
Systems for Fractional
Sampling Rate Conversion

by

Naina Rao Nagrale
A Dissertation

Submitted to the Program in Electronics
Department of Electronics

in partial fulfillment of the requirements for the degree
of

MASTER IN SCIENCE
SPECIALIZED IN ELECTRONICS

at the
National Institute of Astrophysics,

Optics, and Electronics
July-2007

Tonantzintla, Puebla, MEXICO
Supervised by:

Dr. Gordana Jovanovic Dolecek
Dr. Jorge Francisco Martinez

Carballido

c©INAOE 2007
The author granted to the INAOE is permitted
to reproduce and distribute copies of this thesis

in total or in parts

II

Abstract

This thesis treats the design of decimation filters for fractional sampling rate
conversion system, applicable for Software Radio (SR).
We first present a general introduction of Software Radio technology along
with the brief description of radio system architecture, multirate techniques,
and programmable logic devices (PLDs). Then, the basic principles of Sam-
pling Rate Conversion (SRC) is presented, including various methods for dec-
imation and their impacts on the filter complexity.
Further, a review of the Finite Impulse Response (FIR) filters has been done,
along with the methods of rounding and sharpening for efficient filter design.
The raising technique, block filtering and time varying polyphase structures
are also revised.
Overview of existing sampling rate conversion filters has been presented, which
includes Cascaded Integrated Comb (CIC) filter, Polynomial filter and Time
Varying CIC filter.
Using multirate techniques and polyphase representation, a simple method of
designing fractional sampling rate conversion system based on the Interpolated
Finite Impulse Response (IFIR) filter has been proposed.
Finally, the proposed algorithm is simulated in MATLAB and implemented
in the SPARTAN 3 family of the Xilinx’s Field Programmable Gate Array
(FPGA) using project navigator Xilinx ISE 8.2i. The input and output of
the implemented structure is verified in Symphony EDA Sonata 3.1. All the
proposed MATLAB functions and VHDL programs are included in Appendix.

iii

IV

Resumen

La Presente tesis trata el diseño de filtros de decimación para sistemas de
conversión de la razón de muestreo fraccional utilizable en Software Radio.
En principio se presenta una introducción general de la tecnología Software
Radio incluyendo arquitectura, técnicas de multirazon y dispositivos lógicos
programables.
Posteriormente, se muestran los principios básicos de conversión de muestreo
así como los métodos de decimación y su impacto en la complejidad de filtros.
Además, se presenta una revisión de los filtros, FIR (Respuesta al impulso
Finita), incluyendo los métodos redondeo y afilado para el diseño eficiente de
filtros, técnicas de elevación y metodos block filtering.
Una vista general de filtros de razón de muestreo existentes es presentada, la
cual contiene los filtros Cascaded Integrated Comb (CIC) Filtro, filtro Poly-
nomial, and Time varying CIC FIlter.
Se propone un método simple de diseño de un sistema de conversión de la razón
de muestreo fraccional basada en filtros Interpolated Finite Impulse Response
(IFIR) usando técnicos multirazon y representación polifase.
Finalmente, el algoritmo propuesta es simulado en MATLAB e implementado
mediante SPARTAN 3 familia de Field Programmable Gate Array (FPGA)
usando navegador Xilinx ISE 8.2i. La entrada y la salida de la estructura
implementada es verificada en Symphony EDA Sonata 3.1.
Todas las funciones MATLAB propuestas y las programas VHDL son incluidos
en el Apéndice.

v

VI

Acknowledgements

This thesis is conducted by the means of scholarship awarded
by the Government of Mexico through the Ministry of Foreign
Affairs.

The work is a part of CONACYT project number 49640 multirate
digital signal processing for Software Radio.

I want to express my deep gratitude to the National Institute
of Astrophysics, Optics, and Electronics (INAOE) for giving me
the opportunity to study Master in Science with specialization in
Electronics.

I am very thankful to Dr. Gordana Jovanovic Dolecek, for her
valuable support in constructing the work and to Dr. Jorge Fran-
cisco Martinez Carballido, for teaching me VHDL language and
implementation in SPARTAN 3.

Thanks to Dr. Jose Alexandro Diaz Mendez, Dr. Miguel Angel
Garcia Andrade, and Dr. Roberto Rosas Romero, for reviewing
and giving comments to improve the thesis.

Special acknowledge to Dr. Alfonso Fernández Vázquez for his
precious time and suggestions he gave for discussing the problems.

Deeply thanks to all who are in INAOE and have given me a
family environment.

vii

VIII

Dedications

To the God, His creations and My Mother

ix

X

Preface

The principal goal of this thesis is to design an efficient fractional sampling
rate conversion system applied in the Software Radio (SR) Technology.

In the following we discuss the importance of this research work and the methodology
we used to fulfill the desired goal. With an exponential blowup of cellular mobile systems
and plethora of analog and digital standards attempting to crowd the radio spectrum all
over the world [20], Software Radio concept is emerged as a potential pragmatic solution
for an interoperability across the diverse communications bands. The term Software Radio
stands for radio functionalities defined by software, which implies the use of digital signal
processors (DSPs) to execute the necessary software which implements radio interfaces
and upper layer protocols, in real time [6].

The main property of software radio is to design an independent terminal irrespective
of various air interface communication standards. These communication standards are
generally based on different master clock rates and therefore employ different bit/chip
rates. An efficient solution for different master clock rates is to run the terminal on a
fixed clock rate and perform digital sample rate conversion controlled by software [11].

In general sampling rate conversion is well known as multirate techniques. A key char-
acteristic of the multirate algorithms is their high computational efficiency. In many cases,
these algorithms are the prime reason for an application to be implemented economically
using modern digital signal processors. In this work, we consider multirate based design
for the fractional sampling rate conversion systems.

Going towards the desired goal, the following conditions has to be satisfied:

The stopband attenuation of the filter should be high enough to reject the adjacent
channel interferences.

Shifting the filter from high sampling rate region towards low sampling rate region.

Try to decrease the filter complexity by eliminating multipliers.

Power consumption should be minimum.

FPGA implementation with minimum gates utilization.

Chasing these conditions, a brief introduction of the Software Radio (SR) technology,
Sampling Rate Conversion (SRC), and Programmable Logic Devices (PLDs) has been
given in Chapter 1.

Various multirate algorithms have been reviewed in Chapter 2.
Next, techniques for improving the filter characteristics such as rounding and sharpen-

ing techniques have been discussed in Chapter 3 along with time varying filter analyzing
methods.

Overview of various existing filters for fractional sampling rate conversion has been
presented in Chapter 4.

xi

XII

The proposed algorithm has been given in Chapter 5 at low sampling rate as well as
at high sampling rate.

The implementation of proposed algorithm in Xilinx SPARTAN 3 family of FPGA has
been done in Chapter 6. This chapter describes the implementation cost through device
utilization summary generated by Xilinx ISE 8.2i. The input-output waveforms have been
simulated in Symphony EDA Sonata 3.1.

Finally, the comparative study of proposed structures at low and high sampling rate
is presented. The implementation of proposed structures has also been compared with
respect to the FPGA equivalent gates utilization with and without multipliers.

MATLAB functions for the proposed algorithm are listed in Appendix A. VHDL
programs details are provided in Appendix B.

The list of publication relating to the thesis is presented in Appendix C.

Contents

Preface XIII

1. Introduction of Software Radio 1
1.1. What Software Radio is and why we should use it 1

1.1.1. Definitions . 1
1.1.2. Multidimensional view of Software Radio 2
1.1.3. Features, Goals, and the Benefits 5
1.1.4. Pitfalls . 7
1.1.5. Applications . 8

1.2. Architecture of Software Radio . 8
1.2.1. Definition of Radio Architecture . 8
1.2.2. Software Radio Transceiver . 9
1.2.3. Resource Requirements . 11

1.3. Importance of Sampling Rate Conversion 12
1.3.1. Various Communication Standards 12
1.3.2. Sampling Rate Conversion Definition 14

1.4. Programmable Logic Devices for Software Radio 16

2. Basic Principles of Sampling Rate Conversion 21
2.1. Analog-to-Digital Conversion . 21
2.2. Discrete Sampling . 26
2.3. Sampling Rate Conversion - Various Aspects 29
2.4. Sampling Rate Reduction - Decimation 32
2.5. Sampling Rate Amplification - Interpolation 37
2.6. Sampling Rate Conversion by Rational Factor 41
2.7. The Conversion Factor . 43

3. Review of Finite Impulse Response (FIR) Filters 47
3.1. Introduction . 47
3.2. Methods of designing Efficient FIR filters 49

3.2.1. Rounding . 49
3.2.2. Sharpening . 51
3.2.3. Interpolated Finite Impulse Response (IFIR) Filter 53

3.3. Methods of analysing FIR filters . 57
3.3.1. Raising Procedure . 57
3.3.2. Block Filtering . 60
3.3.3. Time Varying Polyphase Structures 63

4. Overview of some existing methods for designing SRC filters 65
4.1. Introduction . 65
4.2. Cascaded Integrated Comb Filter based methods 65
4.3. Farrow Filter . 70
4.4. Time Varying Cascaded Integrated Comb Filters 72

xiii

XIV CONTENTS

5. Proposed Structure for Fractional SRC Systems 79
5.1. Introduction . 79
5.2. Description of Proposed Algorithm . 80
5.3. Application of proposed method at low sampling rate 84
5.4. Application of proposed method at high sampling rate 86
5.5. Discussion of the results . 88

6. Implementation of the Proposed Structure 91
6.1. Introduction . 91
6.2. Fixed Point Multiplication . 92

6.2.1. Unsigned Multiplication . 93
6.2.2. Signed Multiplication . 95

6.3. Proposed Algorithm at low sampling rate 97
6.3.1. Implementation . 98

6.4. Proposed Algorithm at high sampling rate 101
6.4.1. Implementation . 101

6.5. Discussion of the implemented structures 104

A. MATLAB Functions 111

B. VHDL Programs 115
B.1. Project for the proposed structure at low sampling rate 115
B.2. Project for the proposed structure at low sampling rate by replacing mul-

tipliers . 116
B.3. Project for the proposed structure at high sampling rate 118
B.4. Project for the proposed structure at low sampling rate by replacing mul-

tipliers . 119

C. Published Articles 121

List of Figures 125

List of Tables 127

Bibliography 130

1
Introduction of Software Radio

This chapter presents the basics of Software Radio. The necessity of Software Radio tech-

nology along with the advantages and unsolved problems have been described. Radio system ar-

chitecture for Software Radio is explained. Finally, introduction of Sampling Rate Conversion

(SRC) process and Programmable Logic Devices (PLDs) have been demonstrated.

1.1. What Software Radio is and why we should use it

1.1.1. Definitions

The term Software Radio (SR) was first introduced by Joe Mitola in May 1992 [20],

to refer multiservice, multistandard, multiband, reconfigurable, and reprogrammable ra-

dio system. This radio system possess the objective of liberating traditional radio based

services from hardware dependency on frequency band, channel bandwidth, and chan-

nel coding scheme. Mitola explained Software Radio as a combination of techniques that

include multiband antennas, Radio Frequency (RF) conversion, wideband Analog to Dig-

ital (A/D) and Digital to Analog (D/A) conversion, and implementation of Intermediate

Frequency (IF), baseband (BB), and bitstream processing functions in general-purpose

programmable processors.

Later, many researchers had presented different definitions to describe Software Radio

more completely. For example Enrico Burrachini [6] has defined Software Radio system

as the dynamic adaptation of user terminal to various radio environment irrespective of

1

2 Introduction of Software Radio

location, and defining the radio functionalities through software by utilizing DSPs. After

knowing completely what is Software Radio, the questions which remain are Why we need

Software Radio and What makes researchers to work for Software Radio. Here, are some

of the most burning factors for the evolution of Software Radio

After the migration of radio systems from analog to digital, the exponential blowup

of cellular mobile systems lead to the jockeying of telecommunications giants in the

international and national standards. The most adverse effect was face by the mil-

itary and aerospace. As a result, in mid 70’s the U.S. Advanced Research Projects

Agency (ARPA), Army, Air Force, and others in Europe began to develop Software

Radio technology for interoperability across diverse communication bands. Recent-

ly, the commercial market also demanded Software Radio for free mobility across

international boundries.

Another most important factor for such a wide revolution of Software Radio is, the

industrial competition among different continents. This lead to the demand of a

common worldwide standard for future mobile systems which has been justified will

raise trading benefit among them.

1.1.2. Multidimensional view of Software Radio

Considering all these factors, recent advances in Software Radio include an interesting

multidimensional view of Software Radio presented by Stephen M. Blust of Cingular

Wireless [29], as a model of integration of software with hardware for communication in

the worldwide network (see Fig. 1.1). This multidimensional aspect of SR has following

four main planes

1. Radio implementer plane,

2. Network operator plane,

3. Service providers plane, and

4. User applications plane.

1.1 What Software Radio is and why we should use it 3

User applications plane

Service Providers Plane

Network Operator Plane

Radio Implementers plane

SR provides flexibility in service
applications to the end user.

SR provides market and
service differentiation to
service providers

SR provides flexibility in the
deployment of new technologies
to the network operator.

SR provides flexibility to radio
designers as an implementation
techniques.

Figure 1.1: The Multidimensional perspectives of software based radio.

Each of these four planes has a specific task to perform and an interactive interface among

them will make a complete Software Radio system. A brief explanation of all these four

planes is given below

1. Radio Implementer Plane: In this plane, the traditional methods of implement-

ing transmitters and receivers have been replaced by multimode, multistandard,

adaptive, reconfigurable, and reprogrammable radio system. Mitola described this

plane as channel processing streams [21]. Radio Implementer Plane has been divided

into five main segments, these are:

Antenna Segment : This segment contains multiple antennas per band or octave

bandwidth antennas and an acute frequency reference in the RF segment. The

main objective of this segment is to reduce interference from large number of

interferers using one or no auxiliary antenna. The structure of the antenna

arrays determines the number of distinct physical and logical signal processing

paths in the RF conversion and IF processing segments. Thus, the antenna

segment of Software Radio must be capable of directional selectivity, multipath

compensation and interference suppression.

4 Introduction of Software Radio

RF conversion segment : RF conversion includes output power generation,

preamplification, and conversion of RF signals to and from standard inter-

mediate frequencies (IFs) suitable for wideband A/D/A conversion. The main

problems of this segments are the need of amplifier linearity and efficiency

across the access band, introduction of processor clock harmonics, and electro-

magnetic interference (EMI). These problems can be resolved to some extent

by placement of A/D/A converters before final IF section and filters.

IF Processing segment : The function of IF processing segment is to map the

transmitted and received signals between modulated baseband and IF sections.

The IF receiver processing segment includes wideband digital filtering to select

a service band from those available. Furthermore, IF filtering recovers medium

band channels (e.g., a 200 kHz TDMA channel in GSM) and/or wideband

subscriber channels (e.g., a 2 MHz CDMA channel) and converts the signal to

baseband.

Baseband Processing Segment : The baseband segment imparts the first level

of channel modulation onto the signal (and conversely demodulates the sig-

nal in the receiver). Predistortion for nonlinear channels would be included in

baseband processing. Trellis coding and software decision parameter estima-

tion also occur in the baseband processing segment. The complexity of this

segment therefore depends on the bandwidth at baseband, the complexity of

the channel waveform, and the complexity of related processing.

Bitstream Segment : Digital multiplexing of source coded bitstreams from mul-

tiple users is being done by the bitstream segment. It imparts forward error

control (FEC) onto the bitstream, including bit interleaving, frame alignment,

bit-stuffing, and radio link encryption. Signaling, control and operations, ad-

ministration and maintenance functions are also provided in the bitstream

segment. These functions are even-driven and typically impart an order of

magnitude less computational demand than baseband processing.

2. Network operator plane : It works to make the wireless network dynamic for

1.1 What Software Radio is and why we should use it 5

existing and new standards by downloading software. Due to the frequent mobility of

user terminal, software download in the mobile terminal must be as fast as possible.

There are two methods of software download :

Smart card loading : Under this method, the user purchases a smart card from

the sell point of the network operator. The software download is performed

when the smart card is inserted in the terminal. This method is error-free and

fast, but in case of change of location, user has to change the smart card with

respect to the network area.

Air interface download : In this method, the network operator performs the

software download effort when the user terminal changes its location. It is

intelligent updating of user terminal when user is traveling through an area

served by different cellular systems. This is comparative complicated method

with high storage requirement and occurrence of errors that make it slow.

3. Service Provider Plane : Software radio allows service providers a mechanism for

service differentiation, and a cost-effective means for easily upgrading the network

infrastructure through software downloads to the network and handset components.

4. User Application Plane : It provides user’s perspectives to software radio advan-

tages, by the ability to excess the hardware-software combination at any moment.

Thus, these four planes of software radio architecture can be viewed as the critical

enabling foundation for the potentials and benefit of software radio.

1.1.3. Features, Goals, and the Benefits

By the efforts made by different investigators, the obvious encountered features of SR

can be summarized as

System reconfigurability.

Increased hardware-lifetime.

Novel service quality levels.

6 Introduction of Software Radio

Multiband and Multimode applications.

Reduced hardware size, weight and power consumption.

Cost effective and high capacity chips.

CDMA and TDMA applications compatibility.

Multimedia.

Integrated personal communications services (PCS), land mobile and satellite mobile

services.

Dynamic adaptation.

To effectively achieve all these characteristics, Software Radio has to obtain some principle

goals like

To move the border between the analog and digital world as much as possible

towards radio frequency (RF) by adapting analog-to-digital (A/D) and digital-to-

analog (D/A) wideband conversion as near as possible to the antenna.

To replace application-specific integrated circuits (ASICs) (dedicated hardware)

with DSPs for baseband signal processing, in order to define as many radio func-

tionalities in software.

To download air interface standards dynamically.

To make software realization of frequency band, channel bandwidth, channel mod-

ulation, coding scheme, and user applications.

To design flexible, controllable and programmable architecture.

Having SR with all these properties will bring benefits to many actors involved in the

telecommunications market like: manufacturers, operators, and users [6].

For the manufactures, there is the possibility to concentrate on Research & Devel-

opment efforts on a reduced hardware platform set. The device can be applicable

1.1 What Software Radio is and why we should use it 7

to every cellular system and market, irrespective of national or regional bounderies.

As a consequence, mass production would allow lowered cost. Another relevant ad-

vantage would be the possibility to improve the software in successive steps, and

the correction of software errors and bugs discovered during operation.

In case of operators, SR helps to rapidly roll out new services tailored to the needs of

each user and differentiated from those of other operators. With the same terminal it

will be possible to provide all services even if supported by different communication

standards. In addition, there is the possibility to implement multistandard base

stations.

And with SR, the users can enjoy the possibilities to roam to other cellular systems

and take the advantage of worldwide mobility and coverage. Including this, users

can also configure their terminal according to their preferences.

1.1.4. Pitfalls

Besides providing all these flexibilities, Software Radio is accompanied with various

problems. Most of these pitfalls can be avoided, and continued research in these difficulties

will further reduce costs and time to market [6]. Some of these problems are detected as

Designing of wideband low loss antennas and RF converters, which is difficult to

accomplish for fullband digitization.

It is also difficult to accurately estimate processing demands of applications and

processing capacity of reprogrammable DSP/CPU configurations.

Data rates requirements across interprocessor interfaces is problematic.

Open architecture standards for high capacity wideband signal buses have not yet

emerged.

Ability to mix and match real time software tools and modules from different soft-

ware suppliers is yet to be achieve.

8 Introduction of Software Radio

1.1.5. Applications

Software Radio with such number of favorable characteristics can be widely applicable

to [21]

Air and sea traffic management : The incredible complexity of port management,

whether for ships or aircrafts, requires highly sophisticated applications. Software

Radio along with satellite global positioning system (GPS) technology can be used

for the evaluation of supersophisticated navigation and avionics systems used to

maneuver land military and commercial air, and sea craft, without having to rely

on human intervention [1].

Trunk radios : In a trunk radio system, all users share a pool of frequencies from

five up to a maximum of twenty-eight. Users are assigned a ”groupid” and field

radios are programmed to only pick-up transmissions for that group [2]. Software

Radio can be applied for easy programmatic allocation of frequency bands to various

users of same or different groups. Trunk radios are broadly used by police and fire

departments.

Peer networks : The network in which the component nodes are connected to each

other with no distinction between client and server is known as peer network [1].

The main benefits of peer-to-peer system are scalability, fault-tolerance, and the lack

of resource bottlenecks in servers. Software Radio can be useful for peer network

in terms of decreasing the complexity, and making self organized and decentralized

network architecture.

1.2. Architecture of Software Radio

1.2.1. Definition of Radio Architecture

Radio Architecture can be defined as the comprehensive, and consistent set of func-

tions, components and design rules according to which systems of interest may be or-

ganized, designed, and constructed [21]. A specific architecture entails a partitioning of

1.2 Architecture of Software Radio 9

functions and components such that functions are assigned to components, and interfaces

among components correspond to interfaces among functions.

When such functions and interfaces are defined in formal design rules via a public

forum, the resulting architectures are called ’open architecture’. An architecture can be

said as powerful or weak depending on its ability to increase or decrease the system

development complexity.

Radio architecture can be directly related to the network hierarchy and channel data

rate. As network hierarchy is rapidly moving from early point-to-point towards chaotic

peer networks and more hierarchical structures with improved service quality. Similarly,

channel data rate continue to increase through multiplexing and spectrum spreading.

Thus, the complexity of functions, components, and design rules of radio architecture

continues to increase with each generation.

Software Radio has been emerged to increase service quality through an environment

that has active RF bands, channel access modes, data rates, bit error rates (BERs), power,

and functionality. At the same time, software radio architecture simplifies hardware com-

ponent tradeoffs and provide new ways of managing the complexity of rapidly emerging

standards.

1.2.2. Software Radio Transceiver

In order to design demanding multipersonal capable, less complex, and low power con-

suming transceivers, an ideal software radio transceiver tries to move the border between

the analog and digital world in the transmitter and receiver, as much as possible towards

radio frequency. Considering the receiver, the only analog components are the antenna,

the bandpass filter, and the low noise amplifier (see Fig. 1.2). However, an ideal software

radio transceiver is far from the realization, due to wide bandwidth ranging of receiving

signal, intermodulation and jitter effect [6].

The present acceptable software radio transceiver is similar to wideband transceiver. It

has RF stage as completely analog, and IF stage is digital (see Fig. 1.3).

In this transceiver after the ADC in the RF section, there are three main operations which

make a combination of IF and BB stage [6]. These operations are :

10 Introduction of Software Radio

BPF LNA ADC

Baseband
Processing

DSP

Figure 1.2: An ideal software radio receiver.

T/R
Switch

RF
Processing

Down
Conversion

IF
Processing

Down
conversion

Baseband
Processing

I/O

RF Section Signal Processing Section

A/D Conversion

Figure 1.3: Software Defined Radio single mode Receiver.

Downconversion: The process of converting the IF signals to BB signals digitally

is called downconversion. This operation involves the use of a lookup table which

contains the samples of sinusoidal carrier signal. This lookup table replaces the local

oscillator used in an analog downconverter.

Channelization: After obtaining the baseband signal, the next step is to select the

carrier and channel which is to be elaborated by digital filtering. This operation in

analog receivers is performed by an analog filter, with very stringent requirements,

before BB conversion.

Sample rate adaptation: Finally, the undersampling of the signal output of the

channelization filter is performed to match the sample rate of the selected channel

1.2 Architecture of Software Radio 11

bandwidth, which is a narrowband signal. This operation exploits the fundamentals

of multirate systems to perform processing of digital signals.

Studies shows that all these operations come under radio implementer plane of Software

Radio Architecture. Therefore, to make an integration of software with these operations

the radio implementer plane is divided into two major areas [29]

Radio Front End : Hardware plays the dominant role in this section.

Radio Back End : In this section hardware exists along with software as the sup-

porting role.

These subdivisions are for both base station and user terminal. With the progress of

technology, Software Radio can be completely digitized at or very near to the antenna with

software as the dominant driver residing in high-speed digital signal processing elements.

Thus, with technology advancement, the Software Radio transceiver can be represented as

the evolutionary stages, which shows the transition from traditional single mode, single

band radio interfaces towards multicapability, multimode, and multiband digital radio

global phone.

1.2.3. Resource Requirements

Resources critical to the software radio architecture include I/O bandwidth, memory

and processing capacity [21]. Good estimates of the demand for these resources result in a

well informed mapping of the above segments to appropriate hardware. Depending on the

details of the hardware, the critical resources may be memory, bus, or I/O bandwidth, or

a particular embedded processor. When the critical resources are identified early in the

design process , order of magnitude shortfalls in performance can be avoided. Identification

of the critical resources can be accomplished quickly using below given techniques.

Standardized Measures of Demand and Capacity: Since many contemporary proces-

sors include pipelined floating point arithmetic sections or single instruction butter-

fly operations, like million instructions per seconds (MIPS), and mega floating point

operations per second (MFLOPS) which are not interchangeable. Both these types

12 Introduction of Software Radio

of operations require processor clock cycles, allowing one to express demand in a

common measure of millions of operations per seconds (MOPS) where an operation

is the amount of work that can be accomplished by a given resource in a single clock

cycle of a standard width. Thus, software demand may be translated rigorously to

equivalent MOPS for each resource using queueing theory.

Estimate Demand in the Context of the Canonical Data Flow: Each segment of ra-

dio implementer plane has its associated resource demand. Although, these demands

may exceed the capacity available with a given generation of devices. Performing

capacity estimation by determining the number of operations required per point op-

eration and multiplying by the critical parameter, one can quickly arrive at demand

estimates that frame the related implementation decisions.

Facility Utilization Accurately Predicts Performance: The most significant design

parameter of the mapping of processing demand to processor capacity is resource

utilization of the CPU, DSP chip, memory, bus, etc. Resource utilization is the

ratio of offered demand to available capacity. In general,the average number of items

waiting for resource services varies as a function of utilization.

1.3. Importance of Sampling Rate Conversion

1.3.1. Various Communication Standards

In a multimode software defined radio, a system filter should select a bandwidth cov-

ering all of the services that the software radio should support or a part of them. These

processes of selection are called full band digitization and partial-band digitization, respec-

tively [11]. Within this bandwidth, there are signals of different air interfaces communica-

tion standards used by several operators. This is explained in Fig. 1.4, where three different

communication standards are considered. These are the global system for telecommuni-

cations (GSM) as a single carrier system based on Frequency Division Multiple Access

(FDMA), the Interim Standard-95 (IS-95) as a spread spectrum Code Division Multiple

Access (CDMA) system, and the Pacific Digital Communication (PDC) as a multichannel

1.3 Importance of Sampling Rate Conversion 13

system based on Time Division Multiple Access (TDMA). In case of FDMA and TDMA ,

the bandwidth of each service is split into several channels, while in case of CDMA whole

bandwidth is occupied by spread spectrum channel.

f

Singlecarrier (GSM)

#1... #channel channel n

#1channel

#channeln#1channel

GSM

IS-95 PDC

f

f

Figure 1.4: Software Radio Service band.

Many mobile radio standards have been developed for wireless systems throughout

the world, and more standards are likely to emerge [6]. Table 1.1 lists the most common

cellular communications standards used in North America, Europe, and Japan [25].

Table 1.1: Major Mobile Radio Standards in all around World.

Characteristics GSM IS-95 PDC

Year of Introduction 1990 1993 1993

Multiple Access FDMA TDMA CDMA

Frequency Band (MHz) 890-960 824-894 890-1501

Modulation GMSK QPSK/BPSK π/4 DQPSK

Channel Bandwidth (kHz) 200 1250 25

Symbol/chip rate 270.83 kSps 1.2288 Mcps 42 kSps

14 Introduction of Software Radio

For operating all the three different communication standards given in Table 1.1, a multi-

mode radio system is required. This radio system is being programmed by software, which

makes the selection of desired frequency range according to service provider location. The

multimode SR architecture for GSM, IS-95, and PDC is shown in Fig. 1.5.

RF Section Signal Processing Section

T/R
Switch

RF
Processing

RF
Processing

RF
Processing

IF
Processing

Analog
Baseband
Processing

Digital
TDMA

BB Processing

Digital
GSM

BB Processing

Digital
CDMA

BB Processing

Digital
Down

Conversion

Down
Conversion

Down
Conversion

Down
Conversion

Down
Conversion

A/D Conversion D/A Conversion

I/O

Figure 1.5: Software defined radio multimode receiver.

To make the same hardware to work for different frequency ranges, the conversion of

sampling rate is required which is explained in the next section.

1.3.2. Sampling Rate Conversion Definition

The main property of software radio is to design an independent terminal irrespective

of various air interface communication standards. These communication standards are

generally based on different master clock rates and therefore employ different bit/chip

rates. A solution to cope with the diversity of master clock rates in one terminal is to

have a dedicated master clock for each standard of operation. But this kind of solution is

costly and realizable only for a specific master clock rates. An efficient solution for different

master clock rates is to run the terminal on a fixed clock rate and perform digital sample

rate conversion controlled by software [11].

The process of digitally converting the sampling rate of a signal from a given rate f =

1/T to a different rate f ’=1/T ’, where T and T ’ are sampling periods, is called sampling

1.3 Importance of Sampling Rate Conversion 15

rate conversion (SRC). SRC involves the basic operations of decimation and interpolation

defined as

Decimation is the method of decreasing the sample rate by performing downsam-

pling of input bandlimited signal.

Interpolation is the process to increase the sample rate of input signal by upsampling

the input signal and then performing anti-aliasing.

An interpolator and a decimator are dual digital systems [9]. The basic steps of decimation

and interpolation are downsampling and upsampling, respectively.

Downsampling is the process of removing M -1 samples from the input digital signals,

performed by a downsampler or expander of factor ’M ’. This will consequently lead

to the decreasing of the signal frequency. The main drawback of downsampling is

overlapping effect known as aliasing. To prevent aliasing, a band limiting filter is

applied before downsampler known as anti-aliasing filter. This complete cascade of

anti-aliasing filter and downsampler is called decimator shown in Fig. 1.6.

x(n) y(m)
H(z) M

Anti-aliasing filter Downsampler

Figure 1.6: Decimator.

Upsampling is performed by an upsampler or compressor of factor ’L’ introduces L-1

zeros between each pair of input signal samples. The zeros in time-response will

cause the formation of images in the frequency response and signal spectrum gets

compressed by 2π/L. Hence, an anti-iamging filter is required to eliminate all these

images. The cascade of upsampler followed by an anti-imaging filter is called inter-

polator. Fig. 1.7 shows an interpolator.

Thus, Software Radio terminals can process various communication standards simply by

converting the sampling rate to desired sampling rate.

16 Introduction of Software Radio

x(n) y(m)
L H(z)

Anti-imaging filterUpsampler

Figure 1.7: Interpolator.

1.4. Programmable Logic Devices for Software Radio

PLDs are integrated circuits (ICs) which can be programmed in house or on the field.

The design and implementation of an application on these devices can be achieved with

the help of software tools. Hardware descriptive languages such as Verilog and VHDL are

widely used for this purpose. The codes written in these languages can also be synthesized

using a third party Electronic Design and Automation (EDA) tool or the software tool

provided by the vendor. With the help of these tools it is also possible to optimize the

design for speed or space.

The PLDs have gradually grown to immense prominence in the field of digital signal

processing. The gates have grown from a group of AND/OR gates accomplishing simple

’sum of products’ operations to millions of gates on a single substrate with additional

devices like memory elements, multiplier and also in- built processors (Spartan 3 from

Xilinx Inc.). Various types of programmable logic devices are discussed below

Programmable logic array (PLA) are one of the first programmable devices devel-

oped. They consist of a layer of AND gates and OR gates. They accomplish the

Sum of Product (SOP) operation. Hence, the number of inputs cannot exceed the

number of AND gates.

Programmable Array Logic (PAL) devices are similar to PLA. They were intro-

duced by Monolithic Memories (now a part of Advanced Micro Devices). These

devices also have only AND and OR gates. However, unlike PLA, only AND gates

are programmable and every OR gate is connected to a bunch of AND gates. Thus,

the maximum number of minterms allowed for an OR gate is equal to the number of

inputs to the OR gate. The logic function of higher minterms can be implemented

by routing the output of one OR gate to the input of another minterm. Fig.1.9

1.4 Programmable Logic Devices for Software Radio 17

Figure 1.8: PLA implementation of a full-adder.

shows PAL device architecture.

Complex Programmable Logic Device (CPLD) as the name suggests, is more com-

plex than the previously discussed architectures. Firstly, they are large granularity

devices and consist of a group of arrays of logic elements or logic cell, which are

connected through wide buses (called Programmable Interconnect Array (PIA) by

Altera) with short delays. The logic cells typically have 8 to 10 inputs, 3 to 4 out-

puts, and support around 20 product terms. The data path is not unidirectional

from input to output of the IC; instead outputs of all the arrays are fed back to

the PIA. The output of the IC that is required to be fed as input into another

cell is first routed back to the common interconnect lines and then connected to

designation logic. By combining the bus and the fixed IC timing, it is possible to

provide predictable and short pin-to-pin delays in CPLDs. Fig.1.10 shows CPLD

Architecture

Field Programmable Gate Array (FPGA) have similar structure to gate arrays how-

ever they have programmable elements. Traditional gate arrays contain a number of

building blocks or primitive cells etched on a single silicon substrate. The connec-

18 Introduction of Software Radio

Figure 1.9: Programmable Array Logic.

tions between cells are permanent and made later. These are non-reprogrammable

high-density devices containing about 5 millions gates. The programmable cell of

FPGA is called Logic Element (LE) in case of Altera device and Configurable Logic

Block (CLB) in Xilinx devices. FPGA use the Complementary Metal Oxide Semi-

conductor SRAM technology and are thus reset at power off.

Software Radio technology has gained momentum as engineers every where are developing

radio architectures that include minimum hardwired analog components [10]. The ability

to perform intermediate frequency (IF), bandwidth modulation, coding schemes and other

radio functions is the appeal for such widespread interest. Current technology in field-

programmable gate array (FPGA) technology have enabled high-speed processing in a

compact footprint, while retaining the flexibility and programmability of Software Radio

1.4 Programmable Logic Devices for Software Radio 19

Simple
PLD

Simple
PLD

Simple
PLD

Programmable Interconnect Array (PIA)

Macro Cells

Figure 1.10: Complex Programmable Logic Device.

technology. The hallmarks of FPGA are

FPGAs are very popular for high-speed, compute-intensive, reconfigurable applica-

tions like Fast Fourier Transform (FFT), Finite Impulse Response (FIR) filters, and

other multiply-accumulate operations.

FPGAs have evolved from being flexible logic design platforms to signal process-

ing engines. They are now an essential component of Software Radio due to their

flexibility and real time processing capabilities. Increasingly, system designers are

porting more and more signal processing functionalities in FPGAs. The flexibili-

ty of having the ability to integrate logic design with signal processing is pushing

designers to replace traditional digital signal processors (DSPs) with FPGAs.

FPGAs are also inherently suited for high-speed parallel multiply and accumulate

functions. Current generation FPGAs can perform 18 x 18 multiplication operation

at speeds in access of 200 MHz. This makes FPGAs an ideal platform for opera-

tions such as FFT, FIR, digital downconverters (DDC), digital upconverters (DUC),

correlators and pulse compression.

20 Introduction of Software Radio

2
Basic Principles of Sampling Rate Conversion

The objective of this chapter is to assemble the concept of analog-to-digital conver-

sion (ADC) and sampling rate conversion (SRC) over software radio (SR) platform.

The concept of discrete sampling, which is the first step of SRC is described. An ana-

log interpretation and digital approach of SRC is presented to understand various

aspects of SRC process. Types of SRC process are explained along with the conver-

sion factor as the decisive parameter for SRC, with the idea of separating integer

factor and fractional factor. The last section describes the factors on which hardware

effort of an SRC system depends.

2.1. Analog-to-Digital Conversion

Digital signal processing involves the methods of processing the signals in discrete-

time domain. Thus, the conversion of continuous-time (analog) signal into discrete-time

(digital) signal is among the initial steps of SRC. This process of converting continuous-

time signal into discrete-time sequences is known as analog-to-digital conversion (ADC).

Various specific work are performing by the area of analog design to make advanced ADCs

with respect to technological demands, like Sigma-Delta converters are among the new

ADCs with advanced features. In general, the analog-to-digital conversion process takes

place in two steps i.e. sampling and quantization [24].

Sampling is the process of selecting amplitude values of the continuous-time signal at

certain time instance T. When the sampling period T is constant between two

21

22 Basic Principles of Sampling Rate Conversion

samples then this type of sampling is called equidistant sampling. In this context,

equidistant sampling has been considered as sampling. The mathematical model of

sampling is the multiplication of analog signal with a periodic impulse train. Let

xC(t) be a continuous function of the continuous time variable t. Sampling of xC(t)

at the uniform rate of

t = nT, −∞ < n < ∞ (2.1)

is obtained by multiplying xC(t) with a sampling function s(t). This multiplication

process is also known as pulse amplitude modulation (PAM). The sampled signal

x(n) is given by

x(n) = xC(t) · s(t) (2.2)

where, t changes with respect to sampling period T, and

s(t) =
∞∑

l=−∞
u0(t− lT) (2.3)

and, where u0(t) denotes an ideal unit impulse function. Fig. 2.1 shows an example

of a signal xC(t) and the associated sampled signal x(n).

Figure 2.1: Analog-to-Digital Converter.

Taking the Fourier transform of the input signal xC(t) will give XC(jω) defined as

XC(jω) =

∫ ∞

−∞
xC(t)e−jωtdt (2.4)

where, ω denotes the analog frequency (in radians/sec).

Similarly, the Fourier transform of the sampling function s(t) can be defined as

S(jω) =

∫ ∞

−∞
s(t)e−jωtdt (2.5)

2.1 Analog-to-Digital Conversion 23

and it can be shown that by applying Eq.(2.3) to Eq.(2.5), S(jω) has the form

S(jω) =
2π

T

∞∑

l=−∞
u0

[
ω − 2πl

T

]
· (2.6)

By defining

F =
1

T
(2.7)

ω = 2πf (2.8)

and

ωF = 2πF · (2.9)

A uniformly spaced impulse train in time, s(t), transforms to a uniformly spaced

impulse train in frequency, S(jω).

Since, multiplication in the time domain is equivalent to convolution in the frequency

domain, we have

XC(jω) ∗ S(jω) =

∫ ∞

−∞
[xC(t)s(t)]e−jωtdt (2.10)

where ∗ denotes the linear convolution of XC(jω) and S(jω) in frequency. Fig. 2.2

shows typical plots of XC(jω), S(jω) and the convolution XC(jω)∗S(jω), where it

is assumed that XC(jω) is bandlimited and its highest frequency component 2πFC

is less than one-half of the sampling frequency. Thus, sampling the signal xC(t) at

time period T causes repetition of the spectrum XC(jω) at integer multiples of 1/T.

This effect is called imaging, and the spectral copies are called images. It can also

be observed from the figure that as long as the sampling rate is larger than twice

the highest frequency component of XC(jω), there is no overlap of the images. This

criteria is called sampling theorem and the sampling rate is called Nyquist rate. The

overlapping of the images is called aliasing. Aliasing is an irreversible effect occur

due to the violation of the sampling theorem. In order to recover the analog signal

from it’s sampled signal, aliasing should be avoided.

Quantization is a nonlinear operation of mapping the signal values to the quantized

values. Quantization is said to be uniform when the quantization step ∆V will be

24 Basic Principles of Sampling Rate Conversion

0 0.5 1 1.5 2 2.5 3
−30

−25

−20

−15

−10

−5

0

Normalized Frequency w/pi

|X
c(

jw
)|

 (
dB

)

(a)

0.5 1 1.5 2 2.5 3

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Normalized Frequency w/pi

|S
(jw

)|
 d

B

(b)

0.5 1 1.5 2 2.5 3

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Normalized Frequency w/pi

|X
c(

jw
)*

S
(jw

)|
 (

dB
)

(c)

Figure 2.2: Sampled and Modulated spectra.

2.1 Analog-to-Digital Conversion 25

constant independent of the current signal value, and ∆V can be calculated as:

∆V =
Vpp

q
=

Vpp

2β
with q = 2β (2.11)

where, Vpp is the peak-to-peak voltage of the quantizer, and q is the number of quan-

tization steps, here regarded as being the βth power of two. Thus, the amplitudes

of the quantized signal samples can be coded with β bits.

Quantization process causes distortions of the sampled signal. These distortions are

described by the error signal e(n) which is the difference between the quantized

signal xQ(n) and the sampled signal x(n)

e(n) = xQ(n)− x(n)· (2.12)

The quantization error is modeled as additive white noise that is uncorrelated with

x(n). Thus, e(n) represents white noise, called quantization noise. The most inter-

esting figure resulting from modeling the quantization error as additive white noise

is the signal-to-quantization noise ratio (SNR) of a quantizer, thus, of an ADC. SNR

can be defined as

SNR = 10 log
Px

Pe

(2.13)

where, Px and Pe are the respective signal power and quantization noise power.

Because the quantization noise is assumed to be white, the noise power is uniformly

distributed in the frequency interval [−fs/2, fs/2], where fs is the sample rate. If the

quantized signal covers only a fraction of this interval , namely a bandwidth B < fs,

then only the noise power within this bandwidth B distorts the signal. This is called

oversampling and the oversampling ratio (OSR) is defined as

OSR =
fs

B
· (2.14)

If the signal at the input of quantizer is a multichannel mobile communications signal

which occupy the available bandwidth [−fs/2, fs/2] fully, then there is no conven-

tional oversampling. However, a certain channel of available bandwidth b (i.e. the

channel of interest) covers only a fraction of the available bandwidth which illus-

trates the generalized oversampling ratio (GOSR) of the signal. Thus, the channel

26 Basic Principles of Sampling Rate Conversion

of interest is oversampled by the factor

GOSR =
fs

b
· (2.15)

The difference between OSR and GOSR is that the power of channel of interest is

GOSR times lower than the total signal power.

In the context of SRC, OSR and GOSR are very important. The GOSR after the SRC

process directly determines the relative bandwidth of the potential aliasing components

that have to be attenuated by the SRC filter. The higher the GOSR is, the smaller

the passband and the stopband of the filter. Hence, a high GOSR (after SRC) relaxes

the design constraints and resulting to simpler filter structures. A consequence of this is

that SRC is advantageously implemented on a cascaded multirate system with relaxed

requirements at high sample rates where the GOSR of the signal of interest is high, and

strong requirements at low sample rates.

2.2. Discrete Sampling

Sampling as discussed in the previous section, is the process of converting a continuous-

time signal into discrete-time signal. But, when a discrete-time signal x(n) is sampled, such

that every M -th value of x(n) is retained and all remaining values are set to 0, then this

process is called discrete sampling [9]. To sample a discrete-time signal, a discrete sampling

function ωM(n) is required which can be expressed as :

ωM(n) =
1

M

M−1∑
v=0

W−vn
M =

1 for n = mM, m is an integer.

0 otherwise.
(2.16)

This means that the discrete sampling function ωM(n) will be 1 if n is a multiple of M,

otherwise 0. Here, WM is the complex number representation of discrete signals defined

as :

WM = e−
j2π
M =

M
√

1. (2.17)

Multiplication of an arbitrary complex number z with WM will change the argument

of z on the complex plane, but its magnitude |z| remains unchanged. For this reason,

multiplication with WM is referred to as a rotation operation.

2.2 Discrete Sampling 27

Fig. 2.3 shows the discrete sampling of discrete sequence x(n) by discrete sampling

function ωM(n) for M = 4. It can be noted from these figures that the sampling rate has

not been changed by the discrete sampling.

0 5 10 15
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

n

x(
n)

(a)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

w
4(

n)

(b)

0 5 10 15
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

n

x(
n)

.w
4(

n)

(c)

Figure 2.3: Discrete Sampling.

Discrete sampling can also be carried out with a phase offset λ, which retains every

n = mM + λ values of x(n). To achieve this a discrete sampling function with a phase

offset λ is required , which is expressed by

ωM(n− λ) =
1

M

M−1∑
v=0

W
−v(n−λ)
M =

1, n = λ + mM, m is an integer.

0, otherwise.
(2.18)

Using discrete sampling with phase offset, M different discretely sampled signals can

be obtain from x(n). These M different discrete signals for λ = 0, 1, 2, · · ·,M−1 are called

28 Basic Principles of Sampling Rate Conversion

polyphase components denoted as x
(p)
λ . The original discrete signal x(n) can be recovered

by adding all these polyphase components. This representation of x(n) is called polyphase

representation. The general expression of polyphase representation in time domain is

x(n) =
M−1∑

λ=0

x
(p)
λ (n) =

M−1∑

λ=0

x(n) · ωM(n− λ). (2.19)

For M = 4 , polyphase representation will be

x(n) = x
(p)
0 (n) + x

(p)
1 (n) + x

(p)
2 (n) + x

(p)
3 (n). (2.20)

and, in terms of discrete sampling function ωM(n− λ)

x(n) = x(n) · ω4(n) + x(n) · ω4(n− 1) + x(n) · ω4(n− 2) + x(n) · ω4(n− 3). (2.21)

In z-transform, discrete signal x(n) is

X(z) =
∞∑

n=−∞
x(n)z−n. (2.22)

Therefore, general expression of polyphase representation in z-transform for n = mM+ λ

is

X(z) =
∞∑

m=−∞

M−1∑

λ=0

x(mM + λ)z−mM+λ. (2.23)

in terms of polyphase components

X(z) =
M−1∑

λ=0

z−λX
(p)
λ (zM). (2.24)

where X
(p)
λ is the z-transform of polyphase components x

(p)
λ (n) for n = mM + λ

X
(p)
λ (zM) =

∞∑
m=−∞

x(mM + λ)z−mM . (2.25)

Polyphase representation defined by Eq.(2.19) and Eq.(2.23) is called type 1 polyphase

representation or standard representation. From type 1 polyphase representation two more

polyphase representations can be derived. Replacing λ byM−1−λ creates type 2 polyphase

representation. The general expression of type 2 polyphase representation is

X(z) =
M−1∑

λ=0

z−(M−1−λ)X
(p2)
λ (zM). (2.26)

2.3 Sampling Rate Conversion - Various Aspects 29

where,

X
(p2)
λ (zM) =

∞∑
m=−∞

x
(p2)
λ (m)z−mM . (2.27)

and,

x
(p2)
λ (m) = x(mM + M − 1− λ). (2.28)

On replacing λ by−λ in standard polyphase representation, type 3 polyphase representation

will be obtain. The general expression of type 3 polyphase representation is

X(z) =
M−1∑

λ=0

z−λX
(p3)
λ (zM) (2.29)

where,

X
(p3)
λ (zM) =

∞∑
m=−∞

x
(p3)
λ (m)z−mM (2.30)

and,

x
(p3)
λ (m) = x(mM − λ). (2.31)

Decomposing of discrete signal x(n) into its polyphase components is useful to recom-

pose x(n) by using commutator and it is memory saving. Polyphase representation also

permits to shift the polyphase components from high frequency rate to low sampling rate

by using multirate identities. Thus, an efficient filter can be implemented using polyphase

representation, which occupy less area and consumes less power. Polyphase representa-

tions are widely applicable for filter banks.

2.3. Sampling Rate Conversion - Various Aspects

The process of sampling rate conversion is the method of converting the discrete-time

signal x(n), which is obtained by sampling the continuous-time signal xc(t) with a period

T, to another discrete-time signal y(m) obtained by sampling xc(t) with another period

T’. This process involves the reconstruction of xc(t) from its samples and then perform

resampling of bandlimited reconstructed xc(t) with period T’ to give y(m). This approach

is also known as resampling after reconstruction [27] as illustrated in Fig. 2.4. Here, the

analog filter hc(t) is assumed to have finite impulse response. Hence, the reconstructed

30 Basic Principles of Sampling Rate Conversion

x (t)c

x(kT)

D/A h (t)c

Ideal
Digital-to-Analog

Converter

t=kT

Lowpass
Filter

t=mT’

x (t)a y(t) y(mT’)

Figure 2.4: Resampling After Reconstruction.

signal xc(t) is derived from the finite set of discrete signal x(nT). Then, the value of y(mT’)

for any m can be expressed as

y(mT ′) = xc(t)|t=mT ′ =

N2∑
n=N1

x(nT)hc(mT ′ − nT) (2.32)

where, N1 and N2 are range of values of n involved in computation of y(mT’). Such that

N1 = dmT ′ − t2
T

e and N2 = bmT ′ − t1
T

c (2.33)

here, t1 and t2 are end points of filter where hc(t) is not equal to 0.

In sampling rate conversion, the evolution of y(mT’) depends upon distinct set of

samples of x(nT) and hc(t) for each value of m. Hence, by introducing the change of

variables

k = bmT ′

T
c − n (2.34)

the Eq.(2.32) can be modified to another form as:

y(mT ′) =

K2∑

k=K1

x

[
bmT ′

T
c − k

]
hc

[
mT ′ − bmT ′

T
cT + kT

]
(2.35)

where,buc defines the largest number less than or equal to u. Rearranging y(mT’) gives

the desired form as:

y(mT ′) =

K2∑

k=K1

hc((k + δm)T)x

[
bmT ′

T
c − k

]
(2.36)

where, δm and K1, K2 are defined as :

δm =
mT ′

T
− bmT ′

T
c (2.37)

2.3 Sampling Rate Conversion - Various Aspects 31

K1 = dt1
T
− δme = dt1

T
− mT ′

T
e+ bmT ′

T
c (2.38)

K2 = dt2
T
− δme = dt2

T
− mT ′

T
e+ bmT ′

T
c. (2.39)

Here, the ratio of T ′
T

can be represented as the ratio of M
L
, where M and L are integers.

Therefore

δm =
mM

L
− bmM

L
c. (2.40)

From this relation it is seen that δm can take only L unique values 0,1/L,2/L,...,(L-1)/L,

for all values of M. Thus, there are only L unique sets of samples of hc(t) that are used in

computing y(m) from x(n).

In many signal processing applications, it is desirable to perform SRC directly by

digital computation without an intermediate analog stage [27] as illustrated in Fig. 2.5.

For direct digital approach, it is need to derive a linear digital system gm(n) such that

x(n) can be processed by gm(n) to give y(m) directly as shown in Fig. 2.6.

Direct
Digital/Digital

Conversion

x(n) y(m)

Figure 2.5: A Direct Digital Conversion for SRC

g (n)m

x(n) y(m)

Figure 2.6: Extended Interpretation of SRC Digital Approach.

A close examination of the proposed structure of Fig. 2.6 shows that the systems for

digital-to-digital sampling rate conversion are inherently linear time-varying system. Since

the system is linear, each output sample y(m) can be expressed as a linear combination

of input samples x(n). The general expression of y(m) is

y(m) =
∞∑

n=−∞
gm(n)x[bmM

L
c − n] (2.41)

32 Basic Principles of Sampling Rate Conversion

where, gm(n) can be expressed as

gm(n) = ĥ((n + δm)T)· (2.42)

Since gm(n) can take on L distinct sets of values, it is periodic in m; that is

gm(n) = gm+rL(n), r = 0,±1,±2, ... (2.43)

Thus, the system gm(n) is a linear, digital, periodically time-varying system. The formula-

tion of above digital periodically time-varying system is particularly suitable for defining

models and deriving practical structures for decimators and interpolators.

2.4. Sampling Rate Reduction - Decimation

The process of reducing the sampling rate of x(n) by an integer factor M is known

as Integer Factor Decimation. For this process, the ratio of sampling period of input and

output sequence is given by
T ′

T
=

M

1
· (2.44)

Then, the new sampling rate is

F ′ =
1

T ′ =
1

MT
=

F

M
· (2.45)

In order to avoid aliasing, it is necessary to filter the signal x(n) with a digital lowpass

filter. The ideal characteristics of this filter will be

H̃(ejω) =

1, |ω| ≤ 2πF ′T
2

= π
M

0, otherwise.
(2.46)

The sampling rate reduction is then achieved by forming the sequence y(m) by re-

taining every Mth sample of the filtered output. The complete process along with block

diagram is illustrated in Fig. 2.7, Fig. 2.9 and Fig. 2.10

The output w(n) of the lowpass filter is given by

w(n) =
∞∑

k=−∞
h(k)x(n− k) (2.47)

2.4 Sampling Rate Reduction - Decimation 33

x(n) y(m)
h(n) M

w(n)

F F F’=F/M

Figure 2.7: Decimation by integer factor M = 4.

0.5 1 1.5 2 2.5 3

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0
Input Signal

Normalized Frequency w/pi

M
ag

ni
tu

de
 (

dB
)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Filter Response

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(b)

Figure 2.8: Input Signal and Anti-aliasing filter Response.

0 0.2 0.4 0.6 0.8 1
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
Filtered signal

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(a)

0.5 1 1.5 2 2.5 3

−10

−8

−6

−4

−2

0

Magnitude Response of downsampled in DB

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(b)

Figure 2.9: Bandlimited and Downsampled Signal.

34 Basic Principles of Sampling Rate Conversion

0 0.5 1 1.5 2 2.5

−10

−8

−6

−4

−2

0
Decimated Signal

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

Figure 2.10: Decimated Spectra.

where, h(k) is the impulse response of lowpass filter and x(n-k) is the time shifted input

impulse response. The final output y(m) is then obtained by downsampling w(n) thus

y(m) = w(mM)· (2.48)

The block diagram symbol of a down-arrow with an integer corresponds to decreasing the

sampling rate and referred to as downsampler or compressor. Downsampling contains two

steps

1. Discrete Sampling of input sequence as we discussed in section 3.1.

2. Remove all the zero valued samples from the discrete sampled sequence.

The consequence of downsampling is aliasing or overlapping of spectrum obtained by

removing the zero valued data. Aliasing will not appear only when the input signal is

bandlimited.

By combining Eqs. (2.47) and (2.48) the relation between y(m) and x(n) is of the form:

y(m) =
∞∑

k=−∞
h(k)x(mM − k)· (2.49)

Since, decimation is a time-varying system, it signifies that a shift in input sequence will

not be same shift at output sequence. But there are spectrum, as at every Mth multiple

shift of input sequence the output sequence has the same shift. It can be expressed as

x(n− δ) → y(m− δ

M
) unless δ = rM. (2.50)

2.4 Sampling Rate Reduction - Decimation 35

here, r is an integer, To obtain the relation between the z-transforms of y(m) and x(n),

w(n) is redefined as

w′(n) =

w(n), n = 0,±M,±2M, ...

0, otherwise.
(2.51)

That is, w’(n) = w(n) at the sampling instants of y(m), but is zero otherwise. A convenient

and useful representation of w’(n) is then

w′(n) = w(n)

[
1

M

M−1∑

l=0

e
j2πln

M

]
,−∞ < n < ∞ (2.52)

where, the term in bracket corresponds to a discrete Fourier series representation of a

periodic impulse train with period of M samples. Thus, the relation between y(m) and

w(n) will become

y(m) = w′(mM) = w(mM),−∞ < n < ∞· (2.53)

The input/output z-transform relation will be :

Y (z) =
∞∑

m=−∞
y(m)z−m =

∞∑
m=−∞

w′(mM)z−m· (2.54)

and since w’(m) is zero except at integer multiples of M, Eq.(2.54) becomes

Y (z) =
∞∑

m=−∞
w′(m)z−m/M

=

[
1

M

M−1∑

l=0

e
j2πln

M

]
z
−m
M

=
1

M

M−1∑

l=0

[
1

M

∞∑
m=−∞

w(m)e
j2πln

M z
−m
M

]

=
1

M

M−1∑

l=0

W (e
−j2πln

M z
1
M)·

(2.55)

Since,

W (z) = H(z)X(z) (2.56)

we can express Y(z) as

Y (z) =
1

M

M−1∑

l=0

H(e
−j2πln

M z
1
M)X(e

−j2πln
M z

1
M)· (2.57)

36 Basic Principles of Sampling Rate Conversion

Evaluating Y(z) by substituting z = ejω′ , leads to the Fourier transform of the output

signal y(m), given as

Y (ejω′) =
1

M

M−1∑

l=0

H(e
j(ω′−2πl)

M)X(e
j(ω′−2πl)

M) (2.58)

where,

ω′ = 2πfT ′· (2.59)

The purpose of the lowpass filter H(ejω′) is to filter x(n) sufficiently so that its spectral

components above the frequency ω = π/M are negligible. Thus, it serves as an anti-

aliasing filter.

The advantageous features of polyphase representation as discussed in the previous section

can also be applied for decimation. The decimated signal y(m) of polyphase decimator in

time domain can be obtain by replacing k = r ·M + λ as

y(m) =
∞∑

k=−∞

M−1∑

λ=0

h(rM + λ)x([m− r]M − λ). (2.60)

The general structure of polyphase decimator with M branches and sampling rate reduc-

tion by a factor of M is shown in Fig. 2.11 As, the output decimated signal y(m) are the

X(z) Y(z)

H (z)0

M

H (z)1

M

H (z)2

M

H (z)M-1

M

M

M

M

M

z
-1

z
-1

z
-1

Figure 2.11: Polyphase Decimator.

samples of input signal x(n) only when n = m ·M . Thus, there are some unnecessary cal-

culations of y(m) when n 6= m ·M . This can be prevented by shifting the polyphase filter

2.5 Sampling Rate Amplification - Interpolation 37

after the downsampler utilizing the identities of multirate systems [9] and called as effi-

cient structure. The efficient structure of polyphase decimator is shown in Fig. 2.12. Thus,

X(z) Y(z)

H (z)0

M

H (z)1

M

H (z)2

M

H (z)M-1

M

M

M

M

M

z
-1

z
-1

z
-1

Figure 2.12: Efficient Polyphase Decimator.

the efficient structure will provide less calculation and low memory space by performing

only the necessary calculations.

2.5. Sampling Rate Amplification - Interpolation

The process of increasing the sampling rate of a signal x(n) by L is called Interpolation

by an integer factor. In this process L -1 new sample values are interpolated between each

pair of samples of x(n). If the sampling rate is increased by an integer factor L, then the

new sampling period, T’ of output signal y(m), will be

T ′

T
=

1

L
(2.61)

and the new sampling rate F’ is

F ′ = LF (2.62)

Fig. 2.13 and Fig. 2.15 below illustrates an example of interpolation by a factor L = 4. The

input signal x(n) is "filled in"with L-1 zero-valued samples between each pair of samples

of x(n), giving the signal,

38 Basic Principles of Sampling Rate Conversion

x(n) y(n)
L h(n)

w(m)

F F’=LF F’

Figure 2.13: Interpolation by an integer factor L = 4.

0 0.5 1 1.5 2 2.5 3

−20

−15

−10

−5

0
Input Signal

Normalized Frequency w/pi

M
ag

ni
tu

de
 (

dB
)

(a)

0 0.5 1 1.5 2 2.5 3

−20

−15

−10

−5

0

Input Signal

Normalized Frequency w/pi

M
ag

ni
tu

de
 (

dB
)

(b)

Figure 2.14: Input and Upsampled Signal.

0 0.2 0.4 0.6 0.8 1
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20
Filter Response

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(a)

0 0.2 0.4 0.6 0.8 1
−30

−25

−20

−15

−10

−5

0
Filtered signal

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(b)

Figure 2.15: Anti-imaging filter Response and Interpolated Spectra.

2.5 Sampling Rate Amplification - Interpolation 39

w(m) =

x(m
L

), m = 0,±L,±2L, ...

0, otherwise.
(2.63)

As with the decimation operation, the block diagram symbol of an up-arrow with an inte-

ger corresponds to increasing the sampling rate and referred to as upsampler or expander.

The resulting signal w(m) has the z-transform

W (z) =
∞∑

m=−∞
w(m)z−m =

∞∑
m=−∞

x(m)z−mL = X(zL) (2.64)

evaluating Fourier transform of W(z) we have

W (ejω′) = X(ejω′L) (2.65)

where,

ω′ = 2πfT ′· (2.66)

As illustrated in the spectral interpretation in Fig. 2.14(b), the spectrum w(m) contains

not only the baseband frequencies of interest but also images of the baseband centered at

harmonics of the original sampling frequency ±2π/L,±4π/L, To recover the baseband

signal of interest and eliminate the unwanted image components, it is necessary to filter

the signal w(m) with a digital lowpass filter also known as anti-imaging filter which

approximates the ideal characteristics

H̃(ejω′) =

G, |ω′| ≤ 2πFT ′
2

= π
L

0, otherwise.
(2.67)

To ensure the amplitude of y(m) is correct, the gain G of the filter , must be L in the

passband. Letting H(ejω′) denotes the frequency response of an actual filter, the frequency

response of output signal will be given by

Y (ejω′) = H(ejω′)X(ejω′L) (2.68)

and within the approximation of Eq.(2.67),

Ỹ (ejω′) =

GX(ejω′L, |ω′| ≤ π
L

0, otherwise.
(2.69)

40 Basic Principles of Sampling Rate Conversion

If h(m) denotes the unit impulse response of H(ejω′), then y(m) can be expressed as

y(m) =
∞∑

k=−∞
h(m− k)w(k) (2.70)

combining with Eq.(2.63), the time domain input-to-output relation of the interpolator is

given by:

y(m) =
∞∑

k=−∞
h(m− k)x(

k

L
) =

∞∑

k=−∞
h(m− rL)x(r)· (2.71)

Here r is expressed as

r = bm
L
c − n (2.72)

where,buc again denotes the integer less than or equal to u. Applying to Eq.(2.71) we

have

y(m) =
∞∑

r=−∞
h(m− rL)x(r)· (2.73)

This equation represents the output y(m) in terms of the input x(n) and the filter coeffi-

cient h(m).

Similar to polyphase decimator, an interpolator can also be implemented as polyphase

structure. The general and efficient structure of polyphase interpolator is shown in Fig.

2.16 and Fig. 2.17.

X(z)

z
-1

Y(z)
g (m)0 L

g (m)1

g (m)2

g (m)L-1

L

L

L

x (m)0

x (m)1

x (m)2

x (m)L-1

x (n)0

(p)

x (n)1

(p)

x (n)2

(p)

x (n)L-1

(p)

z
-1

z
-1

Figure 2.16: Polyphase Interpolator.

2.6 Sampling Rate Conversion by Rational Factor 41

X(z)
Y(z)

g (m)0 L

g (m)1

g (m)2

g (m)L-1

L

L

L

x (m)0

x (m)1

x (m)2

x (m)L-1

z
-1

z
-1

z
-1

Figure 2.17: Efficient Polyphase Interpolator.

2.6. Sampling Rate Conversion by Rational Factor

In the previous two sections the cases of decimation by an integer factor M and

interpolation by an integer factor L are considered. In this section, the general case of

conversion by the ratio
T ′

T
=

M

L
(2.74)

or

F ′ =
L

M
F · (2.75)

This conversion can be achieved by a cascade of the two processes of integer conversion

discussed above by first increasing the sampling rate by L and then decreasing it byM. Fig.

2.18 illustrates this process. It is important to recognize that the interpolation by L must

precede the decimation process byM so that the width of the baseband of the intermediate

signal s(k) is greater than or equal to the width of the baseband of x(n) or y(m). It can

be seen from Fig. 2.18 that the two filters h1(k) and h2(k) are operating in cascade at

the sampling rate LF. Thus, the more efficient implementation of the overall process

can be achieved if the filters are combined into one composite lowpass filter as shown in

Fig. 2.19. Since the digital filter h(k), must serve the purposes of both the decimation and

interpolation operations described in the preceding sections, it is clear from the Eqs.(2.46)

42 Basic Principles of Sampling Rate Conversion

and (2.67) that it must approximate the ideal digital lowpass characteristics as

L h(n) M
F

F’’=LF

F’ = LF/M

x(n) s(k) y(m)
h(n)

Figure 2.18: Cascade of an integer interpolator and an integer decimator for

achieving rational factor sampling rate conversion.

L h(n) M
F F’’=LF F’’ F’ = LF/M

x(n) w(k) v(k) y(m)

Figure 2.19: Rational Factor Sampling Rate Conversion.

H̃(ejω′′) =

L, |ω′′| ≤ min| π
L
, π

M
|

0, otherwise.
(2.76)

where,

ω′′ = 2πfT ′′ = 2πf
T

L
· (2.77)

This means that the ideal cutoff frequency must be the minimum of the two cutoff fre-

quency requirements of the decimator and interpolator, and the sampling rate of the filter

is F ′′ = LF. The time domain input-to-output relation for the general conversion circuit of

Fig. 2.19 can be derived by considering the integer interpolation and decimation relation

derived in section 2.5 and 2.6; then from Eq.(2.71) v(k) can be expressed as

v(k) =
∞∑

r=−∞
h(k − rL)x(r) (2.78)

and from Eq.(2.48) y(m) can be expressed in terms of v(k) as

y(m) = v(mM)· (2.79)

Combining Eqs.(2.71) and (2.79) we arrive to the desired result

y(m) =
∞∑

r=−∞
h(mM − rL)x(r)· (2.80)

2.7 The Conversion Factor 43

Alternatively, by making the change of variable

r = bmM

L
c − n (2.81)

and applying it to Eq.(2.82), we get

y(m) =
∞∑

r=−∞
h(

⌊
mM

L
cL + nL

)
x(

⌊
mM

L
c − n

)
· (2.82)

It is seen that Eq.(2.82) corresponds to the general form of the time-varying digital-to-

digital conversion system described by Eqs.(2.41) and (2.42).

By considering the transform relationships of the individual integer decimation and inter-

polation systems, the output spectrum Y (ejω′) can be determined in terms of the input

spectrum X(ejω) and the frequency response of the filter H(ejω′′). From Eq.(2.68) it is

seen that V (ejω′′) can be expressed in terms of X(ejω) and h(ejω′′) as

V (ejω′′) = H(ejω′′)X(ejω′′L)· (2.83)

Then from Eq.(2.55) Y (ejω′) can be expressed in terms of V (ejω′′) as

Y (ejω′) =

L
M

X(ejω′L, |ω′| ≤ min[πM
L

]

0, otherwise.
(2.84)

Thus, we have developed the general system for sampling rate conversion of lowpass

signal by arbitrary rational factors, L/M. It was shown that the process of sampling rate

conversion could be modeled as a linear, periodically time-varying system.

2.7. The Conversion Factor

In order to reduce the cost of analog components in mobile communications termi-

nals, the ADC should be clocked at a fixed rather than tunable rate [11]. Therefore, the

conversion between the digitization rate and the variable target rate (symbol/chip rate)

should be realized digitally. This process is referred to as SRC. As both the digitization

rate and the target rate can be expressed as an integer number of samples per unit of

time, so the rate change factor is a rational number. The ratio of output sample rate f2
and the input sample rate f1 is

f2

f1

=
T1

T2

=
L

M
(2.85)

44 Basic Principles of Sampling Rate Conversion

with, L and M being relative prime. Although they are similar, integer factor SRC, and

fractional SRC also have differences, especially in implementation. Therefore, it is sensible

to separate fractional SRC and integer factor SRC. To do this the rate change factor can

be factorized to a fractional part (L/M)frac and an integer part Lint or 1/Mint

L

M
=

(L/M)frac · Lint effective increase of the sample rate.

(L/M)frac · 1
Mint

effective reduction of the sample rate.
(2.86)

It should be noted that the fractional factor (L/M)frac is limited to the interval

0 · 5 <

(
L

M

)

frac

< 2· (2.87)

if the overall conversion is an effective reduction of the sample rate. This factor can be

limited further to

0 · 5 < (
L

M
)frac < 1 (2.88)

or in case of an effective increase of the sample rate to

1 < (
L

M
)frac < 2· (2.89)

However, the order of arranging the fractional and integer part is an open question.

Two parameters that can help to decide this are number of coefficients N and the rate

of multiplication of coefficients with the clock rate Rmult. The relation of these two

parameters with respect to the GOSR obeys the following proportionality

N ∼ GOSR

GOSR− 1
(2.90)

Rmult ∼ b
GOSR2

GOSR− 1
(2.91)

where, ∼ stands for the proportionality between the right-hand and left-hand side of

equation. Hence, for a fixed bandwidth ’b’, if GOSR approaches to 1, the number of

coefficients explodes where as on increasing the GOSR the filter order decreases and the

multiplication rate is high. Thus,it can be concluded that the hardware effort can be

minimized when placing fractional SRC before integer factor SRC where the GOSR of

the signal is high. In case of minimizing the multiplication rate, it is recommendable to

place the integer SRC before the fractional SRC. A comparative chart for justifying the

above statements is demonstrated in the example below.

2.7 The Conversion Factor 45

Example 2-1.

Realize a cascade of integer factor and fractional SRC for the parameters given in

Table(2.1), where MSps stands for Mega Samples per second and kSps means kilo

Samples per second .

Table 2.1: Parameters for SRC.

Input Sampling Rate 80 MSps

Signal Bandwidth b 200 kHz

Target rate (after SRC) 270.83 kSps

Conversion Factor 13
1920

= 13
27·3·5

Hence, from the conversion factor, the integer factor and fractional conversion factor can

be derived as

Table 2.2: The splitted Conversion Factor.

Integer Conversion Factor 1
128

Fractional Conversion Factor 13
15

The cascading of these two conversion factors can be done in two ways as shown in Fig.2.20

and Fig.2.21.

x(kT)1 y(mT)2

(L/M)frac = 13/15 (1/M) 28int = 1/1

Fractional SRC Integer factor SRC

Figure 2.20: Case 1:Fractional SRC before Integer factor SRC.

The respective changes in GOSR after each stage in both the cases is calculated by using

the Eq.(2.15) and is shown in Table 2.3. From this, it can be notice that the changes in

GOSR after both the stages in Case 2 are same. While in Case 1 the GOSR is very high

after fractional SRC in comparison to Case 2 where integer factor SRC is before fractional

46 Basic Principles of Sampling Rate Conversion

x(kT)1 y(mT)2

(L/M)frac = 13/15(1/M) 28int = 1/1

Fractional SRCInteger factor SRC

Figure 2.21: Case 2:Integer factor SRC before Fractional SRC.

Table 2.3: Comparision Table .

GOSR Case 1 Case 2

GOSR after 1st stage ≈ 347 ≈ 3.1

GOSR after 2nd stage ≈ 2.7 ≈ 2.7

SRC. Thus, the cascading of conversion factor can be concluded with the advantages and

disadvantages of fractional SRC as

Advantages Placing the fractional SRC at high sampling rate minimizes the filter

order N by increasing GOSR (see Eq.(2.90)).

The hardware efforts get reduces by less complexity and relaxed specifications.

Disadvantages From Eq.(2.91) the multiplication rate for high GOSR is high, and

so the system has to work at high clock rate.

There is a possibility of designing different filters for different communication

standards.

Placing the fractional SRC in front will require high attenuation of aliasing

components for dynamic range multichannel signals.

3
Review of Finite Impulse Response (FIR) Filters

In this chapter, introduction of FIR filters are provided along with brief notes on dif-

ferent methods of designing FIR filters and various types of filter structures. Then,

rounding and sharpening techniques applied for designing efficient FIR filters are

presented. With the implementation of rounding and sharpening techniques, the de-

signed filter will be multiplierless and hence will save the power consumption with

the desired magnitude response. Similarly, utilization of raising techniques and block

filtering will help to make filter analysis simple as well as easier. Finally, the time

varying polyphase structures, to realize higher rational sampling rate factor based

filter without facing high input frequency is explained.

3.1. Introduction

FIR filters are the digital filters whose impulse response are within the finite limits of

time interval and have linear as well as non-linear phase response [18]. There are various

methods of designing FIR filter, like

Windowing Method: This method is applicable to design a FIR filter by truncating

an infinite duration impulse response with the help of a suitable window function.

DFT Method: In this method the impulse response is determined from the desired

magnitude specifications and an appropriate phase response.

Frequency-sampling method: When windowing and DFT method are combined to

47

48 Review of Finite Impulse Response (FIR) Filters

find the filter of desired specification from finite impulse response, the design pro-

cedure is referred to as frequency-sampling method.

Uniform Approximation Method: This method designs FIR filter with minimum

error of deviation from desired amplitude frequency response. The approximation

theorem is applied using iterative method of Parks-McClellan based on Remez Ex-

change algorithm.

FIR filters are the interconnection of three simple elements adders, multipliers, and

delays. These elements are grouped together to make the filter structures that show the

processing of a signal in a filter. The filter structure is further implemented to an integrated

circuit. There are various filter structures which provide an efficient filter, like

Transversal Structures: There two types of transversal structures, namely: direct

form, and transposed direct form structures. These structures are further categorized

for symmetrical impulse response.

Lattice Structures: Standard lattice structures and QMF lattices are two widely

applicable filter structures for filter banks.

Structure Passivity: These structure is proposed by Vaidyanathan and Mitra [30],

as the efficient filter structure which provide very low sensitive at passband and

stopband.

There are various advantages and disadvantages of FIR filter. The advantages can be

counted as

FIR filters are stable filters.

FIR filter can be designed for magnitude response specifications other than piecewise

constant.

FIR filter can has no phase distortion.

The disadvantages of FIR filter are

It requires more computation.

3.2 Methods of designing Efficient FIR filters 49

It has less computational complexity comparing with the infinite impulse response

(IIR) filter with the same specifications.

It requires more memory.

In the following sections, the methods of designing efficient FIR filters with less multipli-

ers and which can provide desired specifications are demonstrated. For the time-varying

filters, two recent techniques presented by Tim Hentschel [11] is also described in the

continuing section.

3.2. Methods of designing Efficient FIR filters

3.2.1. Rounding

To improve FIR filter’s efficiency, several techniques have been developed. Rounding

Procedure as an alternative method has been proposed by [5] in which the filter impulse

response is manipulated to reduce its complexity while retaining the magnitude response

of the filter within set specifications through iterative process. The Rounding Procedure

can be explained in the following steps:

Step 1: In this step, Parks-McClellan algorithm is employed to design a basis filter

with edge frequencies.

Step 2: This is followed by the generation of impulse response h of basis filter, with

determination of number of coefficients L +1.

Step 3: The new impulse response h’ is derived by rounding h according to the

equation

h′l = r · round

(
hl

r

)
, l = 0, 1, ..., L. (3.1)

where L is the order of basis filter, r is the rounding constant and function round()

rounds to the nearest integer.

The rounding operation reduces the number of step changes in the impulse response as

demonstrated in example 3-1. Consequently, the number of additions and integer multipli-

cations will decrease. If S represents the number of additions after rounding and R denotes

50 Review of Finite Impulse Response (FIR) Filters

the number of integer multiplications, then both these terms varies with the change of

rounding factor r and the shape of h. The principal objectives of designing an efficient

filter through the method of rounding are

To find the values of number of filter coefficients L, and r that results in a rounded

response with minimum values of S and R, and

The modified magnitude response H’(θ) should satisfies the given filter specifica-

tions.

Unfortunately, there are no straightforward solution to this problem, since there is no

direct relationship between S and R, and L and r.

Example 3-1.

Design the basis filter with the normalized stopband frequency 0.125 and the corre-

sponding passband frequency is 3
4 of the stopband frequency. The maximum pass-

band ripple is 0.09 dB and stopband ripple of 40 dB.

The corresponding equiripple filter has an order of 135 and requires 52 multipliers. Ap-

plying the rounding technique with the factor r = 0.015625 on the basis filter, gives the

rounded filter with 5 integer multiplications and 37 additions. The basis filter impulse re-

sponse and rounded filter impulse response are shown in Fig. 3.1 and consequent effect of

rounding the basis filter on its magnitude response is compared in the Fig. 3.2. Through

repetitive experimentation, it has been found that rounding technique offers worthwhile

gains in computational efficiency for the following two conditions

The narrowband filters with cut-off frequencies below around 0.05 normalized fre-

quency,and

Transition bands of these filters should be in the region of about 0.01 or less, de-

pending on the cut-off frequencies.

Thus, design of an optimum filter may therefore requires experimentation with a series of

rounding constants and impulse response curves.

3.2 Methods of designing Efficient FIR filters 51

0 20 40 60 80 100 120 140
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

n

am
pl

itu
de

(a)

0 20 40 60 80 100 120 140
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

n

am
pl

itu
de

(b)

Figure 3.1: Original and Rounded Impulse Response.

0 0.2 0.4 0.6 0.8 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10
Magnitude Response in DB

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(a)

0 0.2 0.4 0.6 0.8 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(b)

Figure 3.2: Original and Rounded Magnitude Response.

3.2.2. Sharpening

The necessity to improve the performance of the filter leads to process the data by

repeated passes through the same filter [16]. This process is called filter sharpening. The

objective of sharpening is to achieve less passband error and more stopband attenuation.

Since a long time various work have been performed by different investigators like [4,

14, 15, 26, 28], who have done sharpening of FIR filters as well as cascaded integrated

comb (CIC) filters to obtain the desired response. Filter sharpening method depends on

amplitude change function (ACF) idea presented by Hamming and Kaiser [16]. The ACF

52 Review of Finite Impulse Response (FIR) Filters

describes the change of input filter amplitude with respect to output filter amplitude

irrespective of frequency. This method is restrictive to symmetric non-recursive (finite

impulse response) filters with piecewise constant passband and stopband. The desired

response of ACF is to have a tangent change at both passband and stopband. A useful

generalization is to construct a polynomial having an nth − order tangency at zero, an

mth − order tangency at unity, and passing through the points (0,0) and (1,1)as shown

in Fig. 3.3.

Figure 3.3: Amplitude Change function.

The desired polynomial can be shown as

Hout(f) = Hn+1(f)
m∑
=̨0

(n + 1)!

n!k!
[1−H(f)]k = Hn+1(f)

m∑
=̨0

C(n + k, k)H
k
(f). (3.2)

where C(n + k, k) is the well known binomial coefficient.

A list of few sharpening polynomials for m=n is given in the table below

Example 3-2.

Continuing with the Example 3-1 of rounding, as the rounding of impulse response

of basis filter has distorted the magnitude response at the passband and stopband,

3.2 Methods of designing Efficient FIR filters 53

Table 3.1: Sharpening Polynomials for m=n.

n = m Hout AlternateForm

0 H H

1 H2(1 + 2H) H2(3− 2H)

2 H3(1 + 3H + 6H
2
) H3(10− 15H + 6H2)

3 H4(1 + 4H + 10H
2
+ 20H

3
) H4(35 + 84H + 70H2 + 20H3)

this distortion can be recovered by sharpening the same rounded basis filter until

the desired specification is achieved.

The resulting improved basis filter along with the distorted one are shown in Fig. 3.4

However, filter sharpening led to increase in filter order, and computation amount.

0 0.2 0.4 0.6 0.8 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(a)

0 0.2 0.4 0.6 0.8 1
−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(b)

Figure 3.4: Rounded and Sharpened magnitude Response.

3.2.3. Interpolated Finite Impulse Response (IFIR) Filter

IFIR filter is a multistage filter proposed by Neuvo, Chang and Mitra in 1984 [22].

IFIR filter consists of cascade of expanded model filter G(zM) and interpolator filter I (z)

as shown in Fig. 3.5. The IFIR filter has a relaxed design procedure replacing high order

single stage filter H (z) with less order multistage filters.

The design procedure of IFIR filter involves the following steps.

54 Review of Finite Impulse Response (FIR) Filters

G(z)
M

I(z)

H(z)

Figure 3.5: IFIR filter.

Step 1: Designing of Model Filter G(z).

The specification of the model filter are related to the specification of the filter to be

design as well as the decimation factor. For Example, if the specification of desired

filter H (z) are

ωp → passband frequency;

ωs → stopband frequency;

Rp → passband ripples in dBs;

As → stopband attenuations in dBs.

(3.3)

Then, the specification of model filter G(z) will be [22]

ωG
p = ωp ∗M ;

ωG
s = ωs ∗M ;

RG
p = Rp/2;

AG
s = As/2;

(3.4)

Step 2: Designing of Expanded Model Filter G(zM).

Designing of an expanded model filter is achieved by upsampling the impulse re-

sponse g(n) of model filter G(z) by M. This makes the insertion of M - 1 zeros

between every samples of g(n). The consequent effect in the frequency response will

be the formation of images at every 2π · n/M for n = 0, 1, ...,M − 1. This raises

the demand of another filter which will eliminate the images and also provides the

desired filter specification.

Step 3: Designing of Interpolation Filter I(z)

The specification of interpolator filter are such that the images of expanded model

3.2 Methods of designing Efficient FIR filters 55

filter will get eliminated and also the desired filter will be obtained on cascading

both of them. To obtain this the passband of the interpolator filter is same as

the passband of desired filter. While the stopband will be little more than the

desired filter i.e 2π/M − ωs, in order to eliminate all the images of extended model

filter. Hence, wider transition band filter decreases the filter order and number of

multipliers. The simulated figure of IFIR filter with the given specification along

with the comparision table is described in example below.

Example 5-1.

Design an IFIR decimation filter with the decimation factor M as 16, normalized

passband frequency ωp as 3/4 of normalized stopband frequency ωs. The passband

ripples is 0.1 dB and the stopband attenuation is of 80 dB.

To design the IFIR filter we follow the step 1 to 3 demonstrated above. The specifi-

cations of model and interpolator filter for decimation factor M splitted to M1 = 8 and

M2 = 2 and model filter is extended by M1 are given in Table 5.4.

Table 3.2: Specifications of model and interpolator filters.

Specifications M Model filter G(z) Interpolator filter I(z)

Stopband Frequency, ωs M1 × ωs 2π/M1 - ωs

Passband Frequency, ωp M1 × ωp ωp

Passband Ripples, Rp Rp/2 dB Rp/2 dB

Stopband Attenuations, As As/2 dB As/2 dB

Designing model and interpolator filters with the above given specifications using Parks-

McClellan algorithm will give us the magnitude responses shown in Fig. 3.6.

Now, cascade the expanded model filter and interpolator filter. The consequent mag-

nitude responses are shown in Fig. 3.7. This complete procedure of designing IFIR can be

drawn as given in Fig. 3.8 and Fig. 3.9.

The comparative study of resource requirements for an IFIR filter for fractional SRC

are given in Table 3.3. Thus, from Table 3.3 it can be concluded that the IFIR filter reduces

56 Review of Finite Impulse Response (FIR) Filters

0 0.2 0.4 0.6 0.8 1
−120

−100

−80

−60

−40

−20

0

20
Magnitude Response of Model Filter in DB

Normalized Frequency (w/pi)

M
aI

ni
tu

de
 (

dB
)

(a)

0 0.2 0.4 0.6 0.8 1
−160

−140

−120

−100

−80

−60

−40

−20

0

20
Magnitude Response of Interpolator Filter in DB

Normalized Frequency (w/pi)

M
aI

ni
tu

de
 (

dB
)

(b)

Figure 3.6: Model and Interpolator Filters Magnitude response.

0 0.2 0.4 0.6 0.8 1
−160

−140

−120

−100

−80

−60

−40

−20

0

20
Magnitude Response of cascaded extended Model and Interpolator Filter in DB

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−200

−150

−100

−50

0

Overall Magnitude Response of cascaded extended Model and Interpolator Filter in DB

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(b)

Figure 3.7: Cascaded Model and Interpolator Filters Magnitude response.

MH(z)

Filtering Downsampling

x(n) y(m)

Figure 3.8: Decimation Filter.

the filter order and number of multipliers. Hence the complexity and power consumption

also gets decreased.

3.3 Methods of analysing FIR filters 57

G(z)
16

I(z)

H(z)

16

x(n) y(m)

Figure 3.9: IFIR Decimation filter by factor M = 16.

Table 3.3: IFIR Filter required resources.

Resources Original Filter H(z) IFIR Filter

Adders 426 107

Multipliers 74 53

Filter order 426 108

3.3. Methods of analysing FIR filters

3.3.1. Raising Procedure

The raising procedure is widely applicable in the area of control system for the design

and analysis of periodic controllers. Recently, it has been found that this procedure has

great potential for the analysis and synthesis of DSPs [11].

Raising procedure is a technique of transforming a linear periodically time-varying

system (LPTV) to a linear time-invariant (LTI) system. For a single input single output

(SISO) periodic system, raising technique can be applied to convert it into multiple input

multiple output (MIMO) system. In a multirate system, which is actually a combination

of LPTV systems as well as LTI systems, raising technique is applied to each of them to

obtain a complete LTI MIMO system. This system can now be synthesized easily.

Raising Procedure involves the analysis of system by raising their state-space equa-

tions. For example, a discrete-time periodically time-varying SISO system can be repre-

58 Review of Finite Impulse Response (FIR) Filters

sented in state-space equation form as follows :

z(n + 1) = An · z(n) + Bn · x(nT)

y(nT) = Cn · z(n) + Dn · x(nT)·
(3.5)

Here, x(nT) and y(nT) are the input signal and output signal respectively. z(n) is the

state vector of the system and An,Bn,Cn, and Dn are N periodically time-varying system

matrices represented as

An+iN = An

Bn+iN = Bn

Cn+iN = Cn

Dn+iN = Dn

for i ε Z·

(3.6)

On raising the state-space form by N, each of these terms get raised. The raising of the

input signal and output signal by N gives N - polyphase components of the respective

signals which are represented as

x(n.NT) = [x0(n.NT)x1(n.NT)...xN−1(n.NT)]T

y(n.NT) = [y0(n.NT)y1(n.NT)...yN−1(n.NT)]T ·
(3.7)

From z-transform we get

X(n.NT) = [X0(n.NT)X1(n.NT)...XN−1(n.NT)]T

Y(n.NT) = [Y0(n.NT)Y1(n.NT)...YN−1(n.NT)]T ·
(3.8)

Similarly, raised state vector and system matrices are given as

z(n) = z(nN) (3.9)

A = AN−1AN−2...A0 (3.10)

B = [AN−1...A1B0, AN−1...A2B1...AN−1BN−2, BN−1] (3.11)

3.3 Methods of analysing FIR filters 59

C =

C0

C1A0

C2A1A0

...

CN−1AN−2...A0

D =

D0 0 . . . 0

C1B0 D1 . . . 0

C2A1B0 C2B1 . . . 0
...

CN−1AN−2...A1B0 CN−1AN−2...A2B1... DN−1

Thus, raising procedure makes it easy to analyze LPTV systems by using the methods

and tools of LTI systems. Raising procedure conserve the linearity of the system. However,

while implementing a raised LPTV system intra-period oscillation and sensitivity to high

frequency might be expected. To analyze these factors it is necessary to understand the

frequency characteristics of the raising procedure.

The frequency behavior of a discrete time system can be analyzed by evaluating z-

transform of raised transfer matrix of the system given as

Y(z) = H(z) ·X(z)· (3.12)

Here, H(z) is the raised transfer function given by

H(z) = C(zI− A)−1B +D. (3.13)

Exploiting, the input-output relationship of the raised system with respect to the modu-

lation components [9] can be expressed by means of H(zN) as

Y[p](z) =
1

M
·WM ·Y(m)(z) =

1

M
·WM ·Y(m)(z) (3.14)

Therefore, substituting Eq.(3.14) in Eq.(3.12) will give

Y(m)(z) = W−1
M ·H(z) ·WM ·X(m)(z)· (3.15)

60 Review of Finite Impulse Response (FIR) Filters

Here, WM is the DFT matrix (see Appendix), andX(m)(z) andY(m)(z) are the modulation

components of raised input signal and output signal. Replacing W−1
M ·H(z) ·WM by the

modulation matrix H(m)(z), Eq.(3.15) can be rewritten as

Y(m)(z) = H(m)(z) ·X(m)(z)· (3.16)

Its Fourier transform gives

Y(m)(ejω) = H[m](ejω) ·X[m](ejω) (3.17)

where, ω = 2πfT .

Comparing Eq.(3.17) with the decimation equation in frequency domain reveals that

the spectrum of the output signal of an N -periodic LPTV system equals a sum of frequency

shifted spectra of the original signal, as in the case of decimation. However, the transfer

function in the raised filters system are the components of alias component matrix. They

determine the amount of aliasing due to the superposition of the different spectra.

3.3.2. Block Filtering

The block filtering is greatly related to the multirate systems and the raising procedure

[11]. Fig. 3.10 shows a (L,M)-shift-invariant system.

L h(n) M
T1 T0 =T /L1

T =T /L0 1 T2 = MT0

x(kT)1 w(nT)0
v(nT)0 y(mT)2

Figure 3.10: LM-shift invariant system.

Block filtering of (L,M)-shift-invariant system leads to the block version of input and

output signals, and also the block version of transfer function is represented by transfer

matrix H [B](z).

Since the L,M -shift-invariant system is a LPTV, it means a shift of M in the input

signal will be equal to L shifted output signal. This also signifies that the length of block

versions for input and output signals are different. Also there are signals of different sample

3.3 Methods of analysing FIR filters 61

rates, so it is necessary to relate the block version of them as

w(m.LMT) =

w′(m · LMT)

w′((m · LM + 1)T)
...

w′((m · LM + LM − 1)T)

v(m.LMT) =

v′(m · LMT)

v′((m · LM + 1)T)
...

v′((m · LM + LM − 1)T)

with the elements of w(m.LMT) being defined by

w′((mLM + i)T1) =

w′((mM + k)T), i = L0 + kL, k = 0, 1, ..., M − 1

0, otherwise.
(3.18)

and the output signal of the whole system is given by the components of the raised output

signal of the filter

y((mL + k)T2) = v′((mLM + M0 + kM)T), k = 0, 1, ..., L− 1 (3.19)

where T = T1/L = T2/M .

In Fig.3.10, an upsampler takes MJ samples and introduces L -1 zero samples between

each of the input samples, thus delivering LMJ samples at its output. Downsampler

will take LMJ samples and just pass every Mth sample, and letting LJ samples pass,

where J is the periodicity factor. Hence, the respective matrices describing these processes

must have the dimensions LJ x LMJ and LMJ x MJ, respectively. Downsampling is

achieved by taking a vector of length LMJ and multiplying it from the left with the

downsampling matrix, which yields a vector of length LJ. Upsampling works equivalently.

As both upsamplers and downsamplers are memoryless, their transfer matrices describe

a simple mapping of elements of the input vector to elements of the output vector. By

inspection the upsampling and downsampling matrices can be expressed as

H[up]
(LMJ,MJ) = [li,k] (3.20)

62 Review of Finite Impulse Response (FIR) Filters

with

li,k =

1, i = L0 + kL; k = 0, 1, ..., MJ − 1; 0 ≤ L0 < L

0, otherwise
(3.21)

where L0 is the upsampling offset, L is the upsampling factor and MJ is the size of input

signal vector.

H[down]
(LJ,LMJ) = [mi,k] (3.22)

with

mi,k =

1, k = M0 + iM ; i = 0, 1, ..., LJ − 1; 0 ≤ M0 < M

0, otherwise
(3.23)

here, M0 is the downsampling offset, M is the downsampling factor and LJ is the size of

output signal vector.

In order to describe the complete (L,M)-shift-invariant SISO system in its block form,

the following MJ -raised and LJ -raised vectors are defined

x(MJ)(m ·MJT1) =

x(mMJT1)

x((mMJ + 1)T1)
...

x((mMJ + MJ − 1)T1)

y
(LJ)

(m · LJT2) =

y(mLJT2)

y((mLJ + 1)T2)
...

y((mLJ + LJ − 1)T2)

which are the block input and output signals, respectively, of the MJ -input LJ -output

block system. It should be noted that MT1 = LT2. Eventually, the (LJ,MJ)-shift-invariant

SISO system can be described by the raised LMJ -input LMJ -output version of the system

with the MJ -raised and LJ -raised vector as input and output signals, respectively

z(k + 1) = A · z(k) + B ·H[up] · x(MJ)(k ·MJT1)

y(k · LJT2) = H[down] · [C · z(k) + D ·H[up] · x(MJ)(k ·MJT1)]·
(3.24)

3.3 Methods of analysing FIR filters 63

This is equivalent to

z(k + 1) = Ã · z(k) + B̃ ·H[up] · x(MJ)(k ·MJT1)

y(k · LJT2) = H[down] · [C̃ · z(k) + D̃ ·H[up] · x(MJ)(k ·MJT1)]·
(3.25)

Finally, the block-transfer matrix of the system is given as:

H[B](z) = H[down] ·H(z) ·H[up]· (3.26)

3.3.3. Time Varying Polyphase Structures

The basic idea of polyphase structure is to simply use the well known polyphase filters

for interpolation or decimation. A combination with an additional upsampler (together

with a polyphase decimator) or a downsampler (together with a polyphase interpolator)

reveals that the structure does not need to be changed when using them for fractional

SRC. Just the controlling must be adapted to the application to fractional SRC [11].

h ()0 kT1

h (1)kT1

hL-1 ()kT1

M

x(kT)1

y (kT)0 1

y (kT)1 1

y (kT)L-1 1

y()mT2

Figure 3.11: Polyphase interpolator with downsampler.

Fig. 3.11 illustrate the block diagram of time varying polyphase interpolator followed

by downsampler. The sample rate converted signal at the output of Interpolator is obtain

by modifying Eq.(2.71) and introducing an offset λ

y(m + λ) =
∞∑

k=−∞
h(nL)x(bm + λ

L
c − n) (3.27)

64 Review of Finite Impulse Response (FIR) Filters

This response is implemented using polyphase representation and then the commu-

tator rotating switch behavior is use to select the proper polyphase branch outputs of L

polyphase branches and deliver the output sample. These output samples are then pass

through the downsampler with factor M. The final output is given as

y(mM + λ) =
∞∑

k=−∞
h(nL)x(bmM + λ

L
c − n) (3.28)

The time varying polyphase structure is widely applicable for fractional SRC due to the

following reasons

1. The resulting system is time varying.

2. The timing relation between input and output are mutually asynchronous.

3. The hardware effort for implementing this structure is of same order as conventional

filter but it is clocked at the rate of output sample.

Similar, effort exist in case of upsampler followed by polyphase decimator. In this case the

upsampled input signal is decimated by a polyphase decimator. This structure is shown

in Fig. 3.12 below and is widely applicable for high ratio fractional sampling conversion.

h0 (mT)2

h (1 mT)2

hM-1(mT)2

L
x(kT)1

x (mT)0 2

x (mT)1 2

x (mT)M-1 2

y(mT)2

Figure 3.12: Upsampler followed by Polyphase Decimator.

4
Overview of some existing methods for designing

SRC filters

This chapter presents the overview of some existing methods for designing SRC

filters which are being proposed during the last few decades like cascaded-integrated-

comb (CIC) filter, Farrow filter, and time varying CIC filter.

4.1. Introduction

Sampling rate conversion system for fractional decimation needs to design an efficient

anti-aliasing. During downsampling the anti-aliasing filter prevents the overlapping of

signal spectrum. Various work has been done since last few decades to design anti-aliasing

filters. This chapter discusses some of the well known decimation filters. The next section

describes about CIC filter. In the further sections Farrow filter and Time-Varying CIC

filter has been briefly illustrated.

4.2. Cascaded Integrated Comb Filter based methods

A class of digital linear phase finite impulse response (FIR) filters for decimation (sam-

ple rate decrease) and interpolation (sample rate increase) has been presented by Eugene

B. Hogenauer [12]. This filter requires no multipliers and use limited storage, making it

an economical alternative to conventional implementation for certain applications. The

65

66 Overview of some existing methods for designing SRC filters

basic structure of CIC decimation filter consists of integrator section operating at high

sampling rate. This section is also called as an accumulator or single pole IIR filter. This

can be represented as:

y[n] = y[n− 1] + x[n]. (4.1)

HI(z) =
1

1− z−1
. (4.2)

|HI(e
jω)|2 =

1

2(1− cosω)
· (4.3)

The structure of single integrator is drawn in Fig. 4.1

Input

Z
-1

Output

Figure 4.1: Integrator Section.

Following the integrator section, CIC filter has Comb section described by

y[n] = x[n]− x[n−RM]. (4.4)

Here, R is the differential delay of samples per stage and M is the rate change factor. The

differential delay is a filter design parameter to control the frequency response of filter.

The corresponding transfer function of comb section is

Hc(z) = 1− z−RM . (4.5)

and power transfer function

|Hc(e
jω)|2 = 2(1− cosRMω). (4.6)

The structure of single comb structure is drawn in Fig.4.2.

Hence, the complete CIC filter structure contains Integrator section followed by comb

4.2 Cascaded Integrated Comb Filter based methods 67

Input

Z
-M

Output

Figure 4.2: Comb Section.

Input

Z
-1

Output

Z
-1

M

Integrator Section Comb Section

Figure 4.3: CIC Decimation filter.

section at higher sampling rates. This structure has been simplified by using multirate

identity and shifting the comb section after rate change factor ’M ’.

Hogenaur discussed three important aspects of CIC filter which includes the existence

of nulls at multiples of f = 1/R. Here, R is the differential delay, which controls the

placement of nulls at passband aliasing causing regions. From implementation point of

view, register growth, and truncation or rounding have been explained with relation to

filter design parameters and characteristics, respectively. After designing the CIC filter of

desired characteristics based on rate change factor M, differential delay M and number

of integrator and comb stages N, the most significant bit of the filter is determined as

the function of overall register growth. The maximum register growth is defined as the

maximum output magnitude resulting from the worst possible input signal relative to the

maximum input magnitude. This growth is used in the CIC filter design process to insure

that no data are lost due to register overflow. Using this definition, the maximum register

growth from the first stage up to and including the last stage is

Gmax = (RM)N . (4.7)

If the number of bits in the input data stream is Bin, then the register growth can be used

68 Overview of some existing methods for designing SRC filters

to calculate Bmax, the most significant bit at the filter output as

Bmax = dNlog2RM + Bin − 1e. (4.8)

where the least significant bit (LSB) of the input register is considered to be bit number

zero and dxeis the smallest integer not less than x. Bmax is large for many practical cases

and can result in large register widths; however, truncation or rounding may be used at

each filter stage reducing register widths significantly. It is assumed that the number of

bits retained in the output register is Bout, so the number of LSB’s discarded is

B2N+1 = Bmax −Bout + 1. (4.9)

In the next example a design procedure of CIC filter has been explained. The implemen-

tation uses two building blocks: a 16 bit integrator and a 16 bit comb sections. Each

building block has a 16 bit input, 16 bit output, carry-in and carry out.

Example 4-1.

Design a CIC decimation filter to reduce the sampling rate from 6 MHz to 240 kHz

with a passband of 30 kHz. The aliasing attenuation must be better than 60 dB

with a falloff in the passband of less then 3 dB.The rate change factor is 25 and

the number of integrator and comb section are 4 with differential delay 1 and cutoff

frequency 1/8.

The frequency characteristics of CIC filter is lowpass and hence frequency response is

evaluated at frequency f = fs/R, where fs is the sampling frequency. Hence, depending on

the chosen parameters, it provide acceptable passband characteristics over the range zero

to a predetermined cutoff frequency fc.Thus, the power response is

P (f) =

[
sinRf

sinM

]2N

. (4.10)

This signifies that the nulls in the power response exist at multiples of f = 1/R, and

thus differential delay R can be used as a design parameter to control the placement

of nulls. For CIC decimation filters, the region around every Rth null is folded into the

4.2 Cascaded Integrated Comb Filter based methods 69

passband causing aliasing errors specifically, this band ranges are

(i− fc) ≤ f ≤ (i + fc). (4.11)

for f ≤ 1
2
and i = 1, 2,, bM

2
c where bxc is the largest integer not greater than x.

Based on this the following frequency response is obtained

0 0.2 0.4 0.6 0.8 1
−300

−250

−200

−150

−100

−50

0

ω/π

G
ai

n,
 d

B

CIC

Figure 4.4: CIC filter Frequency response.

The SNR of the filter response is 15 dB, where the SNR is defined as the power ratio after

lowpass filtering of the lowest power level in the desired signal to the highest power level

in the images. From Eq.(4.8) and Eq.(4.9), the MSB bit of filter Bmax = 34 and number

of bits discarded B2N+1 = 19 have been calculated.

Thus, CIC filter has the good characteristics like no multipliers and limited storage re-

quirement with simple design. However, it has some limitations like high passband droop,

and low stopband attenuation. To improve the frequency response of CIC filter many

researchers have proposed various methods. Some of the methods are Sharpening of CIC

filter given by Kwentus [4], Compensator filters proposed by Chan and Yeung, Modified

CIC filter of Abu-Al-Saud [3], and Stepped Triangular CIC filter given by Dolecek and

Mitra [13].

70 Overview of some existing methods for designing SRC filters

4.3. Farrow Filter

The Farrow filter [8] offers two alternative approaches to the arbitrary resampling

problem. In the first approach, coefficients of the polyphase filter stages are computed

on the fly from the low order piecewise polynomials. These polynomials form approxima-

tions to segments of the impulse response of the original interpolating filter prior to the

polyphase partition. In the second alternative, the coefficients of the approximating poly-

nomials are rearranged and are applied directly to the input data to form data-dependent,

locally valid, polynomial approximations to the input data as opposed to the filter. The

data polynomial is in turn evaluated at the desired sample points.

The classical interpolator for arbitrary sampling are designed and implemented concur-

rently for up sampling and down sampling by using polyphase components. The number of

polyphase components provides the delay for the output sample interval. Down sampling

is implemented concurrently to realize rational ratio sample rate change. The next step

involves the mapping of the prototype filter by doing partition of the polyphase filters for

applying polynomial approximation. This mapping can be easily visualized by two dimen-

sional array. The two-dimensional array maps the N-tap prototype filter to Pth component

polyphase filter rows and N/P columns. Each of the rows of the partition corresponds to

a sample point in the interpolated data stream. The next issue is the column coefficients,

which hold the coefficients of each stage of polyphase filter. These coefficients are then

modeled into P-sample wide section representing a smooth continuous function. Polyno-

mial approximation of these function can be done by using the low-order polynomials in

order to coefficients for a filter stage at any position.

The mth coefficient of the interpolation polynomial for the offset 4 is computed by

evaluating the polynomial Pm(x) at x = 4. The polynomial Pm is the approximation

assigned to the mth column of the polynomial interpolator. The form of the polynomial

is given in Eq.(4.12).

Pm(x) =
M∑

l=0

b(l,m)xl. (4.12)

where M is the order of the polynomial approximation. The output of the filter using the

4.3 Farrow Filter 71

coefficients from Eq.(4.12) is shown in Eq.(4.13)

y(n +4) =
M∑

m=0

P4x(n−m). (4.13)

By substituting Eq.(4.12) in Eq.(4.13), we get Eq.(4.14)

y(n +4) =
M∑

m=0

M∑

l=0

b(l, m)4l · x(n−m). (4.14)

representing the new set of data dependent coefficients c(n,l) as

c(n, l) =
M∑

m=0

b(l, m) · x(n−m). (4.15)

The consequent substituted equation is

y(n +4) =
M∑

l=0

c(n, l)4l. (4.16)

Examining Eq.(4.16), we recognize the form as the Taylor series representation of the

output sequence. These represents output of the Farrow filter.

A processor flow diagram is given in Fig. 4.5

x(n)

y(n) = x(n +)

c(n,4) c(n,3) c(n,2) c(n,1) c(n,0)

Figure 4.5: Farrow Structure.

The Farrow filter can be characterized by the following positive points:

Easy design

Applicable for arbitrary rational conversion factor

Reconfigurable for different designs

72 Overview of some existing methods for designing SRC filters

The unique problem of Farrow filter based decimation method is the requirement of mul-

tipliers. To reduce the multipliers operation various methods have been proposed like

Farrow structure based fractional decimation filter of Tim Hentschel [11] and the modi-

fied transposed Farrow structure based SRC filter for Software Radio proposed by Li and

Tomisawa [19].

4.4. Time Varying Cascaded Integrated Comb Filters

Fractional SRC as discussed in chapter 2 consists of an expander followed by an anti-

imaging-anti-aliasing filter h(n) and then a compressor is again drawn below

L h(n) M
x(n) y(m)

Figure 4.6: Fractional SRC system.

Fig. 4.6 can be obtain by using CIC interpolation filter in cascade with CIC decimation

filter with the selection of order m depending on the requirement of suppressing images

and aliasing effect as illustrated below

Input

Z
-M1 Z

-M1

L

Z
-M2

Output

Z
-M2

M

Figure 4.7: Fractional SRC system using CIC filter.

From Fig. 4.7, it can be concluded that the integrator section of CIC interpolator filter

and CIC decimator filter can be group together. This will give new structure of fractional

CIC SRC system with single integrator section of order m. Hence, Fig. 4.6 is redrawn as

Fig. 4.9 implies that the integrator section has always to work at sample rate which is

’L’ times of input sampling rate. This will be a problem, as high sample rate will makes

the device to work at higher rate, consequently consumption of energy increases lead to

the recharging of device frequently. To eliminate this problem, time-varying devices has

4.4 Time Varying Cascaded Integrated Comb Filters 73

Input

Z
-M1 Z

-M1+M2

L

Z
-M2

Output
M

Figure 4.8: Integrated fractional SRC system using CIC filter.

Input

Z
-3 Z

-6

L

Z
-3

Output
M

Figure 4.9: Third-order CIC filter.

been proposed [10]. The main objective of time-varying devices is to select the desired

information during run time and at the input sampling rate.

Time-varying CIC (TVCIC) filters also based on the same concept. Since, in TVCIC

the integrator section has to work at higher rate. So it can be replaced by time-varying

structure. TVCIC exploits raising procedure and block filtering methods to generate a

time-varying based polyphase structures as discussed in Chapter-3. The example below

demonstrates the steps for designing a third order TVCIC filters.

Example 4-4.

Design a third order fractional decimation TVCIC filter from the CIC based frac-

tional decimation filter given below. Take L = 13 and M = 15.

Considering the expander and integrator section, TVCIC filter is derived from above

structure by the following steps

Step 1: Find the state space equation of expander and integrator section.

An expander is a LPTV system with single input and single output. The output w(m)

is related to input x(n) as :

w(m) =

x(n/L) for n = mL, m is an integer.

0 otherwise.
(4.17)

The corresponding symbol is shown in Fig. 4.10 The state-space equation of expander is

74 Overview of some existing methods for designing SRC filters

x(n)
L

w(m)

Figure 4.10: Expander.

w(m) y(m)

Z
-1 Z

-1

Z
-1

Z
-1 Z

-1

Z
-1

Figure 4.11: Integrator Section.

w(m) = x(n/L) (4.18)

hence, system matrices are

A = 0; (4.19)

B = 0; (4.20)

C = 0; (4.21)

D = 1 (4.22)

Alternative representation of integrator section can be as State space equation obtain

from Eq.(3.5) is rewritten as

z(n + 1) = A · z(n) + B · w(n)

y(n) = C · z(n) + D · w(n)
(4.23)

thus, applying this equation at each node of Fig. 4.11, we get the system matrices as

follows

A =

1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

1 1 1 1 1 1

4.4 Time Varying Cascaded Integrated Comb Filters 75

B =

1

1

1

1

1

1

C =
[

1 1 1 1 1 1
]

D =
[

1
]

Step 2: Apply raising procedure for expander and integrator section.

Since, expander is a LPTV system, so we can refer to section 3.3 to raise it. Here,

raising is done by factor ’L’ to have a less complex system. The raised expander in state

space is given as:

x(MJ)(m · L =

x(mLT1)

x((mL + 1)T1)
...

x((mL + L− 1)T1)

w(LJ)(m · L) =

w(mL)

w((mL + 1))
...

w((mL + L− 1))

thus, raising the input signal and output signal of LPTV system gives the polyphase

components of the respective signals.

Applying raising technique to the integrator section shown in Fig. 4.11 for L0 = 0,

which is a LTI system. Hence following section 3.3 of raising procedure for LTI system we

can get the state-space equation as:

76 Overview of some existing methods for designing SRC filters

z(n + 1) = AL · z(n) + AL−1 ·B · w(n)

y(n) = CL · z(n) + DL · w(n)
(4.24)

where, the raised system matrices for L = 13 by refereing Eqs.(3.10),(3.11),(3.3.1)and

(3.3.1) are expressed as

AL =

1 0 0 0 0 0

13 1 0 0 0 0

91 13 1 0 0 0

455 91 13 1 0 0

1820 455 91 13 1 0

6188 1820 455 91 13 1

BL =

1

13

91

455

1820

6188

CL =
[

1 1 1 1 1 1
]

DL =
[

1
]

It should be noted here that y(n) is the block output signal of the integrator section before

the downsampler.

Step 3: Apply block filtering to the raised expander and integrator section. Utilizing

the block filtering method, the upsampling and downsampling matrices of the ’L’ raised

4.4 Time Varying Cascaded Integrated Comb Filters 77

system can be expressed as :

H
[up]
(L,1) =

0

0

0

0
...

1

H
[up]
(L,1) = I(L) (4.25)

This will lead to change 4.24 as:

z(n + 1) = AL · z(n) + B · w(n)

y(n) =

C

CA
...

CAL−1

· z(n) +

0

vdots

0

D

· w(n)

(4.26)

Step 4: Downsample the output of the L-raised integrator section. With

AL =

1 0 0 0 0

c1 1 0 0 0

c2 c1 1 0 0
...

cR−1 cR−2 cR−3 . . . 1

where,

c1 =

C

CA
...

CAL−1

(4.27)

The respective MATLAB simulated filter response are shown below The structure of

Time-Varying CIC filter is given in Fig. 4.13

78 Overview of some existing methods for designing SRC filters

0 0.05 0.1 0.15 0.2 0.25 0.3

0

2

4

6

8

10

12

14

16

Output Narrowband Frequency response

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

2

4

6

8

10

12

14

16

18

Input wideband signal Frequency Response

(b)

Figure 4.12: Third order Time Varying CIC filter response.

Input

Z
-N Z

-2N

L

Z
-N

Output
M

Differentiator Section Differentiator SectionTime Varying Integrator Section

Figure 4.13: Third-order time-varying CIC filter.

5
Proposed Structure for Fractional SRC Systems

This chapter presents an efficient method of design filters for fractional sampling rate

conversion (SRC) system based on IFIR filter along with rounding and sharpening

techniques. This method designs a less complex multiplierless fractional decimation

filter and can be applicable both at high sampling rate and at low sampling rate.

5.1. Introduction

A fractional SRC system is a combination of interpolation and decimation systems.

It has an upsampling factor L, a FIR filter H (z) which can do anti-aliasing as well as

anti-imaging, and a downsampling factor M. For decimation, the downsampling factor M

is greater than the upsampling factor L. A general block representation of fractional SRC

system is drawn in Fig. 5.1.

L H(z) M
F F’ =LF F’ F’’= LF/M

x(n) y(m)

Figure 5.1: Fractional Factor Sampling Rate Conversion.

For high downsampling factor M, for example in case of GSM communication standard,

the upsampling factor L = 13 and downsampling factor M = 3840, it is necessary to split

the downsampling factor M into smaller factors

M = M0 ·M1 ·M2 (5.1)

79

80 Proposed Structure for Fractional SRC Systems

where,

M0 = 256

M1 = 5·
M2 = 3

(5.2)

Thus, the conversion factor can be an integer as well as fractional

Integer Factor =
1

256

. F ractional Factor =
13

5 · 3 .
(5.3)

These conversion factors can be arrange in two ways in a SRC system. The first way is to

place the integer factor before the fractional factor. And the second way is to place the

fractional factor before the integer factor. Both these structures are shown in Fig. 5.2 and

Fig. 5.3

L H(z) M1

Fs F’ =LFin
F’ F’’= LF /M Min 1 2

x(n) y(m)
M0

H(z) M2F’F = F /Min s 0

Decimation by Integer Factor M
0

Decimation by Fractional Factor L/M M
0 1

Figure 5.2: Low Sampling Rate Structure.

L H(z) M1

Fs F’ =LFs
F’ F’’ = LF /M Ms 1 2

x(n) y(m)
M0

H(z)M2F’ F = F’’ /Mout 0

Decimation by Integer Factor M
0

Decimation by Fractional Factor L/M M
0 1

Figure 5.3: High Sampling Rate Structure.

In both these structures, the proposed method is applied only for fractional factor deci-

mation. Integer factor decimation has not been considered.

5.2. Description of Proposed Algorithm

The advantages of IFIR filter as discussed in Chapter 3 are the present demands

of communication applications. Considering this, the IFIR filter has been utilized for a

5.2 Description of Proposed Algorithm 81

fractional sampling rate conversion and the results are satisfying the current requirements.

The proposed algorithm is the implementation of all the techniques to make an efficient

FIR filter discussed in Chapter 3 on the IFIR filter. In case of fractional sampling rate

conversion as discussed before, the upsampling factor is followed by an anti-imaging-anti-

aliasing filter and finally a downsampler factor is redrawn in Fig. 5.4

L H(z) M
F F’ =LF F’ F’’= LF/M

x(n) y(m)

Figure 5.4: Fractional Sampling Rate Conversion.

In this figure, we can notice that the filter H (z) works at high sampling rate which

as a consequence increases the power consumption. Therefore, it is important to decrease

the complexity of this filter. In the following, we propose a simple method to decrease

the complexity of fractional SRC system. We replace the filter H (z) by an IFIR filter and

split the decimation factor M = M1.M2 as shown in Fig. 5.5.

L M2
Fin F’=LFin

Fout= LF /M Min 1 2

x(n) y(m)
G(z)

M1

I(z)

H(z)

M1

Figure 5.5: Fractional Factor Sampling Rate Conversion using IFIR filter.

Using multirate identity, we get the structure given in Fig. 5.6

L I (z) M
1

F
in

F
out
= LF /M

in

x(n) y(m)

G(z) M
2

Figure 5.6: More efficient structure .

This structure can be further simplified by using the polyphase representation of the

filter I (z) leading to the structure shown in Fig. 5.7

Next issue is to eliminate the multipliers. To this end we apply the rounding technique to

the interpolation and the model filter. The resulting filter is a multiplierfree filter because

the integer multiplications can be realized by only additions and shifts. Unfortunately,

82 Proposed Structure for Fractional SRC Systems

L I (z)pM1

Fin
Fout= LF /Min

x(n) y(m)

G(z) M
2

Figure 5.7: Polyphase Interpolator based structure.

this filter has an distorted magnitude response. In order to improve its magnitude re-

sponse and finally satisfy the desired specification we apply the sharpening technique.

The resulting structure is presented in Fig. 5.8, where index r means rounding and Sh{.}

means sharpening.

L Sh{I (z)}prM1

Fin
Fout

x(n) y(m)

Sh{G (z)}r
M

2

Figure 5.8: Polyphase Interpolator based structure.

The method is illustrated in the following example.

Example 5-2.

Design an IFIR fractional factor decimation filter with Interpolation factor L is

13 and decimation factor M is 15. The normalized passband frequency is 0.0025

with passband ripples 0.001. The stopband frequency is set to 0.07 with minimum

stopband attenuation of 110 dB. The rounding factor r is 2−8.

To design the IFIR filter we calculate the specifications of model and interpolator filter

for decimation factor M splitted to M1 = 5 and M2 = 3 and the model filter is expanded

by M1 .

Table 5.1: Specifications of model and interpolator filters.

Specifications M Model filter G(z) Interpolator filter I(z)

Stopband Frequency, ωs M1 × ωs 2π/M1 - ωs

Passband Frequency, ωp M1 × ωp ωp

Passband Ripples, Rp Rp/2 dBs Rp/2 dBs

Stopband Attenuation, As As dBs As dBs

Using calculated specification based on Table 5.1, we design model and interpolator filters

5.2 Description of Proposed Algorithm 83

by Parks-McClellan algorithm . Then, expand the model filter by 5. Further, on applying

rounding to the expanded model and interpolator filters the magnitude responses shown

in Fig. 5.9(a) and Fig. 5.9(b) are obtained

0 0.2 0.4 0.6 0.8 1
−120

−100

−80

−60

−40

−20

0
Magnitude Response of Extended Rounded GSM Model filter in DB

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(a)

0 0.2 0.4 0.6 0.8 1
−120

−100

−80

−60

−40

−20

0
Magnitude Response of Rounded GSM Interpolated filter in DB

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(b)

Figure 5.9: Rounded Expanded Model and Interpolator Filters Magnitude

response.

Now, cascade the rounded and sharpened extended model filter and interpolator filter

according to the sharpening polynomial. The consequent magnitude responses is shown

in Fig. 5.2

0 0.2 0.4 0.6 0.8 1
−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0
Magnitude Response of Final GSM filter in DB

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

Figure 5.10: Final Magnitude Response.

84 Proposed Structure for Fractional SRC Systems

The sharpening polynomial chosen for obtaining the desired filter response are

Sh{Gr(z)} = Gr(z)3,

Sh{Ir(z)} = Ir(z)3·
(5.4)

Table 5.2 shows the resource required by the the proposed structure From Table 5.2, it

Table 5.2: IFIR Filter required resources.

Resources Model Filter G(z) Interpolator Filter I(z) Total

Adders 26 10 36

Filter order 12 51 63

can be concluded that the IFIR filter reduces the filter order and number of adders with

no multipliers as multipliers can be applied by add and shift method. Thus, the proposed

structure has low complexity and hence less power consumption.

5.3. Application of proposed method at low sampling rate

Using the low sampling rate structure shown in Fig. 5.2, we can place the proposed

structure for fractional decimation system. Fig. 5.3 shows the placement of proposed

structure at low sampling rate.

H (z)IFs

M0
L Sh{I (z)}prM1

Fin
Fout

x(n) y(m)

Sh{G (z)}r
M

2

Decimation by Integer Factor M0 Decimation by Fractional Factor L/M M1 2

Figure 5.11: Proposed fractional decimation system at low sampling rate.

The next example will demonstrate the fractional decimation system after integer factor

decimation for GSM communication standard.

5.3 Application of proposed method at low sampling rate 85

Example 5-3.

This example designs a fractional decimation filter of factor 13/15 based on proposed

algorithm at low sampling rate having passband ripple of 0.001 dB and stopband

attenuation of 110 dBs. The selected rounding factor r is 2−12.

Considering the specification of GSM standard, the integer factor decimation is 256, if

the sampling frequency is 80 MHz, then the input frequency of the fractional decimation

system will be 80/ 256 = 3125 KHz. Based on this input frequency, to design the filter

decimation factor M is splitted to M1 = 5 and M2 = 3 and model filter is expanded by

M1.

Table 5.3: Desired Filter H(z) Specification.

Normalized Passband Frequency, ωp 0.0492

Normalized Stopband Frequency, ωs 0.0666

Passband Ripples, Rp 0.001 dB

Stopband Attenuations, As 110 dBs

Replacing the above FIR filter by IFIR filter, the respective calculated specification

of the model and interpolator filter is shown in Table 5.4 The corresponding simulation

Table 5.4: Specifications of G(z) and I(z).

Specifications G(z) I(z)

Passband Frequency 0.2460 0.0492

Stopband Frequency 0.3333 0.3333

Passband Ripples 0.0005 dB 0.0005 dB

Stopband Attenuations 110 dBs 110 dBs

Rounding Factor 2−12 2−12

Sharpening Polynomial 3 ·G(z)2 − 2 ·G(z)3 3 · I(z)2 − 2 · I(z)3

in MATLAB with these specification and applying rounding and sharpening are shown in

Fig. 5.12 and Fig. 5.13.

86 Proposed Structure for Fractional SRC Systems

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−200

−150

−100

−50

0

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

(b)

Figure 5.12: Rounded and Sharpened Model and Interpolator Filters.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−200

−150

−100

−50

0

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
)

Figure 5.13: Cascaded and Final Magnitude response at Low sampling rate.

The sharpening polynomials for the model and interpolator filters are respectively

Sh{Gr(z)} = 3 ·G(z)2 − 2 ·G(z)3,

Sh{Ir(z)} = 3 · I(z)2 − 2 · I(z)3·
(5.5)

5.4. Application of proposed method at high sampling rate

The proposed algorithm can also be placed at high sampling rate by replacing the

fractional decimation system of Fig. 5.3 with the proposed efficient structure of Fig. 5.8.

The new structure we get is shown as

The next example describes the proposed structure at high sampling rate for GSM com-

5.4 Application of proposed method at high sampling rate 87

H (z)I

Fs

M0
L Sh{I (z)}prM1 Fout

x(n)
y(m)

Sh{G (z)}r
M

2

Decimation by Integer Factor M0Decimation by Fractional Factor L/M M1 2

Figure 5.14: Fractional SRC System at high sampling rate.

munication standards.

Example 5-4.

This example designs a fractional decimation filter of factor 13/15 based on proposed

algorithm at high sampling rate having passband ripple of 0.001 dB and stopband

attenuation of 110 dB. The selected rounding factor r is 2−12

In this case the fractional system has to work at high sampling rate of 13 times of sam-

pling frequency 80 MHz. Then, the derived cutoff frequencies for the factorized value of

decimation factor M to M1 = 5 and M2 = 3 and model filter is expanded by M1. will be

Table 5.5: Desired Filter H(z) Specification.

Normalized Passband Frequency, ωp 0.00019

Normalized Stopband Frequency, ωs 0.0666

Passband Ripples, Rp 0.001 dB

Stopband Attenuations, As 100 dBs

On Replacing the filter H(z) with IFIR filter, the specification of the calculated model

and interpolation filter are as follows.

The sharpening polynomials for the model and interpolator filters are

Sh{Gr(z)} = 3 ·G(z)2 − 2 ·G(z)3,

Sh{Ir(z)} = 3 · I(z)2 − 2 · I(z)3·
(5.6)

The corresponding simulation in MATLAB with these specification and applying rounding

and sharpening are shown in Fig. 5.15 and Fig. 5.16.

88 Proposed Structure for Fractional SRC Systems

Table 5.6: Specifications of G(z) and I(z).

Specifications Model Filter G(z) Interpolator Filter I(z)

Passband Frequency, ωp 0.00095 0.00019

Stopband Frequency, ωs 0.3333 0.3333

Passband Ripples, Rp 0.0005 0.0005

Stopband Attenuations 100 dBs 100 dBs

Rounding Factor 2−12 2−12

Sharpening Polynomial 3 ·G(z)2 − 2 ·G(z)3 3 · I(z)2 − 2 · I(z)3

Decimation Factor 3 5

Polyphase Length 93 17

Filter Length 277 83

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−200

−150

−100

−50

0

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
s)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−200

−150

−100

−50

0

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
s)

(b)

Figure 5.15: Rounded and Sharpened Model and Interpolator Filter.

5.5. Discussion of the results

This section provides the analysis of proposed method applied at low sampling rate

and at high sampling rate. The implementation cost of the proposed structure at low

sampling rate of 312.5 kHz are shown in Table 5.7. The interpolator filter has length 83

with five polyphase component each of length 17. And the Model filter is of 277 length

with three polyphase component each of length 93.

5.5 Discussion of the results 89

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−200

−150

−100

−50

0

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
s)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−350

−300

−250

−200

−150

−100

−50

0

Normalized Frequency (w/pi)

M
ag

ni
tu

de
 (

dB
s)

(b)

Figure 5.16: Cascaded and Final Magnitude response at high sampling rate.

Table 5.7: Implementation cost of proposed structure at low sampling rate.

Specifications G(z) I(z) Cascaded

Number of Adders 251 74 325

Number of states 92 16 108

Multiplication rate per Input Sample 84 15 31.8

Addition rate per Input Sample 83.66 14.8 31.533

Similarly, Table , Table ??, and Table 5.8 shows the implementation cost of the pro-

posed structure when it is at high input frequency of 1040 MHz. In this case the interpo-

lator and model filter are of equal length 67 with five and three polyphase components,

each of length 14 and 23, respectively. The comparison of proposed structure at low and

high sampling rate with respect to above discussed parameters are presented in Table 5.9

From Table 5.9, it can be seen that the number of adders gets decreased from 325 to

122. From this, it can be concluded that the proposed structure gives less filter complexity

, when applied at high sampling rate.

On carefully examining Table 5.9, it is found that the reason for decreasing the filter

complexity at high sampling rate is the widening of transition band of model filter and

interpolator filter. Hence, following the conclusion made in Chapter 2 regarding fractional

90 Proposed Structure for Fractional SRC Systems

Table 5.8: Implementation cost of proposed structure at high sampling rate.

Specifications G(z) I(z) Cascaded

Number of Adders 62 60 122

Number of states 22 13 35

Multiplication rate per Input Sample 21 12.2 16.4

Addition rate per Input Sample 20.667 12 16.133

Table 5.9: Comparison of Proposed Structure at low and high sampling rate.

Specifications H(z) low Fs H(z) at high Fs

Passband Frequency, ωp 0.0492 0.00019

Stopband Frequency, ωs 0.0666 0.0666

Transition Band, TB 0.0174 0.0664

Passband Ripples, Rp 0.001 0.001

Stopband Attenuations 110 dBs 100 dBs

Rounding Factor 2−12 2−12

Sharpening Polynomial 3 ·G(z)2 − 2 ·G(z)3 3 · I(z)2 − 2 · I(z)3

Number of Adders 325 122

Number of states 108 35

Multiplication rate per Input Sample 31.8 16.4

Addition rate per Input Sample 31.5333 16.1333

decimation filter placement before or after the integer factor decimation filter; it is jus-

tified, that the filter complexity decreases at high sampling rate , while the filter has to

work at high multiplication rate. However, the utilization of the multirate identity and

the polyphase representation help to move the filters at low sampling rate region. Thus,

the complete structure works at intermediate sampling rate.

Hence, it can be said that both structures are efficient with respect to the desired

requirement. If resource requirement is to be concern than it is recommendable to place

the structure at high sampling rate. But in case of multiplication rate to be a matter of

importance, then the proposed structure should be placed at the low sampling rate.

6
Implementation of the Proposed Structure

This chapter presents the implementation of the proposed algorithm in SPARTAN 3

family of Field Programmable Gate Array (FPGA). An introduction of the SPAR-

TAN 3 is provided. Among the various computer arithmetic algorithms for Multipli-

cation, Add and Shift algorithm have been selected to implement the rounded integer

coefficients of the proposed algorithm. The implementation design of the proposed

structure at low sampling rate and at high sampling rate is done in the later part of

the chapter.

6.1. Introduction

The Spartan 3 family of FPGA is specifically designed to meet the needs of high

volume, cost-sensitive consumer electronic applications. The eight member family offers

densities ranging from 50,000 to five million system gates, as shown in Table 1. The Spar-

tan 3 family builds on the success of the earlier Spartan IIE family by increasing the

amount of logic resources, the capacity of internal RAM, the total number of I/Os, and

the overall level of performance as well as by improving clock management functions.

Numerous enhancements derive from the Virtex II platform technology. These Spartan

3 enhancements, combined with advanced process technology, deliver more functionali-

ty and bandwidth per dollar than was previously possible, setting new standards in the

programmable logic industry. Because of their exceptionally low cost, Spartan 3 FPGAs

are ideally suited to a wide range of consumer electronics applications, including broad-

91

92 Implementation of the Proposed Structure

band access, home networking, display/projection and digital television equipment. The

Spartan 3 family is a superior alternative to mask programmed ASICs. FPGAs avoid the

high initial cost, the lengthy development cycles, and the inherent inflexibility of conven-

tional ASICs. Also, FPGA programmability permits design upgrades in the field with no

hardware replacement necessary, an impossibility with ASICs.

6.2. Fixed Point Multiplication

A multiplication circuit is usually referred to as a multiplier [7]. A multiplier takes

two binary operands to generate a product. A binary number can represent either a fixed

point or a floating point unsigned number or a 2’s complement number. To implement

the multiplication of these numbers in hardware, fixed point multiplication algorithms

has been described.

The multiplication algorithm for binary numbers is basically similar to the traditional

pencil and paper method. The traditional pencil paper method for two digit binary num-

bers involves the formation of first partial product by multiplying least significant digit

of the multiplier, with the multiplicand. The second partial product is obtained by multi-

plying the second least significant digit of the multiplier with the multiplicand. These two

partial products are then added together to form the product. In digital designs, binary

numbers are usually used. For a four bit unsigned binary representation of multiplicand

6.2 Fixed Point Multiplication 93

and multiplier, there are four partial products. the multiplication of two binary bits is

simply a logical AND function. There is no carry necessary in getting the binary par-

tial product. This simplifies the hardware. The partial products are either the same as

the multiplicand or zero, and they are shifted left to the corresponding bit position of

the multiplier. These four partial products are then added together to form the decimal

equivalent product.

Various algorithms for replacing the multipliers by shift registers and adders has been pro-

posed. In the next section two among the available fixed point multiplication algorithms

has been described.

6.2.1. Unsigned Multiplication

Add and shift algorithm is the method of performing unsigned multiplication, which

has unsigned input data. It involves the adders and shift registers to perform the multi-

plication operation. The data can be either fixed point or floating point. We are working

on fixed point data.

Considering Partial products obtained by AND operation of multiplier and multiplicand

digit, the next straightforward approach of adding these partial products is to use three

adders. A different concept of using Carry Save Adders (CSA) to save carry for the next

stage can also be applicable [17]. The CSA has two outputs, one is the sum bit and the

other is the carry bit. In order to add these partial products,a simple shift and add algo-

rithm is shown in Fig. 6.1.

In this algorithm, the multiplicand, ALU register and multiplier are all 32-bits wide, with

only the product register left at 64-bits. Then the product is shifted right. The hardware

interpretation of Add and Shift algorithm is shown in Fig. 6.2.

The explanation of the algorithm is given in the next example.

Example 6-1.

Multiply 0010 with 0011 using Add and Shift algorithm in Fig.6.1.

Four partial products are formed by multiplying the multiplicand with each multiplier

bits. These four partial product is are then added by shifting each of them. The complete

94 Implementation of the Proposed Structure

Start

Done

1. Test
Multiplier0

Multiplier0 = 0

Yes : 32 repetitions

No : < 32 repetitions

3. Shift the Multiplier register right 1 bit

2. Shift the Product register right 1 bit

Multiplier0 =1

32nd repetition?

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the product register

Figure 6.1: Shift and Add Algorithm for unsigned Multiplication.

Multiplicand

16-bit ALU

32-bit

Shift right

Write

16-bits

16-bits

Multiplier

Shift right

Control

Figure 6.2: Shift and Add Multiplication Hardware for unsigned

Multiplication.

6.2 Fixed Point Multiplication 95

process is shown in Table 6.1.

Table 6.1: Parameters for SRC.

Iteration Step Multiplicand Product

0 Initial Values 0010 0000 0011

1 1a: 1 =>Prod=Prod+Mcand 0010 0010 0011

1 2: Shift right Product 0010 0001 0001

2 1a: 1 =>Prod=Prod+Mcand 0010 0001 0001

2 2: Shift right Product 0010 0011 1000

3 1: 0 =>no operation 0010 0001 1000

3 2: Shift right Product 0010 0000 1100

4 1: 0 =>no operation 0010 0000 1100

4 2: Shift right Product 0010 0000 0110

In this algorithm the right most half of the product register is utilized to assign multipliers

placing zero at the upper half.

6.2.2. Signed Multiplication

The simplest way to convert the add and shift algorithm to signed numbers is to first

convert the multiplier and multiplicand to positive numbers and then remember the orig-

inal signs. Later, a more elegant approach to multiply signed numbers is introduced by

Booth in 1952, and is called Booth’s Algorithm [7]. Booth suggested a recoding scheme

to reduce the number of partial products for the signed numbers. Booth invented this

approach in a quest for speed, believing that shifting was faster than addition. Indeed,

for some patterns his algorithm would be faster, and handle signed numbers. The key to

Booth’s algorithm is in his classifying groups of bits into the beginning, the middle, or

the end of a run of 1s [23]. For the 2 bits recoding pattern, the partial products changes

according to the Table 3 [23].

Booth’s algorithm changes the first step of Add and Shift algorithm, where the multipli-

cand is added by shifting when the multiplier bit is one. In case of Booth’s algorithm, two

96 Implementation of the Proposed Structure

Table 6.2: Parameters for SRC.

Current bit Bit to the right Explanation Example

1 0 Beginning of a run of 1s 00001111000

1 1 Middle of a run of 1s 00001111000

0 1 End of a run of 1s 00001111000

0 0 Middle of a run of 0s 00001111000

or three bits of recoded bits are checked to decide whether the multiplicand has to added

or subtracted. Booth’s algorithm can be demonstrated in the following points [23]

Depending on the current and previous bits, do one of the following steps

00 : Middle of a string of 0s, so no arithmetic operation.

01 : End of a string of 1s, so add the multiplicand to the left half of the product.

10 : Beginning of a string of 1s, so subtract the multiplicand from the left half of

the product.

11 : Middle of a string of 1s, so no arithmetic operation.

As the previous algorithm, shift the product register right by 1 bit.

The main requirement of Booth’s algorithm is to preserve the sign of intermediate result,

in case of dealing with signed numbers. A more clear explanation of Booth’s algorithm

can be obtain from the following example [23].

Example 6-2.

Multiply 2 and -3 to get -6, or 0010 by 1101 = 1111 1010.

Table 6.3 shows the steps of Booth’s algorithm.

Booth’s observation about replacing arithmetic by shifts can be applied when mul-

tiplying by constants. Some compilers replace multiplications by short constants with a

series of shifts,adds, and subtracts. Because 1 bit to the left represents a number twice as

large as in base 2, shifting the bits left has the same effect as multiplying by a power of

2, so almost every compiler will substitute a left shift for a multiplication by a constant

that is a power of 2.

6.3 Proposed Algorithm at low sampling rate 97

Table 6.3: Steps of Booth’s Algorithm.

Iteration Step Multiplicand Product

0 Initial Values 0010 0000 1101 0

1 1c: 10 =>Prod=Prod-Mcand 0010 1110 1101 0

1 2: Shift right Product 0010 1111 0110 1

2 1b: 01 =>Prod=Prod+Mcand 0010 0001 0110 1

2 2: Shift right Product 0010 1111 1011 0

3 1c: 10 =>Prod=Prod-Mcand 0010 1110 1011 0

3 2: Shift right Product 0010 1111 0101 1

4 1: 0 =>no operation 0010 1111 0101 1

4 2: Shift right Product 0010 1111 1010 1

6.3. Proposed Algorithm at low sampling rate

Proposed algorithm at low sampling rate as given in Chapter 5 is redrawn in Fig.6.3

Decimation
by

Integer Factor M0

Decimation
by

Fractional Factor L/MF

Fs F /M0s LF /M0MFs

L MFH (z)F

F /M0s LF /M0s LF /M M0 Fs

H (z)I

Fs

M0

Figure 6.3: Fractional SRC System at low sampling rate.

The MATLAB has been used to generate the VHDL program of the proposed structure

at low sampling rate. The specifications given in Table ?? of Chapter 5 has been used to

generate the VHDL program. The VHDL program allocates 16bits for the input signal and

the filters coefficients, while the output signal has been represented by 34 bits variables.

The multiplication operation has been done by the available multipliers of the FPGA, as

well as by the optimization of the filters.

98 Implementation of the Proposed Structure

Device Utilization Summary

Logic Utilization Used Available Utilization Note(s)

Number of Slice Flip Flops 1,888 26,624 7%

Number of 4 input LUTs 11,722 26,624 44%

Logic Distribution

Number of occupied Slices 6,536 13,312 49%

Number of Slices containing only related

logic
6,536 6,536 100%

Number of Slices containing unrelated logic 0 6,536 0%

Total Number 4 input LUTs 12,271 26,624 46%

Number used as logic 11,722

Number used as a route-thru 549

Number of bonded IOBs 53 333 15%

IOB Flip Flops 66

Number of MULT18X18s 32 32 100%

Number of GCLKs 1 8 12%

Total equivalent gate count for design 279,231

Additional JTAG gate count for IOBs 2,544

Figure 6.4: Device Utilization Summary for Proposed Structure at low

sampling rate

6.3.1. Implementation

The design summary for the implemented proposed structure at low sampling rate is

given in Fig. 6.4 as generated by Xilinx ISE 8.2i for xc3s1500-5fg456. The corresponding

RTL diagram of the implemented structure is shown in Fig. 6.5

Model Filter

Interpolator Filter

Figure 6.5: RTL diagram of Proposed Structure at low sampling rate

6.3 Proposed Algorithm at low sampling rate 99

The more clear picture of Interpolator Filter RTL diagram is shown in Fig. 6.6

Figure 6.6: RTL diagram of Interpolator Filter

After replacing the multiplier instance created by Xilinx ISE 8.2i with add and shift reg-

isters, we get the new RTL diagram shown in Fig. 6.7

Figure 6.7: RTL diagram of modified Interpolator Filter

The number of equivalent gates used by the proposed structure is 279,231. This can be

reduced by replacing the multipliers of the model and interpolator filter of proposed struc-

ture with Add and Shift algorithm of multiplication. Consequently, the device utilization

gets decreased as given in Fig. 6.17. The new utilization of FPGA is 37,586 equivalent

gates.

The waveforms for the input and output are obtained by simulating the proposed struc-

ture as shown in Fig. 6.9. For this simulation Symphony EDA Sonata 3.1 has been used.

This waveform shows that the output starts changing from 2.7ns.

A difference in the input and output waveforms exist while replacing the multipliers by

100 Implementation of the Proposed Structure

Device Utilization Summary

Logic Utilization Used Available Utilization Note(s)

Number of Slice Flip Flops 3,297 26,624 12%

Number of 4 input LUTs 818 26,624 3%

Logic Distribution

Number of occupied Slices 2,016 13,312 15%

Number of Slices containing only related logic 2,016 2,016 100%

Number of Slices containing unrelated logic 0 2,016 0%

Total Number 4 input LUTs 1,141 26,624 4%

Number used as logic 818

Number used as a route-thru 323

Number of bonded IOBs 55 333 16%

IOB Flip Flops 52

Number of GCLKs 1 8 12%

Total equivalent gate count for design 37,586

Additional JTAG gate count for IOBs 2,640

Figure 6.8: Device Utilization Summary after replacing Multipliers by Add

and Shift algorithm

Figure 6.9: Input Output Waveform of Proposed Structure at low sampling

rate

add and shift algorithm. Since, add and shift algorithm is an unsigned multiplication

algorithm, for obtaining the multiplication of signed data, a recoding of the VHDL pro-

gram has to be done in order to get the same output. The another solution to replace

the multipliers is to perform multiplication using Booth’s Wallace Tree algorithm of mul-

tiplication. The Unique advantage of Booth Wallace algorithm is that it is fast method

of multiplying the signed data with no recoding of the main program. However, Booth

Wallace Tree algorithm increases the device utilization and hence the chip area.

From Fig.6.4 and Fig. 6.17 it has been found that on replacing the multipliers of the

model and interpolated filter by fixed point of add and shift algorithm of multiplication,

the number of equivalent FPGA gates decreased by 7.43 times with no multipliers.

6.4 Proposed Algorithm at high sampling rate 101

6.4. Proposed Algorithm at high sampling rate

Proposed algorithm at high sampling rate as given in Chapter 5 is redrawn in Fig.6.10

Decimation
by

Fractional Factor L/M

F = 80 MHz
s

LF/M
s

L MH(z)

Fs LFs LF /Ms

Figure 6.10: Fractional Sampling Rate Conversion system at high sampling

rate

The VHDL code generation of the proposed algorithm has been done using MATLAB

instructions like generatehdl and generatetb based on the filter design specifications given

in Table ??. The quantization of the input and filter coefficient are done by using set

instruction which quantize the data for full precision fixed point arithmetic. The conse-

quent input data and filter coefficient variables are of 16 bits in VHDL, where as the filter

output is of 34 bits. The multiplication performed by MATLAB generate code is of fixed

point and utilizes the multipliers available in SPARTAN 3 family.

6.4.1. Implementation

The above given structure is implemented in FPGA by using the MATLAB generat-

ed VHDL code based on the specification given in Table 5.6 of Chapter 5. The VHDL

program involves the formation of Entity for model and interpolator filter. Testbench has

been generated based on the sinusoidal input. The multiplication operation between the

input and filter coefficients has been performed by the simple multiply instruction which

has perform by the available multipliers in the FPGA. The rest of the multiplication has

been managed by the FPGA utilizing the registers and adders.

The design summary for the implemented proposed structure at high sampling rate as

102 Implementation of the Proposed Structure

generated by Xilinx ISE 8.2i for xc3s1500-5fg456 SPARTAN 3 FPGA is given below in

Fig.6.11.

Device Utilization Summary

Logic Utilization Used Available Utilization Note(s)

Number of Slice Flip Flops 678 26,624 2%

Number of 4 input LUTs 3,996 26,624 15%

Logic Distribution

Number of occupied Slices 2,327 13,312 17%

Number of Slices containing only related logic 2,327 2,327 100%

Number of Slices containing unrelated logic 0 2,327 0%

Total Number of 4 input LUTs 4,296 26,624 16%

Number used as logic 3,996

Number used as a route-thru 300

Number of bonded IOBs 54 221 24%

IOB Flip Flops 51

Number of MULT18X18s 32 32 100%

Number of GCLKs 1 8 12%

Total equivalent gate count for design 182,950

Additional JTAG gate count for IOBs 2,592

Figure 6.11: Device Utilization Summary for Proposed Structure at high

sampling rate

From this table it can be summarize that the proposed structure is utilizing all the mul-

tipliers which are available in the FPGA. Apart from this, other multiplication operation

has been implemented in FPGA by the optimization of the filters done by Xilinx ISE 8.2i.

The number of equivalent gates utilized is 182,950. The corresponding RTL diagram of

the implemented structure is shown in Fig. 6.12. On replacing each of the multipliers in

the model and interpolator filter of proposed structure by the add and shift registers, the

device utilization gets decreased as given in Fig.6.15

The more clear picture of Model Filter RTL diagram is shown in Fig.6.13 After replacing

the multiplier instance created by Xilinx ISE 8.2i with add and shift algorithm, we get

the new RTL diagram shown in Fig. 6.14

The number of gates is now 9,186, which is due to the replacement of default multiplica-

tion operation of Xilinx ISE 8.2i by the Add and Shift algorithm of multiplication.

The input output waveforms obtain by simulating the proposed structure in Symphony

EDA Sonata 3.1 is shown in Fig. 6.16 The waveform at the output represents filter output

of 34 bits. It starts generating the initial values equals to zero, with the changes occur

6.4 Proposed Algorithm at high sampling rate 103

Model Filter

Interpolator Filter

Figure 6.12: RTL diagram of Proposed Structure at high sampling rate

Figure 6.13: RTL diagram of Model Filter

Figure 6.14: RTL diagram of modified Model Filter

from 29.3ns.

From Fig. 6.11 and Fig. 6.15 it has been found that on replacing the multipliers of the

model and interpolated filter by fixed point of add and shift algorithm of multiplication,

the number of equivalent FPGA gates decreased by 19.9 times with no multipliers.

104 Implementation of the Proposed Structure

Device Utilization Summary

Logic Utilization Used Available Utilization Note(s)

Number of Slice Flip Flops 713 26,624 2%

Number of 4 input LUTs 260 26,624 1%

Logic Distribution

Number of occupied Slices 484 13,312 3%

Number of Slices containing only related logic 484 484 100%

Number of Slices containing unrelated logic 0 484 0%

Total Number of 4 input LUTs 336 26,624 1%

Number used as logic 260

Number used as a route-thru 76

Number of bonded IOBs 55 221 24%

IOB Flip Flops 52

Number of GCLKs 1 8 12%

Total equivalent gate count for design 9,186

Additional JTAG gate count for IOBs 2,640

Figure 6.15: Device Utilization Summary after replacing Multipliers by Add

and Shift algorithm

Figure 6.16: Input Output Waveform of Proposed Structure at high sampling

rate

6.5. Discussion of the implemented structures

This section discuss the implementation results obtained by low sampling rate struc-

ture and high sampling rate structure, which are implemented by replacing filter multi-

pliers with add and shift algorithm.

To analyze, Fig. 6.17 and Fig. 6.18 are again shown. From these, it can be seen that

the number of equivalent FPGA gates utilization decreased in case of proposed structure

at high sampling rate.

This justifies the conclusion made in Chapter 5 regarding the trade off between input

sampling rate and filter complexity. The number of gates in high sampling structure is

3.82 times less than the low sampling rate structure. However, high sampling rate structure

6.5 Discussion of the implemented structures 105

Device Utilization Summary

Logic Utilization Used Available Utilization Note(s)

Number of Slice Flip Flops 3,297 26,624 12%

Number of 4 input LUTs 818 26,624 3%

Logic Distribution

Number of occupied Slices 2,016 13,312 15%

Number of Slices containing only related logic 2,016 2,016 100%

Number of Slices containing unrelated logic 0 2,016 0%

Total Number 4 input LUTs 1,141 26,624 4%

Number used as logic 818

Number used as a route-thru 323

Number of bonded IOBs 55 333 16%

IOB Flip Flops 52

Number of GCLKs 1 8 12%

Total equivalent gate count for design 37,586

Additional JTAG gate count for IOBs 2,640

Figure 6.17: Device Utilization Summary at low sampling rate structure

Device Utilization Summary

Logic Utilization Used Available Utilization Note(s)

Number of Slice Flip Flops 713 26,624 2%

Number of 4 input LUTs 260 26,624 1%

Logic Distribution

Number of occupied Slices 484 13,312 3%

Number of Slices containing only related logic 484 484 100%

Number of Slices containing unrelated logic 0 484 0%

Total Number of 4 input LUTs 336 26,624 1%

Number used as logic 260

Number used as a route-thru 76

Number of bonded IOBs 55 221 24%

IOB Flip Flops 52

Number of GCLKs 1 8 12%

Total equivalent gate count for design 9,186

Additional JTAG gate count for IOBs 2,640

Figure 6.18: Device Utilization Summary at high sampling rate structure

has to work at high sampling rate.

During the whole procedure, the low complexity has been achieved successfully, but the

desired output is still a promising job. Due to unsigned nature of add and shift algorithm,

the change in output occurs when the input changes its sign. One way to get the desired

output is apply CORDIC algorithm. In this way a more reliable result can be obtained.

106 Implementation of the Proposed Structure

Conclusions and Future Work

Software Radio terminals process various communication standards simply by

converting the sampling rate to desired sampling rate. During sampling rate

conversion, the aliasing and imaging effects occur.To eliminate these effects,

anti-aliasing and anti-imaging filters are required. Thus, Sampling rate con-

version is a filter designing problem. Methods of sampling rate conversion

are well known as Multirate Techniques which includes Decimation and In-

terpolation. The implementation of multirate algorithms based filters requires

programmable devices like Programmable Array Logic, Programmable Logic

Array, Complex Programmable Logic Devices, and Field Programmable Gate

Array.

The process of decreasing the sampling rate is called decimation. Decimation

processes are performed by integer factor as well as fractional factor. Frac-

tional factor decimation system is a combination of the interpolation and the

decimation process. Software Radio requires decimation filter for both inte-

ger factor sampling rate conversion system and fractional factor sampling rate

conversion system.

Considering the decimation filter for fractional factor sampling rate conversion

system, it has been found that on placing it at high sampling rate, the filter

complexity decreases but the filter has to work at high rate, which will cause

more power consumption. However, on placing the fractional decimation filter

for fractional factor sampling rate conversion system at low sampling rate will

increases the filter complexity but decreases the power consumption.

Among various efficient filter designing methods, rounding technique is a sim-

ple method to get integer filter coefficients. Then, the filter coefficients can be

implemented with the adders and the shift registers. Through repetitive ex-

perimentation, rounding technique has been found worthwhile for increasing

107

108 Implementation of the Proposed Structure

computational efficiency; when the filter cutoff frequencies are equal or below

than 0.05 normalized frequency and the transition bands are in the range of

0.01 or less. The consequent effect of rounding filter coefficients is the dis-

tortion of filter response. This can be recover by using sharpening technique.

Sharpening Technique involves the cascading of filter with itself following cer-

tain polynomials, in order to get minimum passband ripples and maximum

stopband attenuation.

The proposed structure has been presented for receiver, but it can also be

applicable for transmitter. Using multirate identities and polyphase represen-

tation, the filters have been moved to lower sampling rate region. This led to

the filters to operate at lower rate and hence decreases the power consumption.

The proposed structure has been applied at high sampling rate and at low-

er sampling rate for frequency range of GSM communication standard. This

shows the trade off between input sampling rate and filter complexity.

The proposed structure has been implemented in FPGA using VHDL program

generated by MATLAB. The recoding of VHDL program has been done to

replace multipliers by adders and shift registers. The recoding of VHDL for

the dynamic change of input signal has been done manually, so the outputs

are not reliable. To get the reliable outputs CORDIC algorithm is required.

However, replacing of multipliers led to the decrease of FPGA equivalent gates

utilization. In this way a less complex structure is obtained by using add and

shift algorithm of fixed point multiplication.

Some of the topics to be done in future are

1. The proposed algorithm has been used for the integer conversion factors

less than or equal to 15. The work to be done is to verify the proposed

algorithm for higher conversion factors with respect to the filter charac-

teristics. This can be done by modifying the proposed algorithm on the

basis of time varying characteristics.

2. The recoding of the MATLAB generated program has been done manu-

6.5 Discussion of the implemented structures 109

ally in order to replace the fixed point multipliers by the add and shift

algorithm and to get the desired output. This recoding can be done more

efficiently by using CORDIC algorithm.

110 Implementation of the Proposed Structure

A
MATLAB Functions

function[H] = cic(R,N)

This function generates the frequency response of the CIC filter.

Input Variables are

R → Integer Rate Change Factor.

N → Number of Stages.

Output Variable is

H → Filter Magnitude response.

function[H] = mcic(d1,d2,d3,d4)
This function generates the frequency response of the Modified CIC filter.

Input Variables are

d1, d2, d3, d4 → Set of comb delays.

Output Variable is

H → Filter Magnitude response.

function[H] = stcic(K1,K2,K3,M,M1,M2,R)

This function generates the frequency response of the Stepped Triangular CIC filter.

Input Variables are

M, M1, M2 → Set of comb delays.

R → Delay of expanded cosine filter.

111

112 MATLAB Functions

K1, K2, K3 → Number of Stages.

Output Variable is

H → Filter Magnitude response.

function[yf in] = tvcic(L,M,T1)

This function generates the frequency response of the Time Varying CIC filter.

Input Variables are

L → Upsampling factor.

M → Downsampling Factor.

T1 → Input sampling period.

Output Variable is

yf in → Output Impulse Response.

function[n,x] = Ingen(fs,f1,f2,f3)

This function generates the sinusoidal input signal.

Input Variables are

fs → Sampling frequency.

f1 → Sinusoidal first centering frequency.

f2 → Sinusoidal second centering frequency.

f3 → Sinusoidal third centering frequency.

Output Variables are

n → Number of output samples.

x → Output samples.

function[N,h]=regobarb(wp,ws,Rp,As)

This function generates the frequency response of the FIR filter.

Input Variables are

wp → Normalized passband frequency.

ws → Normalized stopband frequency.

113

Rp → Passband ripples (dB).

As → Stopband attenuations (dB).

Output Variables are

N → Filter order.

h → Output impulse response.

function[B1,I1]=roundsimifir(R,A,wp,M,r,p)

This function generates the rounded and sharpened impulse response of model and inter-

polator filter.

Input Variables are

R → Passband ripples (dB).

A → Stopband attenuations (dB).

wp → Normalized passband frequency.

M → Decimation Factor.

r → Rounding factor for model filter.

p → Rounding factor for interpolator filter.

Output Variables are

B1 → Rounded and Sharpened impulse response of model filter.

I1 → Rounded and Sharpened impulse response of interpolator filter.

function[Hdm,Hdi,Hd] = improunifirfrac(L,M,R,A,wp,fs,f1,f2,f3,r,p);

This function generates the frequency response and VHDL programs of the proposed

structure.

Input Variables are

L → Interpolation Factor.

M → Decimation Factor.

R → Passband ripples (dB).

A → Stopband attenuations (dB).

wp → Normalized passband frequency.

fs → Sampling frequency.

114 MATLAB Functions

f1 → Sinusoidal first centering frequency.

f2 → Sinusoidal second centering frequency.

f3 → Sinusoidal third centering frequency.

r → Rounding factor for model filter.

p → Rounding factor for interpolator filter.

Output Variables are

Hdm → Rounded and Sharpened magnitude response of model filter.

Hdi → Rounded and Sharpened magnitude response of interpolator filter.

Hd → Cascaded magnitude response of model filter and interpolator filter.

B
VHDL Programs

B.1. Project for the proposed structure at low sampling rate

This project is for implementing proposed structure at low sampling rate with multi-

pliers. It has following four entities

Hd − low − tb : This entity defines input and output port mapping with the com-

ponent Hdl − low. It has the following input-output ports.

Input-output ports are

clk as input clock

clk − enable as input enable clock.

reset is the input reset pulse.

filter − in is input signal of 16 bits.

filter − out is the filtered output signal of 34 bits.

ce− out is the output enable clock.

Hdl− low : This entity defines input and output port mapping with the component

Hdl − low − stage1 for interpolator filter and the component Hdl − low − stage2

for model filter. It has the following input-output ports.

Input-output ports are

clk as input clock

clkenable as input enable clock.

reset is the input reset pulse.

115

116 VHDL Programs

filter − in is input signal of 16 bits.

filter − out is the filtered output signal of 34 bits.

ce− out is the output enable clock.

Hdl − low − stage1 : This entity defines interpolator filter.

Input-output ports are

clk as input clock

clk − enable− stage1 as input enable clock for interpolator filter.

reset is the input reset pulse.

filter − in− stage1 is input signal of 16 bits for interpolator filter.

filter − out− stage1 is the filtered output signal of 34 bits for interpolator filter.

ce− out− stage1 is the output enable clock of interpolator filter.

Hdl − low − stage2 : This entity defines model filter.

Input-output ports are

clk as input clock

clk − enable− stage2 as input enable clock for interpolator filter.

reset is the input reset pulse.

filter − in− stage2 is input signal of 16 bits for interpolator filter.

filter − out− stage2 is the filtered output signal of 34 bits for interpolator filter.

ce− out− stage2 is the output enable clock of interpolator filter.

B.2. Project for the proposed structure at low sampling rate by

replacing multipliers

This project is for implementing proposed structure at low sampling rate without

multipliers. It has following four entities

Hd− lowmodtb : This entity defines input and output port mapping with the com-

ponent Hdllowmod. It has the following input-output ports.

Input-output ports are

clk as input clock

B.2 Project for the proposed structure at low sampling rate by replacing
multipliers 117

clk − enable as input enable clock.

reset is the input reset pulse.

filter − in is input signal of 16 bits.

filter − out is the filtered output signal of 34 bits.

ce− out is the output enable clock.

Hdl − low − mod : This entity defines input and output port mapping with the

component Hdl − low − mod − stage1 for interpolator filter and the component

Hdl− low−mod− stage2 for model filter. It has the following input-output ports.

Input-output ports are

clk as input clock

clk − enable as input enable clock.

reset is the input reset pulse.

filter − in is input signal of 16 bits.

filter − out is the filtered output signal of 34 bits.

ce− out is the output enable clock.

Hdl − low −mod− stage1 : This entity defines interpolator filter.

Input-output ports are

clk as input clock

clk − enable− stage1 as input enable clock for interpolator filter.

reset is the input reset pulse.

filter − in− stage1 is input signal of 16 bits for interpolator filter.

filter − out− stage1 is the filtered output signal of 34 bits for interpolator filter.

ce− out− stage1 is the output enable clock of interpolator filter.

Hdl − low −mod− stage2 : This entity defines model filter.

Input-output ports are

clk as input clock

clk − enable− stage2 as input enable clock for interpolator filter.

reset is the input reset pulse.

filter − in− stage2 is input signal of 16 bits for interpolator filter.

118 VHDL Programs

filter − out− stage2 is the filtered output signal of 34 bits for interpolator filter.

ce− out− stage2 is the output enable clock of interpolator filter.

B.3. Project for the proposed structure at high sampling rate

This project is for implementing proposed structure at high sampling rate with mul-

tipliers. It has following four entities

Hd − high − tb : This entity defines input and output port mapping with the

component Hdl − high. It has the following input-output ports.

Input-output ports are

clk as input clock

clk − enable as input enable clock.

reset is the input reset pulse.

filter − in is input signal of 16 bits.

filter − out is the filtered output signal of 34 bits.

ce− out is the output enable clock.

Hdl−high : This entity defines input and output port mapping with the component

Hdl− high− stage1 for interpolator filter and the component Hdl− high− stage2

for model filter. It has the following input-output ports.

Input-output ports are

clk as input clock

clk − enable as input enable clock.

reset is the input reset pulse.

filter − in is input signal of 16 bits.

filter − out is the filtered output signal of 34 bits.

ce− out is the output enable clock.

Hdl − high− stage1 : This entity defines interpolator filter.

Input-output ports are

clk as input clock

B.4 Project for the proposed structure at low sampling rate by replacing
multipliers 119

clk − enable− stage1 as input enable clock for interpolator filter.

reset is the input reset pulse.

filter − in− stage1 is input signal of 16 bits for interpolator filter.

filter − out− stage1 is the filtered output signal of 34 bits for interpolator filter.

ce− out− stage1 is the output enable clock of interpolator filter.

Hdl − high− stage2 : This entity defines model filter.

Input-output ports are

clk as input clock

clk − enable− stage2 as input enable clock for interpolator filter.

reset is the input reset pulse.

filter − in− stage2 is input signal of 16 bits for interpolator filter.

filter − out− stage2 is the filtered output signal of 34 bits for interpolator filter.

ce− out− stage2 is the output enable clock of interpolator filter.

B.4. Project for the proposed structure at low sampling rate by

replacing multipliers

This project is for implementing proposed structure at high sampling rate without

multipliers. It has following four entities

Hd−high−mod− tb : This entity defines input and output port mapping with the

component Hdl − high−mod. It has the following input-output ports.

Input-output ports are

clk as input clock

clk − enable as input enable clock.

reset is the input reset pulse.

filter − in is input signal of 16 bits.

filter − out is the filtered output signal of 34 bits.

ce− out is the output enable clock.

Hdl − high − mod : This entity defines input and output port mapping with the

120 VHDL Programs

component Hdl − high − mod − stage1 for interpolator filter and the component

Hdl−high−mod− stage2 for model filter. It has the following input-output ports.

Input-output ports are

clk as input clock

clk − enable as input enable clock.

reset is the input reset pulse.

filter − in is input signal of 16 bits.

filter − out is the filtered output signal of 34 bits.

ce− out is the output enable clock.

Hdl − high−mod− stage1 : This entity defines interpolator filter.

Input-output ports are

clk as input clock

clk − enable− stage1 as input enable clock for interpolator filter.

reset is the input reset pulse.

filter − in− stage1 is input signal of 16 bits for interpolator filter.

filter − out− stage1 is the filtered output signal of 34 bits for interpolator filter.

ce− out− stage1 is the output enable clock of interpolator filter.

Hdl − high−mod− stage2 : This entity defines model filter.

Input-output ports are

clk as input clock

clk − enable− stage2 as input enable clock for interpolator filter.

reset is the input reset pulse.

filter − in− stage2 is input signal of 16 bits for interpolator filter.

filter − out− stage2 is the filtered output signal of 34 bits for interpolator filter.

ce− out− stage2 is the output enable clock of interpolator filter.

C
Published Articles

Published

Jovanovic Dolecek Gordana, Nagrale Rao Naina, Trejo Javier Fernando "OneMethod

for Multiplierless FIR Decimation Filter Design", XXVIII International Congress

of Electronics engineering ELECTRO-2006, Chihuahua, Mexico, October -2006.

Jovanovic Dolecek Gordana, Trejo Javier Fernando, Nagrale Rao Naina "Design of

Multiplierless Multiband Decimation Filter", 2nd International Conference of

Electronics Design ICED- 2006, Veracruz, Mexico, November -2006.

N. R. Nagrale, J. F. Trejo and G. Jovanovic Dolecek "IFIR Based FIR Deci-

mation Filter Design", Memorias del Septimo Encuentro of Investigation INAOE

2006, Puebla, Mexico, November -2006, pp. 127 - 130.

Accepted

N. R. Nagrale, G. Jovanovic Dolecek "An Efficient Method to Design Frac-

tional Decimation system", Electronics, Robotics, and Automotive Mechanics

Conference Cerma 2007, Cuernavaca Morelos, Mexico, September -2007.

121

122 Published Articles

List of Figures

1.1. The Multidimensional perspectives of software based radio. 3
1.2. An ideal software radio receiver. 10
1.3. Software Defined Radio single mode Receiver. 10
1.4. Software Radio Service band. 13
1.5. Software defined radio multimode receiver. 14
1.6. Decimator. 15
1.7. Interpolator. 16
1.8. PLA implementation of a full-adder. 17
1.9. Programmable Array Logic. 18
1.10. Complex Programmable Logic Device. 19

2.1. Analog-to-Digital Converter. 22
2.2. Sampled and Modulated spectra. 24
2.3. Discrete Sampling. 27
2.4. Resampling After Reconstruction. 30
2.5. A Direct Digital Conversion for SRC . 31
2.6. Extended Interpretation of SRC Digital Approach. 31
2.7. Decimation by integer factor M = 4. 33
2.8. Input Signal and Anti-aliasing filter Response. 33
2.9. Bandlimited and Downsampled Signal. 33
2.10. Decimated Spectra. 34
2.11. Polyphase Decimator. 36
2.12. Efficient Polyphase Decimator. 37
2.13. Interpolation by an integer factor L = 4. 38
2.14. Input and Upsampled Signal. 38
2.15. Anti-imaging filter Response and Interpolated Spectra. 38
2.16. Polyphase Interpolator. 40
2.17. Efficient Polyphase Interpolator. 41
2.18. Cascade of an integer interpolator and an integer decimator for achieving

rational factor sampling rate conversion. 42
2.19. Rational Factor Sampling Rate Conversion. 42
2.20. Case 1:Fractional SRC before Integer factor SRC. 45
2.21. Case 2:Integer factor SRC before Fractional SRC. 46

3.1. Original and Rounded Impulse Response. 51
3.2. Original and Rounded Magnitude Response. 51
3.3. Amplitude Change function. 52
3.4. Rounded and Sharpened magnitude Response. 53
3.5. IFIR filter. 54
3.6. Model and Interpolator Filters Magnitude response. 56
3.7. Cascaded Model and Interpolator Filters Magnitude response. 56
3.8. Decimation Filter. 56
3.9. IFIR Decimation filter by factor M = 16. 57
3.10. LM-shift invariant system. 60

123

124 LIST OF FIGURES

3.11. Polyphase interpolator with downsampler. 63
3.12. Upsampler followed by Polyphase Decimator. 64

4.1. Integrator Section. 66
4.2. Comb Section. 67
4.3. CIC Decimation filter. 67
4.4. CIC filter Frequency response. 69
4.5. Farrow Structure. 71
4.6. Fractional SRC system. 72
4.7. Fractional SRC system using CIC filter. 72
4.8. Integrated fractional SRC system using CIC filter. 73
4.9. Third-order CIC filter. 73
4.10. Expander. 74
4.11. Integrator Section. 74
4.12. Third order Time Varying CIC filter response. 78
4.13. Third-order time-varying CIC filter. 78

5.1. Fractional Factor Sampling Rate Conversion. 79
5.2. Low Sampling Rate Structure. 80
5.3. High Sampling Rate Structure. 80
5.4. Fractional Sampling Rate Conversion. 81
5.5. Fractional Factor Sampling Rate Conversion using IFIR filter. 81
5.6. More efficient structure . 81
5.7. Polyphase Interpolator based structure. 82
5.8. Polyphase Interpolator based structure. 82
5.9. Rounded Expanded Model and Interpolator Filters Magnitude response. . 83
5.10. Final Magnitude Response. 83
5.11. Proposed fractional decimation system at low sampling rate. 84
5.12. Rounded and Sharpened Model and Interpolator Filters. 86
5.13. Cascaded and Final Magnitude response at Low sampling rate. 86
5.14. Fractional SRC System at high sampling rate. 87
5.15. Rounded and Sharpened Model and Interpolator Filter. 88
5.16. Cascaded and Final Magnitude response at high sampling rate. 89

6.1. Shift and Add Algorithm for unsigned Multiplication. 94
6.2. Shift and Add Multiplication Hardware for unsigned Multiplication. 94
6.3. Fractional SRC System at low sampling rate. 97
6.4. Device Utilization Summary for Proposed Structure at low sampling rate . 98
6.5. RTL diagram of Proposed Structure at low sampling rate 98
6.6. RTL diagram of Interpolator Filter . 99
6.7. RTL diagram of modified Interpolator Filter 99
6.8. Device Utilization Summary after replacing Multipliers by Add and Shift

algorithm . 100
6.9. Input Output Waveform of Proposed Structure at low sampling rate 100
6.10. Fractional Sampling Rate Conversion system at high sampling rate 101
6.11. Device Utilization Summary for Proposed Structure at high sampling rate 102

LIST OF FIGURES 125

6.12. RTL diagram of Proposed Structure at high sampling rate 103
6.13. RTL diagram of Model Filter . 103
6.14. RTL diagram of modified Model Filter . 103
6.15. Device Utilization Summary after replacing Multipliers by Add and Shift

algorithm . 104
6.16. Input Output Waveform of Proposed Structure at high sampling rate . . . 104
6.17. Device Utilization Summary at low sampling rate structure 105
6.18. Device Utilization Summary at high sampling rate structure 105

126 LIST OF FIGURES

List of Tables

1.1. Major Mobile Radio Standards in all around World. 13

2.1. Parameters for SRC. 45
2.2. The splitted Conversion Factor. 45
2.3. Comparision Table . 46

3.1. Sharpening Polynomials for m=n. 53
3.2. Specifications of model and interpolator filters. 55
3.3. IFIR Filter required resources. 57

5.1. Specifications of model and interpolator filters. 82
5.2. IFIR Filter required resources. 84
5.3. Desired Filter H(z) Specification. 85
5.4. Specifications of G(z) and I(z). 85
5.5. Desired Filter H(z) Specification. 87
5.6. Specifications of G(z) and I(z). 88
5.7. Implementation cost of proposed structure at low sampling rate. 89
5.8. Implementation cost of proposed structure at high sampling rate. 90
5.9. Comparison of Proposed Structure at low and high sampling rate. 90

6.1. Parameters for SRC. 95
6.2. Parameters for SRC. 96
6.3. Steps of Booth’s Algorithm. 97

127

128 LIST OF TABLES

References

[1] http://www.rfdesignline.com/encyclopedia.

[2] http://www.radioreference.com.

[3] W. A. Abu-Al-Saud and G. L. Stuber, “Modified cic filter for sample rate conversion
in software radio systems,” IEEE Signal Processing Letters, vol. 10, no. 5, pp. 152–
154, May 2003.

[4] Z. J. Alan Y. Kwentus and A.Ñ. Willson, “Application of filter sharpening to cascaded
integrator-comb decimation filters,” IEEE Transactions on Signal Processing, vol. 45,
no. 2, pp. 457–467, February 1997.

[5] A. Bartolo, B. D. Clymer, R. C. Burgess, and J. P. Turnbull, “An efficient method
of fir filtering based on impulse reponse rounding,” IEEE Transactions on Signal
Processing, vol. 46, no. 8, pp. 2243–2248, August 1998.

[6] E. Burrachini., “The software radio concept,” IEEE Trans. Acoustics., Speech, Signal
Proceesing, pp. 138–143, 2000.

[7] K. Chang, Digital Systems Design with VHDL and Synthesis: An Integrated Ap-
proach. USA: IEEE Computer Society, 1999.

[8] C. Farrow, “A continously variable digital delay element,” ISCAS-1988, pp. 2641–
2646, 1988.

[9] N. J. Fliege, Multirate Digital Signal Processing. New York: John and Wiley Sons,
1995.

[10] M. Henker, T. Hentshel, and G. Fettweis, “Time-variant cic-filters for sample-rate
conversion with arbitrary rational factors,” IEEE 6th International Conference on
Electronic, Circuits and Systems, pp. 67–70, September 1999.

[11] T. hentchel, Sample Rate Conversion in Software configurable Radios. London:
Artech House, 2002.

[12] E. B. Hogenauer., “An economical class of digital filters for decimation and interpola-
tion,” IEEE Trans. Acoustics., Speech, Signal Proceesing, vol. 29, no. 2, pp. 155–162,
April 1981.

[13] G. Jovanovic-Dolecek and S. K. Mitra, “Stepped triangular cic filter,” APPCAS-2006,
pp. 918–922, November 2006.

[14] ——, “A new multistage comb-modified rotated sinc (rs) decimator with sharpened
magnitude response,” IEEE Transactions on Informations and Systems, vol. E88,
no. 7, pp. 1331–1339, July 2005.

[15] ——, “A new two-stage sharpened comb decimator,” IEEE Transactions on Circuits
and System-I: Regular Papers, vol. 52, no. 7, pp. 1414–1420, July 2005.

129

130 REFERENCES

[16] J. Kaiser and R. Hamming, “Sharpening the response of a symmetric nonrecursive
filter by multiple use of the same filter,” IEEE Transactions on Acoustic, Speech,
Signal, Processing, vol. 25, no. 5, pp. 415–422, October 1977.

[17] I. Koren, Computer Arithmetic Algorithms. Massachusets USA: A.K Peters, 2002.

[18] R. Kuc, Introduction to Digital Signal Processing. New York USA: McGraw-Hill
Book Company, 1988.

[19] W. Li and M. Tomisawa, “Transposed-farrow-structure-based multirate filters for
symbol timing synchronization in software defined radio (sdr),” IEEE Transactions,
pp. 1668–1672, 2004.

[20] J. Mitola, “Software radios: Survey, critical evaluation and future directions,” Pro-
ceedings of National Telesystems Conference, 1992.

[21] ——, “Software radios,” IEEE communications Magazine, pp. 24–38, May 1995.

[22] Y.Ñeuvo, C. Dong, and S. Mitra, “Interpolated finite impulse response filters,” IEEE
Trans. Acoustics., Speech, Signal Proceesing, vol. 32, no. 6, pp. 563–570, June 1984.

[23] D. A. Patterson and J. L. Hennessy, Computer Organization and Design, The Hard-
ware/Software Interface. San Mateo USA: Morgan Kaufmann, 1994.

[24] Proakis, Digital Signal Processing in Telecommunications. New Jersey: Prentice
Hall, 1995.

[25] T. S. Rappaport, Wireless Communications Principles and Practice. New Jersey
USA: Prentice-Hall, Inc., Englewood Cliffs, 1983.

[26] G. B.-B. Richard J. Hartnett, “Improved filter sharpening,” IEEE Transactions on
Signal Processing, vol. 43, no. 12, pp. 2805–2810, December 1995.

[27] L. R. R. Ronald E. Crochiere, Multirate Digital Signal Processing. New Jersey USA:
Prentice-Hall, Inc., Englewood Cliffs, 1983.

[28] S. Samadi, “Explicit formula for improved filter sharpening polynomial,” IEEE
Transactions on Signal Processing, vol. 9, no. 10, pp. 2957–2959, October 2000.

[29] W. Tuttlebee, Software Defined Radio. England: John Wiley and Sons, LTD, 2002.

[30] P. Vaidyanathan and S. K. Mitra, “Very low sensitivity fir filter implementation
using.”

