incident waves and ´b´ the 

reflected waves. The voltage and current variables are related to the wave 

variables by 
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for n = 1 and 2 

The S or scattering parameters of a two-port network in terms of the wave 

variables are defined as 
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where an = 0 involves no reflection. 

S11 and S22 are the reflection coefficients, S12 and S21 are the transmission 

coefficients. The S parameters are complex and are usually expressed in 

terms of amplitudes and phases, mnj

mnmn eSS  for m, n = 1, 2. The 

amplitudes in decibels (dB), are defined as 

2,1,log20 nmdBSmn        (3.7) 

For filter characterization two parameters are defined, and these are 

)(2,1,log20 nmnmdBSL mnA      (3.8a) 

2,1log20 ndBSL nnR        (3.8b) 

where LA is the insertion loss between ports n and m, LR is the return loss at 

port n.  

When a signal is transmitted through a filter, the output will have a delay in 

relation with the input, the phase delay (τp) and the group delay (τd) are 

related to this delay. The phase delay is the time delay for a steady sinusoidal 

signal, but it is not the delay of the signal, it is just the delay of the carrier 
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because a steady sinusoidal signal does not carry information. The true signal 

delay is represented by the group delay, it is also called the envelope delay. 

The phase and group delay are defined by 

21
p  seconds        (3.9a) 

d

d
d

21  seconds        (3.9b) 

where  21 is in radians and ω in radians per second. 

The S parameters in terms of the load impedance Z01 and the input 

impedances (Zin1 = V1/I1  Zin2 = V2/I2) are given by 

011

011
11

ZZ

ZZ
S

in

in         (3.10a) 

022

022
22

ZZ

ZZ
S

in

in         (3.10b) 

A network is said to be symmetrical if S11 = S22 and is said to be reciprocal if 

S12 = S21. For a lossless passive network there is power conservation, i.e., the 

transmitting power and the reflected power must be equal to the total incident 

power, the equations for the power conservation are 
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*
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2121 SSorSSSS      (3.11a) 
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The transfer function of a two-port filter is a mathematical description of its 

response characteristics, defined in terms of S21. The amplitude-squared 

transfer function for a lossless passive filter network is defined as 
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where ε is a ripple constant, Fn(Ω) is the characteristic function of the filter, 

and Ω is a frequency variable [30]. It is convenient that Ω represents a radian 

frequency variable of a lowpass prototype filter with a cutoff frequency at Ω = 

Ωc for Ωc = 1 (rad/s).  The insertion loss of the filter for the transfer function 

described by equation (3.12) is 

dB
jS

LA 2

21 )(

1
log10)(        (3.13) 

 

3.3.1 Butterworth filter design 

For a Butterworth filter that has an insertion loss  LAr = 3.01 dB at the cutoff 

frequency ΩC = 1, a transfer function is given by 

n
jS

2

2

21
1

1
)(         (3.14) 

where n is the degree or the order of filter. This type of response is referred to 

as maximally flat. 

Filter syntheses for realizing the transfer functions result in the so-called 

lowpass prototype. A lowpass prototype is a filter whose element values are 

normalized to make the source resistance equal to one, this source 

resistance is denoted by g0 = 1 and the cutoff frequency Ωc = 1(rad/s). Figure 

3.13 shows a lowpass prototype where gi for i = 1 to n represents the 

inductance of a series inductor or the capacitance of a shunt capacitor, n is 

the number of reactive elements. These g-values are the inductance in 

Henries, capacitance in Farads, resistance in Ohms, and conductance in 

mhos. The element values of Figure 3.13 can be obtained from 
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                            (a)                    (b) 

Figure 3.13. Lowpass prototype filters for all-pole filters with (a) a ladder 
network structure and (b) its dual [32]. 

The relation between the external Q-factor and the coupling coefficient in 

terms of g values are given below. 
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for i = 1 to n-1,  

where Qe1 is the input external coupling, Qen is the output external coupling, 

FBW is the fractional bandwidth,  and Mi,i+1 are the internal coupling 

coefficients. 
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Figure 3.14 shows a table with calculated element values. For a two-pole filter 

with fractional bandwidth of 5.5%, the external coupling values and internal 

coupling values are 
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055.

4142.110
1

FBW

gg
Qe       (3.17a)

  

71.25
055.

4142.132
2

FBW

gg
Qe       (3.17b) 

0389.0
)4142.1)(4142.1(

055.0

21

2,1
gg

FBW
M     (3.17c)

  

 
Figure 3.14. Table of element values for Butterworth lowpass prototype filters 
(g0 = 1.0, Ωc = 1, LAr = 3.01 dB at Ωc) [32]. 

 

3.3.2 Chebyshev filter design 

A Chebyshev response exhibits maximally flat stopband and an equal-ripple 

bandpass, a transfer function that describes these characteristics is given by 
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1
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nT
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where, ε, the ripple constant, is related to LAr by 
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and Tn(Ω) a Chebyshev function of order n and of the first kind, defined as 

1)coshcosh(

1)coscos(
)(
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1

n

n
Tn       (3.20) 

The filter prototypes shown in Figure 3.13 can also be used for a Chebyshev 

filter; the element values can be obtained using these equations 
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n2
sinh          (3.22a) 
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cothln ArL

        (3.22b) 

Figure 3.15 shows a table with calculated element values. For a two pole filter 

with fractional bandwidth of 6.8%, the theoretical external coupling values and 

theoretical internal coupling value are 
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Figure 3.15. Table of element values for Chebyshev lowpass prototype filters 
(g0 = 1.0, Ωc = 1, LAr = 0.1 dB) [32]. 

 

3.3.3 Coupling coefficient k 

A single resonator has a resonance called self-resonance which was 

presented earlier, when a resonator is close enough to another resonator, 

there will be a noticeable electromagnetic interaction between them, the self-

resonances of the resonators are affected by this interaction, one will be 

higher than the self-resonance and the other will be lower than the self-

resonance, the interaction is measured by the coupling coefficient (k). In 

general, the coupling coefficient of coupled resonators (the resonators can be 

different in shape and/or size) can be defined by the ratio of coupled energy 

to stored energy, i.e., 
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where E and H are the electric and magnetic field vectors, it is more 

traditional to use k  instead of M for the coupling coefficient. Figure 3.16 

shows two general coupled resonators. The volume integrals are over all 

affected regions with permeability μ and permittivity ε. The first term on the 

right of the equation represents the electric coupling, the second term 

represents the magnetic coupling. The interaction of the coupled resonators is 

mathematically described by the dot operation, this allows a positive or 

negative sign coupling. The direct evaluation of equation (3.24) requires 

knowledge of the field distributions and performance of the space integrals is 

a difficult task. It is much easier to use a full-wave EM simulation to find the 

characteristic frequencies associated to the coupled resonators, If the 

relationship between the characteristic frequencies and the coupling 

coefficient is recognized  then the coupling coefficient can be determined 

against the physical structures of the coupled resonators. 

The relation between the coupling coefficient and the characteristic 

frequencies is based on the proximity of the resonators. The extraction of the 

coupling coefficient of any two coupled resonators can be done by 
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ff

ff
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where f2 is the highest resonance frequency and f1 is the lowest resonance 

frequency [32]. 
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Figure 3.16. General coupled RF/microwave resonators where resonators 1 
and 2 can be different in structure and have different resonant frequencies 
[32]. 

As mentioned before, the coupling between resonators depends on the 

proximity of the resonators, a way of controlling the value of k is to move 

closer or away the resonators. Figure 3.17 shows the circuit layout used to 

extract the coupling coefficient for the Butterworth filter, where “S” stands for 

the separation between the resonators; for the Chebyshev filter the same 

layout is used except that the square ring has a gap at 90°. Figure 3.18 

shows the relation between the coupling coefficients and the separation 

between resonators. The interaction between resonators is larger when the 

resonators are closer.  

 

S

S

P 1 P 2

  
Figure 3.17. Circuit layout used to extract the coupling coefficient for the 
Butterworth filter. 
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Figure 3.18. Relation between separation and coupling coefficient for (a) 
Butterworth filter and (b) Chebyshev filter. 

 

3.3.4 External coupling Qe 

For symmetrical resonators the equivalent circuit is a two-port network as 

shown in Figure 3.19, the symmetrical plane is represented by TT , the LC 

resonators have been separated into two parts. When the symmetrical plane 

TT  is a short-circuit, the following equation can be obtained 
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where S11o and Yino are the odd-mode reflection coefficient at port 1 and the 

input admittance. When the TT  plane is replaced by an open circuit, the 

following equations are obtained for the even mode 
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where LC/10  and  2/)( 2

0

2  when 
0

 has been used 

 
Figure 3.19. Equivalent circuit of the I/O resonator with double loading [32]. 

Using the equivalence S21 = ½(S11e - S11o)  then S21 can be expressed as 
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The graph of equation (3.28b) is shown in Figure 3.20. The function has its 

maximum value when ∆ω = 0 and the value is 1, when  

0

1eQ                                    (3.29) 

the value of  |S21| is 0.707 (-3 dB). From the definition of the bandwidth, the 

following equation is obtained  
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From the above equation, the external quality factor eQ is 
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where ω0 is the central frequency and ∆ω3dB is the difference between the 

high and low frequency values that are 3 dB below the central frequency 

value, 
eQ is the single loaded external quality factor, and 

eQ  is the double 

loaded external quality factor. 

 
Figure 3.20. Resonant amplitude response of S21 for the circuit shown in 
Figure 3.19 [32] 

The two typical input/output coupling structures for coupled microstrip 

resonator filters are the tapped line and the coupled line structures. For the 

tapped line a 50 ohm microstrip feed line is directly tapped onto the input 

or/and output of the resonator. For the coupled line, the coupling is obtained 

by the proximity of the structure and the feeding line, Figure 3.21(a) shows 

the coupled line structure used for the Butterworth filter, the gap amid the ring 

and the feeding line is denoted by g, the coupling will decrease as g 

increases, another way of reducing and controlling the coupling is the 

reduction in the length of the line denoted as “R” on the circuit. From this point 

on the external coupling is denoted by Qe. Figure 3.21(b) shows the relation 

between Qe values and the reduction of the horizontal lines R. The external 

coupling for the Chebyshev filter was done using the tapped line, which is 

shown in Figure 3.22(a), Figure 3.22(b) shows the relation between the 

external coupling and the distance “D”, where D is the distance from the edge 

to the feeding line tapped to the resonator. 
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Figure 3.21. (a) Circuit layout used to obtain the external coupling Qe. (b) 
Relation between Qe and R  for the Butterworth filter. 
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Figure 3.22. (a) Circuit layout used to obtain the external coupling Qe. (b) 
Relation between Qe and D  for the Chebyshev filter. 

 

3.4 Results and Discussion 

To confirm and demonstrate the frequency response of the novel square ring 

resonator with a via to ground and an interdigital capacitor discussed earlier, 

two kinds of filters are simulated using a full-wave EM simulator [29]. A 
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substrate with εr = 10.8 and a thickness of 1.27 mm is used (Rogers Duroid 

6010). For the requirement of 50 Ω impedance, the width of the microstrip is 

1.0 mm, the effective dielectric constant is εeff = 7. The dimensions of the 

resonator are: external square ring perimeter 62.4 mm, internal square ring 

perimeter 59.2 mm, capacitor-finger length 13.2 mm, capacitor-finger width 

0.4 mm, separation between fingers 0.4 mm, and via to ground diameter 0.5 

mm. For the Butterworth filter, a coupled line structure is implemented, the 

dimensions of the coupled line surrounding the resonators are: width of the 

line 0.8 mm, length of the line 49.2 mm, separation between coupled line and 

resonator 0.2 mm. The total dimensions of the Butterworth filter without 

connectors and feed lines are: 34.4 x 17.6 mm2. For the Chebyshev filter, the 

same resonator is used except that it is an open square ring with an aperture 

of 0.2 mm. A tapped line is used for the excitation. The total dimensions of the 

Chebyshev filter without connectors and feed lines are: 31.4 x 15.6 mm2. For 

both filters, the dimensions of the feeding lines are: line width= 1.0 mm and 

line length=4.0 mm. The proposed circuits were fabricated using a serigraphy 

process. Photographs of the fabricated circuits are shown in Figure 3.23.  

Measurements were performed using the Agilent PNA series microwave 

vector network analyzer (E8361A) to determine the filter performances.  

Simulated and measured reflection and transmission coefficient responses of 

the proposed filters are shown in Figure 3.24 and 3.25, respectively. From 

these figures, it is evident that the simulation and measured frequency 

responses are in good agreement. Table 3.1 presents the simulated and 

fabricated filter characteristics of the Butterworth and Chebyshev filters. For 

the Butterworth filter, there is an insertion loss of 2.3 dB and a return loss of 

25 dB at the central frequency. For the Chebyshev filter, there is an insertion 

loss of 2.2 dB and a return loss of 12.64 dB at the central frequency. The 

differences between simulated and measured values of the filters may be due 

to the fabrication errors.  
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            (a)         (b) 

Figure 3.23. Photographs of the fabricated circuits (a) Butterworth filter and 
(b) Chebyshev filter. 
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Figure 3.24. Measured and simulated S11 parameters of (a) Butterworth filter 
and (b) Chebyshev filter. 
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Figure 3.25. Measured and simulated S21 parameters of (a) Butterworth filter 
and (b) Chebyshev filter. 

 

Table 3.1. Comparison between simulated and measured values of the 
Butterworth and Chebyshev filters. 

 Butterworth Chebyshev 

 Simulated Measured Simulated Measured 

Central frequency (GHz) 0.531 0.489 0.38 0.354 

Insertion loss (dB) 2.23 2.3 1.51 2.2 

Return loss (dB) 18 25 15.05 12.64 

Fractional bandwidth % 6.1  5  14.6  14.4  
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Chapter IV 

Quasi elliptic filter 

In this chapter a Quasi-elliptic filter based on the square ring resonator 

with a via to ground and an interdigital capacitor is presented. The 

basic theory about electric, magnetic and mixed coupling which is 

important for the design of Quasi-elliptic filters is offered. Design 

procedure, simulation and measured results of the quasi-elliptic filter 

are explained in detail. 

  

4.1 Coupled resonators 

The general theory of coupling was mentioned in the earlier chapter, for just 

one internal coupling the general theory is good enough, but for some 

applications a better developed technique is required. Figure 4.1 shows the 

two-port network for an n-coupled resonator, the EM resonators can have 

electric coupling, magnetic coupling or mixed coupling. The next subsections 

present the main characteristics of these couplings. 

 

 
Figure 4.1. Network representation of n-coupled resonators [32]. 
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4.1.1 Electric coupling 

A circuit model using lumped elements for electrically coupled resonators is 

shown in Figure 4.2(a); L is the self-inductance, C is the self-capacitance, Cm 

stands for the mutual capacitance, and the resonant frequency of uncoupled 

resonators is (LC)-1/2. If the elements are not lumped but distributed, this 

equivalent circuit is just valid for the frequencies near the resonance. The 

planes 11 TT and 22 TT divide the circuit and taking the circuit between those 

two planes a two-port network is obtained. The equations for the two-port 

network are 

211 VCjCVjI m         (4.1a) 

122 VCjCVjI m         (4.1b) 

The Y parameters for the two-port network are 

CjYY 2211         (4.2a) 

mCjYY 2112         (4.2b) 

An alternative form of the circuit in Figure 4.2(a) is shown in Figure 4.2(b). 

The electric coupling between two loop resonators is characterized by an 

admittance inverter J = ωCm.  If an electric wall (short circuit) is placed instead 

of the symmetry plane ,TT  the resonant frequency of the resultant circuit is 

)(2

1

m

e
CCL

f         (4.3) 

Equally, if a magnetic wall (open circuit) is placed instead of the symmetry 

plane ,TT  the resonant frequency of the resultant circuit is 

)(2

1

m

m
CCL

f         (4.4) 
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                      (a)                (b) 

Figure 4.2. (a) Synchronously tuned coupled resonator circuit with electric 
coupling. (b) Alternative form of the equivalent circuit with an admittance 
inverter J = ωCm to represent the coupling [32]. 

For the electric wall the frequency is lower than the one associated frequency 

for an uncoupled single resonator, the capability for storing charge is 

enhanced by the coupling effect. For the magnetic wall the inverse 

circumstances occur. Using the two resonance frequencies the electric 

coupling coefficient can be found 

C

C

ff

ff
k m

em

em
E 22

22

        (4.5) 

 

4.1.2 Magnetic coupling 

Similarly, a circuit model using lumped elements for magnetically coupled 

resonators is shown in Figure 4.3(a), L is the self-inductance, C is the self-

capacitance, Lm stands for the mutual inductance. Again the planes 11 TT and 

22 TT  divide the circuit and the equations for the two-port network are 

211 ILjLIjV m         (4.6a) 

122 ILjLIjV m         (4.6b) 

The Z parameters for this two-port network are 

LjZZ 2211         (4.7a) 
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mLjZZ 2112
        (4.7b) 

Figure 4.3(b) shows an equivalent circuit for the coupled resonator. The 

magnetic coupling between two loop resonators is characterized by an 

impedance inverter K = ωLm, when an electric wall (short circuit) is placed 

instead of the symmetry plane TT  in Figure 4.3(b). The resonant frequency 

of the resultant circuit is 

)(2

1

m

e
LLC

f         (4.8) 

Likewise, if a magnetic wall (open circuit) is placed instead of the symmetry 

plane ,TT  the resultant resonant frequency is 

)(2

1

m

m
LLC

f         (4.9) 

     
                             (a)            (b) 

Figure 4.3. (a) Synchronously tuned coupled resonator circuit with magnetic 
coupling. (b) Alternative form of the equivalent circuit with an impedance 
inverter K = ωLm to represent the coupling [32]. 

For the electric wall the frequency is higher because the stored flux is 

reduced by the coupling effect. For the magnetic wall the stored flux is 

increased and the resonance frequency is lower. In the same way, the 

magnetic coupling coefficient can be found using the electric and magnetic 

resonances 
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L

L

ff

ff
k m

me

me
M 22

22

        (4.10) 

 

4.1.3 Mixed coupling 

Figure 4.4(a) presents a network representation for structures with electric 

and magnetic couplings. The Y and Z parameters are 

CjYY 2211         (4.11a) 

mCjYY 2112
        (4.11b) 

LjZZ 2211         (4.11c) 

mLjZZ 2112         (4.11d) 

where C is the self-capacitance, L is the self-inductance, Cm is the mutual 

capacitance, and Lm is the mutual inductance of the associated circuit shown 

in Figure 4.4(b) with equivalent lumped-elements. The electric coupling is 

represented with an admittance inverter J = ωCm, the magnetic coupling is 

represented with an impedance inverter K = ωLm. 

               

                             (a)         (b) 

Figure 4.4. (a) Network representation of synchronously tuned coupled 
resonator circuit with mixed coupling. (b) An associated equivalent circuit with 
an impedance inverter K and an admittance inverter J to represent the 
magnetic and electric coupling, respectively [32]. 
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The same procedure is applied to mixed coupling, by placing an electric wall 

and a magnetic wall where the symmetry plane TT  is, the next associated 

frequencies are obtained  

))((2

1

mm

e
CCLL

f        (4.12a) 

))((2

1

mm

m
CCLL

f        (4.12b) 

Based on those two frequencies the mixed coupling coefficient is 

mm

mm

me

me
X

CLLC

LCCL

ff

ff
k

22

22

       (4.13) 

Lm < L and Cm < C, so that LmCm << LC and (4.13) can be reduced to 

EM
mm

X kk
C

C

L

L
k        (4.14) 

As can be seen, the magnetic and mixed coupling coefficients have similar 

equations, and both of them are opposite in sign to the electric coefficient 

coupling. In general, if the electric frequency resonance is placed first on the 

right part of the coefficient coupling equations we have   

22

22

22

22

me

me

em

em
E

ff

ff

ff

ff
k        (4.15) 

The electric coupling coefficient is said to be negative, as can be seen on 

equation (4.15). The mixed coupling is a superposition of the electric and 

magnetic coupling. The electric and magnetic coupling can have two opposite 

effects, and these effects can cancel or enhance each other.  
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4.2 Opposite phases 

The use of the above formulas can be clarified with the typical types of 

coupled microstrip resonators as depicted in Figure 4.5. All the resonators are 

open-loop resonators, each resonator has the maximum electric field density 

at the side with an open gap and the maximum magnetic field density at the 

opposite side. Figure 4.5(a) shows the arrangement for electric coupling. 

Figure 4.5 (b) depicts the arrangement for the magnetic coupling. The typical 

mixed coupling arrangements are shown in Figure 4.5(c) and (d). Usually, the 

magnitude of the magnetic coupling is larger than the magnitude of the 

electric coupling for the same proximity between the rings. As mentioned 

before, for the mixed coupling, the electric and magnetic coupling can 

enhance or annul each other depending on the distribution of the fields. For 

the arrangements shown in Figure 4.5(d) the magnetic and electric couplings 

will enhance and annul each other depending of the separation between the 

resonators. It has been mentioned that the magnetic coupling and the electric 

coupling have opposite signs; one way of proving it is by comparing their 

phases, if they are out of phase then the signs of the magnetic and electric 

coupling must be opposite. When comparing the phases, the locations of the 

ports with respect to the coupled resonators must be the same for both 

arrangements. Figure 4.6 shows the phases for the electric and magnetic 

coupling arrangement. By comparing the phases, it can be observed that both 

are out of phase. This is evidence that the two coupling coefficients have 

opposite signs. 

The above mentioned procedure is used for the design of a Quasi-elliptic filter 

with the close square ring resonator with via to ground and interdigital 

capacitor. When the via is placed on one side, it has the maximum magnetic 

field density and the opposite side has the maximum electric field density. 
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Figure 4.5. Typical coupling structures of coupled resonators with (a) electric 
coupling, (b) magnetic coupling, (c) and (d) mixed coupling [32]. 

 

     
                             (a)            (b) 

Figure 4.6. Typical resonant responses of coupled resonator structures. (a) 
For the structure in Figure 4.5(a). (b) For the structure in Figure 4.5(b) [32]. 

Figure 4.7 shows the arrangement of an electric coupling for the close square 

ring resonator with a via to ground and an interdigital capacitor and the 

response of the electric coupling. Figure 4.8 shows the magnetic coupling 

arrangement and its response. Figure 4.9 shows the arrangement of the 

mixed coupling. As can be seen, the electric and magnetic arrangement 

responses are out of phase, which implies that their corresponding couplings 

have opposite sign. The opposite sign represents an extra advantage for a 

resonator because the resonator can be used to implement a Quasi-elliptic 

filter.  
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Figure 4.7. (a) Circuit layout of electric coupling. (b) |S21|dB and 21°. 
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Figure 4.8. (a) Circuit layout of magnetic coupling. (b) |S21|dB and 21°. 
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Figure 4.9. (a) Circuit layout of mixed coupling. (b) |S21|dB and 21°. 
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4.3 Design of a Quasi-elliptic filter 

In [33] a filter having two transmission zeros (attenuation poles) at finite 

frequencies is presented. This filter shows an improvement on skirt selectivity 

and the characteristics of this filter are between a Chebyshev and an elliptic 

filter. The filter characteristics are not as good as the ones of an elliptic filter 

but its physical realization is easier than the elliptic one. The transfer function 

for this kind of filter is 

)(1

1
)(

22

2

21

nF
S        (4.16a) 

110

1

10

RL
        (4.16b) 

a

a

a

a
n nF

1
cosh

1
cosh)(cosh)2(cosh)( 111  (4.16c) 

where ε is a ripple constant that is related to a return loss LR = 20log|S11|dB, n 

is the filter degree, and Ω is the normalized frequency variable. Ω = ±Ωa 

(Ωa>1) are the locations of the transmission zeros on the frequency chart. As 

Ωa →∞ the filtering function Fn(Ω) becomes the Chebyshev function. The two 

finite frequency transmission zeros location of a bandpass filter are 

2

4)( 2

01

FBWFBW aa

a      (4.17a) 

2

4)( 2

02

FBWFBW aa

a      (4.17b) 

where FBW is the fractional bandwidth  
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Figure 4.10 presents the typical responses of a four-pole filter with LR = -20 

dB. The responses are compared with a Chebyshev filter; as shown, there is 

a higher selectivity for values of Ω closer to 1. In [34] a method based on a 

lowpass prototype filter is developed, where rectangular boxes represent 

ideal admittance inverters (Js) and the capacitors represent admittances (gs). 

From this lowpass prototype filter bandpass filters have been designed. 

Figure 4.11 shows the prototype, the gs are the element values for Chebyshev 

filters. 

 
Figure 4.10. Comparison of frequency responses of the Chebyshev filter and 
the filter with a single pair of attenuation poles at finite frequencies (n = 4) 
[33]. 

 

 
Figure 4.11. Lowpass prototype filter for the filter synthesis [32]. 

The authors in [33] developed formulas by curve fitting for obtaining the 

values of the admittance inverters and the element values, these formulas are 
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432

1 00425.00447.018337.035543.022147.1)( aaaaag  (4.18a) 

432

2 17723.065776.189032.548678.922106.7)( aaaaag  (4.18b) 

432

1 10317.09936.067345.326745.630192.4)( aaaaaJ  (4.18c) 

432

2 20636.094244.196223.636315.1117573.8)( aaaaaJ  (4.18d) 

4(n   and  )4.28.1 a  

For a four-pole filter (m = 2) these equations are related to the coupling 

coefficients and external quality factors by 

FBW

g
QQ eoei

1         (4.19a) 

21

4,32,1
gg

FBW
MM         (4.19b) 

2

2
3,2

.

g

JFBW
M         (4.19c) 

1

1
4,1

.

g

JFBW
M         (4.19d) 

The general coupling structure for a bandpass filter is shown in Figure 

4.12(a). Figure 4.12(b) shows the configuration of the filter using open square 

ring resonators. For Ωa = 1.8 and a bandpass filter with a fractional bandwidth 

of 10%, the following values are obtained  

95974.0)8.1(1g         (4.20a) 

42192.1)8.1(2g         (4.20b) 

21083.0)8.1(1J         (4.20c) 
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4,32,1 MM     (4.20f) 

0786.0
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)11769.1)(1.0(
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02196.0
95974.0

)21083.0)(1.0(
4,1M       (4.20h) 

 

  
    (a)            (b) 

Figure 4.12. (a) General coupling structure of the bandpass filter with a single 
pair of finite-frequency zeros. (b) Configuration of microstrip bandpass filter 
[32]. 

 

4.3.1 Coupling coefficients M1,4, M2,3, M3,4, and M1,2 

The detailed extraction procedure of coupling coefficient values is discussed 

in the earlier chapter.  Figure 4.7(a) and 4.8(a) show the circuit layouts used 

for the evaluation of the coupling coefficients M1,4 and M2,3 respectively.  The 

relation between the coupling coefficient M1,4 with the separation of the 

resonators and coupling coefficient M2,3 with the separation of the resonators 

is presented in Figure 4.13(a) and (b) respectively. Finally, the extraction of 

the coupling coefficients M3,4 and M1,2 is done using the circuit layout shown in 
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Figure 4.9(a). The relation between the coupling coefficient M3,4 and M1,2 with 

the separation of the resonators is shown in Figure 4.14. The desired 

coupling coefficient values are selected from the depicted graphs. 
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Figure 4.13. Relation between separation and coupling coefficients (a) M1,4 
and (b) M2,3. 
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Figure 4.14. Relation between separation and coupling coefficients M1,2 and 
M3,4. 

 

4.3.2 External couplings Qei and Qeo 

The circuit layout used for extracting the external couplings is shown in Figure 

4.15(a). Simulations were performed to obtain the external couplings by 
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moving the position of the tapped line with respect to the corner of the close 

square ring resonator. “D” represents the distance from the corner of the 

resonator to the tapped line as shown in Figure 4.15(a). Figure 4.15(b) shows 

the relation between the external couplings and the distance of the left-edge 

tapped line. The desired external coupling values are chosen from the 

depicted graph.  
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Figure 4.15. (a) Layout of circuit for obtaining the external coupling values. (b) 
Relation between the external couplings (Qei and Qeo) and D. 

 

4.4 Results and Discussion 

The filter is realized using the configuration of Figure 4.12(b). It is fabricated 

using the serigraphy process. RT/Duroid substrate with a relative dielectric 

constant of 10.8 and a thickness of 1.27 mm is chosen for its implementation. 

Figure 4.16 is a photograph of the fabricated filter. The size of the filter 

without connectors is 35.7 x 31.7mm2. The feeding is by 50 Ω microstrip lines 

of 1.0 mm width and 4.0 mm length.  Measurements are performed using the 

Agilent PNA series microwave vector network analyzer (E8361A). Figure 4.17 

shows the simulated and measured reflection and transmission coefficient of 

the filter. The mid-band insertion loss is about 1.3 dB, which is attributed to 

the conductor loss of copper and the return loss at central frequency is 13.81 

dB. The two attenuation poles near the cutoff frequencies of the bandpass are 
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observable, which improve the selectivity. The differences between simulated 

and measured values are attributed to the fabrication process, as can be 

seen from the photograph, capacitor-finger lines are not identical and as a 

consequence, the associate resonance of the resonators may be different. 

Table 4.1 presents the simulated and fabricated main filter characteristics for 

the Quasi-elliptic filter. 

 

Figure 4.16. Photograph of the fabricated Quasi-elliptic filter. 
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Figure 4.17. Measured and simulated S parameters (a) S11 and (b) S21. 
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Table 4.1. Comparison between simulated and measured values of the 
Quasi-elliptic filter. 

 Simulated Measured 

Central frequency (GHz) 0.546 0.506 

Insertion loss (dB) 1.77 1.88 

Return loss (dB) 21.35 13.81 

Fractional bandwidth % 11.1  11.26  
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Chapter V 

Metamaterial transmission line with negative 

magnetic coupling  

In this chapter a metamaterial transmission line with negative magnetic 

coupling is presented. First, the theoretical analysis of the 

metamaterial transmission line using negative magnetic coupling is 

shown. Then, the design of metamaterial transmission line (MTM) 

using planar technology is offered. A spiral inductor and interdigital 

capacitor are used as basic elements to realize the MTM transmission 

line.  A detailed design procedure, operation regions, and equivalent 

circuit of the spiral inductor and interdigital capacitor are explained. 

Finally, the simulated and measured transmission and reflection 

parameters of the MTM transmission line are presented.  

 

5.1 Metamaterial with negative magnetic coupling 

In [4] a MTM unit-cell based on serial capacitors connected to magnetically 

negative-coupled inductors is proposed. A unit-cell is a basic building block of 

the structure that can be used to reproduce the entire structure. A 

metamaterial is a periodic structure composed of many unit-cells, ideally of an 

infinite number of cells. A metamaterial must satisfy the homogeneity 

condition; this condition states that the physical length of the unit-cell must be 

smaller than a quarter of the wavelength associate to the frequency applied to 

the material. In other words, the phase variation of a wave on the edges of 

the unit-cell must be smaller than 90° ( 2/ ). A metamaterial is called a 

perfectly homogeneous material if 2/ . Figure 5.1 shows a periodic 
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structure composed of unit-cells. M represents the mutual inductance 

between the adjacent inductors, “a” stands for the unit-cell length. 

 
Figure 5.1. One-dimension network magnetically coupled [35]. 

The unit-cell can begin and end with many different points as long as the 

structure composed of these cells remains being periodic. Figure 5.2 shows 

two possible unit-cells of the periodic structure shown in Figure 5.1  

 

LL L

2C

L

2C

MMM

C

(a) (b)  

Figure 5.2. Two different unit-cells for the periodic structure. 

The structure was mathematically proven to be metamaterial; the dispersion 

relation is associated to equation (5.1a), and equation (5.1b) is associated to 

the product of phase and group velocity.  

))cos((2

1
)(2

kaMLC
k        (5.1a) 

CML

Ma
vv pg 2

2

)(4
        (5.1b) 

where k is the wave vector, C is the capacitor value, L is the inductor value, M 

is the mutual inductance value, and a is the-unit cell length. 
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M can be positive or negative. Based on the dispersion relation equation the 

change of sign for M implies that the wave goes from forward to backward. 

From the product of phase and group velocity, if M is positive the velocities 

are parallel, if M is negative the velocities are anti-parallel. The dispersion 

relations for M positive and negative are shown in Figure 5.3. It can be seen 

that the dispersion relation is reversed with the change of sign of M, but the 

frequency range does not change.  

 
Figure 5.3. Dispersion relation for the 1D system with C = 0.1 pF, L = 10 nH 
and (a) M = 5 nH and (b) M = -5 nH [35]. 

It is concluded that when M is positive the structure is right-handed, and when 

M is negative the structure is left-handed. This structure is theoretically 

proposed. A practical implementation of this structure in microstrip technology 

is taken into account.  A spiral inductor and interdigital capacitor are used as 

basic elements to realize the MTM transmission line.  A detailed design 

procedure, operation regions, and equivalent circuit of the spiral inductor and 

interdigital capacitor are explained in the next sections. Figure 5.2(b) is the 

schematic of the unit-cell which is used for the design and fabrication. 

 

5.2 Design of the spiral inductor 

The inductance value for the spiral inductor made with microstrip lines 

depends on its physical dimensions. There are several equations for 

calculating the inductance value based on the physical dimensions. Even 
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though these equations have good accuracy, the actual impedance of the 

spiral inductor not only has an inductance value but also contains resistance 

and parasitic capacitance values. A related simple equation is presented in 

[36], this equation is 

AnL 3/55.8         (5.2) 

where A is the area that is occupied by the inductor in cm2, n is the number of 

turns, and L is given in nH.  

A schematic of the spiral inductor is shown in Figure 5.4.  

W 1

W 6
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W 1

W 5
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W 1

 
Figure 5.4. Schematic of the spiral inductor. 

Simulations were performed to optimize the dimensions of the spiral inductor 

using a full wave simulator [29]. The dimensions of the spiral inductor are: 

W1= 0.3mm, W5= 2.6 mm, W6= 2 mm, W7= 1.4 mm, W8= 0.8 mm, W9= 3.7 

mm, WA= 0.5 mm. The theoretical and simulated values of the spiral inductor 

inductance are 10.003 nH and 10.2 nH respectively. 

A spiral inductor has 3 operational regions,  

region I is the useful band, for this region there is a small effect of parasitic 

capacitance, the inductance effect is dominant, the inductance value 

is almost constant and the structure can be used as an inductor. The 
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spiral inductor is fabricated using microstrip lines; there is an 

associated capacitance between these lines and the ground plane 

resulting on a parasitic capacitance for the spiral inductor.  

region II there is a transition for this region, the self-resonance of the inductor 

is present as a consequence of the electric and magnetic energies 

being identical. When this occurs, the value of the inductance drops 

to zero and the structure can no longer be used as an inductor. 

region III the reactance value goes from positive to negative because the 

capacitive effect becomes dominant, the magnetic energy is 

surpassed by the electric energy, and as a consequence no magnetic 

energy can be transmitted to nearby components.  

The inductor area, number of turns and metal traces width are the key 

parameters for increasing the self-resonant frequency, as they decrease the 

self-resonant frequency increases. Figure 5.5(a) presents the three regions of 

the spiral inductor. The spiral inductor can be modeled as shown in Figure 

5.5(b), where RS is the resistance of the metal traces and Cp is the parasitic 

capacitance.  
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Figure 5.5. (a) Regions of the spiral inductor and (b) equivalent circuit of spiral 
inductor. 
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The values for RS and Cp were obtained with the procedure presented in [37]. 

The substrate used for designing the spiral inductors is Rogers Duroid 6010 

(dielectric constant (εr) = 10.8, dielectric loss tangent (δ) = 0.001 and 

substrate thickness (h) = 0.65 mm). 

The series resistance of a spiral inductor can be obtained from the Y-

parameters with 

12

1
Re

Y
RS         (5.3) 

The shunt capacitance between the metal lines of the spiral inductor and the 

ground plane is represented by Cp. The conventional parallel plate 

calculations of capacitance value are only valid for metal lines that are wider 

than the dielectric thickness. Y-parameters can be used to predict the shunt 

capacitances with the following equations 

f

YY
Cp

2

)Im( 1211
1

          (5.4a) 

f

YY
Cp

2

)Im( 2122
2         (5.4b) 

where f is the frequency, Cp1 and Cp2 are the parasitic capacitances at the 

input and output respectively. These parasitic capacitances are approximately 

half the total parasitic value Cp. 

 

5.3 Interdigital capacitor 

The interdigital capacitor is a coplanar capacitor; it takes its name from its 

shape. The interdigital capacitor is suitable for applications where low values 

of capacitance are required (less than 1 pF). The calculation of its associated 
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capacitance requires numerical methods; this capacitor has a lower sensitivity 

to the substrate thickness than a conventional parallel plate capacitor. Figure 

5.6 shows the field distribution for the interdigital capacitor. 

 
Figure 5.6. Schematic field distribution of interdigital capacitors [38]. 

To calculate the dimensions of the interdigital capacitor (C2 = 1.5 pF), we use 

the following equations [39] 

)21)3((
1

2 AANl
W

C r  pf/in      (5.5a) 

2

1 15287116.03349057.0
x

t
A pf/in     (5.5b) 

2

2 22820444.050133101.0
x

t
A pf/in     (5.5c) 

where t is the metal thickness, x is the line width, N is the number of fingers, l 

is the finger length, W is the total capacitor width, and εr is the effective 

permittivity. 

The layout of the interdigital capacitor is shown in Figure 5.7(a). The 

dimensions of the interdigital capacitor are given as: x = 0.3 mm, l = 3.8 mm, 

W = 5.7 mm, t = 15 μm, N = 10, and εr = 10.8. The main electromagnetic field 

of the interdigital capacitor is the one on the plane (C2), but there are parasitic 

effects. An equivalent circuit for the interdigital capacitor is depicted in Figure 
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5.7(b). C1 represents the shunt capacitance associate to the microstrip lines 

and Rs1 represents the serial resistance of the lines, due to the metal 

resistivity.  

l

x

x

x

W

 

C 1

R s1

C 1

C 2

 

(a)      (b) 

Figure 5.7. (a) Layout and (b) equivalent circuit of interdigital capacitor. 

 

5.4 Negative magnetic coupling in Spiral Inductors 

The spiral inductor as mentioned before has a self-resonance, when this 

structure is close enough to another structure, the electromagnetic interaction 

between them is noticeable. The interaction causes that the resonance peaks 

of the structures change their respective values, the interaction is known as 

coupling coefficient ´k´. Using two identical value inductors we seek negative 

magnetic coupling, coupling between lines depends on the line proximity, the 

coupling can be positive or negative, Figure 5.8 presents both cases, “A” and 

“B” represents the inductors. When both inductors are wired in the same 

direction a positive mutual inductance is obtained; whereas, a negative 

mutual inductance is achieved whit opposite wiring direction. 
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     (a)            (b) 

Figure 5.8. (a) Positive coupling and (b) negative coupling. 

The coupling coefficient between the two resonators k is found using  

2

1

2

2

2

1

2

2

ff

ff
k          (5.6) 

where f2 denotes the higher frequency peak value and f1 the lower frequency 

peak value [33].  

Mutual inductance and magnetic coupling are related by 

kLLLkM 21         
(5.7)

 

where L1 and L2 are the values for inductor 1 and 2, and as the values are 

identical, they both are denoted by L. 

Using equation (5.6), with a separation between spiral inductors of 0.2 mm, 

the magnetic coupling value is k = -0.1258. If the value of the inductors is 10.2 

nH, then using equation (5.7) the mutual inductance value is M = -1.28 nH. 

Figure 5.9 shows the circuit layout of the magnetic-coupled spiral inductors.  
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Figure 5.9. Layout of spiral inductors with magnetic coupling. 

The S-parameter magnitudes for the circuit presented in Figure 5.2(b) are 

identical if M is positive or if M is negative, as a matter of fact, S11 parameters 

do not change if just M changes sign. S21 parameters magnitudes are equal 

but the phases are different. We use the notation + to indicate that M is 

positive and – for M negative. The S-parameters for positive and negative 

magnetic coupling, are related as 

)(||)(|| 1111 dBSdBS
       

(5.8a) 

)(||)(|| 2121 dBSdBS
       

(5.8b) 

)()( 1111 SS
        

(5.8c) 

)()( 2121 SS
        

(5.8d) 

)()( 2121 SS
        

(5.8e)
 

)Re()Re( 2121 SS
        

(5.8f) 

)Im()Im( 2121 SS
        

(5.8g) 

In order to validate the above equations, simulations were performed using 

the proposed structure shown in Figure 5.2(b), the values are: C = 0.1 pF, L = 

10 nH, and M = ± 5 nH. Simulated reflection and transmission coefficient 

responses of the proposed structure are depicted in Figures 5.10, 5.11, and 

5.12.  
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              (a)             (b) 

Figure 5.10. Magnitude and phase of the transmission and magnitude of the 
reflection when M is (a) negative and (b) positive. 
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     (a)              (b) 

Figure 5.11. Real and imaginary parts of the transmission when M is (a) 
negative and (b) positive. 
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Figure 5.12. Real and imaginary parts of the reflection when M is (a) negative  
(b) positive. 
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5.5 Metamaterial Transmission Line using Negative magnetic 

coupling and Effective Parameter Extraction 

In [40] there is a forward wave transmission for the axial line distribution, and 

there is a backward wave transmission for a planar line distribution, i.e. there 

is a phase delay for the rings which are axially distributed, and a phase 

advance for rings with planar distribution. To verify if the proposed structure 

has metamaterial behavior, the effective parameters are taken into account. 

The extraction procedure is used to provide effective permittivity and effective 

permeability values of a given structure. There are several methods for the 

extraction, the most popular approach is the extraction from the reflection and 

transmission characteristics. The effective permittivity (εeff), effective 

permeability (μeff), and propagation constant for the MTM TL unit-cell, were 

extracted from the simulated S-parameters using the procedure described in 

[41]. The simulated structure is shown in Figure 5.13. 

 
Figure 5.13. Simulated structure for parameter extraction. 

The procedure used for extracting the effective parameters is as follows: The 

S-parameters are related with the transmission and reflection coefficients by 

22

2
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where the normalized-to-Z0 transmission and reflection coefficients 

)1(
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(5.10a) 

deT

         

(5.10b) 

where d is the total length of the unit-cell along the propagation direction, γ is 

the propagation constant of the unit-cell, and Zsn is the normalized 

characteristic impedance. γ and Zsn are related to ε* and μ* (the complex 

conjugates of ε and μ) by 
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(5.11a) 

*

*

snZ

         

(5.11b) 

where )/2( 00 j  is the propagation constant of free space, λ0 is the 

wavelength for free space. From equations (5.9a) and (5.9b), Γ and T are 

represented in terms of the S-parameters as 

12KK
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The ambiguity of sign for equation (5.12) is solved taking into consideration 

the restriction 1 . The complex propagation constant is extracted from 

(5.10b), and it is

 

d

T )/1ln(

     

    (5.14) 

From equations (5.10a) and (5.11b), the following equation is obtained 

1

1
*

*

        

(5.15)

 

And from equations (5.11a) and (5.15) 
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The parameter T in equation (5.14) is a complex number, as a consequence γ 

may have multiple values. If T is defined as 

jeTT

         

(5.17)

 

then, γ is given by 

d

n
j

d

T 2)/1ln(

       

(5.18)

 

where n = 0, ±1, ±2, … 

The dispersion relation from the S-parameters can be obtained by 
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The MTM TL unit-cell shown in Figure 5.13 was simulated using the full-wave 

EM simulator [29]. The substrate used has a dielectric constant (εr) value of 

10.8 and thickness of 0.635 mm. The previously mentioned extraction 

procedure is applied to the simulated structure. The extracted effective 

permittivity values (εeff), the effective permeability values (μeff), the 

propagation  constant and the refraction index values for the MTM TL unit-cell 

are shown in Figure 5.14 (a),  5.14 (b), 5.15 (a) and 5.15 (b) respectively. As 

can be seen from Figure 5.14, there is a frequency region when the real 

effective permittivity values and the real effective permeability values are both 

negative, and this region is called a double negative (DNG) region. The 

theory discussed earlier in Chapter 2 establishes that for a DNG region the 

refraction index is negative. Then, it has been proven that the unit-cell is a 

metamaterial structure. 
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Figure 5.14. Extracted values of the unit-cell (a) effective permittivity and (b) 
effective permeability. 
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Figure 5.15. (a) Extracted dispersion diagram of the unit-cell. (b) Refraction 
index for the unit-cell. 

 

 

5.6 Results and Discussion 

To validate the proposed structure, it was simulated in SONNET [29] and 

fabricated using a serigraphy process. Figure 5.16 presents the photograph of 

the fabricated circuit. The chosen substrate is Rogers Duriod-6010 with 

dielectric constant εr = 10.8, dielectric loss tangent δ = 0.001, and substrate 

thickness h = 0.635 mm. For the requirement of 50 Ω impedance, the width of 

the strip is 0.6 mm. The total dimensions of the unit-cell without connectors 

and feed lines are: 17.6 x 8.3 mm
2
. The dimensions of the feed lines are: line 

width 0.6 mm and line length 4.0 mm. Measurements are performed using the 

Agilent PNA series microwave vector network analyzer (E8361A). Simulated 

and measured S21 frequency responses for the MTM unit-cell are presented 

in Figure 5.17(a). Simulated and measured insertion losses at the central 

frequency are 2.5 dB and 5 dB respectively. Measured and simulated S11 

frequency responses for the MTM unit-cell are shown on Figure 5.17(b). The 

reflection losses for the central frequencies are: 17 dB for simulated (0.81 

GHz), and 22 dB for measured (0.84 GHz). The extracted effective 
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permittivity and effective permeability from the measured and simulated S- 

parameters of the proposed unit-cell are shown in Figure 5.18(a) and Fig. 

5.18(b) respectively. The discrepancy between simulated and measured 

values is due to the material tolerances and fabrication errors. The simulated 

and measured phase constants of the MTM TL are obtained from the 

corresponding S-parameters and are shown in Figure 5.19. From Figure 5.19, 

it is clear that there is a phase advance for the simulated unit-cell until 807 

MHz, and a phase advance for the measured unit-cell until 776 MHz. 

 

 
Figure 5.16. Photograph of the fabricated unit-cell. 
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Figure 5.17. Measured and simulated S-parameters in dB (a) S21 and (b) S11. 
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Figure 5.18. Effective measured and simulated parameters (a) real part of εeff 

and (b) real part of μeff.  
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Figure 5.19. Effective measured and simulated parameters (a) imaginary part 
of εeff and (b) imaginary part of μeff.  
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Figure 5.20. Extracted phase constant from measured and simulated results. 
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Chapter VI 

Conclusions 

In this thesis novel resonators based on via-to-ground and interdigital 

capacitors have been introduced. The use of via-to-ground and interdigital 

capacitors provides both size reduction and low sensitivity to substrate 

thickness. EM simulations were performed to derive the number of 

interdigital-capacitor fingers for which the close and open ring would have the 

lowest sensitivity to substrate thickness. The lowest SSTs are: 0.46%/mm for 

the close ring (with an eleven-finger interdigital capacitor) and 0.23%/mm for 

the open ring (with a fifteen-finger interdigital capacitor). A size reduction of 

73% is obtained for the close ring, whereas in the case of the open ring it is 

82%.  

Two-pole Butterworth and Chebyshev filters were designed using the 

miniaturized novel ring resonator.  Coupled lines and tapped lines were 

utilized to provide the external coupling. It is found that for the Butterworth 

filter a high rejection to stop band, with reflection losses below 18 dB at the 

central bandpass is observed. In the case of the Chebyshev filter, there was a 

high selectivity for the upper stopband but the insertion band turned out to be 

asymmetrical. 

A four-pole Quasi-elliptic filter was designed and fabricated using the novel 

resonator. The proposed filter has high selectivity and proved to have good 

rejection to the stopband. Simulated and measured scattering parameters are 

in good agreement.   

Table 6.1 presents the simulated and measured reflection coefficient, 

transmission coefficient, central frequency and the fractional bandwidth 

values of the Butterworth, Chebyshev and Quasi elliptic filters along with the 
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frequency shift among measured and simulated structures. Measured and 

simulated values are scarcely different. The differences between simulated 

and measured values for the main filter characteristics are attributed to the 

fabrication process. As can be appreciated on the photographs of the 

fabricated structures line widths and separation among lines are not equal at 

all points. Better results can be obtained with a more accurate fabrication 

process even when the results are in good agreement. For the Chebyshev 

and Quasi-elliptic filter the respective simulated and measured fractional 

bandwidths are very similar. The different bandwidths would scarcely affect 

the results due to the differences are 1.3 and 0.89% respectively. For the 

Butterworth filter the bandwidth difference is 18% which would greatly affect 

the results. The central frequency for the Butterworth and Quasi-elliptic filter 

are almost the same and as a consequence their respective frequency shifts 

are almost equal, this implies that a frequency shift percent factor can be 

obtained to optimized future structures.  

Table 6.1. Comparison between simulated and measured values of the three 

filters. 

 Butterworth Chebyshev Quasi-elliptic 

 Simulated Measured Simulated Measured Simulated Measured 

Central 
frequency  (GHz) 

0.531 0.489 0.38 0.354 0.546 0.506 

Insertion loss  
(dB) 

2.23 2.3 1.51 2.2 1.77 1.88 

Reflection loss  
(dB) 

18 25 15.05 12.64 21.35 13.81 

Fractional 
bandwidth (%) 

6.1  5  14.6 14.4  11.1  11.2  

Frequency shift 
(GHz) 

0.042 0.026 0.04 

  

The filters are based on resonators which are highly miniaturized, 

inexpensive, easily fabricated, of low sensibility to differences in the 
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substrate’s thickness, and independent of the excitation orientation fulfilling 

the first objective of this thesis.  

A metamaterial transmission line based on the negative magnetic coupling 

was fabricated using planar technology accomplishing the second objective of 

this thesis. Spiral Inductors and interdigital capacitors were used as the 

building blocks of the transmission line. Negative magnetic coupling was 

achieved by using the mutual coupling between the spiral inductors. The 

designed structure was optimized using a full-wave simulator (SONNET). 

Effective parameter extraction was performed to provide effective permittivity 

and effective permeability values of the simulated structure to verify 

metamaterial behavior. Simulated and measured insertion losses at the 

central frequency were 2.5 and 5 dB respectively. For the reflection losses the 

simulated value was 17 dB and the measured value was 25 dB. The 

discrepancy between simulated and measured values is attributed to the 

fabrication process material tolerances. The effective permittivity and 

permeability have negative values in the frequency range from 770 to 807 

MHz for the simulated structure whereas for the fabricated structure it was 

740 to 776 MHz. The simulated and fabricated structure showed similar 

behavior, but the losses of the fabricated structure were relatively high. The 

high losses would do impractical to place more than 2 unit-cells, in addition 

the phase constant do not reach the value zero delimiting the possible phase 

advance values that the structure can provide. One advantage of 

metamaterial structures is the size reduction. It is noticed that a high magnetic 

coupling coefficient is a key factor to obtain transmission lines with high 

bandwidth.  
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