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Abstract 

 

Computer performance has improved tremendously since the development of the first 

all-purpose, all electronic digital computer in 1946. However, engineers, scientists 

and researchers keep making more efforts to further improve the computer systems 

performance to meet the demanding requirements for many applications such as 

Computer Vision and Image Processing which requires a high computational power 

to solve data-intensive applications in real-time. 

 

There are basically three ways to improve the computer performance of algorithms in 

terms of computational speed. One way is increasing the clock speed; this parameter 

is determined by the worst-case delay in the datapath. The datapath elements can be 

rearranged such that the worst-case delay is reduced. Furthermore, it is possible to 

reduce the number of datapath actions taken in a single clock cycle. However, such 

attempts at reducing the clock cycle time have an impact on the number of Clocks per 

Instructions (CPIs) needed to execute the different instructions. Another way is to 

reduce the CPI by increasing the hardware concurrency. The final option consists in 

reducing the number of instructions; for this purpose it is possible to replace simple 

instructions by more complex ones so that the overall program executes fewer 

instructions. Once again any attempt to introduce new complex instructions has to be 

carefully balanced against the CPI, the clock cycle time, and the dynamic instruction 

frequencies.  
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Special-purpose parallel systems and, in particular the ones referred to as systolic 

arrays are very attractive approaches for handling many computationally-intensive 

applications. These systems consist of an array of identical Processing Elements (PE) 

executing the same operations on a set of data. These arrays capitalize on regular, 

modular, rhythmic, synchronous, concurrent processes that require intensive, 

repetitive computations.  

 

The main obstacle to the widespread use of application-specific arrays of processors 

is development time, cost and their capacity to support a single algorithm at the same 

time. Recently, the use of reconfigurable hardware devices in the form of Field 

Programmable Gate Arrays (FPGAs) has been proposed as a means to implement 

parallel high performance solutions at an affordable price. These circuits provide a 

homogeneous surface of general-purpose logic elements which can be configured as 

often as desired to implement any combinational or sequential circuit. 

 

Parallel processing architectures based on FPGAs provide an alternative to faster 

clock performance. This characteristic turns this approach into an attractive tool for 

high performance architecture implementation. 

 

Low-level image processing operators play a fundamental role in modern image 

processing and computer vision algorithms. These operators exhibit natural 

parallelism that can be easily exploited using array of processors implemented with 

FPGAs. 

 

Traditionally systolic array implementations are special purpose since they fit to one 

special algorithm; however in order to provide a higher degree of flexibility and 

generalization certain level of programmability support is essential.  There have been 

previous efforts to develop general purpose systolic arrays; however these 

implementations require large local memories, and high-bandwidth for data 

communication between processors and global memory.  
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Within this context, this dissertation addresses the design and development of an 

FPGA-based image processing hardware architecture using a simple, resource-limited 

systolic array. The architecture is aimed to support operations involved in common 

low-level image processing algorithms which include 2D convolution, image 

filtering, matrix-matrix multiplication, morphological operations and pyramid 

processing. Furthermore, the architecture has been designed to pursue the 

implementation of higher complexity algorithms such as motion estimation, which 

has also been implemented in order to verify the generalization of the proposed 

schema. The architecture can achieve a processing rate that allows performance in 

real time, consuming a small amount of area. This feature allows replicating the 

architecture modules inside the same FPGA several times, consuming a small 

quantity of power. 

 

The parallelism of this architecture has been explored for different key parameters. 

Different blocks in the architecture have been developed to generate a variety of 

operations, with different tradeoff in size and performance based on user-defined 

parameters. These parameters include the bit-width, array size, window size, image 

size and the application to be performed. This set of parameters determines the 

complexity of the operations in hardware, performance, power consumption, 

reliability and area occupancy which can guide for tradeoff during implementations 

for a particular application.  

 

Memory optimization has been done at architectural-level in order to meet the best 

area-speed-power tradeoff. This was achieved by reducing the amount of memory 

accesses through memory splitting into buffers. In the context of memory bandwidth, 

an efficient balance between on-chip and off-chip memory has to be obtained to meet 

the best power-bandwidth tradeoff.  

 

A complete image processing system usually requires a sequence of different tasks to 

be performed on an image. The intermediate result of one task is just the input of the 
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next one. This process requires that data processed in the first stage are reused in 

subsequent stages. To facilitate the movement of the information among different 

phases of processing, in the proposed architecture Router elements are employed.  

 

Using Routers it is possible to direct data between processing blocks that perform 

different algorithms inside the same architecture to chain results from these different 

processing stages. Furthermore Routers improve the system scalability constituting a 

means to increase the number of processing blocks inside the system   

 

From high level, the architecture resembles a pipeline schema where a group of 

buffers stores data to be sent to the next processing block via Routers elements. This 

schema highly improves the architecture flexibility, since data movements among 

processing stages can be defined by the user. 

 

The main contributions of the thesis are the following: 

 

 Proposal of a new, high performance, flexible hardware architecture 

specialized in low-level processing under real time, which implies a 

processing rate of at least 30 frames per second, required in most of video 

standards. 

 Generalization of the architecture as a hardware platform capable for test and 

implementation of higher complexity algorithms. 

 Implementation of an enhanced systolic array that overcomes its inherent 

constraints such as extensibility (in the sense that it is impossible to produce 

an array to match all the possible sizes of different problems), speed limitation 

and high latency for large arrays. 

 Implementation of a mechanism for easy scalability that allows enhancing the 

system by adding modules without redesigning the current basic structure. 

 Implementation of a mechanism to chain processes in order to solve higher 

complexity algorithms. 
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 Analysis of area-speed-power tradeoff between the architecture main 

parameters. 

 Analysis of constraints in area-performance behavior. 
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Resumen 

 

El desempeño computacional se ha mejorado tremendamente desde el desarrollo de la 

primera computadora totalmente electrónica de propósito general en 1946. Sin 

embargo, los ingenieros, científicos e investigadores siguen realizando esfuerzos que 

permitan obtener mejoras en el desempeño de los sistemas computacionales para 

satisfacer las exigencias de muchas aplicaciones tales como la Visión por 

Computadora, que requiere un alto poder computacional en la resolución de 

aplicaciones intensivas en datos bajo condiciones de tiempo real. 

 

Básicamente hay tres formas de mejorar el desempeño de los algoritmos en términos 

de velocidad computacional. Una forma consiste en aumentar la velocidad del reloj, 

este parámetro se determina por el peor retardo en el datapath. Los elementos 

datapath se pueden reorganizar de manera tal que el retardo se reduzca. Además, es 

posible reducir el número de acciones que realiza el datapath en un solo ciclo de reloj. 

Sin embargo, tales tentativas por reducir el tiempo de ciclo de reloj tienen un impacto 

sobre el número de Ciclos por Instrucciones (CPIs) necesarias para ejecutar las 

diferentes instrucciones. Otra forma consiste en reducir los CPIs aumentando la 

concurrencia de hardware. La opción final consiste en reducir el número de 

instrucciones, para este propósito es posible reemplazar instrucciones simples por 

instrucciones más complejas de tal manera que el programa total ejecuta menos 

instrucciones. De nueva cuenta, cualquier tentativa por introducir nuevas 
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instrucciones complejas tiene que ser cuidadosamente balanceada contra los CPIs, el 

tiempo del  ciclo de reloj y las frecuencias de instrucciones dinámicas. 

 

Los sistemas paralelos de propósito específico y en particular los conocidos como 

arreglos sistólicos resultan ser enfoques muy atractivos para el manejo de muchas 

aplicaciones computacionalmente intensivas. Estos sistemas consisten de un arreglo 

de Elementos de Procesamiento (PE) idénticos que ejecutan la misma operación sobre 

un conjunto de datos. Estos arreglos toman ventaja de los procesos concurrentes, 

regulares, modulares, rítmicos, sincrónos, que requieren cálculos repetitivos e 

intensivos.   

 

Los principales obstáculos  para extender la utilización de los arreglos de 

procesadores de aplicación específica son el tiempo de desarrollo, el costo y la 

capacidad que tienen de dar soporte a un solo algoritmo a la vez. Recientemente, el 

empleo de dispositivos de hardware reconfigurables en forma Arreglos de 

Compuertas Programables en Campo (FPGA) se ha propuesto como un medio para 

implementar soluciones paralelas de alto rendimiento a un bajo costo. Estos circuitos 

proporcionan una superficie homogénea de elementos lógicos de propósito general 

que se pueden configurar tan a menudo como sea necesario para implementar 

cualquier circuito combinacional o secuencial. 

 

Las arquitecturas de procesamiento en paralelo basadas en FPGAs proporcionan una 

alternativa para un desempeño más rápido del reloj. Esta característica convierte a 

este enfoque en un instrumento atractivo para la puesta en práctica de arquitectura de 

alto rendimiento. 

 

Los operadores de procesamiento de imágenes de bajo nivel juegan un papel 

fundamental en los algoritmos de procesamiento de imágenes y de visión por 

computadora modernos. Estos operadores presentan un paralelismo natural que pude 
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ser aprovechado fácilmente  empleando arreglos de procesadores implementados con 

FPGAs. 

 

Tradicionalmente, los arreglos de procesadores sistólicos son de propósito específico 

dado que sólo resuelven un algoritmo determinado, sin embargo, para proporcionarles 

un mayor grado de flexibilidad y generalidad es necesario proporcionar cierto nivel 

de programabilidad. Previamente se han realizado esfuerzos para desarrollar arreglos 

sistólicos de propósito general, sin embargo, estas implementaciones requieren 

memorias locales grandes y un gran ancho de banda para la comunicación de datos 

entre los procesadores y la memoria global. 

 

Dentro de este contexto, este trabajo de investigación aborda el diseño y desarrollo de 

una arquitectura hardware versátil, basada en tecnología FPGA, para el 

procesamiento de imágenes, empleando un arreglo sistólico simple y recursos 

limitados. La arquitectura tiene como objetivo dar soporte a las operaciones 

involucradas en algoritmos de procesamiento de bajo nivel de imágenes comunes, 

entre los que se encuentran convolución 2D, filtrado, multiplicación de matrices, 

operaciones morfológicas y procesamiento piramidal. Además, la arquitectura se ha 

diseñado buscando la implementación de algoritmos de mayor complejidad tales 

como la estimación de movimiento, que también ha sido implementada para verificar 

la generalización del esquema propuesto. La arquitectura puede alcanzar una razón de 

procesamiento que permite desempeño en tiempo real, consumiendo una pequeña 

cantidad de área. Esta característica permite replicar los módulos de la arquitectura 

varias veces dentro del mismo FPGA, consumiendo una cantidad de potencia 

reducida. 

 

En esta arquitectura se ha explorado el paralelismo para los diferentes parámetros 

principales. Diferentes bloques en la arquitectura se han desarrollado para generar 

una variedad de operaciones, con diferentes compromisos en tamaño y desempeño 

con base en parámetros definidos por el usuario. Estos parámetros incluyen el número 
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de bits, el tamaño del arreglo, el tamaño de la ventana, el tamaño de la imagen y la 

aplicación a ser realizada. Este conjunto de parámetros determina la complejidad de 

las operaciones en el hardware, el desempeño, el consumo de potencia, la 

confiabilidad y la ocupación de área que proporcionan una guía para determinar los 

compromisos durante la implementación de una aplicación en particular. 

 

Se ha realizado optimización de memoria a nivel arquitectural para encontrar el mejor 

compromiso entre área-velocidad-potencia. Esto se pudo alcanzar reduciendo la 

cantidad de accesos a memoria dividiéndola en buffers. En el contexto de ancho de 

banda de memoria, se debe obtener un balance eficiente entre la memoria interna y la 

memoria externa para encontrar el mejor compromiso entre potencia-ancho de banda.   

 

Un sistema de procesamiento de imágenes completo por lo general requiere realizar 

una secuencia de tareas diferentes sobre una imagen. El resultado intermedio de una 

tarea es la entrada de la siguiente. Este proceso requiere que los datos procesados en 

la primera etapa sean reutilizados en  etapas subsecuentes. Para facilitar el 

movimiento de la información entre diferentes fases de procesamiento, en la 

arquitectura presente se utilizan elementos Ruteadores. 

 

Utilizando Ruteadores es posible dirigir los datos entre bloques de procesamiento que 

realizan algoritmos diferentes dentro de la misma arquitectura para encadenar 

resultados de etapas de procesamiento diferentes. Además los Ruteadores mejoran la 

escalabilidad del sistema ya que constituyen un medio para incrementar el número de 

bloques de procesamiento dentro del sistema. 

 

Vista en alto nivel, la arquitectura asemeja un esquema de pipeline donde un grupo de 

buffers almacenan datos para ser enviados al siguiente bloque de procesamiento vía 

elementos de Ruteadores. Este esquema mejora la flexibilidad de la arquitectura ya 

que el movimiento de los datos entre etapas de procesamiento puede ser definido por 

el usuario. 



 xi

Entre las principales contribuciones de este trabajo se puede mencionar: 

 

 Propuesta de una nueva arquitectura flexible de alto desempeño, especializada 

para el procesamiento de bajo nivel de imágenes en tiempo real, lo que 

implica una razón de procesamiento de al menos 30 cuadros por segundo, 

requerido en la mayoría de los estándares de video. 

 Generalización de la arquitectura para conformar una plataforma hardware 

que permita la implementación y prueba de algoritmos de mayor complejidad. 

 Implementación de un arreglo sistólico mejorado que supera las restricciones 

inherentes a este tipo de elementos, tales como la extensibilidad (en el sentido 

de que es imposible producir un arreglo para todos los tamaños posibles de los 

diferentes problemas), limitación de velocidad y una alta latencia en arreglos 

grandes. 

 Implementación de un mecanismo para un fácil escalamiento del sistema que 

permite realizar mejoras agregando módulos sin tener que rediseñar la 

estructura básica actual.  

 Implementación de un mecanismo de encadenamiento de procesos para 

resolver algoritmos de mayor complejidad. 

 Análisis del compromiso entre área-velocidad-potencia entre los principales 

parámetros de la arquitectura 

 Análisis de las restricciones en el comportamiento área-desempeño 
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Chapter 1  

Introduction 
 

 

1.1 Motivation 

 

Real-time image processing systems are finding many new applications in areas such 

as real time video rate processing, medical systems, multimedia and mobile systems. 

In building these systems, designers have essentially three options: developing the 

vision algorithms in software and running them on a standard processor, designing 

custom hardware specially tailored for the application like Application Specific 

Integrated Circuits (ASICs), or the use of programmable hardware. 

 

The processing of images by computer is time costly due to the number of operations 

required and the volume of data to be processed [1]. The task is even more complex 

when the processing has to be carried out in real time. In order to meet the desired 

requirements of achieving the highest performance at lowest cost under real-time, 

special-purpose hardware architectures are often used. For performance 

improvement, reconfigurable computing systems have demonstrated to be a valuable 

alternative to traditional implementations. Reconfigurable solutions can often be 

orders of magnitude faster and/or less expensive than conventional alternatives like 

ASICs [2, 3]. Additionally reconfigurable systems have several advantages such as 

reduced development time; the capability to alter the hardware circuit after the system 

has been deployed in the field, and the possibility to implement modular and scalable 

applications.  
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General Purpose Processors (GPPs) are flexible enough to implement a variety of 

applications using the same device; however they can not always offer the 

computational power required for providing fast implementation of computationally 

intensive operations. In custom designed circuits functionality is hardwired once and 

cannot be changed again. ASIC implementations are usually efficient and can 

perform operations faster than other approaches; furthermore ASICs take advantage 

of existing parallelism in many image processing algorithms. But they are not 

implemented in practice because the required resources are not usually available at an 

affordable price and the design process takes a long time. These facts have usually 

limited researchers to the former option, which is to develop algorithms that can be 

executed as fast as possible on standard processors. 

 

In the last few years, the third solution for real-time image processing system 

designers has become viable due to the rapid growth in capacity and speed of 

programmable hardware, which has demonstrated its efficiency to execute complex 

algorithms satisfying the simultaneous demand for application performance and 

flexibility [4, 5].  Programmable hardware has also been used successfully in some 

non signal processing applications [6]. FPGA technology allows designers to 

configure the chip according to the specifications of the algorithm cheap and quickly 

because it eliminates the most expensive and time consuming part of ASIC 

fabrication. It also reduces the debugging time because one can typically re-compile 

the design in a few hours and reconfigure the FPGAs in less than a second. FPGA 

technology presents four main benefits: 

 

1. Performance. FPGAs enable custom computing systems to be highly 

specialized to specific data, as well as specific applications. One typical 

optimization is to implement highly parallel architectures that can exploit 

significant data-level parallelism. By capitalizing on these opportunities, a 

highly programmable system can be constructed that attains near ASIC 

performance. 
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2. Cost Effectiveness. Configurable computing can be used to reduce system 

costs through two approaches: hardware reuse and low Non-Recurring 

Engineering. A number of research efforts have demonstrated time-shared 

methods for simulating a large circuit on a smaller FPGA. Furthermore, as the 

feature size of semiconductor processes shrink FPGAs technology become 

much more cost effective. 

3. Custom I/O. FPGAs provide an extremely rich and flexible set of 

programmable I/O signals. These components give the system designer an 

opportunity to reuse existing hardware, or commit earlier to a new hardware 

design. The benefits of custom I/O extend beyond the prototype stage; for 

example system functionality may change after deployment, and the ability to 

rewire system I/O through reprogramming the FPGA can be an invaluable 

advantage. 

4. Fault-Tolerance. Some recent efforts have investigated the benefits of using 

FPGAs to provide fine-grained fault recovery. This approach has the benefit 

of increasing system reliability for much lower cost than the traditional 

approach of circuit and subsystem redundancy. 

 

Low-level image processing operators play a fundamental role in modern image 

processing and computer vision algorithms. These operators exhibit natural 

parallelism that can be easily exploited using array of processors implemented with 

reconfigurable hardware.  

 

FPGA implementations of this kind of applications have the potential to be 

parallelized using a mixture of spatial and temporal parallelism. Pragmatically, the 

degree of parallelization is subject to the processing mode and hardware constraints 

imposed by the system. Based on previous work [7-9] three main constraints have 

been identified for implementation: timing (limited processing time), bandwidth 

(limited access to data), and resource (limited system resources).   
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 Timing constraints. The data rate requirements of the application impose a 

timing constraint which in turn drives the other constraints, when real-time is 

demanded this restriction become crucial. If there is no requirement on 

processing time then the constraint on bandwidth is eliminated because 

random access to memory is possible and desired values in memory can be 

obtained over a number of clock cycles with buffering between cycles.  

 Bandwidth constraints. Some operations require that the image be partly or 

wholly buffered because the order that the pixels are required for processing 

does not directly correspond to the order in which they are input. Frame 

buffering requires large amounts of memory. Typically FPGAs use off-chip 

memory for frame buffering but this may only allow a single access to the 

frame buffer per clock cycle, which can be a problem for the many operations 

that require simultaneous access to more than one pixel from the input image. 

 Resource constraints. This issue arises due to the finite number of available 

resources in the system such as local and off-chip RAM, or other function 

blocks implemented on the FPGA. Programming without consideration of the 

hardware that will be generated has a direct effect on the speed of the 

implementation. 

 

These constraints are inextricably linked and manifest themselves in different ways 

depending on the processing mode.  

 

Traditionally these issues have been faced developing application specific 

architectures optimized to be used in the systems for which they were designed. In 

order to improve performance some well known pipeline structures have been used. 

They help to reduce memory overhead when predictable scanning schemas are used; 

however, it turns out that they cannot cope with unpredictable image scanning which 

has proved to be very efficient in the implementation of certain operators. 

Furthermore pipelining results in an increase in logic block usage, caused by the need 

to construct pipeline stages and registers. While the impact of pipeline registers on 
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logic block usage will be minimal, care must still be taken to make efficient use of the 

available logic blocks. 

 

This thesis aims to make progress on the question of whether reconfigurable 

computing will supply a viable option to fulfill the requirements of real-time image 

processing systems of high performance, high flexibility and low power consumption. 

For this purpose it is essential to explore new design and implementation strategies at 

the architectural level. Also it is relevant to deal with issues arising from the 

integration of reconfigurable hardware with a processor including: 

 

 To make an efficient use of area avoiding a poor utilization of the silicon 

resources available. 

 To reduce latencies due to increased communication. 

 To avoid a reduced bandwidth looking for scalability. 

 Smart use of memory. 

 To implement a cost-effective reconfigurable processor for intensive 

computer vision applications applying reconfigurable techniques. 

 To achieve a good tradeoff in computer vision system design under the 

Reconfigurable Computing approach. 

 

Many complex image processing algorithms use low-level results of window 

operators as primitives to pursue higher level goals [10, 11]; thus another problem to 

be addressed consists of finding a way to extend the architecture capability and 

flexibility to support these higher level applications. In this case, several issues must 

be taken into account: 

 

 To use a reduced amount of on-chip memory for buffering data. 

 Low cost of reconfiguration. 

 Smart parameters transfer. 

 High potential for scalability. 
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1.2 Objectives and Contribution 

 

The main objective of this thesis is to demonstrate that making use of parallelism of 

data present in low-level image operators, and reconfiguration techniques it is 

possible to implement a versatile reconfigurable systolic architecture for low-level 

image processing achieving high performance and low power consumption in real 

time. 

 

The research aims to build a system for such commitments providing the processing 

of 30 frames per second on a 640×480 sized grey level images: 

 

 To implement a high performance flexible architecture specialized in low-

level processing under real time. 

 To propose a parallel architecture based on reconfigurable modules to execute 

a sequence of algorithms according to a predefined pattern. 

 To implement a customizable systolic array allowing the use of different 

window size in image operations. 

 To analyze area-speed-power tradeoff between the architecture’s main 

parameters. 

 To optimize architecture performance according to metrics like: 

 Processing Time  

 Area Used 

 To propose guidelines to apply Hardware/Software co-design in the proposed 

architecture. 

 To define a testbench to quantify the improvement obtained with the proposed 

reconfigurable architecture compared to previous approaches. 

 

The research approach and the key contributions of the thesis are as follows: 
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 Design and development of a new flexible high performance FPGA-based 

hardware architecture for window-based image processing, that can be 

generalized to support other algorithms of higher complexity. 

 Implementation of a systolic array with extended capacities to reduce its 

inherent constraints such as extensibility (in the sense that it is impossible to 

produce an array to match all the possible sizes of different problems). 

 Determining metrics to reduce the reconfiguration cost associated to 

reconfiguration techniques. 

 Implementation of a mechanism to chain processes in order to solve 

algorithms of higher complexity. 

 Analysis of mechanisms to build a hardware library of reusable image 

processing modules. 

 Analysis of potential application for the architecture and its implications for 

implementation. 

 

 

1.3 Thesis Organization 

 

The thesis is organized as follows. Chapter 2 gives a background to the work 

undertaken in the thesis. It explains the concept of reconfigurability upon which this 

research is based, along with a review of other works that led to this research. Some 

mechanisms of reconfiguration are described in detail to identify its major 

characteristics. Previously proposed hardware implementations of image processing 

tasks are briefly analyzed and discussed in order to identify some problems, 

limitations and drawbacks. This chapter details the different FPGA approaches for 

image processing hardware implementations and concludes presenting some unsolved 

problems to be addressed using reconfigurable computing.  
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Chapter 3 reviews different characteristics of parallel architectures for image 

processing discussing in detail the concepts of systolic processing, pipeline and 

Single Instruction Multiple Data (SIMD)  in the context of image processing as well 

as their application to a special kind of operators denominated as window-based 

operators and concludes with some considerations for an FPGA implementation of 

such systems.  

 

Chapter 4 introduces the systolic architecture for window-based image processing 

providing its functional requirements as well as a top-down description of its main 

modules and their operation. The data movement and the memory schema used are 

presented to highlight the mechanism to reduce number of access to memory.  

 

Chapter 5 provides the FPGA implementation details of the architecture and a 

description of the hardware used to test and to implement the system. Furthermore an 

analysis of the considerations for the implementation of fixed-point operations is 

performed in order to achieve a small amount of error. Simulation and synthesis 

results, timing and performance of the proposed architecture are presented using 

standard metrics for evaluation; a special section of this chapter is devoted to the 

performance analysis and discussion of the architecture and the comparison with 

other technologies. A brief discussion is carried out at the end of the chapter 

highlighting the main features of the architecture; modularity, communication, 

memory and data flow.  

 

Chapter 6 presents some processing applications mapped to the architecture: 

convolution, filtering, matrix multiplication, pyramid decomposition, morphological 

operators, and template matching to validate the correct functionality of the proposed 

architecture. One section of this chapter is devoted to determine the silicon area 

occupied by the architecture in order to use this parameter as a standard metric for 

evaluation. The synthesis results obtained for each operator are presented to make a 
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comparison with previous systems implemented, highlighting the main improvements 

achieved with the present implementation.  

 

Chapter 7 describes some concepts of motion estimation algorithms from a video 

coding perspective, focusing on block based techniques; furthermore a short review 

of previous work in literature is presented. In this chapter some characteristics of 

motion estimation algorithm that allow the representation as a window operator are 

clarified to determine the modifications required to the implementation of this 

algorithm. The synthesis results for this version of the architecture are presented as 

well as a discussion of the performance achieved. 

 

Finally chapter 8 presents the thesis conclusions emphasizing the advantages 

provided by the implementation of the present architecture in comparison with 

previous works, the accomplishments and contributions are detailed. In addition some 

potential applications and extensions for the architecture are discussed in order to 

outline the future work. In this section the possibility of using dynamic 

reconfiguration is remarked due to this is a strong research direction to follow. 

 

 

 

 



 10

Chapter 2  

Background and Previous Work 
 

 

There are two traditional approaches to implement digital logic systems: mapping an 

algorithm to a General Purpose Processor and designing custom hardware that 

implements an algorithm. GPPs can implement a wide variety of tasks, but do not 

fully utilize the potential power of the silicon with which they are implemented. The 

other approach is to design custom silicon for a particular task. The custom silicon is 

commonly known as an ASIC. 

 

ASICs are designed specifically to perform a given computation, and thus they are 

very fast and efficient when executing the exact computation for which they were 

designed. However, the circuit cannot be altered after fabrication. This forces a 

redesign and refabrication of the chip if any part of its circuitry requires modification. 

This is an expensive process, especially when one considers the difficulties in 

replacing ASICs in a large number of deployed systems. 

 

ASICs can be used to carry out fixed applications that have to be executed with the 

minimum amount of area, delay and energy costs. As the size of the application 

grows, it becomes practically impossible to implement it in silicon. This is where the 

GPP steps in. Processors execute a set of instructions to perform a computation. By 

changing the software instructions, the functionality of the system is altered without 

changing the hardware. However, the downside of this flexibility is that the 

performance may diminish, if not in clock speed then in work rate, and is far below 

than an ASIC. The processor must read each instruction from memory, decode its 

meaning, and only then execute it. This results in a high execution overhead for each 
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individual operation. Additionally, the set of instructions that may be used by a 

program is determined at the fabrication time of the processor. Any other operations 

that are to be implemented must be performed out of existing instructions. 

 

The reconfigurable computing domain has emerged as a new computing paradigm to 

fill the gap between ASICs and GPPs [12], achieving potentially much higher 

performance than software, while maintaining a higher level of flexibility than 

hardware. The goal of reconfigurable systems is to achieve implementation efficiency 

approaching that of specialized logic while providing the silicon reusability of general 

purpose processors [13]. 

 

FPGAs are the building blocks for reconfigurable computing. The ability to exploit 

the parallelism often found in the algorithms, as well as the ability to support 

different modes of operation on a single hardware substrate, gives to these devices a 

particular advantage over fixed architecture devices such as serial Central Processing 

Units (CPUs) and Digital Signal Processors (DSPs). Furthermore, development times 

are substantially shorter than dedicated hardware in the form of ASICs, and small 

changes to a design can be prototyped in a matter of hours. Adding a reconfigurable 

portion to a system, enables it to support a broader range of applications and lets 

developers adapt the hardware to changing needs and evolving standards. Thus a 

reconfigurable platform offers the advantages of both embedded software and custom 

hardware. 
 
For optimum implementation of algorithms used in high-performance computing 

applications, reconfigurable hardware is a potential option to be applied. FPGAs are a 

more effective solution because the architecture can be defined at runtime. Both 

connectivity and processing capabilities can be tailored to suit the needs of the 

algorithm being implemented.  
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In particular, the largest part of the die area of an FPGA is consumed by the 

configurable routing and this is important because in general, the biggest limiting 

factor of any implementation of a parallel algorithm is data passing [14]. For this 

reason FPGAs will always offer significant opportunities of improvement over any 

GPP with fixed communication buses. The majority of the silicon used by a GPP is 

not actually operating on each clock cycle because there is generally only one 

instruction being executed at a time and each of those instructions rarely use a 

significant fraction of the capability of the processor. FPGAs offer a big advantage 

here not only because all of the hardware can be executing on each clock cycle, but 

also because the mix of computational elements can be tuned to the precise 

requirement of the application. 

 

For these reasons, among others, reconfigurable computing offers significant 

advantages over fixed computing and these advantages are overwhelming in the area 

of high performance computing such as Video Processing [14].  

 

 

2.1 FPGAs 

 

The most common reconfigurable devices today are Field Programmable Gate 

Arrays. An FPGA is a programmable logic device that supports implementation of 

logic circuits, its real advantage is that the chip can be erased and re-programmed any 

number of times making the process of debugging both quick and cheap, requiring 

just one initial purchase cost. 

 

Traditionally, FPGAs were used primarily for prototyping. A designer could quickly 

prototype his designs in hardware to check that the design meets the specification and 

provides a correct solution. Through this use, it is unnecessary, until the final stages 

of prototyping, to ever fabricate the hardware design being developed. This 
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drastically reduces both the cost and the time of hardware development [15]. In recent 

years, both the performance and capacities of FPGAs have grown such that they can 

now be used to implement many end products. While the process of moving the 

FPGA into commercial products has been used in embedded systems for a while, it is 

only now beginning to be used in non-embedded computing [16]. 
 

Typical architecture of a Xilinx FPGA comprises a regular array of Configurable 

Logic Blocks (CLBs) with routing resources for interconnection and it is surrounded 

by programmable Input/Output Blocks (IOBs). CLBs provide the functional elements 

for constructing logic while IOBs provide the interface between the pins of the 

package and the CLBs. FPGAs are widely used as a prototype before fabricating a 

VLSI design, or can be used directly in a product. Figure 2.1 shows the basic 

structure of Xilinx FPGAs [17].  

 

 

Figure 2.1 Basic structure of Xilinx FPGAs. 
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The structure of a CLB can be as simple as a transistor or as complex as a 

microprocessor [18]. The CLBs can be arranged in a row or, more commonly, in a 

matrix form. The number of CLBs available also varies from vendor to vendor. The 

interconnection network serves as the underlying fabric to provide flexible 

interconnection between CLBs for logic synthesis. Of the three building blocks in an 

FPGA, the interconnection network typically occupies maximum space [19].  

 

A CLB is constructed from the following components: 

 

1. Look up tables (LUT): A CLB contains a certain number of LUTs that are 

the basic computing elements inside FPGAs. An n-input LUT is an n-address 

memory used to store the 2n possible values of an n-inputs boolean function. 

With an n-input LUT it is possible to implement any function with n 

variables. The values of the function for any combination of the n variables is 

computed and stored in the LUT. The actual variables are used to address the 

LUT at the location where the correct value is stored. The result appears at the 

LUT output. 

2. Flip Flops (FF): Flip Flops are used to temporally store values. The value to 

be stored in the FF can be the LUT-output or a signal with an external source. 

3. Multiplexers (MUX) : Multiplexers are used in CLBs to connect the LUT-

output or another CLB-input signal to the FF-input or to a CLB-output 

 

Figure 2.2 shows a Xilinx Virtex II CLB [20] 
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Figure 2.2 Xilinx Virtex CLB 

 

FPGA chips can be classified into three categories according to the structure of their 

configurable parts [21]. These categories are Static Random Access Memory 

(SRAM) based FPGAs, Electrically Erasable and Programmable Read Only Memory 

(EEPROM) based FPGAs, and antifuse-based FPGAs. Because the configuration of 

an antifuse is permanent, antifuse-based FPGAs are one time programmable devices. 

The configuration of an EEPROM-based FPGA can be changed electrically using 

high-voltage electrical signals. SRAM-based FPGA chips can be reconfigured by 

loading the bits in the configuration file into the SRAM memory cells. These chips 

can be reconfigured at run time by loading a new configuration to the SRAM cells. 

Since they use the same technology as computer memories, they have to be 

configured each time the system is powered on. Because the ease of configuration, 

SRAM-based FPGA chips are the most widely used FPGA chips. Also, theoretically 

these chips can be reprogrammed an infinite number of times. 

 

The design process for FPGAs is aided through the use of a variety of CAD tools. 

These tools allow the designer to describe the design using various specification 

formalisms such as VHDL [22], Verilog [23], Handel-C [24], state machines, or other 
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proprietary languages. Using this specification, the tools perform synthesis of the 

design to generate a gate-level description of the system. This is followed by place 

and route tools which fragment the design into the FPGAs basic logic components 

and determines optimal interconnecting schemas.  

 

 

2.2 Reconfigurable Computing 

 

A Reconfigurable Computing (RC) system can be defined as a computer system that 

contains one or more general purpose processors and one or more configurable 

hardware components that are designed for their hardware functionality to be 

configured by the user for different applications [25]. Usually the general purpose 

processor acts as the host processor and the reconfigurable hardware components are 

used as a coprocessor. The users of the RC system typically partition their 

applications and execute the computationally complex sections on the reconfigurable 

hardware to potentially increase performance. 

 

Reconfigurable computing exploits configurable computing devices, such as FPGAs, 

so they can be customized to solve a specific application [7]. Due to its potential to 

accelerate a wide variety of applications, reconfigurable computing has become the 

subject of a great deal of research. Its key feature is the ability to perform 

computations in hardware to improve performance, while maintaining the flexibility 

of a software solution. This flexibility is significant as it reduces the costs in 

comparison to an ASIC when changes to the system are required.  

 

Many types of programmable logic are available. The current range of offerings 

includes everything from small devices capable of implementing only a handful of 

logic equations to huge FPGAs that can hold an entire processor core. In addition to 

this difference in size there is also much variation in architecture. 
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At the low end of the spectrum are the original Programmable Logic Devices (PLDs). 

These were the first chips that could be used to implement a flexible digital logic 

design in hardware. Other names that might be found for this class of devices are 

Programmable Logic Array (PLA), Programmable Array Logic (PAL), and Generic 

Array Logic (GAL). As chip densities increased, the PLD manufacturers evolved 

their products into larger parts called Complex Programmable Logic Devices 

(CPLDs). For most practical purposes, CPLDs can be thought of as multiple PLDs in 

a single chip. The larger size of a CPLD allows the implementation of more 

complicated designs.  

 

At the high-end, in terms of numbers of gates, FPGAs can be found. These devices 

provide an array of reconfigurable logic resources consisting of combinational logic 

functions, flip-flops, and programmable interconnections. Functionality of current 

FPGA devices is established by programming. 

 

FPGAs have a different architecture than PLDs and CPLDs, and typically offer 

higher capacities.  The primary differences between CPLDs and FPGAs are 

architectural. A CPLD has a somewhat restrictive structure consisting of one or more 

programmable sum-of-products logic arrays feeding a relatively small number of 

clocked registers. The result of this is less flexibility, with the advantage of more 

predictable timing delays and a higher logic-to-interconnect ratio. The FPGA 

architectures, on the other hand, are dominated by interconnections. This makes them 

far more flexible, in terms of the range of designs that are practical for 

implementation within them, but also far more complex to design for. 

 

Another notable difference between CPLDs and FPGAs is the presence in most 

FPGAs of higher level embedded functions, such as adders and multipliers, and 

embedded memories. A related, important difference is that many modern FPGAs 

support full or partial in-system reconfiguration, allowing their designs to be changed 

“on the fly” either for system upgrades or for dynamic reconfiguration as a normal 
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part of system operation. Some FPGAs have the capability of partial reconfiguration 

that allows one portion of the device to be reprogrammed while other portions 

continue running. 

 

FPGAs were originally created to serve as a hybrid device between PALs and Mask- 

Programmable Gate Arrays (MPGAs). Like PALs, FPGAs are fully electrically 

programmable, meaning that the physical design costs are amortized over multiple 

application circuit implementations, and the hardware can be customized nearly 

instantaneously. Like MPGAs, they can implement very complex computations on a 

single chip, with devices currently in production containing the equivalent of over a 

million gates. 

 

FPGAs have an order of magnitude more raw computational power per unit of area 

than conventional processors. For many applications, FPGA implementations of 

algorithms offer substantial improvements in energy consumption and execution 

speed [26] over conventional microprocessor implementations. FPGAs can complete 

more work per unit of time for two key reasons, both enabled by the computation’s 

spatial organization: 

 

 With less instruction overhead, the FPGA packs more active computations 

onto the same silicon die area as the processor; thus, the FPGA has the 

opportunity to exploit more parallelism per cycle. 

 FPGAs can control operations at the bit level, but processors can control their 

operators only at the word level. As a result, processors often waste a portion 

of their computational capacity when operating on narrow-width data. 
  
 

Because of these features, FPGAs had been primarily viewed as glue logic 

replacement and rapid-prototyping vehicles. However, the flexibility, capacity, and 



 19

performance of these devices have opened up new opportunities in high-performance 

computation, forming the basis of reconfigurable computing. 

 

In Figure 2.3 it is shown the tradeoff between flexibility and efficiency as well as the 

position of reconfigurable devices compared to processors and ASICs. 

 

 

Figure 2.3 Computing paradigms 
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allow tasks to be implemented both in time and in space providing a higher level of 
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does not allow for any dynamic adaptation, except maybe for some adjustable 

coefficients. 

 

It has been shown that executing computationally complex sections of applications on 

RC systems significantly reduces the execution time of the applications compared to 

the general purpose processor only systems [27]. However, applications must be 

mapped to FPGA devices before they can be executed on these systems. The mapping 

processes can be performed either manually or automatically using software tools. 

Several applications have been mapped to RC systems including image processing 

algorithms, genetic optimization algorithms, and pattern recognition. 

 

Configurable computing generally presents four main benefits: 

1. Performance. FPGA enable custom computing systems to be highly 

specialized to specific data, as well as specific applications. One optimization 

technique uses a form of partial evaluation, where some of the data are 

assumed static; the FPGA circuit is optimized to take advantage of this static 

data. Another typical optimization is to implement highly parallel 

architectures that can exploit significant data-level parallelism. By capitalizing 

on these optimization opportunities, a highly-tuned, yet programmable, 

system can be constructed that attains near-ASIC performance. 

2. Cost Effectiveness. Configurable computing can be used to reduce system 

costs. A number of research efforts have demonstrated time-shared methods 

for simulating a large circuit on a smaller FPGA [28-30]. Furthermore, as the 

feature size of semiconductor processes shrink, silicon foundries are raising 

mask charges and minimum fabrication runs. These trends are driving low 

volume digital designs away from state-of-the-art process technology, and 

making FPGAs much more cost effective. 

3. Custom I/O. FPGAs provide an extremely rich and flexible set of 

programmable I/O signals. These components give the system designer an 

opportunity to reuse existing hardware, or commit earlier to a new hardware 
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design. The benefits of custom I/O extend beyond the prototype stage, if 

system functionality changes after deployment the ability to rewire system I/O 

through reprogramming, the FPGA can be an invaluable advantage. 

4. Shorter time to market. Products that eventually target ASIC platforms can 

be released earlier using reconfigurable hardware. In many market segments, 

the early market entry compensates for the more expensive and power hungry 

nature of the initial product series. 

 

 

2.2.1 Types of Reconfigurable Computing 

 

There are two types of reconfigurable computing that are characterized based on the 

manner in which they utilize the reconfigurable computing device [31]. The first type, 

which is most broadly used, is Compile Time Reconfiguration [32]. This is when the 

configuration of the computing device is decided at compile time. In this 

environment, the reconfigurable device is programmed at the beginning of execution, 

and remains unchanged until the application has finished. The second type of 

reconfigurable computing is Runtime Reconfiguration (Dynamic Reconfiguration). In 

this computing paradigm, the application consists of a set of tasks that can be 

downloaded into the reconfigurable device [32]. During the execution life of the 

application, the reconfigurable device is re-programmed a number of times from a set 

of tasks.  

 

 

2.2.2 Dynamic Reconfiguration 

 

FPGA reconfiguration typically requires an entire device to be reconfigured even for 

the smallest circuit change, thus interrupting all other circuits operating on the array 



 22

during this period. Ideally, it is desired to configure only the area that is being 

updated, without interrupting the rest of the system operation. This type of 

reconfiguration is referred to as Dynamic Reconfiguration or run-time reconfiguration 

and has been actively researched for the last decade [33, 34].  

 

In the area of reconfigurable computing, dynamic reconfiguration has emerged as a 

particularly attractive technique to increase the effective use of programmable logic 

blocks. Dynamically Reconfigurable Logic (DRL) devices allow the change of the 

device configuration on the fly during system operation. 

 

FPGAs that are not dynamically reconfigurable must be off-line before a 

reconfiguration cycle, partial or full, can begin. If such a suspension is required then 

this limits what can be actually done efficiently on the device. Usage, for example, as 

a programmable algorithm accelerator, is limited in this case, as even small changes 

to functionality become critical to its whole operation. Certain algorithms, therefore, 

become undesirable in this kind of set-up. Such devices also have problems with task 

organization, when multiple tasks are being performed concurrently, as certain tasks 

are likely to complete before others, thus making it difficult to optimize the whole 

design for maximum speed advantage.  

 

If a reconfigurable FPGA only supports complete reconfiguration the disadvantages 

multiply. As such devices increase in density and do not include the ability to 

partially reconfigure; this is likely to become more problematic.  

 

Reconfiguration time is a crucial parameter for any dynamically reconfigurable 

computing system [35]. The reconfiguration time imposes limits on the applications 

that can be efficiently mapped to the reconfigurable hardware. Reconfigurable 

devices, in particular FPGAs, show relatively long reconfiguration times in the range 

of dozens of milliseconds [36]. Consequently, rather long-running application 

functionality is mapped to such devices. For shorter term functionality the 
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reconfiguration overhead can be significant, negating any performance gain over 

software. The trend towards ever larger devices intensifies the problem further, 

because the reconfiguration time is proportional to the amount of configuration data, 

which grows with the device size. 

 

The data required to configure a reconfigurable device is commonly denoted as a 

context [37]. Depending on the capabilities of the device, two basic classes are 

distinguished. Single-context devices store exactly one configuration on the chip. 

Before a new context can execute, the corresponding configuration data has to be 

loaded from off-chip. Conventional FPGAs fall into this category. Multi-context 

devices hold a set of configurations on-chip. At any given time exactly one 

configuration is in use, the so-called active context. To execute a new context, the 

contexts are switched, i.e. a previously inactive, stored context becomes active. Since 

the configuration data does not have to be loaded from off-chip, the context switch is 

significantly speeded up. 

 

In DRL, a circuit or system is adapted over time. This presents additional design and 

verification problems to those of conventional hardware design [38] that standard 

tools cannot cope with directly. For this reason, DRL design methods typically 

involve the use of a mixture of industry standard tools, along with custom tools and 

some handcrafting to cover the conventional tools inadequacies. The lack of 

commercial Computer Aided Design (CAD) tool support and complexity of 

designing dynamically reconfigurable hardware has led to the creation of a number of 

research tools such as JHDL and JBits.  

 

JHDL [39, 40] is a free Java based tool for FPGA design. This tool is a result of BYU 

research. JBits [17, 41] is the only commercial available tool that supports dynamic 

and partial reconfiguration of Xilinx Virtex FPGAs using standard Java functions. 

Xilinx uses this language in its Internet Reconfigurable Logic via standard Java 
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applications. These tools are based on Java language which is the most popular 

software language with Internet support.  

 

Current tools are slow and hardware oriented and there is no way to program such 

systems in a general purpose manner. Other software tools are also required which 

suit reconfigurable systems, such as: 

 

 Simulation Models for dynamic reconfiguration.  

 Automatic design partitioning, based on temporal specifications.  

 Support for generation of relocatable bitstreams.  

 A simulation package for modeling new FPGA architectures.  

 Debugging tools.  

 

Reconfigurable computing is an active research area with several new directions 

being explored to develop better architectures, methodologies, algorithms and 

software tools. There is an acute need for software tools that permit simulation of 

dynamic reconfiguration and mapping of applications onto dynamically 

reconfigurable architectures. 

 

 

2.3 Handel-C 

 

Handel-C [42] is a programming language whose objective is to allow the designer a 

fast prototyping of applications on target FPGA from specifications in a high-level 

language. Handel-C uses syntax similar to conventional C language, with the addition 

of parallel descriptors and some features to handle channels and interfaces.  

 

Sequential programs can be written in Handel-C just as in conventional C, but to gain 

the most benefit in performance from the target hardware, its inherent parallelism 
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must be exploited [40]. As with conventional high level languages, Handel-C is 

designed to allow the expression of the algorithm without worrying too much about 

exactly how the underlying compilation engine works. This philosophy makes 

Handel-C a programming language rather than a hardware description language.  

 

Although Handel-C is inherently sequential, it is possible to instruct the compiler to 

build hardware to execute statements in parallel. Handel-C parallelism is true 

parallelism, it is not the time sliced parallelism, familiar from general purpose 

computers. When instructed to execute two instructions in parallel, they are executed 

at exactly the same instant in time by two separate pieces of hardware. 

 

The principle of Handel-C is the following: during the phase of compilation, every 

instruction on the source program is transformed into a material entity which makes 

one or several treatments on every associated instruction to generate a set of material 

blocks representing all the instructions of the program. The DK design suit 

synthesizes the design and generates a netlist in an EDIF format. The netlist is then 

passed to a vendor place and route tool which generates a placement and routing, and 

finally a bitstream to configure the device. Because of its high abstraction level, 

Handel-C allows coding of complex algorithms without having to consider lower-

level designs. Using Handel-C constructs, the development cycle for the creation and 

testing of FPGA designs can be accelerated. In addition, the package includes a 

library of basic functions and a memory controller to access the external memory on 

the FPGA board.  
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2.4 Related Work 

 

Parallel computing has been major subject of research since at least the early 1980s. 

This approach has permitted to solve complex problems and to implement high-

performance applications in areas such as science and engineering. 

 

A parallel computer is constituted of a set of processors that are able to work 

cooperatively to solve a computational task. This definition is broad enough to 

include parallel supercomputers that have hundreds or thousands of processors, 

networks of workstations, multiple-processor workstations, and embedded systems.  

 

Parallel computers consist of three main building blocks: processors, memory 

modules, and an interconnection network [43]. There has been steady development of 

the sophistication of each of these building blocks, but it is their arrangement that 

most differentiates one parallel computer from another. Parallel computers are 

interesting because they offer the potential to concentrate computational resources, 

whether processors, memory, or I/O bandwidth, on important computational 

problems.  

 

The processors used in parallel computers are increasingly alike to the processors 

used in single-processor systems [43]. Present technology, however, makes it 

possible to fit more onto a chip than just a single processor, so there is considerable 

investigation into what components give the greatest added value if included on-chip 

with a processor. Some of these, such as communication interfaces, are relevant to 

parallel computing. 

 

Special purpose parallel systems can be accomplished using a wide variety of 

technologies. The design and fabrication of a custom VLSI is one approach to 

implementing a special purpose system. The principles of VLSI design have become 

not only a mainstream part of electronics but also of computer science. Recently a 
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large number of new and interesting VLSI designs for basic problems in computer 

science have been produced.  

 

In deciding whether to implement a special purpose parallel system as a custom VLSI 

chip, one have to weigh the advantages against the disadvantages. The arguments in 

favor of a custom VLSI implementation are typically that it is feasible to obtain the 

highest possible performance by that means and that the custom VLSI system can be 

manufactured more cheaply. The latter may be very significant if the chip forms part 

of a high volume production. The major disadvantages of custom VLSI design and 

implementation is that it is a very costly and time consuming process, and that it 

results in a product which can not easily be changed. Although a large number of 

interesting and detailed VLSI algorithm designs have been developed over the last 

decades, remarkably few of them have actually been accomplished as custom chips. 

The reason for this is that few organizations can justify the prohibitive cost of 

producing such a chip.  

 

Most VLSI systems designed today are monolithic and cannot easily be modified or 

improved [44]. A significant factor giving rise to this design difficulty and 

inflexibility is the synchronous nature of such systems. In recent years, a number of 

researchers have been investigating the possibilities of designing alternative forms of 

VLSI systems to overcome the limitations imposed by the traditional 

implementations. Such approaches offer the opportunity to build up complex systems 

by hierarchical composition of simpler ones. The resulting system designs are easier 

to modify and improve, in order to meet changing requirements or to take advantage 

of developments in VLSI technology.  

 

VLSI technology provides an effective approach for high performance image 

processing applications [45]. Since data parallelism can be taken into account fully in 

the system design, VLSI processor arrays have the potentiality for deep parallel 

processing. 
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Due to the regular structure and simple control strategy, VLSI processor array can 

achieve an excellent cost-performance ratio. In some special applications, VLSI array 

is the effective way to decrease the size, the power consumption, the heat dissipation, 

and improve the reliability. 

 
 
VLSI processing architectures have been highly influenced by the systolic array 

approach. A systolic processor is made up of a series of interconnected cells, each 

one of which is designed to carry out operations rhythmically, incrementally, 

cellularly, and repetitively [46]. As H. T. Kung pointed out, systolic arrays design 

results in architectures which are simple and regular and therefore they are both 

modular and expandable [47]. 

 

The computation tasks can be divided into two conceptual categories: compute-bound 

and input/output limited [48]. Systolic array is an effective solution for compute-

bound problems. Being algorithm dedicated, for many computation-intensive image 

processing tasks, systolic arrays can outperform general microprocessors several 

orders of magnitude under the same manufacture technology. However, they usually 

can not be upgraded or adapted to other purposes. Therefore, special purpose VLSI 

solutions are generally used in mature image processing application areas. In this 

regard, they are being rivaled by the field programmable device technology.  

 

In the last decade several companies, like Xilinx, started to offer an attractive 

alternative to custom VLSI implementation based on FPGAs. Reconfigurable 

computing has been successfully used in many compute intensive areas, including 

image processing [49]. Currently, a large number of reconfigurable computing 

solutions are available [19]. Despite the great amount of research done on FPGAs, 

many FPGA-based applications have been algorithm specific. An environment for 

developing applications needs more than just a library of static FPGA configurations, 

perhaps parameterizable, since it should allow the user to experiment with alternative 



 29

algorithms and to develop his own algorithms. There is a need for bridging the gap 

between high level application-oriented software and low level FPGA hardware. 

Many behavioral synthesis tools have been developed to satisfy this requirement. 

These tools allow the user to program FPGAs at a high level without having to deal 

with low level hardware details [50] (e.g. scheduling, allocation, pipelining). 

However, although behavioral synthesis tools have developed enormously, structural 

design techniques often still result in circuits that are substantially smaller and faster 

than those developed using only behavioral synthesis tools.  

 

 

2.4.1 Image Processing Architectures Taxonomy 

 

Architectures for image processing can be classified depending on the type of 

algorithm namely low-level, intermediate-level or high-level. Yet another way to 

classify the architectures is based on the instruction and data streams. The two 

common classes are Single Instruction Multiple Data (SIMD) and Multiple 

Instruction Multiple Data (MIMD) [51]. Typically architectures for low-level image 

processing tend to be SIMD or systolic arrays because parallelism is more obvious 

compared to high-level algorithms. Table 2.1 adapts a taxonomy presented by 

Maresca in [52] based on Flynn’s taxonomy with some system examples based on 

FPGAs.  

 

Some common structures in SIMD processors for low level image processing systems 

are Meshes, array processors either 1D or 2D [53], or systolic arrays of processing 

elements [54], hypercubes and pyramids. Examples of mesh connected computers 

include CLIP4 [55] and the MPP [56]. The Connection Machine [57] uses a 

hypercube network for long distance communication. PAPIA [58], SPHINX [59], 

MPP pyramid and HCL Pyramid are examples of pyramid structure. 
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Table 2.1 Image Processing Architecture Taxonomy 

 

FPGA-based 

PASM [71] 

IUA [72] 

NCUBE [73] 

iPSC [74] 

DATA CUBE 
[75] 

WARP [68] 

ZMOB [76] 

Transputer 
based [77] 

Cytocomputer 
[78] 

PIPE [79] 

CLIP4 [54] 

MPP [80] 

DAP [81] 

AAP [82] 

GRID [83] 

 
NON VON [84] 

Hughes Wafer 
Snack [85] 

ILLIAC4 [86] 

CLIP7 [87] 

GF11 [88] 

PASM [71] 

Connection 
Machina [57] 

YUPPIE [89] 

PAPIA [57] 

CLIP7 [86] 

Floating Point 

Floating Point 

Mixed 

Floating Point 

Integer 

Floating Point 

Bit-Serial 

Integer 

Bit-Serial 

Integer (8 bits) 

Bit-Serial 

Integer (8, 16, 32 Bits) 

Integer (16 Bits) 

Floating Point 

Bit Serial 

Bit Serial 

Bit Serial 

Integer 

Multi-stage 

Hypercube 

Bus oriented 

Linear 

Ring 

Mesh 

Linear 

Mesh 

Tree 

3-D Cube 

Mesh 

Linear 

Multi-Stage 

n-Cube 

Polymorphic Torus

Pyramid 

Linear 

Armstrong III 
[90] 

Addressing 

Connection 
Autonomy 

Operation 
Autonomy 

Autonomous 

Non-Autonomous 

SIMD 

MISD 

MIMD Splash2 [91] 

Rapid [92] 

Wiart [93] 

Flynn’s Type of 
Autonomy 

Network 
Topology 

Data Width Examples 

Perry [94] 

MGAP [95] 

VIP [96] 
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Various systems based on systolic arrays have been presented, RAW [60], PipeRench 

[61] and TRIPS [62], which are focused on exploiting spatial computation. In [63-

66], special purpose convolution architectures are presented; they are designed to 

meet real-time image processing requirements. Hsieh and Kim in [63] proposed a 

highly pipelined VLSI convolution architecture. Their approach considers parallel 

one dimension convolution and a circular processing module to achieve high 

performance using an array of n×n processing elements, each being a multiplier and 

adder.  

 

In [64] Haule and Malowany and Hecht et al in [66] proposed convolution 

architectures based on systolic arrays which operate on real time images with a size 

of 512×512 pixels, both architectures perform bit-serial arithmetic. The architecture 

of [63] requires on chip memory to store the necessary input pixels. 

 

The architectures presented in [63] and Hsu et al in [65] are special purpose 

architectures for convolution, and both of them require n×n processing elements 

which could potentially occupy a large chip area. The architectures of [64] and [66] 

are both systolic array architectures employing bit-serial arithmetic operations and 

hence may not be able to meet the performance requirements mentioned above. In 

[66] the authors point out the well known fact that for most applications bit-parallel 

arithmetic has a performance edge over bit-serial arithmetic. However, the processing 

architecture of [67] is based on bit-serial arithmetic since it is sufficient for their 

requirements and has lower gate count. 

 

Another approach involves language and compiler design to capture parallelism. 

Algorithms are written in a high-level language and a specialized compiler is required 

to map computation to the systolic array. Several examples include the Warp 

processor [68], which is a systolic array machine proposed and built for image 

understanding and scientific computations. The machine has a programmable systolic 

array of linear connected cells. iWarp [69], the next version of Warp, is a two 



 32

dimensional systolic and distributed memory architecture considered for image 

understanding and scientific computations. iWarp supports memory communications 

and systolic communications.  

 

Chai and Will [70] extended the collection of research investigating I/O 

interconnection in a systolic array to exploit the physical data locality of planar 

streams by processing data where it falls to improve performance. 

 

Table 2.1 summarizes several VLSI and FPGA-based architectures, most of them 

consist of special-purpose systolic arrays with a high-performance data-flow 

structures which are characterized by having simple and regular communication. 

However, the principal drawback to these special-purpose arrays is that they are 

designed for specific algorithms which possess very simple and regular data flow 

patterns.  

 

Besides the aforementioned, when applied to the computer vision field the 

architectures presented in Table 2.1 present some unsolved problems: 

  

 The systems are not optimized for vision applications, or they are just specific 

for a given image algorithm. 

 The architectures are not focused in solving high-level vision tasks.  

 The systems are designed without considering modularity.  

 Systems require complex schemas either for communication with the main 

processors or for data interchange and management. 

 Complex applications require simple operators most of which involve local 

data calculations. Regularly images are transmitted from the host to the 

coprocessor and back to the host for each operation, data transmission times 

then overwhelm any benefit from parallel calculation. 

 The amount of data managed is a disadvantage for some applications 

implemented.  For large images, the communication bandwidth between the 
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host and RC processors becomes the limiting factor, implying that data traffic 

must be minimized. 

 Most systems have high power consumption requirements. 

 

These restrictions limit the type of algorithms or applications that can effectively be 

supported by such architectures under real time.  The present work explores the 

possibilities for implementing efficiently computer vision tasks using FPGA 

technology overcoming such drawbacks. 

 

The proposed architecture is based on a systolic array belonging to an Enhanced 

version of a Systolic Array (ESA). The primary objective of this research is to 

develop and to evaluate an architecture that gives support to window-based image 

operators, processing at least 30 frames per second using 640×480 gray level images.  

 

The purpose of the architecture is to implement a particular kind of algorithms known 

as window-operators such as filtering, erosion, dilation, Gaussian pyramid, template 

matching and matrix by matrix multiplication. However the architecture broadens the 

scope of algorithms executable on systolic arrays while retaining much of the 

simplicity and regularity of the original systolic array architecture. 

 

The architecture has been provided with elements that allow flexible routing of data 

and storage elements that allow reusing information to chain processes. Motion 

estimation has been implemented to test this feature. Based on a chaining schema, the 

system allows the implementation of higher level vision tasks resulting in a non-

dedicated, scalable and, modular architecture.  

 

The main objective for the implementation of the architecture is the flexibility. 

Flexibility in the sense of modularity refers to the capability of having a systolic 

structure that allows parts to be added, removed, replaced, or modified. In this case 

PEs functions can be modified to perform different operations according to a control 



 34

word chosen by the user depending on the algorithm applied. The number of 

processing elements to be active in a current application can be defined also by the 

user at start up. Scalability is implemented by extending the generic design of the 

systolic array architecture to allow configuring the architecture by setting generic 

parameters according to specific needs to meet different performance requirements or 

to add functionality to meet the changeable demands of the applications. 

 

Most of the architectures that have been developed use off-chip memory banks to 

store the large amounts of data managed by implemented algorithms. Memory 

architecture organization then becomes critical for an optimized design since frequent 

memory accesses can result in long delays and degrade the system performance. The 

proposed memory access structure uses local buffers that contribute to form an 

expandable and scalable architecture and enhances the performance, silicon 

efficiency and scalability of the architecture. 

 

The capability of partially buffer an image, ordering the pixels in the way that is 

required for the application helps to deal with bandwidth constraints and adds 

flexibility in the kind of algorithms that can be handled. 

 

The logic blocks themselves can be configured to act like RAM but this is usually an 

inefficient managing of hardware resources. Using off-chip memory for buffering 

may only allow a single access to data per clock cycle. The proposed buffering 

schema allows parallel access to the data handled by systolic processor and an 

optimized use of silicon. Furthermore the memory buffers provide a means to re-use 

information among several processors cascade connected. 

 

Input and Output buffers are used to transfer data to or from external DRAM while 

active data are processed by the FPGA architecture achieving a minimal overhead. 

Computing elements and memory buffers are mixed in regular patterns to form a high 

level pipeline schema which supports different algorithms with similar data 
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requirements. This proposal opens the possibility of a very complex multi-function 

image processor with essentially the same per-unit hardware cost as a single function 

system. 

 

In the next chapters, detail description and evaluation of the proposed architecture are 

presented. Additionally the advantages and shortcomings of the architecture are 

outlined. 
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Chapter 3 

Systolic Arrays  
 

 

Since the early days of parallel computing a variety of parallel algorithms has been 

described that can be classified as systolic [46]. The terminology systolic has been 

cast in the early eighties by H. T. Kung and C. E. Leiserson [1]. In a series of seminal 

publications they have established systolic algorithms as a novel class of parallel 

computing structures [1, 97]. 

 

At that time, advances in semiconductor technology have lead to the development of 

VLSI chips that, for the first time, allowed the implementation of basic algorithms 

directly in hardware [98]. As such VLSI circuits could be customized for specific 

applications; it could be expected that the combination of dedicated hardware and 

specific algorithm, with increasing integration, would lead to high parallelism. 

However, for most systolic algorithms described, the level of integration, i.e., the 

number of systolic processing elements which could be etched on a chip, did not 

suffice at that time for an efficient VLSI hardware implementation. 

 

The successful application of general purpose parallel computers for science and 

engineering, starting in the early nineties, has then led to a rebirth of systolic 

algorithms which are readily mapped and well adapted to parallel machines, their 

ideal implementation medium. Its advantages have been recognized by many 

designers and producers of massively parallel computers at a rather early stage      

[99-101].  
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3.1 Parallel Architectures for Image Processing 

 

Modern image processing and computer vision algorithms require high computational 

capability especially when high resolution images have to be elaborated under real-

time requirements [102]. In such applications (e.g. image filtering, image restoration, 

feature recognition, object tracking, template matching, etc.) a rate of millions of 

bytes per second must be processed. These characteristics make image processing 

suitable for parallel processing. 

 

Image processing involves many types of computing, ranging from two-dimensional 

correlation and convolution, to image transformation, geometric computing and graph 

analysis [52]. Each of these types of computation places specific requirements on 

image processing systems although a very general characteristic is the execution of a 

large number of computations on regular data structures. 

 

In many cases the execution of image processing tasks consist of the application of a 

set of operations to all the elements of the image array, and this can be done 

concurrently on each element of the array, allowing significant speedup through 

parallelism [52]. While this is obviously true for image processing, it is also true in 

many other vision tasks, even though sometimes parallelism can be exploited only by 

clever algorithms. 

 

Depending on the processing, the involved data structures and the communication 

needs, an image processing application can be divided into three levels: low, 

intermediate and high [103, 104].  

 

Low level image processing is normally termed bottom-up processing. Most image-

processing operations fall into this category. Input data includes images or simple 

transformations of images. These operations primarily work on whole image data 

structures, and yield another image data structure.  



 38

 

Computations in low-level processing are to be performed for each pixel in an image, 

they are regular, exhibit high spatial parallelism, and mainly involve numeric 

processing. The steps are simple and repetitive, the number of these steps is constant 

and the data exchange, handled in a static way, is locally done. These computations 

are well suited for both SIMD and MIMD architectures. Example algorithms include 

edge detection, filtering operations, and connected component labeling [19],        

[105-110]. 

 

Intermediate level image processing conveniently bridges bottom-up (low-level) 

and top-down (high-level) processing. These operations reduce the image data field 

into segments (regions of interest), and produce more compact and symbolic image 

structure representations (such as lists of object border descriptions).  

 

Processing on this level attempts to build a coalition of tokens to extract meaningful 

entities, for example, forming rectangles from lines. Computations in this category 

manipulate symbolic and numeric data. They are normally irregular and data 

dependent. The steps are recursive, iterative, and their number is changeable. Data 

exchanges have an uneven rate; their type is global and depends upon the image 

content. They are suitable for medium, to coarse, grain parallelism in MIMD mode, 

although a subset of computations also can be performed efficiently on SIMD 

architectures. 

 

High level image processing tasks are normally top-down (or model-directed), they 

are more decision-oriented and they primarily concern the interpretation of the 

symbolic data structures obtained from the intermediate level operations. Essentially, 

the operations try to imitate human cognition and decision making, according to the 

information contained in the image. Examples are object recognition, and semantic 

scene interpretation [111-114].  
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Processing at this level is not as well defined as on the other two levels. Furthermore, 

processing in this domain may require re-executing algorithms from the other two 

levels. Although parallelism on computations at this level is not well understood, it is 

believed necessary to dynamically schedule computations. The diversity and highly 

data-dependent nature of computations make this level of processing largely suitable 

for MIMD parallelism. 

 

Parallel hardware architectures can effectively speed up a computation system to 

reach a performance level that is higher than that of a single processor. Nevertheless, 

mapping algorithms in hardware is in general a difficult task. When parallelism is 

introduced in the execution of an application it must fit the target architecture [115], 

which sometimes is constrained by the available technology. When parallel 

processing is applied, four main level of parallelism can be distinguished: job-level, 

task-level, instruction-level, and gate-level [116]. 

 

Parallelism at job-level. A parallel computer is a computer having more than one 

processor executing a single application simultaneously [43]. Supercomputers are the 

most expensive and most powerful category of parallel computers [117]. They are 

typically used for scientific and engineering applications that must handle very large 

databases or do a great amount of computation like in image processing and computer 

graphics applications [118]. One of the leaders in visualization supercomputers 

manufactures is Linux Networx, the Linux Supercomputing Company. They develop 

powerful visualization systems for many technical fields such as: modern science 

with data-intensive requirements security and defense, modern design processes and 

advanced media applications. 

 

Parallelism at task-level. Parallel processing does not refer only to many processors 

working in parallel; software can do this, as well. In parallel programming there are 

many programs processing the data in different ways at the same time. Thus, multiple 

programs can be executed in parallel, if there are no data dependencies. In the case of 
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data dependency, several parallel programming models are commonly used: Shared 

Memory, Threads, Message Passing, Data Parallel or Hybrid [119]. Many software 

libraries for parallel image processing are currently available. They are a set of 

routines which allow the user to perform operations on images in a parallel manner. 

Many implementations of well known programming language compilers, such as C 

and C++, are used today for compiling high-performance computing applications 

based on parallel paradigms. 

 

Parallelism at instruction-level. Parallelism at instruction-level can be defined as a 

measurement of the number of operations that can be performed simultaneously in a 

computer program. Superscalar architecture refers to the use of multiple execution 

units, so that more than one instruction can be processed at a time [120]. These 

multiple parallel processing units are inside one processor. Most of the modern 

processors are superscalar [121, 122]. When the instructions are pipelined into the 

processor, there is a mechanism which selects the instructions which will be executed 

in parallel. Some compilers can make easier this process by sending the instructions 

in a proper way to the processor. Another way to achieve parallelism at instructions 

level can be seen in the case of vector processors. They provide high-level operations 

that work on vectors (linear or array) instead of a single data. A vector instruction is 

equivalent to an entire loop instruction. This type of processing avoids data hazards, 

reduces instruction bandwidth requirements and is obviously faster than scalar 

operations. In general DSP devices have hardware which supports the execution of 

vectors operations. Advanced DSP processors integrate instruction parallelism where 

several RISC-equivalent (Reduced Instruction Set Computer) operations can be 

executed in parallel. These architectures allow the individual machine operations to 

overlap (addition, multiplication, load, and store). Many of these fully programmable 

processors are used in multimedia applications as well as image coding and decoding 

(TMS 320 C6xx series) [123, 124]. 
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Parallelism at gate-level. Hardware devices based on array architecture are able to 

execute a large amount of logic operations at the same time. In parallelism at gate-

level, bit-level operations are executed in parallel. Moreover, the new devices in this 

category provide the necessary computing resources to meet the high-performance 

required in digital signal processing applications. An important advantage of gate-

level parallelism is that the designer can implement as many parallel resources inside 

the device as necessary to achieve the performance required by the system. The 

resources are not fixed like in general purpose processors where each processor 

contains a finite number of basic computing functions. This thesis exploits the 

characteristics of gate-level implementation to test parallel architectures for image 

processing with the aim of obtaining video rate performance. 

 

In spite of the large potential performance of parallel architectures, the image 

processing community does not benefit a hundred percent for high-performance 

computing. Essentially, this is due to the lack of optimized programming tools that 

can effectively help non-expert parallel programmers to develop multimedia 

applications for high-performance parallel architectures. The main objective of 

parallel processing is to wipe out the physical limits of serial processors by 

employing several processors working in parallel in order to reduce the execution 

time. Thus, a huge amount of research has been carried out in the field of parallel 

processing in past years, either concerning parallel hardware architectures or 

algorithms and programming languages [125-129].  

 

 

3.2 Parallel Computing Models and Systolic Arrays 

 

A well known taxonomy of parallel systems is due to Flynn. Flynn’s taxonomy 

classifies architectures on the presence of single or multiple streams of instructions 

and data [130, 131]. This yields the four categories below. See Figure 3.1 to 3.4: 
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 SISD (Single Instruction, Single Data stream) - defines serial computers. 

 

 

Figure 3.1  SISD architecture in Flynn’s Taxonomy 

 

 

 MISD (Multiple Instruction, Single Data stream) - would involve multiple 

processors applying different instructions to a single datum; this hypothetical 

possibility is generally deemed impractical. 

 

 

Figure 3.2  MISD architecture in Flynn’s Taxonomy 

 

 

 SIMD (Single Instruction, Multiple Data streams) - involves multiple 

processors simultaneously executing the same instruction on different data  
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Figure 3.3  SIMD architecture in Flynn’s Taxonomy 

 

 

 MIMD (Multiple Instruction, Multiple Data streams) - involves multiple 

processors autonomously executing diverse instructions on diverse data. 

 

 

Figure 3.4  MIMD architecture in Flynn’s Taxonomy  

 

 

While systolic arrays were originally used for fixed or special purpose architecture, 

the systolic array concept has been extended to general-purpose SIMD and MIMD 

architectures.  
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Regarding general-purpose systolic arrays the two basic types are the programmable 

model and the reconfigurable model [132].  

 

In the programmable model, cell architectures and array architectures remain the 

same from application to application. However, a program controls data operations in 

the cells and data routing through the array. All communication paths and functional 

units are fixed, and the program determines when and which paths are used.  

 

In the reconfigurable model, cell architectures as well as array architectures change 

from one application to another. The architecture for each application appears as a 

special purpose array. The primary means of implementing the reconfigurable model 

is FPGA technology.  

 

A programmable systolic architecture is a collection of interconnected, general-

purpose systolic cells, each of which is either programmable or reconfigurable. 

Programmable systolic cells are flexible processing elements specially designed to 

meet the computational and I/0 requirements of systolic arrays. Programmable 

systolic architectures can be classified according to their cell interconnection 

topologies as fixed or programmable. 

 

Fixed cell interconnections limit a given topology to some subset of all possible 

algorithms. That topology can emulate other topologies by means of the proper 

mapping transformation, but reduced performance is often a consequence [132].  

 

Programmable cell interconnection topologies typically consist of programmable 

cells embedded in a switch lattice that allows the array to assume many different 

topologies.  Programmable topologies are either static or dynamic. Static topologies 

can be altered between applications, and dynamic topologies can be altered within an 

application. Static programmable topologies can be implemented with much less 

complexity than dynamic programmable topologies.  
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Reconfigurable systolic architectures capitalize on FPGA technology, which allows 

the user to configure a low-level logic circuit for each cell. Reconfigurable arrays also 

have either fixed or reconfigurable cell interconnections. The user reconfigures an 

array’s topology by means of a switch lattice. Any general-purpose array that is not 

conventionally programmable is usually considered reconfigurable.  

 

Programmable systolic arrays are programmable either at a high level or a low level. 

At either level, programmable arrays can be categorized as either SIMD or MIMD 

machines [132]. High-level programmable arrays usually are programmed in high-

level languages and are word oriented. Low-level arrays are programmed in low-level 

languages and are bit oriented. 

 

FPGA technology has produced a low-level, reconfigurable systolic array architecture 

that bridges the gap between special-purpose arrays and the more versatile, 

programmable general-purpose arrays. Purely reconfigurable architectures are fine-

grain, low-level devices best suited for logical or bit manipulations. 

 

SIMD systolic machines operate similarly to a vector processor, typically they 

employ a central control unit, multiple processors, and an interconnection network for 

either processor-to-processor or processor-to-memory communications [133]. The 

control unit broadcasts a single instruction to all processors, which execute the 

instruction in lockstep fashion on local data. The interconnection network allows 

instruction results calculated at one processor to be communicated to another 

processor for use as operands in a subsequent instruction. Individual processors may 

be allowed to disable the current instruction. Adjacent PEs may share memory, but 

generally no memory is shared by the entire array. After exiting the array data is 

collected in an external buffer memory. 
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MIMD systolic machines operate similarly to homogeneous von Neumann 

multiprocessor machines; they employ multiple processors that can execute 

independent instruction streams, using local data. Thus, MIMD computers support 

parallel solutions that require processors to operate in a largely autonomous manner. 

Although software processes executing on MIMD architectures are synchronized by 

passing messages through an interconnection network or by accessing data in shared 

memory units, MIMD architectures are asynchronous computers, characterized by 

decentralized hardware control. 

 

The impetus for developing MIMD architectures can be ascribed to several 

interrelated factors. MIMD computers support higher level of parallelism 

(subprogram and task levels) that can be exploited by “divide and conquer” 

algorithms organized as largely independent sub-calculations. MIMD architectures 

may provide an alternative depending on further implementation refinements in 

pipelined vector computers to provide the significant performance increases needed 

to make some scientific applications tractable. Finally, the cost-effectiveness of n-

processor systems over n single-processor systems encourages MIMD 

experimentation. 

 

Each PE’s architecture is somewhat similar to the conventional von Neumann 

architecture: It contains a control unit, an ALU, and local memory. MIMD systolic 

PEs have more local memory than their SIMD counterparts to support the von 

Neumann-style organization. Some may have a small amount of global memory, but 

generally no memory is shared by all the PEs. Whenever data is to be shared by 

processors, it must be passed to the next PE. Thus, data availability becomes a very 

important issue. High-level MIMD systolic PEs are very complicated, and usually 

only one fits on a single integrated chip. 
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3.3 Systolic Systems, Arrays, and Algorithms 

 

A systolic system is a specific hardware network, which refers to computing 

structures with cellular organization and pipelined data flow. 

 

In physiology, the term systolic describes the contraction (systole) of the heart, which 

regularly sends blood to all cells of body through the arteries, veins, and capillaries. 

Analogously, systolic computer processes perform operations in a rhythmic, 

incremental, cellular, and repetitive manner. 

 

The basic element of a systolic system is the PE. A processing element is built by a 

functional processing unit which can perform data manipulations and using a delay or 

memory element allows a controlled data flow into and out of the processing element. 

A processing element can contain registers which function as memory locations for 

storage of results of intermediate computations and for static data to be used in the 

course of the computation.  

 

A collection of PEs is denoted as systolic array. A systolic array is a parallel 

computing device for a specific application. The PEs of the array are interconnected 

in a regular pattern with a limited number of neighboring elements [134]. In a similar 

way as blood circulates in the human body, data circulates inside the PEs of the 

systolic array, and interact with other data; hence a systolic array exhibits a simple 

regular design. The regularity and simplicity constitute a desirable characteristic for 

their direct implementation in silicon, in the form of VLSI chips. Figures 3.5 to 3.8 

illustrate some generic examples of simple interconnection patterns of systolic arrays, 

linear, 1-dimentional ring, 2-dimentional squared array and 2-dimentional hexagonal 

array. 
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Figure 3.5 Linear systolic array interconnection 

 

       
Figure 3.6 1-dimentionalring interconnection  

 

 
 Figure 3.7 2-dimensional square array 

 

 
Figure 3.8 2-dimensional hexagonal array 
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Algorithms implemented on the systolic array are referred to as systolic algorithms. 

In the systolic algorithm, each of the PEs performs only a part of the necessary 

computations thus contributing to the totality of computations as successively carried 

out by the systolic array. The operations are performed by the PEs of a systolic array 

in a synchronous mode. The basic step of a systolic algorithm, in general, is a 

computation followed by the exchange of data to the nearest-neighbor PEs. A typical 

sequence of operations is the repeated parallel computation of identical functions 

between consecutive parallel communication events. In the course of the execution of 

the systolic algorithm, the data flow with a constant speed through the PEs of the 

system. The computation step sometimes is denoted as pulse, the communication step 

as move. This underlines the resemblance of the systolic algorithm as implemented on 

a systolic system with the blood circuit called systole in physiology, where the heart 

beat in the contraction phase (pulse) presses the blood through the blood vessels 

(move) with a permanent speed. 

 

Putting together many of the pulse-and-move operations eventually, the systolic array 

has completed the computational problem posed, after a well defined number of 

usually equally spaced time steps. The time step is called systolic cycle, in general it 

is distinguished from the clock step of the underlying implementation system. In a 

systolic array, once data is available, it is used effectively inside many PEs to yield a 

high throughput rate. Thus, a systolic array may exploit the inherent parallelism of 

some applications. Under a systolic approach, all the operations are performed in a 

synchronous manner independent of the processed data. The only control data that is 

broadcasted to the processing elements is the clock. 

 

As a summary some typical features and structures of systolic arrays are shown here: 
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1. A systolic array consists typically of a large number of PEs which are of the 

same type. If more than one type is involved, then there are only a few 

different processing elements.  

2. The PEs execute repeatedly one and the same function. It is however possible 

that:  

a) Different PEs of the same type perform different operations at the 

same time.   

b) One PE performs different operations in different clock periods. 

3. The PEs can possess registers that function as intermediate storage locations. 

4. The PEs are arranged and interconnected in a regular pattern. 

5. The interconnections are local, in that only neighboring PEs can communicate 

directly.  

6. Input data is fed into the array and output data is retrieved from the array only 

at boundary PEs.  

7. Many PEs work in parallel on different parts of one and the same 

computational problem. 

8. The efficiency of the algorithm or equivalently the utilization of the 

processing resources of the array, measured in the amount of PEs which are 

busy with computation, is high. 

9. All data is processed and transferred by pipelining. 

10. Several data flows move at constant speed through the array and interact with 

each other during this movement. 

11. Once input into the array, the data is used many times. 

12. There is either no need for control or the control is very simple. The correct 

operation of the structure is provided by the coordinated input of the data 

flows. If control is needed, it is carried out by an instruction flow which 

moves at a constant speed through the array, coordinated with the data flow. 
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3.4 Window-based Operators 

 

Image processing is an ideal candidate for specialized architectures because of the 

massive volume of data, the natural parallelism of its algorithms and the high demand 

of image processing solutions.  

 

The rectangular structure of an image intuitively suggests that an image processing 

algorithm maps efficiently to a 2-D processor array. Systolic architectures provide 

many advantages for implementation of these algorithms and especially for low level 

operators which are very common in image processing applications [135].  

 

A key point for the parallel implementation of a chosen algorithm is to verify the 

characteristics of the image operators used to predict their computational 

requirements and then to take advantage of their attributes during the implementation.  

 

Low-level image processing operators can be classified as point operators, window 

operators and global operators, with respect to the way in which the output pixels are 

determined [136].  

 

Point operations are a class of transformation operations where each output pixel’s 

value depends only upon the value of the corresponding input pixel. 

 

In global operators the value of a pixel from the output image depends on all pixels 

from the input image. 

 

Window operators compute the value of a pixel on the output image as an operation 

on the pixels of a neighborhood around a corresponding pixel from the input image, 

using a window mask or kernel and a mathematical function produces an output 

result [137]. In Figure 3.9 output result for these operators can be observed. 
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(a)      (b) 

 
(c) 

Figure 3.9 Low-level image processing operators: (a) point operators, (b) window operators, (c) 
global operators 

 

To produce an output pixel, generally a scalar function followed by a reduction 

function must be applied to the input pixels. The local reduction function reduces the 

window of intermediate results, computed by the scalar function, to a single result. 

Common scalar functions include relational operations, arithmetic operations, logical 

operations and possibly look-up tables. Some common local reduction functions used 

are accumulation, maximum and absolute value.  

 

The role of this kind of operators is to pre-process images for transformation into 

symbolic data for high level vision. The values used in the window mask depend on 

the specific type of features to be detected or recognized. The window mask is the 

same size as the image neighborhood and their values are constant through the entire 

image processing. Usually a single output data is produced by each window operation 

and it is stored in the corresponding central position of the window. The concept of 

the window operation in image processing is shown in Figure 3.10. 
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Figure 3.10  Window operation 

 

A certain W×W window operation is performed over the same size area in the input 

image data. Those identical window operations are repeated over the whole M×N 

input image data. The different window area is obtained by shifting one column 

rightward or leftward and one row upperward or lowerward from a window area 

[138]. For example as shown in Figure 3.11 for two consecutive windows centered at 

pixel P56 and pixel P57 respectively. 

 

Several image processing applications perform window-based operators as it is the 

case of template matching [139], filtering, block matching, 2D feature detection, 

gray-level image morphology and stereo disparity, motion vector search, among 

others.  
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Figure 3.11 Two consecutive output pixels for convolution 

 

 

3.4.1 Convolution Characteristics 

 

A special case of window-base operators is 2D convolution, which is the basis of 

many image processing applications [140]. The basic idea of this operator is that a 

window of some finite size and shape is scanned across the image. The output pixel 

value is the weighted sum of the input pixels within the window where the weights 

are the values of the operation assigned to every pixel of the window itself. The 

window with its weights is called the convolution kernel. This leads directly to the 

following equation: 
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Where h is the input image, w is the w×w mask, s is a scaling factor, and b is the 

convolved output image. This is computationally expensive. Figure 3.12 depicts the 
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scanning process. In this case, a kernel with a width of 7 is represented with thick 

black lines. 

 

 

Figure 3.12 Image convolution process 

 

For an M×N input with a W×W convolution mask the total number of operations is 

M2N2 multiplications, (M2-1)N2 additions, and (2M2N2 + N2) loads/stores [141]. For 

convolving a 640×480 image with a 7×7 mask, for example, over 50 million 

operations are required. Thus, for a large-sized mask, the generalized convolution 

becomes even more computationally expensive because of the quadratic growth of 

M2 in the amount of computations. The computational load for an image convolution 

expressed in terms of arithmetic operations considering a W×W mask on an M×N 

image is shown in table 3.1. 

 
Table 3.1 Computational load in convolution 

Elemental 
Operations 

Number of 
Executions 

Multiplication W2 ×M×N 
Addition (W2-1) ×M×N 
Load/Store (2 ×W2  + 1)×M×N 
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According to Equation 3.1, two kinds of operations are required to compute a 

convolution. A scalar function operating on a pixel h(i-x, j-y) and a window 

coefficient w(i, j) to produce a partial result of convolution; and a local reduction 

function to compute a single value from the partial results computed over the window 

domain, i.e. the number of pixels in the image window. In Equation 3.1, the 

multiplication represents the scalar function, and the accumulative addition represents 

the local reduction function [141]. 

 

Other image operators in image processing can be described in a similar way as the 

convolution and they can be generalized as window-based operators. According to 

the desired output result a different scalar function and local function must be applied 

as shown in Table 3.2. 

 
Table 3.2 Scalar and local functions common in image applications 

Image Application Scalar Function Local Reduction Function 
Spatial filtering Multiplication Accumulation 
Convolution Multiplication Accumulation 

Multiplication Accumulation 2-D Feature detection 
Absolute difference  

Template matching Absolute difference Accumulation 
Addition Maximum Image morphology 
Subtraction Minimum 

Motion estimation Absolute difference Accumulation 
Stereo disparity Absolute difference Accumulation 

 

 

Since convolution operations are employed in the early processing stage of many 

applications and many other image operators can be described in a similar way, the 

support for fast convolution is essential [142]. 

 

Window-based image processing involves high data transfer rates and computational 

load. This requires an efficient use of communication channel bandwidth and the use 

of parallel processing to achieve high processing efficiencies. Window-based image 

processing algorithms require the input image memory to be accessed several times; 
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therefore the memory access time overhead is a critical parameter design to be 

considered. To reduce the memory access time, pixels read must be reused in several 

windows that could be processed in parallel. This is accomplished using pipeline 

techniques [129, 143] to spread code iterations spatially. Although window-based 

image operations may access memory in different patterns, they share important 

features that can be generalized [144]: 

 

  Image operations are memory intensive and at least one new pixel of data is 

typically needed for each step in the computation. 

 A high potential for parallelism is available since window operations include 

a large percentage of independent operations that are applied to each pixel.  

 

Image data is normally represented in linear memory organizations, in this way 

neighboring pixels in the image are not necessarily stored as neighboring elements in 

memories. This fact obscures the spatial relationship between the pixels so the 2D 

data parallelism is not explicit. If the spatial data dependencies are exposed, it should 

be easier to implement a hardware architecture to use uniform two dimensional data 

access patterns that are needed for data parallel execution. A related issue is that data 

for window operators usually overlap with the neighbor windows of the surrounding 

pixels. This means that there is a great deal to create simple vectors of data elements 

that can be processed by parallel vectorization techniques.  

 

 

3.5 Systolic Arrays in FPGAs 

 

By analyzing several representative problems in computer vision, the following 

architectural requirements are observed: 
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 Computational characteristics. For low-level algorithms, SIMD or Systolic 

and fine grained architectures are implemented. 

 Communication. At a lower level, communication is limited to a local 

neighborhood 

 High bandwidth I/O. A typical image contains a large amount of data; 

therefore a high bandwidth I/O is essential to sustain good performance. 

 Resource allocation.  Speeding up only one stage of a vision system will not 

result in a significant speedup of overall performance. Hence, appropriate 

computational resource should be allocated to all the stages of the algorithm. 

 Load balancing and task scheduling. For good performance, the load on 

different processors should be balanced. 

 Fault tolerance. In a multi-processor system, failure of some processing 

elements should not result in an overall system failure. Therefore, a graceful 

degradation should be supported. 

 Topology and data size independent mapping. Often, a specific processor 

topology is preferred for an algorithm depending on its communication 

characteristics. Consequently, flexible communication support is essential for 

mapping many communication patterns. The algorithm mapping should be 

independent of data size. 

 

Regarding the characteristics mentioned above, the present research work is based on 

the design of a systolic array which is appropriate to implement low level image 

processing algorithms. Systolic arrays are used quite frequently in the domain of 

massively parallel computing, since they readily map to parallel problems while also 

limiting communication bottlenecks found in other parallel processor architectures 

[145].  

 

Designing a systolic array using reconfigurable devices, involves designing the 

internal workings of each individual processing element in addition to designing the 

dataflow and communication link between processors in the array. The systolic 
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elements or cells are customized for intensive local communications and 

decentralized parallelism. Because an array consists of PEs of only one or, at most, a 

few kinds, it has regular and simple characteristics. The array usually is extensible 

with minimal difficulty. Data pipelining reduces I/O requirements by allowing 

adjacent PEs to reuse the input data. 

 

In order to implement a systolic array using an FPGA some performance tradeoff 

must be taken into account because these determine the array’s performance 

efficiency. Among other it can be mentioned the level of granularity and the 

extensibility. 

 

The level of PE granularity directly affects the array’s throughput and flexibility and 

determines the set of algorithms that it can efficiently execute. Each PE’s basic 

operation can range from a logical or bitwise operation to a word-level multiplication 

or addition to a complete program. Granularity is subject to technology capabilities 

and limitations as well as design goals. Because systolic arrays are built of cellular 

building blocks, the PE design should be sufficiently flexible for its use in a wide 

variety of topologies implemented in a wide variety of substrate technologies. 

 

In the particular case of a window-operation some extra characteristics must be taken 

into account in order to carry out the FPGA implementation. The first issue is the 

number of processing elements to be used in the array, when the algorithm to be 

implemented is chosen, it needs to be tuned to the special hardware being used; 

therefore the number of PEs used in the systolic array needs to be selected. The 

second issue is the size of the storage elements which depends on the number of rows 

to be processed in the image and the amount of parallelism. The third issue is the 

complexity of PEs. Operations implied in window-operators require multipliers; 

therefore the word length, the cycles per operation as well as the number and kind of 

operations must be selected to assure reduced area occupation.  
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The flexibility enabled by the FPGA technology is used in the proposed work to 

explore the architecture space in the context of varying the aforementioned system 

parameters. In order to achieve high throughput, a good tradeoff between flexibility, 

performance and area occupancy under real time conditions must be achieved which 

implies to tune these parameters to find the optimum operation. In this thesis some 

graphs of behavior are obtained to determine the point in which the speed is the 

highest and the area occupied is the lowest.  

 

The coefficients used to determine the operator that executes the architecture in a 

given moment can be defined by the user. This customization drives to the 

implementation of different algorithms leading to an inexpensive “programmable” 

systolic array hardware architecture, which constitutes one of the main advantages of 

the proposed schema. 

 

Additionally to this advantage, the FPGA technology presents other benefits to 

implement systolic arrays. FPGA provides the means to create state-of-the-art System 

on Chip (SoC) designs in a fraction of the time previously required; it is possible to 

create migratable designs from one silicon fabrication process to another. In summary 

the proposed architecture present the following advantages: 

 

 The same physically implemented systolic array can execute different types of 

algorithms, which enables versatility of the physical implementation. 

 Algorithms can be changed in real-time, leading to greater flexibility in the 

environments that depend on multiple algorithms to solve the problem. 

 The architecture is scalable and parameterizable so that it can be easily used 

for new complex applications 

 The hardware implementation is suitable for SoC integration in embedded 

systems, which is especially true for applications that depend on numerous 

filtering and image processing algorithms and can thus be executed on a 

single programmable processor array. 
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This thesis uses FPGAs in the systolic approach because they offer a design route 

which is both fast and manageable and at the same time they provide performance 

near some ASICs and the flexibility of software-programmable substrates [146, 147]. 
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Chapter 4 

Architecture Overview  
 

 

In this chapter an overview of the flexible systolic-based architecture proposed is 

presented, where the key feature is the implementation of a generic array of 

processors as it provides enough flexibility to run a variety of low-level processing 

algorithms and constitutes a platform to pursue the implementation of higher 

complexity algorithms. 

 

The hardware implementation includes the proposal of some enhancements to 

overcome the lack of flexibility inherent to systolic arrays, in the sense that it is 

impossible to produce an array to match all the possible sizes of different problems, 

and to extend the architecture performance to generalize the systolic array 

functionality. Such enhancements include a mechanism to reduce the number of 

access to a global memory using a new schema based on local storage buffers and 

Router elements to handle data movement among different structures inside the same 

architecture. These two components interact to provide the capability of process 

chaining. Input image buffers can be accessed by different processing blocks while 

output image buffers containing partial results can be accessed by cascading 

processing blocks to reuse data. The global buses implemented reduce routing 

problems and constitute a means for parameters interchange inside the architecture to 

customize the number of processing elements used as well as the kind of operation 

performed by the processing elements for a particular application.  

 

Using FPGAs allows the computational capacity of a hardware implementation to be 

highly customized to the instantaneous needs of an application. In the architecture 
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presented here, the number of PEs in the systolic array can be modified as well as the 

memory size for buffers used in a particular problem, keeping low memory capacity 

per PE. The architecture can manage fixed-point operations achieving enough 

precision for many applications and can be extended to carry out floating-point 

operations. 

 

 

4.1 Functional Requirements 

 

Convolution is a fundamental mathematical operation to many common image 

processing operators. In a convolution operation, two arrays of numbers with 

different sizes are multiplied together to produce a third array of numbers. In image 

processing, convolution is used to implement operators whose output pixel values are 

linear combination of certain input pixels of the image. Convolution belongs to a 

class of algorithms called window operators which use a wide variety of masks, to 

calculate different results, depending on the desired function. 

 

The basic idea of window operations is to use a window of fixed size to scan over an 

image. The output pixel value is the weighted sum of the input pixels within the 

window where the weights are the values of the operation assigned to every pixel of 

the window. The window with its weights is called the convolution mask. 

Mathematically, convolution on image can be represented by the Equation 3.1. 

 

Based on the convolution operator some functional requirements for the architecture 

implementation are stated, and then they are generalized to support a set of the 

common image processing application based on window operators presented in Table 

3.2.  
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According to Equation 3.1 the convolution is the sum of products of each pixel and 

corresponding mask coefficient. It can be observed that main operations to be 

implemented are multiplication and accumulation according to Table 3.2; PE’s 

structure is based on this requirement. From Equation 3.1 it can also be observed that 

convolution presents a high potential for parallelism due to the fact that the arithmetic 

operations involved can be executed independently to each pixel or image region. 

Convolution is carried out in a two dimensional space which makes it suitable to be 

implemented using a parallel systolic array architecture, which achieves a good 

tradeoff between parallelism, regularity and execution time. In this work an array of 

size W×W is adopted, where W is the size of the moving window for a kernel with a 

width of 7. Using this architecture, multiplication and accumulation operations can be 

completed in one clock cycle aiming for high throughput. Although multiplication 

usually requires large hardware resources and long execution time, dedicated 

multipliers in modern FPGAs facilitate the use of one fast multiplier processing 

element. 

  

As mentioned previously, any 2-D convolution operation involves passing a 2-D 

window mask over an image, and carrying out a calculation at each window position 

as observed in Figure 4.1. Taking this into consideration four parameters must be 

specified to complete the implementation. The size of the window, the mask 

coefficients depending on the operation to be performed, the scalar function used 

during operation and the local reduction function to be applied to each extracted 

window of the input image to produce an output result. These parameters determine 

PEs functionality design. 

 

From Figure 4.1 it can be deduced that when an output pixel is computed, access to 

entire previous rows or portions of previously input rows of input pixels are needed. 

In this way image memory must be accessed several times in order to complete a 

computation. For processing purposes, the straightforward approach is to store the 

entire input image into a frame buffer, accessing the neighborhood’s pixels and 
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applying the function as needed to produce the output image. If real-time processing 

of the input images is required for a W×W window mask, W×W pixel values are 

needed to perform the calculations each time the window is moved and each pixel in 

the image is read up to W×W times. The memory bandwidth constraints make 

impossible to obtain all these pixels stored in the memory in only one clock cycle, 

unless any kind of local caching is performed. 

 

 

Figure 4.1 Image scanning process for window operators 

 

Traditional approaches are characterized by their abundant memory directly 

connected to each processing element. In this thesis a circular buffers schema is used 

to manage the traffic of data to and from the processing array. Using memory address 

pointers it is possible to keep track of the elements being processed. 

 

Input data from the previous W rows can be cached using the memory buffers till the 

moment when the window is scanned along subsequent rows. To reuse hardware 

resources when new image data is processed, a shift mechanism between buffer rows 

is used. Data inside the buffer can be accessed in parallel, reducing the time needed 

for data reading, this schema assures that each input image pixel is fed only once to 

the FPGA. Buffer elements synchronize the supply of input pixel values to the 
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processing elements, moreover image buffers allow performing several window 

operators in parallel and they add the possibility to carry out computations with local 

data. Instead of sliding the window across the image, this implementation feeds the 

image through the window as can be observed in Figure 4.2. The complete process 

will be presented in detail in the following sections. 

 

 

Figure 4.2 Structure for image buffers. 

 

Introducing the row buffer data structure adds additional considerations. With the use 

of both caching and pipelining there needs to be a mechanism for controlling data 

flow through buffer rows to prime, place, and take out image synchronously. Another 

important issue to be considered is a good tradeoff between resource allocation and 

level of parallelism, the number of window masks processed in parallel, depends on 

the number of input image rows stored.  

 

Input images are stored as a collection of discrete pixels arranged in a two 

dimensional space, each value has an associated row and column to indicate its 

coordinates (position) where each pixel’s value represents gray levels for that 

coordinate. The gray levels are usually represented with a byte or 8-bit unsigned 

binary number, ranging from 0 to 255 in decimal. These values determine the I/O 

buses size. 
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Internal buses and internal registers size are determined by the operators’ word length 

and operation applied. For some window operation floating-point operations are 

required and word length is a function of the precision used. 

 

The format of the floating-point numbers depends on the application requirements 

and expected bounds. Providing excessive resolution comes at a high price and 

should not be spent if not needed. Truncation and rounding effects must be 

considered when dealing with either fixed-point or floating-point formats. These 

effects introduce an error value which depends on the word size of the original value 

and how much of the word is truncated or rounded. Floating-point operations are 

rather difficult to implement using FPGAs, they require big amounts of area and they 

are inherently slow because of their complexity. The fixed-point arithmetic operations 

are relatively faster compared to the floating-point operations, this number 

representation facilitates implementation of most of the calculations as integer 

arithmetic, as little pre or post-normalization is required. In this thesis gray level 

input images are used with 8-bit unsigned binary number format, mask coefficients 

uses a 9-bit signed format and computations are performed using fixed-point with an 

8.8 representation with a resolution of 0.00390625 according to the analysis that will 

be presented in section 5.2. 

 

Previously, there has been several hardware architectures reported in the literature to 

implement window-based image processing algorithms [10, 11, 141]. 

However, most of them focus on the performance of a single image 

processing algorithm, usually 2D image convolution, without considering 

implementation aspects such as flexibility and silicon area. When different 

window-based algorithms are considered, they are processed as independent 

functions. Furthermore operations which need to be executed on the outputs of 

convolution stages cannot be performed on the same hardware at the same 

time; as a consequence data results are not reused [141].  
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In order to overcome this shortcoming, in this thesis a processes chaining schema is 

presented. To reuse results from different processing stages a cache schema is 

required. Output buffers with similar characteristics to the input image buffers have 

been implemented to store the results of a particular processing stage. 

 

Processing blocks can be replicated inside the architecture. Internally, each block has 

a common basic structure and constitutes a customizable component through a set of 

parameters to select options for various processing features such as window 

operation, window mask coefficients, cache size, data type selection, and fixed-point 

processing. A Parameters bus provides the facilities to send option values to the 

FPGA to be configured. Routers are responsible for controlling the flow of data into 

and out of the processing blocks. Router simplifies processing block design and 

facilitates design reuse.  

 

Using the propose schema it is possible to chain processes since different processing 

blocks inside the same FPGA can carry out a different window-operator over the 

same data set. 

 

 

4.2 General Overview of the Architecture 

 

In this section the proposed hardware architecture for window-based image 

processing is presented. This architecture is based on a systolic array that makes use 

of extensive concurrency, data reuse, and reduced data bandwidth. The design is 

aimed to present a modular and scalable solution. 

 

The design approach has two major steps, definition of a model of the architecture in 

terms of a few parameters i.e. abstract model, and accomplishment of the final 
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architecture by a tradeoff analysis driven by the simulation process. The architecture 

is defined by the following parameters: 

 Number of PEs, 

 Interconnection of the PEs 

 Bandwidth between processors array and main memory 

 Bandwidth between processors array and host PC 

 Local memory in each processing block 

 Window mask size 

 

A simplified block diagram of the proposed hardware architecture is shown in figure 

4.3. The architecture is composed of six main blocks: 

 A high level control unit  

 An external main memory   

 A dedicated processor array  

 Routers  

 Image buffers  

 Internal buses 

 

Figure 4.3 Block diagram of the architecture. 
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High Level Control Unit: This unit is placed in a host PC. The main purpose of the 

control unit is to manage the data flow and synchronize the different operations 

performed in the architecture. The high level controller starts and stops the operation 

in the system, furthermore, it is responsible of image capturing and displaying. From 

the PC it is possible to choose a particular operation that can be performed by the PEs 

in the systolic array, to coordinate operations and to manage bidirectional data flows 

between the architecture and the PC. From this unit, the user can select configuration 

parameters to customize the architecture functionality; the parameters include the size 

of the images to be processed, the coefficients for the mask to be used during 

processing and the kind of arithmetic to be employed between integers or fixed-point. 

 

Main Memory: The memory in the architecture is a standard RAM memory for 

storing data involved in the computations. The data in the memory are accessed by 

supplying a memory address. The use of these addresses limits the bandwidth to 

access the data in the memory, and constrains the data to be accessed through only 

one memory port. Furthermore, the time to access the data is relatively long, therefore 

a buffer memory is included to store the data accessed from memory and to feed the 

processor array at a much higher rate. The buffers are used to re-circulate the data 

back to the processors, and they reduce the demand on main memory. An important 

issue to be solved is the allocation of area to implement data buffers. To obtain good 

performance one of the issues in the architecture design is, therefore, how to schedule 

the computations such that the total amount of data accesses to main memory is 

bounded. 

 

Processor Array: The processor array is the core of the architecture where the PEs 

are organized in a 2-D systolic approach; and where the algorithms are executed. The 

processor array obtains image pixels from the buffers, and mask’s coefficients from 

memory to start a computation. The processing array achieves a high performance 

due to a pipelined processing schema and local connections without long signal 

delays. The array organization with a small number of boundary (I/O) processors 
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reduces the bandwidth between the array and the external memory units. The control 

unit specifies and synchronizes the actions to be performed in the PEs.  

 

Routers: The Router is responsible for all data movement in and out of the systolic 

array as well of interfacing processing modules to external memories. The data 

streams routers take data from/to input/output image memories and make explicit the 

data parallelism usually found in the image processing. The incoming data is stored in 

external memory RAMs and data is brought into a set of internal buffers prior to be 

processed in parallel. The produced data by a processing block can be stored and then 

transmitted to an external memory output using a router. 

 

Buffers: The purpose of the buffers is to supply data to the processor array and mask 

the long main memory latencies. The buffers have a fixed amount of storage to keep 

some rows of the input image or the intermediate data from a processing module. The 

storage buffers are organized in a First Input, First Output (FIFO) style. In each clock 

cycle, the data present at the buffers are sent to the processors array or to the main 

memory. Address decoding for the buffer is executed using pointers that make 

reference to the buffer’s row that is being processed or being filled.  These pointers 

allow a circular pattern in data movement inside the buffers. The buffer basically 

carries out the following operations: 

 

 Prefetch data from the main memory into its rows to hide the memory latency 

 Reorders the information according to the processing needs of the algorithm 

to increase parallelism 

 Stores intermediate information for its reutilization in subsequent processing 

blocks 

 

Internal Buses: The global bus interconnects architecture elements to interchange 

back and forward control or configuration information, i.e. mask coefficients. In 

addition, this bus is connected to the high level control unit placed in a Host 
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processor which is in charge of data and parameters transfer via Direct Memory 

Access (DMA) with the processor. 

 

This architecture schema resembles a high level pipeline schema, formed of memory 

units and computing units. The architecture is intended for data communication 

among processes using data buffers abstraction. With these elements it is possible to 

chain processes since different processing blocks inside the same FPGA can carry out 

a different window-operator over the same data set. The results obtained by each 

block can be stored in the output image buffers and reused by subsequent processing 

blocks. This structure of cascading interconnection is a key feature of the architecture 

since it supplies generality to the array of processors, providing enough flexibility to 

run a variety of low-level processing algorithms and constitutes a platform to pursue 

the implementation of higher complexity algorithms. 

 

 

4.3 Functional Description of the Architecture 

 

Due to image processing algorithms map efficiently to a 2D processors array, 

therefore the proposed architecture consists of a main module based on a 2D, 

customizable systolic array of W×W PEs as shown in the block diagram in Figure 

4.3. 

 

Input image pixels are read from an external memory bank where they are stored in a 

linear organization together with the mask coefficients, then they are placed in an 

internal repository implemented using double port BlockRAM memories as 

neighboring elements. Input buffers are operating in a circular pipeline and they are 

able to parallelize data to be used by the systolic array which can compute, in parallel, 

several window operations. 
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To manage the data flow among the blocks inside the architecture, a Router element 

has been provided. The router module allows data transfer directly to a processing 

block or to a storage element into the FPGA before being processed. The Router 

module provides a flexible and scalable solution for routing data between buses, 

systolic array and local row memory.  

 

The global bus allows interconnection between architecture elements to interchange 

back and forward control or configuration information, i.e. mask coefficients. In 

addition this bus is connected to the high level control unit placed in a Host PC which 

is in charge of data and parameters transfer via DMA with the main memory. 

 

The Host PC starts and stops the operation in the system, furthermore, it is 

responsible of image capturing and displaying. From the PC it is possible to choose a 

particular operation that can be performed by all the PEs in the systolic array. 

 

The architecture operation starts when a column of pixels from the input image is 

broadcasted to all the PEs in the array. Every PE working in parallel keeps track of a 

particular window operation. At each clock cycle, a PE receives a different window 

coefficient, stored in an internal register, and an image pixel coming from the input 

image buffer. These values are used by every PE to carry out a computation, specified 

by a scalar function, and to produce a partial result of the window operation. The 

partial results are incrementally sent to the local reduction function implemented in 

the PE to produce a single result when all the pixels of the window are processed. 

PE’s supports most window-based operators in image processing: multiplication, 

addition, subtraction, accumulation, maximum, minimum and absolute value. 

 

The produced result is stored in the output image buffer to be reused for a subsequent 

processing block chain connected or it can be sent to an external memory. Once a 

result is produced by a processing element, the PE is ready to start a new 

computation. The processing elements work progressively in the same way until the 
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entire image has been scanned in the horizontal and vertical direction. The processing 

elements are continuously being reused for computing different windows along the 

input image. 

 

For simplicity the control unit for the systolic array has not been show in Figure 4.3. 

This module is in charge of generating all the control and synchronization signals for 

the elements of the architecture. The unit synchronizes external memory, input and 

output buffers bank, and systolic array computations. The control unit indicates 

which processors execute an operation and when a result must be sent to the output 

storage elements. 

 

 

4.4 Data Movements and Memory Schema 

 

The hardware architecture was designed with the following characteristics to allow 

efficient image processing: 

 

 Provides enough abstraction to the user of the hardware about the details 

inside the architecture 

 Supports pipelined processing. 

 Allows multiple processing blocks to be implemented simultaneously. 

 Presents an efficient and simple memory model. 

 Combines an efficient memory structure with a flexible interconnection 

mechanism to offer a scalable solution 

 

Among the key elements used in the architecture, the global image bus facilitates the 

communication for multiple processing blocks simultaneously inside the same FPGA. 

The control bus architecture consists of a shared global bus that interconnects all the 

elements inside the architecture to interchange back and forward control or 
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configuration information, i.e. mask coefficients.  The control bus executes basically 

tree main functions: 

 

 Parameter Access - Any run-time information required by the architecture 

can be transferred using the global bus. Used in this way, the global bus 

implements the parameter path. 

 Control of the Routing - The global bus is used to instruct each Router 

element where to route the image data i.e. flexible pipelined routing. 

 Configuration of the PEs - Some parameters can be used to configure the 

PEs according to the desired application. 

 

Besides the buses another important element for the movement of the information 

inside the architecture is the Router. Router elements in the architecture constitute the 

intra FPGA communication system. They have configurable routing capabilities for 

communication between systolic array units and their memory, other systolic array 

units with each other, and control structures. 

 

The Router provides a flexible, scalable solution for data routing. The Router is 

responsible for three tasks: 

 

 Accessing the architecture buses. 

 Generating the input image data flow for the processing blocks. 

 Handling the output image data flow for the processing blocks. 

 

The Router has also the capability to present the image data in the format in which 

the architecture expects it.  

 

Due to the structure of the convolution algorithm, for each successive output pixel, it 

is required the access to the entire previous rows or portions of previously input rows 
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of input pixels. In this way image memory must be accessed several times in order to 

complete a computation.  

 

The system has been provided with a simple memory model that reduces the number 

of accesses to external memory and allows the access in parallel to the input image 

data. 

 

A small image buffer implemented with two port BlockRAM memories has been 

used to keep some rows of the input image. This buffer is operating in a circular 

pipeline, where image pixels are stored as neighboring elements.  

 

Routers take data from the input image memories and transfer data to the input 

buffers that store as many rows as the number of rows in the mask used for 

processing a window. An additional row is added to the buffer to be filled with new 

image data in parallel with the rows being processed; in this way the memory access 

time is hidden. Each time a window is slid in the vertical direction, a new row in the 

buffer is chosen to be refreshed with input image data, following a FIFO style. When 

the buffer end is reached, the first buffer row is reused following in this way the 

circular pattern as shown in Figure 4.4. 

 

The coefficients of the window mask are stored inside the architecture in a memory 

bank that is able to shift data from one element to its neighbor. A shift register bank is 

distributed on internal registers of the processing elements to delay the mask 

coefficients. 

 

In a similar way to the one used to read the input data, the memory containing the 

coefficients of the window mask of a window operator is read in a column-based 

scan. Figure 4.5 shows the reading process of the mask coefficients as time 

progresses. The coefficients are read sequentially and their values are transmitted to 

different window processors when an image is being processed. 
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Figure 4.4 Circular pipeline in the buffer memory 

 

 

 

Figure 4.5 Reading pattern for window mask 

 

 

The reading process of the window mask coefficients and input image pixels requires 

a synchronization mechanism to match the operations sequence. 
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4.5 Detailed Description of the Architecture 

 

The main process block in the architecture is conformed by a 2D systolic array. 

Figure 4.6 shows the way in which PEs are interconnected for a window mask of 7×7 

elements. 

 

Figure 4.6 2D systolic array implementation 

 

Every block in Figure 4.6 represents a processing element. PEs are interconnected in 

a two dimension array and they are organized to process several windows in parallel 

in the vertical direction. The processing element’s structure has been defined from the 

convolution operation definition.  

 

 

4.5.1 Processing Element’s Structure 

 

As it has already been stated in chapter 3, convolution is outlined as: 
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According to Equation 4.1, two kinds of operations are required to compute a 

convolution. A scalar function operating on a pixel h(i-x, j-y) and a window 

coefficient w(i, j) to produce a partial result of convolution. A local reduction 

function to compute a single value from the partial results computed over the number 

of pixels in the image window. In this equation, the multiplication represents the 

scalar function, and the accumulative addition represents the local reduction function. 

 

Each PE requires two operational inputs, one pixel from the input image and a 

coefficient from the window mask. PE internal structure comprises an ALU element 

in charge of performing multiplication and one accumulator register in charge of 

implementing accumulative addition. If the value of convolution is desired at the 

point (x, y), the center of the mask is placed at (x, y). A multiplication of the image 

pixels and mask values is computed. This operation is followed by an accumulative 

addition reduction operation. Another register is required in order to perform the 

accumulation of these intermediate results. In the architecture a partial results 

collector (PRC) has been implemented for this purpose in each PE column. The basic 

set of these operations is repeated at all possible (x, y) location inside the whole 

window as can be observed in Figure 4.7 for an image of finite size, M×N and a 

mask of finite size W×W. When the final result is obtained, it is stored in a global 

collector register before being sent to the output memory.  

 

In order to provide support to other window-based operators presented in most 

common image processing algorithms, the ALU functionality has been extended to 

implement all the basic operations described in Table 3.2. A control word inside each 

PE selects the appropriate operation to be performed. 
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Figure 4.7  Convolution operation 

 

The structure for each PE that provides support to the operations involved in most 

window-based operators in image processing is presented in Figure 4.8.  

 

 

Figure 4.8 Processing element implementation 

 

One PE comprises an arithmetic processor (ALU) that implements the scalar 

functions and a local reduction module (Accumulator). PE can be configured by a 

control word selected by the user according to a desired algorithm; the ALU provides 

the functions of multiplication, addition, subtraction, and absolute value. The 

Accumulator module implements the local reduction functions of accumulation, 
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maximum, minimum and absolute value. Each PE has two operational inputs, pixels 

from the input image and coefficients from the window mask denoted by P and W, 

respectively in figure 4.8. Each PE has two output signals, the partial result of the 

window operation and a delayed value of a window coefficient that is transmitted to 

its neighbor PE.  Every clock cycle, each PE executes three different operations in 

parallel [144]: 

 

 Computes the pixel-by pixel value to be passed in the next computation cycle. 

 Integrates the contents of the outputs register calculated at the previous clock 

cycle, with the new value produced in the arithmetic processor (ALU). 

 Reads a new mask coefficient and stores it into the register. Then, PE 

transmits the previous coefficient to the next PE. 

 

In equation 4.1 s represents a scaling factor. As has been already mentioned, it is 

required in several window-based algorithms. Operations with this factor introduce 

floating-point values. For example in the particular case of Gaussian filtering, the 

mask coefficients are represented using decimal numbers produced from a vector of 

weights that approximate a discrete Gauss function. 

 

The use of floating-point mathematics is often the most important issue to solve when 

creating custom hardware to accelerate a software application. Many software 

applications make liberal use of the high performance floating-point capabilities of 

modern CPUs, whether the core algorithms require it or not. Although floating-point 

arithmetic operations can be implemented in FPGA hardware, they tend to require a 

lot of resources. Generally, when facing floating-point acceleration, it is best to either 

leave those operations in the CPU portion of the design or change those operations to 

fixed-point. 

 

A detailed description of the process for converting from floating-point to fixed-point 

operations can be highly algorithm-dependent, but in summary, the process begins by 
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analyzing the dynamic range of the data going into the algorithm and determining the 

minimum bit-width possible to express that range in an integer form. Given the width 

of the input data, it can be traced through the operations involved to determine the bit 

growth of the data. For example, to sum the squares of two 8-bit numbers, the 

minimum width required to express the result without loss of information is 17 bits. 

The square of each input requires 16 bits and the sum contributes 1 more bit. By 

knowing the desired precision of the output, working backwards through the 

operation of the algorithm it is possible to deduce the internal bit widths. Well-

designed fixed-point algorithms can be implemented in FPGAs quite efficiently 

because the width of internal data paths can be tailored. Once the width of the inputs 

is known, internal data paths, and outputs, the conversion of data to fixed-point is 

straightforward, leading to efficient implementation on both the hardware and 

software sides. The width should be large enough to introduce acceptable 

quantization error according to the constraints of the algorithm.  

 

In order to fulfill the requirements of such algorithms the PEs have been designed to 

support applications that require operation with fixed-point arithmetic. Fixed-point 

operations are faster than floating-point calculations but provide less precision.  

 

Addition and subtraction can be done in similar ways as the integer addition and 

subtraction. However, in order to preserve the accuracy; multiplication and division 

require larger temporary accumulators with twice the word length. Therefore, to 

eliminate the growth in the size of internal registers; multiplication can be performed 

by scaling the operands multiplying in powers of 2, which can be easily accomplished 

with shift movements.  A shift register is included in each PE to scale results when 

applications require fixed-point operations. 
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4.5.2 2D Systolic Array 

 

Several PEs interconnected one after another as shown in Figure 4.9 conform a 

column of the array. In this structure a PRC is included in order to keep partial results 

as explained in previous section. The number of PEs in the column depends on the 

parallelism desired for a given application. For a column of seven PEs, seven pixels 

can be processed in parallel due to data from window mask and the input images are 

available in one clock cycle.  

 

 

Figure 4.9 Column of processing elements 

 

Partial results in the PRCs are sent out of the column to a global data collector 

(GDC). The PRC scans progressively the PEs column according to a control signal to 

deliver the PEs’ results progressively.  
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In order to extend parallelism to 2D some columns of PE’s are connected in cascade.  

Figure 4.10 shows the 2D systolic organization of the columns of PEs for a 7×7 

array. This structure allows to process seven processing windows in parallel.  

 

 

Figure 4.10 Systolic array main modules 

 

 

All the PEs in a column receive a column of pixels from the input image via the input 

buffer and a column of mask coefficients that is shifted from left to right between 

array columns  every clock cycle following a circular pipeline schema. The PEs are 

activated every clock cycle, following also a pipeline schema as shown in Figure 4.11 

for a systolic array of 7×7 PEs.  
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Figure 4.11 PE’s activation schema 

 

After a short latency period, all PEs in the array are performing a computation 

according to a control word. From that moment on, each new column of pixels sent to 

the array shifts the convolution window to a new adjacent position until the whole 

image has been visited in the horizontal direction. 

 

Reading image pixels from the buffer one row below, it is possible to cross the image 

in the vertical direction. The image buffer is updated during PEs operation, in a 

circular pipeline schema too. 

 

The partial results obtained by each PE’s are stored in the partial results collectors 

and the final result is sent out of the array to a global data collector. The global data 

collector verifies progressively the PRCs from right to left according to a control 

signal. After a certain latency period has elapsed, the PRC delivers a result 

progressively. Then, the result passes to the global data collector in order to be 

written in the output memory. 
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Chapter 5 

Hardware Implementation 
 

 

This chapter describes the proposed FPGA-based platform architecture that has been 

designed specifically to support window-based operators. The architecture is 

comprised of two parts: a hardware substrate and a software interface.  

 

The hardware substrate supports the computation engine which constitutes the 

problem solver of the platform and has been designed to provide real-time 

performance and enough flexibility to allow process chaining. The software interface 

allows modifying the function described by the computational part. Two types of 

adaptation are available: major structural modification and parameter tuning.  

 

The architecture modularity, a structural change, can be modified according to the 

number of Routers presented in the architecture. Parameter tuning consists in 

choosing the configuration values to define data flow inside the architecture, 

operation to be performed by PEs and data flow into and out of the processing 

elements. The software interface resides in the Host PC and allows the function and 

parameters selection, the order in which algorithms are going to be performed. The 

interface is in charge of images capturing and displaying. 



 87

 

Physically the FPGA platform has been implemented using the Celoxica RC1000 

development system shown in Figure 5.1. The RC1000 board is a PCI bus plug-in 

card for PCs. It contains a Xilinx Virtex-2000E FPGA, 8 Mbytes of external SRAM 

divided into 4 separate independently accessible banks and a 32-bit PCI interface to 

the host PC. Data can be loaded from the PCI into the SRAM banks and then read as 

required by the FPGA. DMA, data buffering and clock speed control make it suitable 

for implementing high-speed image processing applications. 

 

In this chapter a detailed description of the internal structure of the principal modules 

of the architecture is provided as well as the results from the synthesis process. In 

addition details of the fixed-point implementation are presented considering a 

tradeoff between the error and the amount of area occupied. Finally a performance 

analysis of the architecture is presented considering parameters such as frequency, 

level of parallelism, and the number of processors to obtain graphs of behaviour that 

represents the architectural advantage of the proposed schema. In order to estimate 

the scalability and the level of improvement in performance of the architecture, it has 

been synthesized to different technologies.  
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5.1 RC1000 Prototyping Board 

 

Currently, there are a lot of different FPGA prototyping boards that can be found in 

the market, with each having different architecture and FPGA chips installed. For this 

thesis implementation, a RC1000 development board specially made by Celoxica for 

use with the DK4 development suite that includes a Handel-C compiler has been 

used. The practical advantage, when using this board, is the packaged communication 

library that is written in Handel-C. The communication library provides pre-built 

hardware design to gain access to the PCI bus and the on-board memories of the 

RC1000. The block diagram for the board is shown in Figure 5.1.  

 

 

Figure 5.1 RC1000 block diagram 

 

The RC1000 board includes a PCI bridge, a clock generator, and an XCV2000E 

FPGA chip. The board is designed to allow single byte transfer to and from the FPGA 

chip through a dedicated address port in the PCI bus. Multi-byte transfers are possible 

only by redirecting the data using DMA transfer to the external memory, before being 
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read by the FPGA chip. The XCV2000E itself is capable of running at clock speeds 

from 0 to 100 MHz. The board contains four memory banks, each of 2 MB, 

accessible to both the FPGA and any other device on the PCI bus. A single 

XCV2000E chip contains 19200 CLBs that roughly amounts to 2 million system 

gates. Each CLB in the Virtex series are divided into 2 programmable slices, 

therefore it is possible to program 38, 400 individual slices in the XCV2000E chip.  

 

 

5.2 Fixed-Point Representation Analysis 

 

One of the most difficult tasks in implementing an algorithm in an FPGA is dealing 

with precision issues to meet system requirements [148]. Typical concepts such as 

word size and data type are no longer valid in FPGA design, which is dominated by 

finer grain computational structures, such as look-up tables. 

 

Hardware arithmetic traditionally focuses on either integer or fixed-point arithmetic 

representations. Due to the significant increase in resources in the latest FPGAs, it is 

feasible to support more complex arithmetic formats such as floating-point.  

 

Fixed-point arithmetic is the more straightforward of the two number representations. 

In fixed-point representation, an implicit binary point is used to separate the integer 

part and the fractional part within a single data word. Fixed-point number 

representation facilitates implementation of most of the calculations as integer 

arithmetic, as little pre or post-normalization is required.  

 

The pre and post-normalization steps used in floating-point arithmetic require the use 

of priority encoders and variable shifters. These components are expensive in terms 

of area usage and power consumption, and tend to have large combinational delays. 

Hence when identical range and precision are considered, floating-point operations 
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are always more costly than fixed-point operations in terms of speed, area and power 

consumption. 

 

However, there is always a tradeoff between accuracy of fixed-point representation 

and the hardware cost: minimum quantization error requires using wide fixed-point 

representations, but wider signals require larger circuits to perform mathematical 

operations (dividers, multipliers, adders, etc.), in addition to larger data path circuits, 

larger memory and higher chip-to-chip communication bandwidth. 

 

To characterize a fixed-point arithmetic system, a commonly used representation is 

based on the 15.16 standard that uses the following parameters [149]:  

 

 WL – World Length, total number of bits used to store the fixed-point 

numbers.  

 IWL – Integral Word Length, total number of bits assigned to the integral 

part.  

 FWL – Fractional World Length, total number of bits assigned to the 

fractional part.  

 S – Unsigned or two’s complement (signed)  

 

Figure 5.2 presents a diagram for the fixed-point parameters used in 15.16 

representation. 

 

 

Figure 5.2 Fixed-Point representation 
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The range of the fixed-point numbers supported for this representation is defined in 

equation 5.1 [150]:  

 

{ }FWLIWLIWL SteponQuantizatiN −<≤− 2:22  (5.1) 

 

For a 32 bit word, a common choice is: IWL = 15, 1 sign bit, FWL = 16, WL = 32. 

This is referred as 15.16 signed representations. The minimum number that can be 

represented is   -2-15 = -32768.0 (0x8000000) and the maximum number is 215 - 2-16 ≈ 

32767.99998 (0x7FFFFFFF). 

 

Addition and subtraction can be done in similar ways as the integer addition and 

subtraction. However, in order to preserve the accuracy of 15.16 signed 

representation, multiplication and division require a temporary accumulator with 

2WL, i.e. 64 bits. This result must ultimately be stored in a fixed length 32 bit word. 

The least significant bits cannot simply be truncated of the end of the number since 

they represent the magnitude of the number, an essential part of its representation.  

 

Scaling is a form of fixed-point operation with which the actual physical values of the 

original signal can be compressed, or expanded into a range suitable to the system. 

By suitable, it is understood that the system will be able to store the input value into 

its registers, and to use operations with sufficient range to hold intermediate results. It 

must be ensured that during all of the calculation stages, storage locations and 

operations suitable for the range of values required at that stage are used. Typically 

power-of-two are used for scaling so that this operation can be performed using 

shifts. In a multiplication, if both operands are scaled up by a factor N, the 

multiplication result is scaled up by N2. To restore the original scaling, the result has 

to be divided by N.  

 

The standard just presented has been adjusted to the current architecture 

requirements. In this work gray level images are used, each pixel is represented using 
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binary numbers ranging from 0 to 255 in decimal to cover all the possible pixel 

values presented in the input images therefore 8-bit internal registers are needed for 

data management. Certain window-based algorithms, such as Gaussian filtering, may 

present fixed-point mask coefficients. Considering a Mean Squared Error (MSE) of 

5.6, 8-bit internal registers are needed for data management. Furthermore negative 

values may be present in the mask coefficients, if an operation between these values 

and the image pixels is performed the result is also a negative value, therefore an 

extra bit must be taken into account for sign representation, resulting in a requirement 

of 9-bit for the integer part of the representation. 

 

Based on these characteristics the 8.8 standard has been established for the present 

architecture. The word length used is of 17 bits considering that: IWL = 8, 1 sign bit,   

FWL = 8, WL = 17. In this particular case the minimum number that can be 

represented is -28 = -256.0 (0x100), the maximum number is 28 - 2-8 ≈ 255.99609375 

(0xFF) and the resolution is 2-8 = 0.00390625. 

 

In order to implement operations presented in Table 3.2 in hardware, the PEs has 

been designed to support the 8.8 standard. To manage the fractional part of the 

number the value has been scaled by 256, this is achieved by using shift registers. 

Consequently operations can be performed like 8-bit integer operations using a 25 bit 

register for intermediate results. In this way it is possible to take advantage of the 

general optimizations made to the ALU since no additional hardware logic is 

required. The disadvantage of using this schema is that only a limited range of values 

can be represented, as a consequence this representation is susceptible to common 

numeric computational inaccuracies.  

 

For example, consider a mask coefficient from a Gaussian filter that is represented in 

two's complement binary format. To keep the example simple, a positive number is 

considered. To encode 0.625, the first step is to find the value of the integer bits. The 

binary representation of the integer part is 000000000. The fractional part of the 
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number is represented as 0.625×2n where n is the number of fractional bits used for 

representation. In this case according to the standard established, n is 8. If the number 

is scaled by 28=256, the fractional part transforms to 0.625×256 = 160, whose 

representation is 10100000 thus, the binary representation for 0.65 is 0 0000 0000 

1010 0000.  

 

Using the scaled mask coefficients and the available input image values, it is possible 

to perform operations without modifying the PE basic structure; the only extra 

element is an output shift register that executes the required division by 256 when the 

final result is obtained. 

 

The fractional part of the numbers used in the algorithms has been adjusted to an 8-bit 

format therefore some information representing the magnitude of the number has 

been truncated consequently an error in the final result is introduced due to this 

quantization process. The measurement of this error is important in order to keep an 

acceptable margin according to the constraints of the algorithm.  

 

A first approach consists in creating an absolute error image by subtracting the 

obtained image processed in the architecture from the image obtained by simulation 

in Matlab and then taking the absolute value.  In figure 5.3 it can be observed the 

result for this process using a mean filter. The error image provides a visual aid to 

identify the amount of image distortion. 

 

In order to provide a numerical measure of overall distortion in the image another 

approach is to compute the mean squared error over the picture. This is a common 

metric used to determine the error allowed for an application. The 8.8 data 

representation used in this thesis has been defined based on this metric. 
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(a) 

 

 

 

 

 

 

 
(b) (c) 

 
(d) 

Figure 5.3 Error image for a mean filter: (a) Original Image, (b) Output image processed by the 
architecture, (c) Output image from Matlab simulation, (d) Error image 

 

 

The MSE is the cumulative squared error between two images. The mathematical 

formula for the MSE is defined in equation 5.2 [151]: 
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Where I(x, y) is the original image, I'(x, y) is the approximated version of the image 

and M and N are the dimensions of the images. A lower value for MSE means a 

smaller error.  

 

Table 5.1 shows the MSE for different truncation errors using a pair of 640×480 gray 

level images. As can be observed, after certain value the error decreases slowly. It 

doesn’t matter if more bits are added for data representation using a longer shift 

register the value of MSE is not significantly affected, therefore a shift by 256 has 

been chosen, achieving a resolution of 0.00390625 for data representation. The MSE 

shown in the output image is around 5. In comparison with the integer version of the 

architecture, the growth in area is around 2%. 

 
Table 5.1 Mean squared error 

Value of shift 
used MSE 

64 28,6052 
128 28,6049 
256 5,6267 
512 5,6264 

 
 

Using the 8.8 representation, according to the Table 5.1 the measured MSE is 5.6. In 

Figure 5.4 a new error image is presented. This image is obtained subtracting the 

obtained image processed in the architecture using 8.8 representation from the image 

obtained by simulation in Matlab. As can be observed the error has been reduced in 

comparison with the image in Figure 5.3. 
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Figure 5.4 Error image for a mean filter using 8.8 representation 

 

Figure 5.5 shows the MSE’s behavior for images of 640×480. If the number of bits 

for data representation changes from 7 bits to 8 bits the error reduction is about 3.5%. 

In the figure there is a region where MSE remains approximately constant; from 8 

bits to 10 bits the error is not reduced. From this point, once again the error 

diminishes as the number of bits used increases. 
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Figure 5.5 Mean squared error vs. width of inputs 

 

In order to choose the appropriate data representation, this behavior has been taken 

into account. The intention is to maintain a low error value which implies the use of a 

reasonably number of bits, maintaining a reduced amount of the area occupied. 

Therefore it is necessary to find a good tradeoff between these two parameters. 
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According to Figure 5.5 an acceptable error can be chose in the range of 8-10 bits due 

to a bigger number of bits implies an important growth in area, and a value below 

implies a great amount or error. 

 

In order to have a reference of the area behavior, a graphic of the cost of 

implementing arithmetic multipliers and dividers versus the input width of the 

multiplier or divider measured in number of LUTs is presented in Figure 5.6. As can 

be observed the area increases approximately with the square of the input width.  
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Figure 5.6 Hardware cost for arithmetic operation 

 

Considering the observations made from Figures 5.5 and 5.6, 8 bits have been chosen 

to represent the fractional part of fixed-point numbers achieving a good tradeoff 

between accuracy and area occupancy with the 8.8 representation. The number of bits 

selected is enough to avoid the occurrence of overflow. 
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5.3 Implementation and Synthesis Results 

 

In this section, synthesis results for all the modules implemented in the architecture 

are presented. 

 

Every module has been described using the hardware description language Handel-C 

and for the implementation it has been used FPGA technology. The architecture has 

been synthesized to a XCV2000E-6 Virtex-E FPGA with the Xilinx Synthesis 

Technology (XST) tool and placed and routed with Foundation ISE 7. The flow 

diagram used in order to test the architecture is shown in Figure 5.7. 

 

 
Figure 5.7 Flow diagram to test the architecture 

 

As can be observed, to evaluate the hardware architecture, the process starts with the 

high level description of the architectural modules using Handel-C DK4. The 

functionality of the design is then verified using the Handel-C simulator environment. 

Once satisfactory simulation results have been achieved the Handel-C compiler can 
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be used to generate the FPGA gate-level netlist. The netlist format created by the 

Handel-C compiler is EDIF. 

 

Target technology-specific placement and routing tools are used next to map the gate-

level netlist generated by the Handel-C tools into the targeted FPGA device. In this 

implementation ISE Foundation from Xilinx has been used for this purpose. The 

FPGA placement & routing tools will produce a final layout of the FPGA design. 

From this layout, the FPGA tools can also generate an FPGA configuration bitstream, 

which will be used to program the target FPGA device. Finally, in order to verify the 

post-place and route results, they are compared to the results obtained by simulation 

using Matlab. 

 

With the purpose of demonstrating the correct operation of the architecture, a window 

mask of 7×7 coefficients and a systolic array of 7×7 PEs are used. 

 

 

5.3.1 Processing Element Implementation 

 

A detailed description of the internal structure of one PE is shown in Figure 5.8. The 

PE is composed of two main elements, the ALU that provides the functions of 

multiplication, addition, subtraction, and absolute value and the Accumulator that 

implements the local reduction functions of accumulation, maximum, minimum and 

absolute value. Each PE has two operational inputs, pixels from the input image and 

coefficients from the window mask denoted by P and W, respectively in the Figure.  

 

The ALU includes a multiplier, an adder-subtracter and a Sum of Absolute 

Differences (SAD) module. The Accumulator module includes an accumulator, and a 

maximum-minimum computation module. The operation performed by these 

modules can be configured by a control word selected by the user according to the 
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algorithm to be implemented. The PE has two output signals, the partial result of the 

window operation and a delayed value of a window coefficient that is transmitted to 

its neighbor PE. The PE internally has two registers; the first one has 8-bits width and 

stores the window mask coefficient temporally to transmit it to the next PE after one 

clock cycle. The second is a 25-bits shift register that is used to normalize partial 

results when a fixed-point operation is performed. 

 

 
Figure 5.8 Internal structure of the PE 

 

The signal description of this architectural block is presented in Table 5.2. 

 
Table 5.2 Signal description for PE module 

Signal Direction Width Description 
p In 8 Pixel of the input image 
w In 9 Coefficient of the window mask 

opsel In 3 Control word to configure the PE 
according to application 

math In 1 Data type selector: Integer/Fixed-point  
reset In 1 Reset signal for the PE block 
clk In 1 Main clock 
PR Out 25 Partial result for an operation  

Wd Out 9 Output for delayed value of the 
window mask 
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For a single processing element that is performing a filtering operation the synthesis 

results are presented in table 5.3. 

 
Table 5.3 Technical data for the PE 

Element Specification 
Virtex-E  XCV2000E 
FPGA technology 0.18 µm 6-layer metal process 
Number of Slices 720 out of 19200 
Number 4 input LUTs 1,318 out of 38,400 
Number of Flip Flops 569 out of 38,400 
Overall % occupancy 3 % 
Internal data buses for 
ALUs 

8 bits for fixed-point 
operations 

Power Consumption 550 mW 
 

 

5.3.2 Router Implementation 

 

The Router is responsible for all data movement in and out of the systolic array as 

well as interfacing processing modules to external memories. The internal structure of 

the router is shown in Figure 5.9.  

 

 
Figure 5.9 Internal structure of the Router 

 

This block is composed of an address generator that produces the address to access 

the input image memory. A shift register that parallelizes the read pixels to store them 

in a buffer implemented with double port BlockRAM memories. The generator 

produces as well the addresses to access the buffer that stores the input image rows; 
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this buffer allows the parallel access to data. The signal description of the Router 

module is presented in Table 5.4. 

 
Table 5.4 Signal description for Router module 

Signal Direction Width Description 
imdata In 32 Pixel of the input image 

waddres In 10 Address where input pixels are stored 
inside the BlockRAM memory 

wclken In 1 Write enable signal 

rselector In 2 
Data flow selector: To current 
processing block/next processing 
block 

raddres In 10 Address to read data out of memory 
reset In 1 Reset signal for the Router block 
clk In 1 Main clock 

radatapA Out 8 Output data read from port A of the 
memory  

radatapB Out 8 Output data read from port B of the 
memory 

 

 

The synthesis results for this module are presented in Table 5.5. 

 
Table 5.5 Technical data for the Router 

Element Specification 
Virtex-E  XCV2000E 
FPGA technology 0.18 µm 6-layer metal process 
Number of Slices 330 out of 19200 
Number 4 input LUTs 397 out of 38,400 
Number of Flip Flops 221 out of 38,400 
Overall % occupancy 1 % 
Power Consumption 800 mW 

 

 

The address generator is composed of counters, adders, and registers. This block is in 

charge of scanning the input image memory, producing the addresses to read the 

input pixels and generating the input addresses to the BlockRAM memories that 

cache the corresponding input image rows. This module is presented in Figure 5.10. 
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Figure 5.10 Internal structure of the address generator 

 

The signal description of the address generator module is presented in Table 5.6. 
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Table 5.6 Signal description for address generator module 

Signal Direction Width Description 

cptr In 21 Pointer to the initial column address in 
the input memory  

wptr In 21 Pointer to the initial row address in the 
input memory  

maxc1-8 In 21 Pointers to the memories constituting 
the input buffer 

maxo1-3 In 21 Pointers to the memories constituting 
the output buffer 

optr In 21 Pointer to the initial column address in 
the output memory  

en In 1 Enabler to start the address generation 
process 

reset In 1 Reset signal for the address generator 
block 

clk In 1 Main clock 

raddres Out 21 Address generated to direct the input 
image memory 

waddres1-8 Out 21 Address generated to direct the input 
image buffer 

waddr Out 21 Address generated to direct the output 
image memory 

oaddr1-3 Out 21 Address generated to direct the output 
image buffer 

 

 

In the first clock cycle the pointer to the input memory cptr is initialized to point out 

the first memory locality. The input image is scanned in a column-based order; in 

each memory locality four pixels from the input image are stored and every clock 

cycle the pointer indicates the memory address being read. The pointer is incremented 

by the number of columns in the input image to read the next image row, until eight 

rows are read. Afterwards, the column counter’s accumulator is set to its initial value 

and the process is started again. This column based value is added to the counter of 

columns and the base address that provides the reference row in the input image is set 

to its new position using an increment of N×C, where N is the number of columns in 

the input image and C is the number of columns processed in parallel. 

 

The data read from the input memory are stored in the eight BlockRAMs constituting 

the image buffer. A group of pointers, maxc1 to maxc8, select the buffer row being 
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filled. Every clock cycle the pointers are incremented to go over all the buffer 

memories localities storing in parallel an image pixel in each buffer row.  

 

When the first buffer row is being filled, the pointer that selects the buffer row maxc1 

is selected to store the new data that are being obtained. Once the first buffer row is 

full the current input memory address in cptr is increased by a factor that advances 

the pointer to the next input image row and these pixels are read, then the buffer 

pointer maxc2 is selected to store the read data and the process continues this way 

until the eighth row is reached with maxc8. Afterwards the process is repeated, setting 

the buffer pointer to the first row maxc1 once again, in this way a circular pattern is 

achieved. This cycle continues until the whole input image is completed.  

 

The address generator is also in charge of generating the addresses to store the 

processed pixels in the output memory. When pixels have been processed, they are 

stored in the output buffers which are constituted by three BlockRAM memories 

directed by maxo pointers. On each clock cycle, the address in the first buffer is 

incremented until the final address is reached, then the pointer is set to the second 

memory buffer while data stored in the first buffer are arranged and sent to the output 

memory.  

 

When the end of the second buffer memory is reached, the third buffer is selected to 

store processed pixels as data from second buffer is sent to the output memory. When 

the third buffer is full, then the first one is used again to complete a circular pattern. 

The addresses in the output image memory are incremented one by one until all the 

processed pixels have been stored. The synthesis results for the address generator 

module are presented in Table 5.7. 
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Table 5.7 Technical data for the Address generator 

Element Specification 
Virtex-E  XCV2000E 
FPGA technology 0.18 µm 6-layer metal process 
Number of Slices 112 out of 19200 
Number 4 input LUTs 55 out of 38,400 
Number of Flip Flops 55 out of 38,400 
Overall % occupancy 1 % 
Power Consumption 200 mW 

 

 

5.3.3 2D systolic architecture 

 

For a systolic array of 7×7 PEs, the logic resource utilization using as main 

parameters the number of slices, the number of flip-flops, the number of look-up 

tables, and the number of BlockRAMs as well as some other features for the 

architecture are shown in Table 5.8.  

 
Table 5.8 Technical data for the 2D systolic array 

Element Specification 
Virtex-E  XCV2000E 
FPGA technology 0.18 µm 6-layer metal process 
Number of PEs 49 
Number of Slices 2,855 out of 19200 
Number 4 input LUTs 5,241 out of 38,400 
Number of Flip Flops 1,628 out of 38,400 
Number of Block 
RAMs: 

11 out of 160 

Overall % occupancy 37 % 
Clock frequency 66 MHz 
Off-chip memory data 
buses 

21 bit-address, 32 bit data 

Internal data buses for 
ALUs 

8 bits for fixed-point 
operations 

Peak performance 5.9 GOPs 
Power Consumption 1.45 W 

 

The hardware resource utilization for the 2D systolic array is about 37% of total logic 

available in the FPGA. This area occupation allows the possibility of repeating the 

architecture blocks inside the same FPGA more than once, to execute different 
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window operators at the same time. Another possibility to take advantage of the 

reduced area required for the architecture consists in the implementation of larger 

arrays using masks from 9×9 to 16×16 coefficients achieving a reduced degradation 

in current performance. 

 

In order to test the architecture, different window coefficients have been generated 

and the functionality of the architecture has been selected specifying a control word 

for a configuration register through a software interface. To validate the functionality, 

images and arrays of different size have been used, however results only for a 

640×480 gray-level image and window masks of 7×7 are shown. 

 

Considering the characteristics of the 640×480 images used, the size of the internal 

buses and registers has been defined. For gray level images each pixel is represented 

using 8-bit unsigned binary number format ranging from 0 to 255 in decimal to cover 

all the possible pixel values presented in the input images.  The Mask’s coefficients 

may represent negative values. These values are stored in internal BlockRAM 

memories. Virtex-E structure, allows implementing 8-bit or 16-bit wide memories. 

Mask coefficients require 8-bit representation for their 256 possible values and one 

extra bit for sign representation, therefore 9-bit are used for full representation and 16 

bit wide memories are used for hardware implementation. 

 

If these number formats are considered, when the basic operations in Table 3.2 are 

performed, the maximum size for internal register is obtained. Multiplication is the 

operation that requires the biggest amount of bits for data representation so it has 

been taken as reference to define internal architecture register requirements. 

Multiplication of two operands with 8 and 16-bit respectively requires a minimum of 

24 bits and one extra bit is added for signed number representation. Based on this 

fact, internal register and buses have been adapted to fulfill the requirements of this 

arithmetic operation. 
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For this case the clock frequency reported by the synthesis tool is above 66 MHz; 

therefore a single frame is computed in around 5 ms. equivalently, the proposed 

architecture is able to process about 200 gray-level images per second, which is better 

than the previously reported in the literature [141, 152, 153]. Achieving an improved 

performance with comparable resource utilization under real time constrains.  

 

 

5.4 Performance Analysis 

 

The processing time and the degree of parallelism are important parameters to be 

taken into account to determine the architecture performance. The hardware 

architecture throughput can be expressed in terms of the number of images processed 

per second; therefore the FPGA synthesis results and Equations (5.3) and (5.4) were 

employed to plot some performance graphs that help to determine the best tradeoff 

between these parameters to achieve the highest throughput. 

 

Image processing applications do not imply only the application of a window-based 

image operator but a sequence of different image operators, for this reason it is 

important to reduce the processing time. One possibility is to increase the number of 

rows processed in parallel. In Figure 5.11 (a) it can be observed that the growth in the 

number of PEs for different windows size is quadratic.  If this schema is replicated 

for multiple rows processed in parallel, the growth in the number of PE is linear as 

shown in Figure 5.11 (b). In both cases the amount of area used grows in the same 

proportion which is a disadvantage for the implementation.  According to graphs in 

Figure 5.11, 49 PEs have been selected. This number of PEs allows the management 

of windows of 7×7 which is enough for some applications and offers a good 

commitment between area and throughput as can be observed in Figure 5.12, where 

throughput vs. the number of rows processed in parallel is shown. It can be observed 
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that even if the quantity of rows processed in parallel is increased, the gain in speed is 

not quite significant; consequently a good choice is a throughput of 1 for 49 PEs.  

 

 

 

 

 

 

 

 

(a)      (b) 

Figure 5.11 Growth in the number of processor: (a) PEs required per window size, (b) PEs required 
per number of rows processed in parallel 
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Figure 5.12  Performance vs. Parallelism 

 

From the synthesis results, the most important factor to take into account is the 

maximum clock frequency achieved. One challenge in hardware design is to 

maximize this parameter. As can be observed from Figure 5.13; the bigger the 

frequencies of main clock, the better the performance in the architecture. However 

after a certain value even if the clock frequency is increased, the processing time 

reduction is very little. 
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For real time operation, the common standard is 30 frames per second. This goal is 

achieved if the frequency is chosen in values where the slope of the graph in Figure 

5.13 is around 45º in Figure 5.13. In this case a frequency of 66 MHz. is enough to 

process about 200 images per second; this frequency is around the value reported by 

the synthesis tool. Thus the architecture provides enough computational power. 
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Figure 5.13  Throughput 

 
The hardware architecture presented in the previous section is dedicated to window-

based operation. The main objective during architecture conception is to achieve real 

time operation; therefore an analysis in performance parameters is required. In this 

section the processing time of an input image in terms of architectural parameters is 

computed.  

 

The time required to process an input image with a window-based operator is 

composed of two main times; the latency time and the parallel processing time. The 

latency time is measured between the activation of the first PE and the activation of 

the last one. The latency is significant when the 2D systolic array starts the 

processing of a new set of rows of the input image. The total time required to 

initialize full pipeline operations of the parallel modules at the beginning of row 

processing is summarized in Equation 5.3. 
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C
Nx

f
xWindowSizel

1
=τ  (5.3) 

 

Where WindowSize corresponds to the size of the mask used in the computations, f is 

the frequency of the main clock, N is the width of the input image and C is the 

number of columns processed in parallel. 

 

The parallel processing time is the time when all the PEs in the 2D systolic array are 

working in parallel through the whole image processing without considering the 

latency at the start of the processing.  For an M×N image, the processing time is 

given by Equation (5.4):  

 

f
xNxMp

1
=τ  (5.4) 

 

The overall time needed to process an M×N image is given by the addition of the 

preceding times [141]: 

 

plT ττ +=  (5.5) 

 

For the values considered, a total time consumed of approximately 5 ms is obtained; 

therefore about 200 images can be processed per second.  

 

Performance can be also measured based on the number of elementary operations that 

the system can perform per second. For window operators only the operations 

contributing to the computation of a window result are considered, in this case to 

determine the performance, the operations involved in convolution are taken as basis 

for calculation. The total amount of operations OpT per second is defined in Equation 

(5.6): 
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))(( ffT NumOpOp =
 (5.6) 

  

Where Opf is the total number of operations performed in a frame and Numf is the 

total number of frames processed in a second. 

 

For a 640×480 image and a window mask of 7×7, 29.7 operations are required per 

frame. Whit the throughput achieved by the presented architecture, this number of 

operations is accomplished to operate in real time. 

 

 

5.5 Scalability analysis 

 

In order to estimate the scalability and the level of improvement in performance of 

the architecture, it has been synthesized to different technologies. The Virtex E 

(xcv2000E), Virtex-II (xc2v2000), Spartan III (xc3s2000), Virtex II-Pro (xc2vp2) and 

Virtex IV (xc4vlx200) families were considered for the filtering application using an 

array of variable size and a 640×480 input image. The obtained results are plotted in 

Figure 5.14 for the amount of area consumed. 
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Figure 5.14  Area occupancy for different FPGA families 
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As can be observed from the Figure, there is a reduction in area occupied by the 

architecture as the technology improves. This is basically due to the reduction in the 

size of the transistors used to implement the FPGA devices and to the existence of 

embedded multipliers in most of the advanced FPGA families.  

 

Figure 5.15 shows the number of CLBs consumed by the architecture synthesized for 

the FPGA families considered. This parameter is another reference for resource 

occupation comparison. 
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Figure 5.15  Number of CLBs for different FPGA families 

 

The implementation of the architecture using embedded multiplier requires less 

hardware resources than the version with the distributed logic multipliers due to the 

reduction of the complexity in the interconnection inside the architecture. As a result 

of this area reduction an enhancement in the architecture performance is expected 

with the improvement of the technology. 

 

Figure 5.16 presents the frequency achieved by the architecture for the FPGA 

families considered in the analysis. The plot was obtained using an array of variable 
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size and an input image of 640×480. As can be observed, Virtex II-Pro and Virtex IV 

provide the higher performance due to the improvements in their internal structure. 
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Figure 5.16  Frequency for different FPGA families 

 

Considering these results, a higher throughput is expected if the architecture is scaled 

to a newer technology.  However the performance achieved using an xcv2000E 

FPGA fulfils the real time requirements for the applications proposed in the present 

work. 

 

 

5.6 Architecture Discussion 

 

The main characteristics and the operation of the architecture was presented in 

previous sections; nevertheless some features are highlighted here in order to 

emphasize the advantages of the current schema in comparison with previous 

approximations presented in the literature. 

 

The main module of the architecture is arranged as a systolic array. This structure 

presents several benefits to implement applications that demand high computational 
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power. Systolic arrays offer flexibility and provide a high throughput. This thesis 

addresses the implementation of a hardware architecture for image processing where 

some enhancements have been added to extend the systolic array functionality and to 

improve high performance.  

 

One way to strengthen the capacity of the architecture is to provide it with the 

capability of processes chaining. In order to achieve this goal, the systolic 

architecture has been coupled with other elements such as memory buffers and router 

blocks. The interaction of these components has driven the improvement of four 

features: 

  

 Modularity: This is a fundamental feature that has been adhered to the 

architecture. Replicating the basic schema presented in Figure 4.3 it is 

possible to configure individual blocks of the system making them 

customizable. In this way it is possible to process different algorithms at the 

same time which represents a remarkable difference between the present 

architecture and previous approximations in the literature where generally a 

single algorithm is processed. This modular structure is an advantage when 

the output of an algorithm depends on the processing of the information along 

several stages; hereby it is possible to re-use information along subsequent 

processing stages where the output of one block corresponds with the input of 

the following one. Modularity improves performance due to all the processing 

blocks located inside the same integrated circuit. The disadvantage is that this 

can be applied to FPGAs of great capacity. Dynamic reconfiguration 

techniques are an alternative to improve the hardware resource utilization due 

to the partial reconfiguration of the FPGA during execution. In this way 

customization can be performed in real time reducing area occupancy. 

 Communication: The routers developed in the architecture for a single-chip 

platform support complex communication. They are in charge of all inter-

modular data movement tasks. Most of the architectures presented in the 
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literature count with limited data movement through a fixed structure, so the 

router elements provide major flexibility and capacity for processes chaining 

inside the FPGA. The routers reduce the bandwidth necessary for the 

communication among processes, which represents another advantage over 

previous systems. 

 Memory: The amount of memory available in an FPGA based system is 

usually limited therefore it is necessary a smart management of existing 

resources. Off-chip memory is used to store input and output images, reading 

and writing data is a time consuming process therefore the number of accesses 

to  memory have been reduced in the presented architecture. In comparison 

with previous systems, data are read only once during processing; moreover 

data read are reused via small internal buffers that increase data parallelism. 

During processes chaining, image buffers allow to share and to reuse data 

between processing blocks. In the presented architecture an efficient use of 

memory has been achieved resulting in reduced area occupancy. 

 Data flow: In the presented architecture data movements are systolic flow. In 

each cycle a single pixel value is transported across PEs in the array as in 

most other architectures previously presented. Router elements add extra 

flexibility to the management of data. This creates an image flow bus inside 

the architecture that reinforces the architecture capacity for process chaining. 

This is an advantage with regard to other presented schemas. An additional 

outstanding feature in the proposed architecture is the presence of internal 

buses dedicated to the management of configuration and control parameters. 

These buses constitute a means for architecture customization. 

 

Taking into account the characteristics above mentioned it is deduced that the 

proposed architecture presents several improvements with respect to previous works.  

The architecture offers a high potential to implement complex algorithms via 

processes chaining which is an approach scarcely explored in literature. 
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The architecture has probed to be a good tool for implementation of window-based 

algorithms achieving a good tradeoff between performance and area occupancy under 

real time conditions. However a performance improvement can be obtained either by 

optimizing the design mapped onto the FPGA or by employing FPGAs with better 

technology.  
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Chapter 6 

Architecture Applications 
 

 

In this section, the results for some low-level application are presented. To validate 

the hardware platform functionality and flexibility, convolution, filtering, matrix 

multiplication, pyramid decomposition and template matching algorithms have been 

mapped into the systolic array. 

 

All the output images presented in this section correspond to the data obtained 

directly from the FPGA board prototype and they were compared against the software 

implementations on a general purpose computer. In all the test cases, the correct 

results were obtained and validated. 

 

 

6.1 Convolution 

 

Convolution is a simple mathematical operation which is fundamental to many 

common image processing operators [154]. Convolution is a way of multiplying 

together two arrays of numbers of different sizes to produce a third array of numbers. 

In image processing the convolution is used to implement operators whose output 

pixel values are simple linear combinations of certain input pixels values of the 

image. Convolution belongs to a class of algorithms called spatial filters. Spatial 

filters use a wide variety of masks, also known as kernels, to calculate different 

results, depending on the desired function 
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The basic idea is that a window of some finite size and shape is scanned over an 

image. The output pixel value is the weighted sum of the input pixels within the 

window where the weights are the values of the filter assigned to every pixel of the 

window. The window with its weights is called the convolution mask. An important 

aspect of convolution algorithm is that it supports a virtually infinite variety of masks, 

each with its own feature. The concept for this operator is shown in Figure 6.1. 

 

 
Figure 6.1 Convolution concept 

 

In order to test the correct operation of the convolution, the algorithm has been 

executed in the FPGA board. The resultant image obtained is observed in Figure 6.2. 

for Laplacian operator. 

 

 

 

 

 

 

 

 

     
(a) Original image     (b) Filtered Image 

Figure 6.2 Output for convolution using Laplacian operator 
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The architecture has been set to process a 640×480 input image and a 7×7 window 

mask. The processing elements are configured to perform the scalar function of 

multiplication and the reduction function of accumulation over integer mask 

coefficients. The technical data of post-place and route for the convolution 

architecture are shown in Table 6.1. 

 
Table 6.1 Technical data for the convolution 

Element Specification 
Virtex-E  XCV2000E 
FPGA technology 0.18 µm 6-layer metal process 
Number of PEs 49 
Number of Slices 11,969 out of 19,200 
Number 4 input LUTs 5,241 out of 38,400 
Number of Flip Flops 1,628 out of 38,400 
Number of Block 
RAMs: 

13 out of 160 

Overall % occupancy 62 % 
Clock frequency 66 MHz 
Off-chip memory data 
buses 

21 bit-address, 32 bit data 

Internal data buses for 
ALUs 

8 bits for fixed-point 
operations 

Peak performance 5.9 GOPs 
Power Consumption 2.017 W 

 

 

To illustrate the convolution algorithm using fixed-point numbers, a Gaussian 

convolution mask has been chosen. In this case a 640×480 input image is used and 

coefficients in the window mask have a four decimal number representation. Inside 

the architecture 8.8 representation is used to perform fixed-point operations. The 

output image obtained from the FPGA implementation is shown in Figure 6.3. The 

post-place and route results correspond with the obtained in table 6.1. 
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(a) Original image     (b) Filtered Image 

Figure 6.3 Output for convolution using Gaussian operator 

 

 

6.2 Filtering 

 

Digital images can be processed in a variety of ways. The most common one is called 

filtering and creates a new image as a result of processing the pixels of an existing 

image. Each pixel in the output image is computed as a function of one or several 

pixels in the original image, usually located near the location of the output pixel. 

These algorithms are applied in order to reduce noise, sharpen contrast, highlight 

contours, and to prepare images for further processing such as segmentation [155]. 

These algorithms can be divided in linear and non-linear where the former are 

amenable to analysis in the Fourier domain and the latter are not. 

 

 

6.2.1 Median Filtering 

 

A Median filter is a non-linear digital filter which is able to preserve sharp signal 

changes and is very effective in removing impulse noise (or “salt and pepper noise”) 
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[156]. An impulse noise has a gray level with higher low that is different from the 

neighborhood points. Linear filters have no the ability to remove this type of noise 

without affecting the distinguishing characteristics of the signal; median filters have 

remarkable advantages over linear filters for this particular type of noise. Therefore 

median filter is very widely used in digital signal and image/video processing 

applications [157]. 

 

A standard median operation is implemented by sliding a window of odd size over an 

image. At each window position the sampled values of signal or image are sorted, and 

the median value of the samples is taken as the output that replaces the sample in the 

center of the window as shown in Figure 6.4 for a window mask of 7×7. 

 

 

Figure 6.4 Concept of median filter 

 

Median filtering implementation requires the operation with fixed-point numbers. For 

this application the architecture has been set to process a 640×480 input image and a 

7×7 mask with fixed-point coefficients. In the same way that occurs with 

convolution, filtering requires that PEs perform multiplication followed by an 

accumulation. The internal structure of the architecture is not modified therefore the 

results obtained in Table 6.1 are kept. Figure 6.5 shows the output image processed 

by the FPGA architecture for a median filter. 

 

Center pixel replaced with median value 7x7 Window 

   

 

  

10 

 

 

 

 

 

 

 

 

 

8 

24 

5 

72 

23 

17 

78 

82 

50 

36 

55 

44 

11 

33 

29 

74 

56 

 

 

80 

 

 

 

 

86 

23 

26

21

6 1

28

12

45

60

4

32

59

38 9

20 40

19

48

90

70

64

 

47

 

 

16

25

93

39

18 66

61

  

  

36

  

  

  

  

  

  

  

  

   

 

 

 

 

 

 

 

 

 

 

6 1 5 4 8 9 10 11 12 14 16 17 18 19 20 21 24 25 26 28 29 32 33 36 38 39 40 44 452 47 48 50 55 56 59 60 61 64 66 70 72 74 78 80 82 86 90 93

Median 



 123

       
(a) Original image     (b) Filtered Image 

Figure 6.5 Output for median filter 

 

 

6.2.2 High Pass Filtering 

 

Edges are places in the image with strong intensity contrast. Edges often occur at 

image locations representing object boundaries; edge detection is extensively used in 

image segmentation the image is divided into areas corresponding to different 

objects. 

 

Representing an image by its edges has the further advantage that the amount of data 

is reduced significantly while retaining most of the image information.  Edges can be 

detected by applying a high pass frequency filter in the Fourier domain or by 

convolving the image with an appropriate kernel in the spatial domain [158]. In 

practice, edge detection is performed in the spatial domain, because it is 

computationally less expensive and often yields better results.  

 

A high pass filter has been implemented in the systolic architecture using a window 

mask of 7×7. Figure 6.6 shows the resultant output image. 
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(a) Original image     (b) Filtered Image 

Figure 6.6 Output for high pass filter 

 

 

6.3 Matrix Multiplication 

 

Matrix multiplication is the fundamental operation in many numerical linear algebra 

applications. Its efficient implementation on parallel high performance system, 

together with the implementation of other basic linear algebra operations, is an issue 

of primary importance to be solved [159]. 

 

Given an M×N matrix A and an N×P matrix B, the result matrix C is given by 

Equation 6.1: 

 

∑
=

=
n

r
rjirji bac

1
,  (6.1) 

 

For each pair i and j with 1 ≤ i ≤ M and 1 ≤ j ≤ P. 

 

This means that each value of C is a dot product of two vectors, one row from the A 

and one column from the B, which is illustrated in Figure 6.7. 
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Figure 6.7 Matrix by matrix multiplication 

 

In order to verify the correct functionality of the FPGA implementation the example 

presented in Figure 6.8 has been executed in the board.  

 

 

Figure 6.8 Matrix multiplication example 

 

 

The architecture has been set to process two 7×7 matrixes. The PEs are configured to 

perform the scalar function of multiplication and the reduction function of 

accumulation over all coefficients in the matrixes. The technical data of post-place 

and route for the convolution architecture are shown in Table 6.2. 
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Table 6.2 Technical data for matrix multiplication 

Element Specification 
Virtex-E  XCV2000E 
FPGA technology 0.18 µm 6-layer metal process 
Number of PEs 49 
Number of Slices 11,969 out of 19,200 
Number 4 input LUTs 5,241 out of 38,400 
Number of Flip Flops 1,628 out of 38,400 
Number of Block 
RAMs: 

13 out of 160 

Overall % occupancy 62 % 
Clock frequency 66 MHz 
Off-chip memory data 
buses 

21 bit-address, 32 bit data 

Internal data buses for 
ALUs 

8 bits for fixed-point 
operations 

Peak performance 5.9 GOPs 
Power Consumption 2.017 W 

 

 

6.4 Pyramid Decomposition 

 

A Gaussian pyramid is a set of images, where every image inside this set has a 

predecessor (with exception of the original image), and every image has ½ resolution 

with reference to its predecessor. To obtaining the images a Gaussian filter is used. 

Filter coefficients are obtained from a vector of weights [160]. The concept of 

pyramid is shown in Figure 6.9. 

 

Consider an M×N image represented by the array G0. Every pixel in the array 

represents a gray level for that point in the image. The image G0 is considered as first 

level or Level 0 of the Gaussian pyramid. The second level of the pyramid contains 

the image G1 which is a reduced version or filtered version of the image G0. Every 

value inside the level 1 is obtained as a filtered value of the level 0’s values using a 

Gaussian filter. The image of the level 2, represented for G2, is obtained from the 

values of the level 1 image and the application of the same Gaussian filter. 
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Figure 6.9 Gaussian Pyramid concept 

 

 

The Gaussian mask used is the same for every level in the pyramid. This mask is 

obtained from a vector of weights with these characteristics: 

a) The vector of weights is normalized 

∑
−=

∧

=
2

2
1)(

m
mw  (6.2) 

b) The vector of weights is symmetrical 

)()( iwiw −=
∧∧

 (6.3) 

For i = 0, 1, 2. 

c) The mask must be detachable in relation to the vector of weights 

)()(),( nwmwnmw
∧∧

=  (6.4) 

The vector of weight is a discrete approximation to a Gauss function as shown in 

Figure 6.10. As the process to obtain a Gaussian pyramid, this vector of weights 

Level 2:4×4 

Level 1:2×2 

Level 0:1×1 

Level n:2n×2n 
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converges towards a continuous Gauss function, in such a way that in the infinite 

level of the pyramid, the vector of weights is equivalent to the continuous Gauss 

function. 

 

 

Figure 6.10 Gaussian approximation 

 

 

For example, using the vector of weights from Table 6.3, which accomplished with 

the first two conditions aforementioned, the mask of Table 6.4 is obtained. The 

mask’s values are obtained applying the third restriction 

 
Table 6.3 Vector of weighs for the Gaussian filter 

0.0500 0.1000 0.2000 0.3000 0.2000 0.1000 0.0500 
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Table 6.4 Mask generated from vector of weights 

0.0025 0.0050 0.0100 0.0150 0.0100 0.0050 0.0025 
0.0050 0.0100 0.0200 0.0300 0.0200 0.0100 0.0050 
0.0100 0.0200 0.0400 0.0600 0.0400 0.0200 0.0100 
0.0150 0.0300 0.0600 0.0900 0.0600 0.0300 0.0150 
0.0100 0.0200 0.0400 0.0600 0.0400 0.0200 0.0100 
0.0050 0.0100 0.0200 0.0300 0.0200 0.0100 0.0050 
0.0025 0.0050 0.0100 0.0150 0.0100 0.0050 0.0025 

 

 

To verify the architecture, a Gaussian filter of 7×7 has been used for the image 

shown in the Figure 6.11. In this case 2 levels for the pyramid have been chosen. 

 

                
(a) Original image     (b) Processed Image 

Figure 6.11 Output image for 2 Level Gaussian Pyramid 

 

The implementation of pyramid is based on the Gaussian filter implementation; 

therefore data in Table 6.1 corresponds with results obtained for this application. 
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6.5 Morphological Operators 

 

The term morphological image processing refers to a class of algorithms that is 

interested in the geometric structure of an image [161]. Morphology can be used on 

binary and gray scale images, and is useful in many areas of image processing, such 

as skeletonization, edge detection, restoration and texture analysis [162]. 

 

A morphological operator uses a structuring element to process an image as shown in 

Figure 6.12. The structuring element is a window scanning over an image, which is 

similar to the mask window used in filters. The structuring element can be of any 

size, but 3×3 and 5×5 sizes are common. When the structuring element scans over an 

element in the image, either the structuring element fits or does not fit Figure 6.12 

demonstrates the concept of a structuring element fitting and not fitting inside an 

image object. 

 

 
 

Figure 6.12 Concept of structuring element. 

Element A fits in the object. Element B dos not fit 
 
 
The most basic building blocks for many morphological operators are erosion and 

dilation [163]. Erosion as the name suggests is shrinking or eroding an object in an 

image. Dilation on the other hand increases the image object. Both of these objects 

depend on the structuring element and how it fits within the object. 

A

B

Object 
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For example, if erosion is applied to a binary image, the resultant image is one image 

where there is a foreground pixel for every center pixel where its structuring element 

fit within an image. If dilation is applied, the output will be a foreground pixel for 

every point in the structuring element. 

 

Important operations like opening and closing of an image can be derived by 

performing erosion and dilation in different order. If the erosion is followed by 

dilation, the resulting operation is called an opening. Closing operation is dilation 

followed by erosion. These two secondary morphological operations can be useful in 

image restoration, and their iterative use can yield further interesting results such as; 

skeletonization of an input image. 

 

While morphological operations usually are performed on binary images, some 

processing techniques also apply to gray level images. These operations are for the 

most part limited to erosion and dilation. Gray level erosions and dilations produce 

results identical to the nonlinear minimum and maximum filters. 

 

In a minimum filter, the center pixel in the moving window is replaced by the 

smallest pixel value. This has the effect of causing the bright areas of an image to 

shrink, or erode. Similarly, gray level dilation is performed by using the maximum 

operator to select the greatest value in a window.  

 

When the gray-level erosion or dilation is mapped to the architecture, the scalar 

function corresponds to an addition/subtraction for erosion/dilation. The local 

reduction function corresponds to a maximum/minimum for erosion/dilation. The 

values of the structuring elements correspond to the window mask coefficients. 

In order to test the correct operation of the erosion, the algorithm has been executed 

in the FPGA board. The resultant image obtained is observed in Figure 6.13 (b).  
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(a) Original image 

 

 
(b) erosion  (c) dilation 

Figure 6.13 Output for morphological operators 

 

 

The architecture has been set to process a 640×480 input image and a 7×7 integer 

window mask. The processing elements are configured to perform the scalar function 

of subtraction and the reduction function of minimum over the image. The technical 

data of post-place and route for the erosion architecture are shown in Table 6.5. 

 

To illustrate the dilation algorithm the PEs have been configured to perform the scalar 

function of addition and the reduction function of maximum over an input image of 

640×480 using a 7×7 window mask. The resultant image is shown in Figure 6.13 (c). 

The corresponding post-place and route details for the dilation algorithm 

implementation are shown in Table 6.6. 
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Table 6.5 Technical data for erosion 

Element Specification 
Virtex-E  XCV2000E 
FPGA technology 0.18 µm 6-layer metal process 
Number of PEs 49 
Number of Slices 12,114 out of 19200 
Number 4 input LUTs 19,163 out of 38,400 
Number of Flip Flops 4,613 out of 38,400 
Number of Block 
RAMs: 

13 out of 160 

Overall % occupancy 63 % 
Clock frequency 66 MHz 
Off-chip memory data 
buses 

21 bit-address, 32 bit data 

Internal data buses for 
ALUs 

8 bits for fixed-point 
operations 

Peak performance 5.9 GOPs 
Power Consumption 2.4 W 

 
Table 6.6 Technical data for dilation 

Element Specification 
Virtex-E  XCV2000E 
FPGA technology 0.18 µm 6-layer metal process 
Number of PEs 49 
Number of Slices 12,074 out of 19200 
Number 4 input LUTs 19,079 out of 38,400 
Number of Flip Flops 4,571 out of 38,400 
Number of Block 
RAMs: 

13 out of 160 

Overall % occupancy 62 % 
Clock frequency 66 MHz 
Off-chip memory data 
buses 

21 bit-address, 32 bit data 

Internal data buses for 
ALUs 

8 bits for fixed-point 
operations 

Peak performance 5.9 GOPs 
Power Consumption 2.017 W 

 

 

6.6 Template Matching 

 

Template matching is one of the most fundamental tasks in many image processing 

applications. It is a simple method for locating specific objects within an image, 
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where the template (which is, in fact, an image itself) contains the object that is being 

searched [164]. For each possible position in the image the template is compared with 

the actual image data in order to find subimages that match the template. To reduce 

the impact of possible noise and distortion in the image, a similarity or error measure 

is used to determine how well the template compares with the image data. A match 

occurs when the error measured is below a certain predefined threshold.  

 

In template matching it is required a measure of dissimilarity between the intensity 

values of the template and the corresponding values of the image. Several measures 

may be defined for this purpose. One of the most popular is the SAD [165]. 

 

The template matching algorithm has been executed in the FPGA board considering a 

template of 7×7 that is searched over a 640×480 input image. In Figure 6.14 (a) the 

template used is shown in the original image and the resulting match is shown in 

Figure 6.14 (b).  

 

      
(a) Original Image  (b) Template Matching 

Figure 6.14 Output for template matching operator 

 

For this application the PEs are configured to perform the scalar function of 

subtraction and the reduction function of minimum. The technical data of post-place 

and route for the application are shown in Table 6.7. 
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Table 6.7 Technical data for template matching 

Element Specification 
Virtex-E  XCV2000E 
FPGA technology 0.18 µm 6-layer metal process 
Number of PEs 49 
Number of Slices 12,114 out of 19200 
Number 4 input LUTs 19,163 out of 38,400 
Number of Flip Flops 4,613 out of 38,400 
Number of Block 
RAMs: 

13 out of 160 

Overall % occupancy 63 % 
Clock frequency 66 MHz 
Off-chip memory data 
buses 

21 bit-address, 32 bit data 

Internal data buses for 
ALUs 

8 bits for fixed-point 
operations 

Peak performance 5.9 GOPs 
Power Consumption 2.4 W 

 

 

6.7 Performance Discussion 

 

In this chapter some representative algorithms based on windows-operators 

convolution, filtering, matrix multiplication, pyramid decomposition, morphological 

operators and template matching have been presented in order to validate the correct 

functionality of the proposed architecture and its generalization as a hardware 

platform. The technical data presented for each version of the architecture constitute a 

measure of its performance. The three main parameters considered are the speed, the 

throughput and the power consumption. Table 6.8 summarizes the results obtained 

for this set of algorithms. 
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Table 6.8 Summary of the architecture performance 

Application Number of Slices Clock 
Frequency 

Power 
Consumption 

Convolution 11,969 out of 19200 66 MHz 2.017 W 
Filtering 11,969 out of 19200 66 MHz 2.017 W 
Matrix 
multiplication 

11,969 out of 19200 66 MHz 2.017 W 

Gaussian pyramid 11,969 out of 19200 66 MHz 2.017 W 
Erosion 12,114 out of 19200 66 MHz 2.4 W 
Dilation 12,074 out of 19200 66 MHz 2.017 W 
Template matching 12,114 out of 19200 66 MHz 2.4 W 

 

 

From this table it can be observed little variations in the area occupied according to 

the algorithm being performed. These changes are due to the configuration selected 

for the PE’s and the scalar operation being performed. However the performance and 

power consumption practically remain the same. 
 

In order to establish the advantages of the presented architecture, the results obtained 

in Table 6.8 needs to be compared with previous implementations of image 

processing architectures; even though most performance metrics are rarely reported 

for architectures and systems in literature. This lack of standard metrics for 

comparison makes difficult to determine the advantages of a given system.   
 
A. Dehon [13] proposed a model to compute the hardware resource utilization in a 

system considering the fabrication technology. This model provides a standard metric 

that allows doing a fair comparison between systems measuring the silicon area in 

feature size units rather than in absolute units. 

 

The silicon area required by the architecture is computed in terms of the feature size 

λ. Considering data for XCV2000E device and the results obtained by A. Dehon and 

C. Torres [141] the chip area required for a CLB of an FPGA on a 180 nm process is 

given by the Equation 6.6: 
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262 104.435462 λµ xmACLB ==  (6.5) 

 

Where λ is the feature size and it is equal to 90 nm. 

 

Based on equation 6.5 the total amount of silicon area for the complete architecture 

can be computed with equation 6.6. 

CLBTotal AxCLBsA #=  (6.6) 

For each version of the architecture presented, the area occupied is computed based 

on the number of slices reported by the synthesis tool. The results are shown in Table 

6.9. 

 
Table 6.9 Amount of area for applications of the architecture 

Application Number 
of CLBs 

Silicon Area  

Convolution 5985 212.24×106 µm2 26.4 Gλ2 

Filtering 5985 212.24×106 µm2 26.4 Gλ2 
Matrix multiplication 5985 212.24×106 µm2 26.4 Gλ2 
Gaussian pyramid 5985 212.24×106 µm2 26.4 Gλ2 
Erosion 6057 214.79× 106 µm2 26.7 Gλ2 
Dilation 6037 214.08×106 µm2 26.6 Gλ2 
Template matching 6057 214.79×106 µm2 26.7 Gλ2 

 

 

Considering all the results presented in this chapter it is possible to present a 

comparison with previous architectures. For this purpose the execution time, given in 

milliseconds, and the silicon area occupied are considered as main metrics. The 

assessments were made considering that the systems deal with the same algorithm 

and they use the same image size. Table 6.10 present the technical details for the 

chosen architectures. 
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Table 6.10 Performance for different architectures 

System Architecture Application Image Size Timing Silicon 
Area 

R. Lopez [152] SIMD FPGA-
based 

3×3 Filtering 640×480 23.04 ms Not 
reported 

M. Vega [153] FPGA-based 3×3 Filtering 640×480 868.51 ms 322 Gλ2 
C. Torres [141] Systolic 

FPGA-based 
7×7 Generic 
Window-based 
Image operator 

 

640×480 9.7 ms 15 Gλ2 

M. Vega [166] Systolic 
FPGA-based 

7×7 Median 
Filter 

640×480 998.20 ms 1.41 Gλ2 

Pentium III, 1GHz. 
[167] 
 

Von Newman 3×3 Generic 
Convolution 

640×480 2863 ms N/A 

Proposed 
Architecture 

Systolic 7×7 Generic 
Window-based 
operators 

640×480 5 ms 26.7 Gλ2 

 
 

In summary, the proposed architecture provides a throughput of 5.9 GOPs on a chip 

area of 26.7 Gλ2 with an estimated power consumption of 2.017 W running at           

66 MHz clock frequency. From these results it can be shown that it is possible to 

achieve real-time performance for applications based on windows operators. 

Furthermore, the capacity of generalization for the proposed schema has been 

established.  

 

This point is resumed again in next chapter for motion estimation which is considered 

independently to this set of algorithms due to its higher complexity. Showing that the 

architecture is capable of giving support to such algorithms the potential of the 

proposal can be demonstrated. 
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Chapter 7 

Motion Estimation 
 

 

Motion Estimation (ME) is a basic bandwidth compression method used in video-

coding systems that requires a huge amount of computation; this fact justifies the 

great research effort that has been made to develop efficient dedicated architectures 

and specialized processors for motion estimation [168-171].  

 

The main objective of the present architecture is to give support to algorithms that 

present a high computational complexity and represent a challenge for its 

implementation for real time performance, they must follow a regular pattern in data 

movements and they must use reduced and efficient memory space. 

 

In order to verify the presented architecture potential, Motion Estimation has been 

also implemented, considering a new memory schema for the Full Search Block 

Matching Algorithm (FSBMA) [172]. The present design keeps the total memory size 

and the number of transfers as small as possible, while maintaining high throughput 

that is required for motion estimation applications. The implementation of this 

algorithm proves the generalization of the architecture. 

 

 

7.1 Motion Estimation Algorithm 

 

Motion estimation is a key technique in most algorithms for video compression such 

as Moving Picture Coding Experts Group (MPEG) [173] and H.26L that exploits the 
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spatial and temporal redundancies present in a digital video sequence [174, 175]. 

Nevertheless, it is also the most computationally intensive task, involving up to 65% 

of the total computational resources of the video coder and requiring high power, 

throughput and memory utilization [176]. All these factors are critical design metrics 

for most novel video applications, aimed at portable and battery supplied terminal 

devices using limited bandwidth communication channels [177].  

 

In order to reduce the computational complexity of motion estimation algorithms 

many methods have been proposed, such as block matching algorithms, 

parametric/motion models, optical flow, and pel-recursive techniques [176]. Among 

these approaches, the Full Search Block Matching algorithm is the most common due 

to its effectiveness and simplicity for both software and hardware implementations 

[178].  

 

To implement motion estimation in coding image applications, the most popular and 

widely used method, due to its easy implementation, is the FSBMA. The FSBMA 

divides the image in squared blocks (macro-block) and compares each block in the 

current frame (reference block) with those within a reduced area of the previous 

frame (search area) looking for the best match [179]. The matching position relative 

to the original position is described by a motion vector, as shown in Figure 7.1. 

 

Ik(x, y) is defined as the pixel intensity at location (x, y) in the k-th frame and            

Ik-1(x, y) is the pixel intensity at location (x, y) at the k-1-th frame. For FSBMA 

motion estimation, Ik-1(x, y), represents usually a pel located in the search area of the 

size R2 = Rx×Ry pel of the reference frame and Ik(x, y) belongs to the current frame. 

The block size is defined as N2= N×N pel. Each individual search position of a 

search schema is defined by CMV  = (dx, dy). 
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Figure 7.1 Block-matching for motion estimation. 

 

In block matching the SAD [180] is usually adopted as matching criteria to determine 

the displacement between macroblocks under processing and a group of pixels 

defined within a search region in a previous frame. 

 

The matching procedure is made by determining the optimum of the selected cost 

function, usually SAD, between the blocks. The SAD is defined as: 
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The motion vector MV  represents the displacement of the best block with the best 

result for the distance criterion, after the search procedure is finished. 

 

Previously, there has been several hardware architectures reported in the literature to 

cope with real time and high volume requirements of motion estimation algorithms 

[181-183]. These architectures make use of massive pipelining and parallel 
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processing provided by systolic [184-186] or linear arrays [187]. Most of them 

require two separate memories for storing the current frame and the previous frame 

increasing their size; hence, efficient memory utilization becomes one of the most 

important design problems. Furthermore, they are not intrinsically power efficient 

[141]. 

 

 

7.2 Implementation 

 

In order to implement the ME algorithm, three features must be taken into account. 

First, the FSBMA provides the most accurate results but is computationally 

expensive. Second, SAD is usually adopted due to its simpler computational 

complexity and satisfactory results. Finally, the large amount of data managed, 

mainly in the search area, demands highly efficient data-flow. 

 

As it can be observed the motion estimation demands correspond with window-based 

operators. Therefore the hardware architecture needs some special characteristics that 

provide support for both algorithms. The FSBMA must be represented as a window 

operator in order to fit in the architecture though some adjustments are needed.  

 

Due to the nature of Equation 7.1 the FSBMA can be formulated as a window-based 

operator considering the following aspects: 

 

 The coefficients of the window mask are variable and new windows are 

extracted from the first image to constitute the reference block. Once the 

processing in the search area has been completed, the window mask must be 

replaced with a new one, and the processing goes on the same way until all 

data is processed. 
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 The different windows to be correlated are extracted in a column-based order 

from the search area to exploit data overlapping and sharing. The pixels are 

broadcasted to all the processors to work concurrently. 

 

Based on these characteristics, the processing block has been modified to support not 

only the SAD operations required for FSBMA, but the rest window-operations 

involved in low level image processing. 

 

A Macro-Block (MB) corresponds to the whole array, with every PE representing a 

pixel from the block. At every clock cycle a column of pixels from the reference and 

the current image is broadcasted to all the PEs in a column to calculate the SAD and 

shift the value to a partial results collector in charge of accumulate results located in 

the same column of the array and the captured results are sent to the global data 

collector. The GDC stores the result of a MB processed and sends it to the output 

memory buffer.  

 

The SAD value for each column is compared to a reference or the minimum of 

previously calculated SAD values, with the lower value being retained till the end of 

the search area is reached. From that moment on, successive Macro-Blocks are 

processed in the horizontal direction reusing data stored in the input buffers. Reading 

image pixels from buffers one row below, it is possible to traverse the image in the 

vertical direction. Data for processing is available in a row format therefore when 

blocks are processed vertically; some data in the search area are overlapped for two 

blocks as shown in Figure 7.2.  
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Figure 7.2 Data overlapped between search areas 

in the horizontal and vertical direction. 

 

At the beginning of the application the system can be configured to define the number 

of ALU’s to be presented during computation. For the case of Low-level processing, 

simple ALUs are implemented in the architecture, but if the selected operation is 

Motion Estimation, the double ALU schema is active. 

 

 

Figure 7.3 Processing element for motion estimation implementation 

 

The result obtained from post place and route process for the motion estimation 

version of the architecture are shown in Table 7.1  

 

 

 

B1 B2 

B3 B4 

Data reused by double 
ALU 
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Table 7.1 Technical data for the entire architecture 

Element Specification 
Virtex-E  XCV2000E 
FPGA technology 0.18 µm 6-layer metal process 
Number of PEs 49 
Number of Slices 12,100 out of 19200 
Number 4 input LUTs 5,600 out of 38,400 
Number of Flip Flops 7,742 out of 38,400 
Number of Block RAMs: 18 out of 160 
Overall % occupancy 63% 
Clock frequency 60 MHz 
Off-chip memory data 
buses 

21 bit-address, 32 bit data 

Internal data buses for 
ALUs 

8 bits for fixed-point 
operations 

Peak performance ~9 GOPs 
Power Consumption 3 W 

 

For a couple of images from a video sequence the resulting post synthesis motion 

vectors are shown in Figure 7.4. 

 

 

 
Figure 7.4 Motion vectors for image sequence 
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7.3 Discussion 

 

With the implementation of FSBMA the flexibility and robustness of the proposed 

architecture has been demonstrated. The memory and data flow schemas used have 

been used successfully achieving a high throughput of ~9 GOPs with a clock 

frequency of 60 MHz. The obtained results show the possibility of video rate 

performance. In comparison with the frequency achieved in the window-operators 

architecture, it has been a reduction; this is due to the growth in resources and the 

router needs associated. 
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Chapter 8 

Conclusion and Further Work 
 

 

8.1 Conclusion 

 

In this thesis an architecture dedicated to window operations in image processing 

using a 2D systolic array has been presented. The architecture implemented is flexible 

enough to support several variations of window-based image operators. 

 

Input data are stored in small buffers that allow regular access and reuse of data. This 

reduces the need for internal data storage. The schemas proposed for data flow and 

memory management contribute to achieve high parallel efficiency and low area-time 

product.  

 

The high level pipeline model proposed allows the operation scheduling and process 

chaining which conducts to provide a solution to a broader number of image 

processing algorithms. 

 

The FPGA-based architecture allows the designer to implement a systolic array with 

a variable size, as well as optimize the buffer memory size used for a particular 

problem according to a chosen sequence of operators. 

  

The obtained results show that the area utilization is very compact and the power 

consumption is reduced making the architecture suitable for embedded systems.  The 
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use of FPGA technology has proved to be a promising alternative to implement 

efficiently novel image processing architectures under real-time.  

 

The architecture processing capacity can be improved if aspects of dynamic 

reconfiguration are explored.   

 

 

8.2 Discussion 

 

As image processing applications consist of several phases with different computer 

architectural needs, hardware reconfiguration is an important provision. With the 

implementation of the proposed architecture it has been shown that reconfiguration 

can be employed within the low-level processing stage achieving high performance. 

Analysis of the results obtained shows several benefits: 

 

 First, the image processing application have been accelerated; the architecture 

produces an output result on each clock cycle after a latency period, 

proportional to the size of the window used, and performs seven arithmetic 

operations concurrently for a window mask of 7×7. The latency arises at the 

beginning of processing since the columns of the systolic array must be full in 

order to output a result. The architecture provides a throughput of 5.9 GOPs 

which implies performance in real time. 

 Second, using a reconfigurable system for image processing can save 

significant amount of hardware. The original target application takes 

advantage of the reconfiguration to set up different scripts for the main 

process. The performance of the hardware based system coupled with a group 

of image buffers opens the possibility of a very complex multi-function image 

processor with essentially the same per-unit hardware cost as a single function 

system. 
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 Third, the use of image buffers benefits the application as the number of 

accesses to the input image memory is reduced. The buffers take data from the 

input memory following a circular pipeline schema. The buffer content is 

refreshed during the systolic array operation, hiding in this way the memory 

accessing time. These storage elements give the opportunity of data reuse 

because once the data are placed in the buffers; they can be rerouted to 

different elements to be processed. Inside the buffers the 2D parallelism 

becomes more obvious with the storage of the image pixels as neighboring 

elements. 

 The global bus inserted in the architecture outlines the routing facilities to 

speed up the transfer of both control and configuration parameters during 

program execution and I/O memory transfers. This particular element extends 

the capabilities of the systolic array giving more flexibility. 

 

With the addition of all these features, the proposed architecture performance is 

comparable with other image processing architectures presented in the literature.  

 

 

8.3 Future Work 

 

The work presented here is a step in the direction of automatic mapping of algorithms 

to a set of hardware libraries for near-optimal execution.  

 

There are, however, a number of issues that could be addressed as the next possible 

steps for improving this process: 

 

 To maximize data re-use and to minimize reconfiguration time are critical to 

an optimal execution schedule.  

 To extend the architecture capabilities to a broader subset of algorithms. 
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 Automatically map the algorithms or a part of them to the architecture in order 

to accelerate some video applications. 

 

Even though the area occupation of the architecture is not very large, it is possible to 

improve the hardware resource utilization via dynamic reconfiguration techniques. 

Partial reconfiguration allows the possibility of loading different designs into the 

same area of the FPGA device or the flexibility to change portions of the design 

without having either reset or completely reconfigure the entire device.  
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Appendix A. Glossary 
 

Block RAM (BRAM). Units of RAM embedded in Xilinx Virtex and Spartan 

FPGAs. Each Block RAM is dual ported, and can be configured in a range of widths 

and depths. 

 

Configurable Logic Block (CLB). The basic tile type in Xilinx Virtex FPGAs. A 

CLB comprises four slices, two tristate buffers (in the Virtex-II and Virtex-II Pro 

families) and routing, connected to the general routing resources by a switch matrix. 

 

EDIF. Electrical Design Interchange Format. Standard format for representing 

electronic designs. 

 

Look up table (LUT). An n-LUT is a look up table with n inputs and one output, 

capable of implementing any combinational logic function of n inputs. 

 

Netlist. List of logic gates and interconnections comprising a circuit, such as an EDIF 

file. 

 

Programmable Logic Device (PLD). A generic name for semiconductor devices 

which can be programmed or configured post-fabrication to implement a variety of 

circuits. 

 

Processing Element. A modular circuit block which implements a certain processing 

task. 

 

Slice. The basic configurable logic unit within a configurable logic block. Each slice 

comprises two 4-LUTs, two registers as well as multiplexer logic and other 

specialised circuitry such as fast carry chains. 
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Switch matrix. A configurable interconnect resource inside each reconfigurable tile 

of Virtex FPGAs, the switch matrix connects the logic and routing within the tile to 

general routing resources of the FPGA. 

 

Very Large Scale Integration (VLSI). A device with many tens of thousands of 

logic gates. 
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Appendix A. Architecture Data Sheet 
 

Systolic array 
 
Main features 
 
• High speed configurable systolic array for low-

level image processing 
• Capacity for processes chaining 
 
Functional description 
 
This core support operations involved in common 
low-level image processing algorithms. It is based 
on a 2D customizable systolic array of processing 
elements that can be configured according to a 
control word. The core can carry out image 
filtering, morphological operations, matrix-matrix 
multiplication, template matching and pyramid 
processing. A streaming router takes data from/to 
input/output image memories and makes explicit 
the data parallelism usually found in the image 
processing. The incoming data is stored in internal 
memory buffers before being processed in 
parallel. An internal control bus is in charge of 
interchange parameters to customize the 
operation performed by core. The produced data 
by a processing module can be captured by an 
output data router and then transmitted to an 
external memory output. 
 
Requirements 
 
• External memories 
 
Interface 
 
A block diagram of the module interface with the 
signal names for the inputs and outputs is shown 
in figure 1. 

 
 

Figure 1. Input-output for the core 

 
 
 
Table 1 summarizes the signal names and a short 
description of its functionality is provided. 
 
 

Signal Direction Description 

P In Pixels of the input image 

W In Coefficients of the window mask 

Mode In Selector for application: Window-
based algorithm/Motion Estimation 

Start In Start of the image processing 

Reset In Reset signal for the architecture 

Math In Data type selector: Integer/Fixed-
point 

Clk In Main clock 

Out Out Pixels of the input image 

Meminptr In Pointer to external input memory 

Meminbptr In Pointer to input buffer memories 

Memoutptr In Pointer to the external output 
memory 

Memoutbptr In Pointer to output buffer memories 

Memmask In Pointer to mask coefficients bank 

 
Table 1. Core signal description 

 
 
Core resource utilization 
 
The area resource utilization of the core when 
targeted to a specific FPGA device is summarized 
in table 3. The results were obtained with the 
standard optimization effort of the Xilinx ISE tools. 
 
 

 Configuration I 

Xilinx part Virtex-E 

Area (Slices) 12114 

FPGA 
percentage 63% 

 
Table 2. Hardware resource utilization 

 
Performance characteristics 
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The values in table 3 show the clock speed that 
can be achieved with other performance 
parameters. Different results can be obtained 
using different options for the pace and route 
stages in the FPGA implementation or using 
devices with faster speeds. 
 

 Configuration I 

Xilinx part Virtex E 

Maximum clock 
frequency 66 MHz 

Data per second 61440000 

Images per second 200 

 
Table 3. Performance characteristics 

 
Status 

 
• Handel-C source code 
• Debugged and validated through test bench 
• Board tested 
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Motion Estimation 
 
 
Main features 
 
• Real time motion estimation on VGA sized 

gray level images 
• Full search block matching 
 
Functional description 
 
This core implements the Full Search Block 
Matching Algorithm which can be represented 
as a window-based algorithm. It is based on a 
2D customizable systolic array of processing 
elements that includes a double ALU in order 
to search multiple macro-blocks in parallel. A 
streaming router takes data from/to 
input/output image memories and makes 
explicit the data parallelism usually found in 
the image processing. The incoming data is 
stored in internal memory buffers before being 
processed in parallel. An internal control bus is 
in charge of interchange parameters to 
customize the operation performed by core. 
The produced data by a processing module 
can be captured by an output data router and 
then transmitted to an external memory output. 
 
 
Requirements 
 
• External memories 
 
Interface 
 
A block diagram of the module interface with 
the signal names for the inputs and outputs is 
shown in figure 1. 
 

 
Figure 1. Input-output for the core 

 
 
Table 1 summarizes the signal names and a 
short description of its functionality is provided. 

Signal Direction Description 

P In Pixels of the input image 

W In Coefficients of the window mask 

Mode In Selector for application: Window-
based algorithm/Motion Estimation 

Start In Start of the image processing 

Reset In Reset signal for the architecture 

Math In Data type selector: Integer/Fixed-
point 

Clk In Main clock 

Out Out Pixels of the input image 

Meminptr In Pointer to external input memory 

Meminbptr In Pointer to input buffer memories 

Memoutptr In Pointer to the external output 
memory 

Memoutbptr In Pointer to output buffer memories 

Memmask In Pointer to mask coefficients bank 

 
Table 1. Core signal description 

 
 
Core resource utilization 
 
The area resource utilization of the core when 
targeted to a specific FPGA device is 
summarized in table 3. The results were 
obtained with the standard optimization effort 
of the Xilinx ISE tools. 
 
 

 Configuration I 

Xilinx part Virtex-E 

Area (Slices) 14847 

FPGA 
percentage 77% 

 
Table 2. Hardware resource utilization 

 
Performance characteristics 
 
The values in table 3 show the clock speed 
that can be achieved with other performance 
parameters. Different results can be obtained 
using different options for the pace and route 
stages in the FPGA implementation or using 
devices with faster speeds. 
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 Configuration I 

Xilinx part Virtex E 

Maximum clock 
frequency 66 MHz 

Data per second 50995200 

Images per second 166 

 
Table 3. Performance characteristics 

 
 
 
 
 
 

Status 
 
• Handel-C source code 
• Debugged and validated through test 

bench 
• Board tested 
• Require extensions to be embedded 
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