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Chapter 1 

Introduction 

 

1.1 Introduction 

 

The Talbot effect [1], also referred as a self-imaging phenomenon of periodic 

objects, states that any distribution, which is a periodic function of 



x  and 



y , will be 

also periodic in the direction of propagation 



z  due to Fresnel diffraction. 

 

In recent years the Talbot effect [1] and Talbot self-images localization have 

received much attention, both as a fundamental optical phenomenon and because of 

its optical applications such as interferometry [2], nanolithography [3], spectrometry 

[4], and in optical metrology. In optical metrology the Talbot effect has been used for 

range sensing [5], for real-time depth measurement [6], for 3D contouring of diffuse 

objects [7], for displacement measurement [8], for profilometry
 
by phase-shifted 

Talbot images [9], for measuring amplitude of vibration [10], and for evaluating focal 

lengths [11]. In all of these applications a grating is illuminated by monochromatic 

spatially coherent light in order to obtain information about range, depth or 

displacement.  

 

The problem of localization and analysis of self-images is reduced to the finding 

the planes of maximal light pattern visibility and is the key issue in investigation of 

fundamental optics and proposed applications. The common approach to analyze the 

light pattern visibility is to use a CCD camera as an input sensor with the posterior 

processing of the acquired images. For a simplest case of a sinusoidal periodical 

pattern it is enough to know the maximum and the minimum intensity of the image in 

order to determine its visibility [12,13]. 

 

This standard definition of contrast has been used to analyze the effect of rough-
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ness in the self-imaging process of steel reflection grating. Talbot effect was 

theoretically analyzed when the grating is rough and experimentally was shown that 

the roughness of the surface makes the average intensity decrease exponentially with 

the distance [14]. 

 

There are several conventional techniques that determine the contrast of an 

intensity distribution generated by a periodical object, such as root mean square 

(RMS) method [15], histogram-based method [16,17] and semivariogram-based 

method [18].  

  

The root mean square (RMS) method [15] is commonly used to evaluate the 

contrast in the case of a periodical pattern [19] or compound images [20] analyzing 

the data statistically [21]. The RMS method was employed in Ref. 21 to obtain the 

contrast of images, and their results support that the RMS contrast is a good indicator 

of the visibility of broadband images, which is in line with previous studies [20,22]. 

 

Other is the histogram-based method, which provides a global description of the 

statistical characters of an image. The histogram of a digital image can be represented 

by a graph that relations the pixels that are of the same gray level [17]. The histogram 

has been applied for contrast measurement of fringe patterns in the presence of noise 

and with patterns composed of fringes that are not straight. The method is based on 

fitting the histogram of the measured image to the histogram of a model function that 

depends on several parameters; these give information about contrast and noise level 

[16]. 

 

Another is the semivariogram [19] method based on estimation of the spatial 

variability of the intensity distribution. In the case of images obtained by CCD 

camera, the semivariogram function 

 

measures the spatial correlation of the image and 

has been employed to estimate the standard deviation of nonuniform images, besides 

this technique has been effectively used as a tool for determining the contrast of an 

intensity distribution in the presence of noise [18]. 

 

In all these techniques, a CCD camera is used to record the light patterns that 

are processed and analyzed in order to find the self-image position. Despite of their 
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simplicity, all CCD–based methods share common weaknesses, namely, necessity of 

a filter for avoid the saturation of the camera and sensitivity to the environmental 

vibrations.  

 

In this thesis only the root mean square (RMS) method and the semivariogram-

based method are used to determine the contrast. 

 

Recently it has been proposed to use the photodetector based on the non-steady-

state photo-electromotive force (photo-EMF) effect for measuring the visibility and 

for localizing the Fresnel diffraction patterns (Talbot self-images) generated by a 

grating [23]. 

 

Photo-EMF effect [24] reveals itself as alternating current (ac) induced in a 

short-circuited photoconductive sample by a vibrating non-uniform light distribution. 

Standard theory developed for the simplest case of sinusoidal light pattern created by 

the interference of two plane waves (only one spatial harmonic being presented) 

predicts that the output current amplitude is proportional to the square of the light 

pattern visibility, which makes the photo-EMF based detector suitable for the direct 

measurements of the changes on the light pattern contrast.  

 

Due to its temporal adaptability to the slow phase drifts [25], this detector 

posses additional robustness to the environmental vibrations. For these outstanding 

properties photo-EMF based detector has already been proposed for a number of 

practical applications such as for measuring the coherent length of several light 

sources [26], for sensing laser induced ultrasonic detection [27], for laser vibrometry 

[28], etc. 

 

The photodetector based on photo-EMF effect was used in Ref. [23] for 

analyzing the Talbot effect, because it can produce an electrical current that is 

proportional to the square of the visibility of the Fresnel diffraction patterns. This 

method was employed to measure experimentally visibility in real time, with high 

spatial resolution, and without any signal processing.  
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However is necessary to perform the theoretical analysis of the photo-EMF 

effect induced by a periodical pattern that contains spatial harmonics, and to derive an 

analytical expression for complex amplitude of the photo-EMF current density in a 

general case of periodical light pattern containing only odd harmonics, because it does 

not exist, for understanding and analyzing the experimental results shown in Ref. 

[23]. 

 

The main objective of this thesis is the theoretical and experimental 

investigation of the non-steady-state photo-EMF effect induced by light distributions 

that contains spatial harmonics i.e. periodical one-dimensional (1-D) light patterns, 

and its applications to Talbot interferometry. 

 

In order to fulfill this goal, first the theoretical analysis of non-steady-state 

photo-EMF current induced by an arbitrary 1-D periodical pattern using the model of 

monopolar photoconductor with a single impurity center is performed, and an 

analytical expression for complex amplitude of the photo-EMF current density in a 

general case of periodical light pattern containing only odd harmonics is derived. 

 

Then, the experimental study of the non-steady-state photoelectromotive force 

(photo-EMF) effect in presence of spatial harmonics induced by diffraction light 

patterns generated by a Ronchi grating in near field is performed. 

 

Here, the comparative analysis (theoretical and experimental) of the photo-EMF 

based-method against the conventional CCD-based methods (RMS and 

semivariogram techniques) for measuring contrast distribution is realized.  

 

Finally, experimental demonstration of the possibility for measuring the 

distance of a mirror-like target by using the adaptive photodetector based on the non-

steady-state photoelectromotive force effect, and the Talbot effect. 

 

Present Ph. D. Thesis is structured on 7 Chapters:  
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Chapter 2 contains the literature review of the basic concepts of interference, 

coherence, diffraction, RMS and semivariogram based-methods, as well as that the 

non-steady-state photo-EMF effect. 

 

Chapter 3 includes brief description of the detection system (experimental 

setups) of self-images for experiments with photo-EMF detector and CCD-based 

methods used in this work. 

 

Chapter 4 is devoted to the original theoretical model for the non-steady-state 

photo-EMF effect induced by a periodical one-dimensional light pattern in a 

photoconductive sample. The expression for photo-EMF current density induced by 

light distribution containing only odd harmonics is derived and it is used to analyze an 

axial distribution of photo-EMF signal produced by light pattern generated by 

diffraction in binary grating on near field. Besides, experimental results of photo-

EMF effect induced by light patterns produced by Fresnel diffraction on Ronchi 

grating using GaAs detector at different experimental conditions are presented. 

 

The first part of Chapter 5 consists of the experimental results obtained with 

photo-EMF detector and CCD-based methods. Then numerical simulations of light 

patterns created in near field by the diffraction on binary grating object are performed 

in order to generate an input data for the three proposed methods. These data have 

been processed using RMS and semivariogram algorithms. In case of the photo-EMF 

technique the ac current induced by a specific light distribution is analytically 

calculated on base of the theory developed by us. Finally, the comparative analysis of 

the performance of the proposed method against conventional CCD-based techniques 

has been accomplished. 

 

In Chapter 6 the technique based on the adaptive photo-detectors and the Talbot 

effect are used to measure distance or the axial shifts of a mirror-like target. 

 

Finally in Chapter 7 the conclusions are presented. 
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Chapter 2 Literature review 

 

 

2.1. Introduction 

 

In this chapter a review of the fundamental concepts used in this thesis is given. 

In the first and second sections the phenomena of interference and diffraction are 

briefly described. The third section is dedicated to the description of the contrast and 

the techniques that are used to measure it. In the last section the theoretical model and 

the typical features of the photo-EMF effect are reviewed. 

 

 

2.2. Interference 

 

Interference is the result of the superposition of two or more waves in the space, 

generating an intensity pattern that does not corresponds to the sum of the intensities 

of each wave [1,2]. 

 

Interference is derived from the superposition principle [1,3]. In agreement with 

this principle, the intensity of the electric field 



E  , produced by several different 

sources is equal to: 

...21  EEE         (2. 1) 

In order to observe the interference pattern, the two interfering waves must meet 

the following conditions [1, 4]: the waves should be monochromatic, the waves ought 

to have the same polarization, and the phase differences between the two waves need 

to constant, i.e. the waves should exhibit coherence.  
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2.2.1 Interference of two waves 

 

Hence, considering two plane linearly polarized waves and assuming that the 

waves have the same frequency [5,6], so that: 



E1  E01 exp i k1  r t 1  ,   (2. 2) 



E2  E02 exp i k2  r t 2  ,   (2. 3) 

where 



E01 and 



E02 are the amplitudes of each wave, 



k  2   is the propagation 

vector or the wave’s vector, 



r  is the position vector, 



  is the angular frequency, and 

the quantities 



1 and 



2 have been introduced to allow any phase difference. 

 

The resultant wave’s intensity I  is proportional to the square of the amplitude 

of the field. So the superposition of the two monochromatic plane waves, neglecting 

the constants of proportionality [7,8], results in: 

),()( 2121

2   EEEEEEEI     (2. 4) 

,)Re(2 21

2

2

2

1

 EEEE                (2. 5) 

,)]()cos[(2 212121

2

2

2

1   rkkEEEE            (2. 6) 

.cos2 2121 IIII                 (2. 7) 

 1I  and 2I  are the intensities of each wave where 21 III   is the average intensity; 

and the phase difference between the two waves is defined as 

)( 2121   rkrk . In the third term of the equation, cos2 21II , all the 

information about the interference is contained. 

Considering two plane waves whose phase difference is constant and whose 

wave vectors are in the plane 



x z: 

 

 

 

 

 

 

Fig. 2.1. Interference of two plane waves. 
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where the wave vectors (



k1 and 2k ) and its difference are define as: 

,
2

cos,0,
2

sin1 










kkk        (2. 8) 

,
2

cos,0,
2

sin2 










kkk        (2. 9) 

.0,0,
2

sin212 










kkk      (2. 10) 

Evaluating the result in the plane where the interference is observed, Eq. (2.7) 

becomes:  

,
2

sin2cos2 221 


















xIIIII k1     (2. 11) 

,
2

cos2 22 











x
IIII


11               (2. 12) 

where )2(sin2   is the period of the interference pattern. Eq. (2.12) can be 

rewritten as:  

,
2

cos
2

cos1 






























x
AI

x
VII


00     (2. 13) 

where 



I0  I1  I2 is the average intensity, V  is the interference pattern visibility. 

[9,10] or contrast, and A  is the amplitude of the pattern. The intensity distribution 

generated for the interference of two waves [Eq. (2.13)] is shown in Fig. 2.2:  

 

 

 

 

 

 

Fig. 2.2. Intensity distribution generated for interference of two waves. 

 

The visibility V  is useful for describing the quality of the interference pattern 

and it can be described using the Michelson definition [11]: 

.
2

21

21

minmax

minmax

0 II

II

II

II

I

A
V







     (2. 14) 

 

Imin 

Imax 

I(x) 

I0 

V I0 = A 

x 

 
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In order to know the visibility V  is enough with to calculate maxI  and minI . 

Besides, one can see that V  also can be expressed in terms of average intensity and 

amplitude.  

 

For a simplest case of sinusoidal light distribution the possible values of the 

visibility or contrast are between 0  and 1 [12]. In the case of 1V , the interference 

fringes have the maximum contrast, and when 0V , the interference fringes cannot 

be observed.  

 

 

2.3. Diffraction 

 

The essential feature of diffraction is a deviation from rectilinear propagation 

arising when a wave is obstructed in some way. If the amplitude or phase of a portion 

of the wave is altered by transparent or opaque obstacle, the diffraction phenomena 

will be observed [1]. 

 

The application of the rigorous diffraction theory is very difficult and for of the 

most problems an approximate scalar theory is used resulting in an integral called the 

Huygens- Fresnel integral (see Ref. 1 and Ref. 13). Approximate analytic solutions of 

this integral are usually obtained using one of the two approximations: Fresnel and 

Fraunhofer approximations [14]. 

 

 

2.3.1 Huygens-Fresnel principle 

 

The diffraction phenomena can be explained phenomenologically by Huygens’ 

principle [15,16]. The Huygens’ principle affirms that the propagation of a light wave 

can be predicted by assuming that every unobstructed point of the wavefront, at a 

given instant, can be treated as a source of spherical secondary wavelets (with the 

same frequency as that of the primary wave) that spreads out in all directions (see Ref. 

13 and Ref. 17). Therefore, at any particular time, the new wavefront is supposed to 

be the envelope of all the secondary waves.  
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Fig. 2.3. Diagram of Huygens-Fresnel principle. 

 

In Fig. 2.3 the diffraction aperture is assumed to lie in the 



,  plane, and its 

illuminated in the positive direction of 



z . The wavefield across the 



x,y  plane, which 

is parallel to the 



,  plane, can be calculated. The Huygens-Fresnel principle [18] 

can be represented mathematically as: 

,cos
)exp(

)(
1

)(
01

01
10 



 ds
r

ikr
PU

i
PU 


  (2. 15) 

where 



  is the angle between the normal n̂  and the vector 01r  pointing from 



P0  to 



P1, 

and 01cos rz  (see Fig. 2.3). The Huygens-Fresnel principle can be rewritten as: 

,
)exp(

),(),(
01

01




 


dd
r

ikr
U

i

z
yxU   (2. 16) 

where 



U x,y  represents the field 



P0  in the 



x,y  plane at a distance 



z  of the 



,  

plane. Eq. (2.16) shows us: that the distribution in the 



,  plane is considered a set 

of sources, where in every point of the source emerge a spherical wave, and that in the 

case of the distribution in the 



x,y  plane it consists in contributions of the group of 

irradiated fields from all the sources. Besides, the distance 01r  is stated by: 



r01  z2 x  
2
 y  

2
 z 1

1

2

x 

z











2


1

2

y 

z











2

. (2. 17) 

To resolve Eq. (2.16) that corresponds to the Huygens-Fresnel integral is 

necessary to apply additional approximations: Fresnel and Fraunhofer 

approximations. In the next sections these are described.  

 

 

x 

y 

  P0 

P1 

 

  
 

θ z

222

01 )()(   yxzr
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2.3.2 The Fresnel approximation 

 

Considering that the angle between 



ˆ n  and 



r01 is small ])10([ rad , it means 

that the inclination factor can be approximated to 1 )1(cos  . This first 

consideration is called paraxial approximation. Therefore, the approximation 

zr 11 01   is introduced into Eq. (2.16) [19]. 

 

On the other side, considering the binomial expansion [20,21]: 

 221

8

1

2

1
1)1( bbbx    (2. 18) 

and applying this expansion into Eq. (2.17), 



r01 in paraxial approximation can be 

represented as [22]: 








3

22222

01
8

])()[(

2

)()(

z

yx

z

yx
zr


  (2. 19) 

Thus, substituting Eq. (2.19) into Eq. (2.16) [only the first two terms] the 

contribution of the source point 1P  located in the 



,  plane to the point 0P  can be 

expressed as: 

,])()[(
2

exp),(
)exp(

),( 22 


ddyx
z

k
iU

zi

ikz
yxU  



 







  (2. 20) 

this equation is known as the Fresnel diffraction integral in the paraxial 

approximation, and when this approximation is valid, the observer is said to be in the 

near field of the aperture [18]. This equation represents a superposition of spherical 

waves in the paraxial approximation and the amplitude for these waves is proportional 

to the complex amplitude of the incident field in the diffracted aperture. 

 

 

2.3.3 The Fraunhofer approximation 

 

Another form of the Eq. (2.20) is [18]: 
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e
yxU
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k
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ikz
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
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
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

 








  (2. 21) 

in this case if the condition 



z  k  2 2  2  is satisfied, then the quadratic phase 

factor is approximately 1, and substituting 2k  therefore: 

,),(),(
)(

2
)(

2

22









ddeUe
zi

e
yxU

yx
z

iyx
z

k
i

ikz












    (2. 22) 

this result is known as the Fraunhofer diffraction, and when this approximation is 

valid, the observer is said to be in the far field of the aperture. In this case, the 

observation plane is far compared with the size of the diffracting aperture. 

 

Comparing Eq. (2.22) with the definition of Fourier transform the diffracted 

field can be expressed as: 

)].,([),(
)(

2

22




UFe
zi

e
yxU

yx
z

k
i

ikz


    (2. 23) 

In conclusion, the complex amplitude of the Fraunhofer diffraction is 

proportional to the Fourier transform of the aperture distribution in the 



,  plane. 

 

 

2.3.4 Talbot effect 

 

The Talbot effect [23], also referred as a self-imaging phenomenon of periodic 

objects, states that any distribution, which is a periodic function of 



x  and 



y , will be 

also periodic in the direction of propagation 



z . H. F. Talbot [23] described such effect 

in 1836, whereas Lord Rayleigh [24] rediscovered the effect, provided a theoretical 

explanation, and showed that the Talbot effect is a natural consequence of Fresnel 

diffraction.  

 

Considering a grating (one-dimensional) with amplitude transmittance )(xt  of a 

period  , illuminated by an on-axis plane wave of wavelength  , the diffracted 

intensity will reproduce an exact image of the grating in a series of equally spaced 

planes [25]. These planes, usually called Talbot planes, are located at distances from 
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the grating that are integer multiples of the Talbot distance (see Fig. 2.4):  

 

 

Fig. 2.4. Localization of Talbot image planes behind the grating. 

 

First, the effect for a simplest case of sinusoidal grating is analyzed. Assuming 

that a uniform wave plane illuminates a sinusoidal amplitude grating, the field 

immediately behind the grating is equal to its amplitude transmittance. Then, the 

standard notation for the complex amplitude transmittance )(t  of the grating can be 

expressed as [18]: 

,
2

cos1
2

1
),( 





















 mt     (2. 24) 

where   is the period of the grating, and m  represents the peak to peak change of 

amplitude transmittance. 

 

Employing the Fresnel formulation [Eq. (2.20)], the next expression is obtained: 

,])[(
2

exp)(
)exp(

),( 2 


dx
z

k
iU

zi

ikz
yxU  



 







    (2. 25) 

substituting the complex amplitude transmittance of the grating: 

,])[(exp
2

cos1
)exp(

2

1
),( 2 






dx

z
im

zi

ikz
zxU 



 

























   (2. 26) 

therefore if 22)]exp()[exp()cos( izizz   [26], Eq. (2.26) can be represented by: 
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To calculate the Fresnel diffraction integral, each term is evaluated: 
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Eq. (2.27) can be rewritten as: 
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 (2. 31) 

Thus, the Fourier transform of Eq. (2.24), at distance 



z  from the grating is [18]: 
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where the term ziikz )exp(  was omitted. 

 

Finally, the intensity distribution of Fresnel diffraction pattern can be evaluated 

as [18]: 
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  (2. 33) 
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Considering three special cases of this result, some expressions of intensity 

distribution of Fresnel diffraction patterns (Talbot images) that are formed behind of 

the grating are obtained: 

 

(a) Propagation to 


22 


n
z  

Substituting 



z  into Eq. (2.33) the intensity distribution can be rewritten as [18]: 
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x
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   (2. 34) 

Eq. (2.34) can be interpreted as an exact image (Talbot image) of the intensity 

that would be observed behind the grating (see Fig. 2.4). 

 

(b) Propagation to 


2)12( 


n
z  

If the distance satisfies 


2)12( 


n
z  the intensity distribution is given by 

[18]: 
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    (2. 35) 

At this length, one can observe that the image of the grating has reversed 

visibility or that the intensity distribution has a 180° spatial phase shift (see Fig. 2.4). 

This image is called Talbot negative self-image [27]. 

 

(c) Propagation to 
2

)12( 2


n
z  

If the observation distance now satisfies 
2

)12( 2


n
z  the intensity 

distribution is [18]: 
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 (2. 36) 

At this length, i.e. at smaller regular fractions of the Talbot length, the 

intensity distribution is almost uniform and subimages can also be observed. Here, the 

visibility is minimal and the subimages have reduced contrast.  
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Next, the effect for a binary grating is analyzed. In principle, assuming that a 

uniform wave plane illuminates the binary grating, the field immediately behind the 

grating is equal to its amplitude transmittance. Then, the complex amplitude 

transmittance )(t  of the grating can be expressed by Fourier series as [28,29]: 

,
2

exp)( 
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 
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ni
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n

n


     (2. 37) 

where 12  mn ,  3,2,1,0m , is the period of the grating, and na  are Fourier 

coefficients. 

 

Employing the Fresnel formulation [Eq. (2.20)], the next expression is obtained: 

.
)(

exp)(),(
2





 d

z

xi
UzxU 







 
 




   (2. 38) 

Eq. (2.38) can be rewritten as [30]: 

,]2[exp]exp[)(),( 2 dvxvizvivUzxU  



  (2. 39) 

where )(vU  is the Fourier transform of )(U . Here: 
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  (2. 40) 

Substituting the value of )(vU  into Eq. (2.39): 
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  (2. 41) 

applying a property of the delta function [31], the complex amplitude of the Fresnel 

diffraction pattern of a binary grating can be rewritten as: 
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Thus, the intensity distribution of the Fresnel diffraction pattern is given by 

[28]:  
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With the following change of variable nrl  , Eq. (2.43) can be rewritten as [28]: 
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 (2. 44) 

where )(zAl  is the complex amplitude of the 



l th  harmonic, and can be represented as 

[28]: 
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where 22Tz  is the Talbot distance. 

 

Finally, for a binary grating, if the observation distance satisfies 4Tzz  , i.e. at 

one quarter of the Talbot distance, the intensity distribution of the Fresnel diffraction 

pattern is uniform. Thus, if the observation distance now satisfies 2Tzz  , 
 
the 

intensity distribution of the grating has reversed visibility [28]. 
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2.4 CCD-based techniques for analysis of contrast  

 

2.4.1 Contrast 

 

Contrast is an essential perceptual attribute of an image or an object, i.e. is the 

variation in visual properties that makes an image or an object noticeable from other 

images or objects and their surroundings [32]. 

 

In recent years the contrast measurement have received much attention and 

numerous techniques have been developed to determine it because is a useful tool in 

several optics applications, such as metrology [33,34], interferometry [35,36], and 

biomedical optics [37,38].  

 

In case when the intensity distribution presents only one spatial harmonics e.g. 

in case of interference of two waves, it is enough to know the maximum and the 

minimum intensity ( maxI  and minI ) of the pattern in order to determine its contrast or 

visibility V  using the Michelson definition [Eq. (2.14)] [11]. 

 

However, evaluation of contrast using Michelson definition presents a 

disadvantage: the contrast is evaluated only by the maximum and the minimum 

intensity of the signal, which can be ambiguous for complex intensity distribution, 

e.g. when more than one spatial harmonic is present, when the interference fringes are 

distorted, or in the presence of noise, etc. In this case, statistical techniques or more 

complex algorithms of image processing should be applied in order to evaluate the 

contrast. 

 

To date there are several conventional techniques that determine the contrast of 

an intensity distribution, being the root mean square (RMS) method [32], histogram-

based method [39,40] and semivariogram-based method [41] most representative of 

them. All this techniques share the common feature: a CCD camera is used as an input 

sensor, the image of the intensity patterns is recorded, and then processed and 

analyzed, in order to find the contrast value. Next, the most characteristic features of 

these techniques will be described. 
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2.4.2 CCD–based techniques 

 

2.4.2.1 Root Mean Square (RMS)  

 

The root mean square (RMS), also known as the quadratic mean, is the square 

root of the mean of the squares of the sample values and it is a useful tool in many 

fields, including physics and electric engineering [42]. 

 

In RMS method all the signal data are considered and analyzed statistically, and 

the ratio of standard deviation and average signal is found, and it is a common way to 

evaluate the contrast in the case of a periodical pattern [43] or compound images [44]. 

 

Therefore, the RMS contrast RMSC  calculation is the standard deviation [45,46] 

of the n  pixels intensities from the average level I  (see Ref. 32 and 43) and results 

in: 

,

)(
1

1 2
1

1

2

I

I

I

II
n

C RMS

n

i

i

RMS 
















   (2. 46) 

where n  is the total number of pixels in the input image. Intensities iI  are normalized 

to a maximum value of 1, and I  is the average intensity across the image [47]. This 

quantity is relative easy to calculate for a simple (one-dimensional) periodical pattern.  

 

The RMS method was employed in Ref. 47 to obtain the contrast of images, and 

their results support that the RMS contrast is a good indicator of the visibility of 

images, which is in line with previous studies [44,48]. 

 

However, the disadvantage of this technique is that the amplitude of the signal 

can be affected in presence of noise [43]. In order to avoid this problem other 

techniques more robust to evaluate the contrast have been developed.  
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2.4.2.2 Semivariogram method 

 

The semivariogram [49,50] describes the magnitude, spatial scale, and general 

form of the variation in a given set of data [51], and has been used widely to quantify 

and to characterize the spatial variability the phenomenon under study [52]. The 

semivariogram is used in geostatistics [53,54] in applications as mining [55], geology 

[56,57], ecology [58], texture classification of satellite images [59,60], etc. 

 

Semivariogram [61,62] is a graphical representation of a spatial variability and 

provide a means of measuring the spatial dependency of continuously varying 

phenomenon [63] by a function that relates semivariance with distance or spatial 

separation [64,65]. 

 

Spatial dependence describes the phenomenon that attributes at locations close 

to each other are probable to have similar values while those that are far apart are 

probable to have different values [66,67], and semivariance is frequently applied to 

image processing [68] because expresses the degree of relationship between pixels in 

an image [63]. Therefore, if there is a strong spatial dependence, pixels that are closer 

together will have a smaller semivariance. 

 

In the case of images obtained by CCD camera, the semivariogram function 

)(h  measures the spatial correlation of the image and has been employed to estimate 

the standard deviation of nonuniform images [41].  

 

The semivariogram function [69] of a given one-dimensional periodical 

intensity distribution )(xI  can be defined as [43]: 

,)]()([
2

1
)( 2xIhxIh      (2. 47) 

where   means averaging with respect to x  and h  means a displacement along x  

axis. The semivariogram captures the variations of spatial dependence of signals 

)( hxI   and )(xI . Clearly, the value of   is maximum when h  is equal to a half of 

the period 2p  of a signal )(xI . 
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To determine the semivariogram of a sampled signal, it is necessary that the 

periodical pattern in the image should be aligning with the y  axis for averaging the 

values of the intensities in each column, and therefore a one-dimensional signal )(xI  

is obtained. 

 

The semivariogram function [Eq. (2.47)] was used in Ref. 43 for measuring the 

contrast of sinusoidal intensity distribution in presence of noise, and it was 

demonstrated that this technique is quite robust since the semivariogram is obtained as 

an average process (as RMS method) and noise affects hardly any to the contrast 

estimation. Besides, experimentally was showed the advantage of using it for the 

Talbot effect because the results obtained are better compared with other techniques 

[43].  

 

It was demonstrated [43] that the difference between the maximum and 

minimum values of the semivariogram is equal to the square of the amplitude of the 

signal A : 

))].0(ˆ2/([2   pA           (2. 48) 

Therefore the contrast or visibility can be represented by [43]: 
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where ̂  means that the value has been obtained by an extrapolation. The 

semivariogram is a measure of contrast as a function of distance and, this quantity 

coincides with Michelson’s equation for sinusoidal patterns [see Eq. (2.14)]. 

 

However, the contrast estimation using semivariogram function for more 

complicated light intensity distribution, which includes higher spatial harmonics, has 

not been done yet.  

 

Despite of their simplicity, all CCD–based methods share common weaknesses, 

namely, the necessity for image processing, necessity of a filter for avoid the 

saturation of the camera, and sensitivity to the environmental vibrations.  
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2.5 Basic principles of non-steady-state photo-electromotive force 

(photo-EMF) effect  

 

Non-steady-state photo-electromotive force (photo-EMF) effect was described 

by Petrov et al. [70] in 1990’s.  

 

The photo-EMF effect manifests itself as an alternating current (ac) through a 

short-circuited photoconductive sample illuminated by an oscillating non-uniform 

light distribution ),( txI .  

 

The adaptive photodetectors [71] based on the photo-EMF effect [72] have 

already been proposed for a number of practical applications. In particular are used 

for detecting vibrations of diffusely scattering objects [73], measuring the coherent 

length of several light sources [74], for sensing laser-generated ultrasonic 

displacements [75,76], for laser vibrometry [77], for characterizing femtosecond 

pulses [78], for determining photoelectric parameters of organic photoconductors 

[79], etc.  

 

A detailed analysis of photo-EMF effect for sinusoidal light distribution can be 

found in Ref. 80, and here it is only briefly discussed. 

 

 

2.5.1 General description  

 

The standard configuration for observing the photo-EMF effect is shown in Fig. 

2.5. Under illumination by two coherent plane waves one of which is periodically 

modulated in phase with the frequency f2  and amplitude   an oscillating 

sinusoidal light distribution is created inside photoconductive material [81]: 

 

)],(sincos[),( 00 tKxVIItxI      (2. 50) 

generating spatially non-uniform distribution of the mobile carriers ),( txn . Here 0I  is 

the average light intensity, V  is the visibility or contrast, 



K  2  is the spatial 

frequency of the interference pattern, and   is the fringe spacing. 
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Fig. 2.5. Standard configuration for photo-EMF effect. Here 



I1 and 



I2  are the intensities of each 

wave, EOM  is the electro-optical modulator, J  is the photo-EMF current, U  is the photo-

EMF voltage, and LR  is the load resistor. 

 

Mobile charge redistribution due to the diffusion/drift and its subsequent 

trapping gives rise to a relatively stable space charged electric field ),( txEsc . 

 

Fig. 2.6. Diagram of space-charge electric field generation in non-steady-state photo-EMF effect. 

 

The expression for the total current density flowing through the sample is: 
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where e  is the electronic charge, 



 the mobility, 



n x,t  is the density of the mobile 

photoelectrons in the conduction band, 



D is the diffusion coefficient,   is the 

permittivity, and 0  is the vacuum permittivity. 

 

If the Eq. (2.51) is integrated in the interval of 0  to L  and due to the boundary 

conditions ),(),0( tLntn   the averaged diffusion current [the second term of the Eq. 

(2.51)] caused by the nonuniform photocarriers density, has to be equal to zero [82]:  

.0),0(),(
),(

0

 tntLndx
x

txn
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


   (2. 52) 

Because of the potential nature of the electric field, the averaged displacement 

current through the sample represented by the third term of the Eq. (2.51) is equal to 

zero. Therefore, the density of the total current thought the sample is equal to drift 

current: 
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
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

   (2. 53) 

Under the steady state conditions, the diffusion-driven sinusoidal distribution of 

scE  is shifted by 4  with respect to )(x , (see Fig. 2.6), therefore the photo-EMF 

current is zero. 

 

However, if the intensity distribution moves, the situation is different. It is 

assumed that the photoconductivity ),( tx  follows the vibrations of the illuminating 

intensity distribution ),( txI  almost instantaneously, while the distribution ),( txEsc  

possesses certain inertia with response time sc . As a result of the phase shift between 

),( tx , concentration distributions ),( txn , and space charge field ),( txEsc  is 

different from 4 , the non-steady-state photo-electromotive force (photo-EMF) is 

created giving rise to alternating current through the short-circuited semiconductor 

[81, 83].  

 

In order to calculate the photo-EMF current amplitude, first the complex 

amplitudes of space charge field distribution, as well as the carriers concentration 

should be found, solving the standard set of equations, described e.g. in [80].  
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2.5.2 Main equations of the theoretical description of the photo-EMF effect in 

monopolar photoconductor 

 

Next, let us consider the main equations, which describe the process of photo-

EMF current formation. For the simplicity the widely assumed model of a monopolar 

(n-type) photoconductor with a single deep impurity level is used. The recombination 

that occurs through the same deep trap level is used. Dark conductivity (due to the 

thermal excitation) and saturation of the impurity centers are neglected. Besides, no 

external bias is applied to the sample 



E0  0 . 

 

In this model, absorption of light photon leads to the excitation of the mobile 

electron from the impurity center with the generation rate 



g . The mobile carriers are 

driven by drift and/or diffusion and they are redistributed on the conduction band. 

After some time, defined as a recombination time 



 , their recombine on available 

acceptor level. 

 

 

Fig. 2.7. Energy levels structure used for model of a monopolar photoconductor. The conduction 

band and the valence band are 



WC  and 



WV  respectively. Initial concentrations of  

donor and acceptor centers (for electrons) are 



ND

0
 and 



NA

0
 respectively. 

 

The balance equation for mobile carriers (with concentration 



n x,t ) in the 

conduction band and for ionized deep impurities (with concentration 



N x,t ) can be 

written as follows:  

,
),(1),(

),(
),(

x

txj

e

txn
txg

t

txn







     (2. 54) 
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hence 



N  x,t 
t

 g x,t 
n x,t 


,          (2. 55) 

where 



e  is the electronic charge. The expression for current density 



J x,t  [80]: 



J x,t  en x,t Esc x,t  eD
n x,t 
x

,        (2. 56) 

includes two main contributions: drift (with the mobility 



) driven by a space-charge 

field 



Esc  and diffusion (with the diffusion coefficient 



D) driven by carriers’ 

concentration gradient. 

 

The space-charge field 



Esc  is created by a nonuniform distribution of charges 

with the density 



  e N  n  and both are related through the Poisson’s equation:  

 
 .,

1,

0

tx
x

txE





        (2. 57) 

Finally, the continuity equation which relates the current density 



J x,t  and 

the space-charge density 



 x,t , can be written as [80]: 



 x,t 
t

 
J x,t 
x

.      (2. 58) 

 

 

2.5.3 Photo-EMF current amplitude 

 

The solution of Eq. (2.53) can be obtained in the approximation of low 

amplitude of oscillations )1(   and low contrast )1( V  of the illuminating 

interference pattern. 

 

As a result of this solution the amplitude of the first harmonic of photo-EMF 

current can be expressed as [80]: 
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where 0  is the average photoconductivity, 0E  is the external electric field applied to 

the sample, 00  di  is the dielectric relaxation time due to the average 

photoconductivity, KDED   is the diffusion electric field, DLD   is the 

diffusion length, and 00 EL   is the drift length of the charge carriers. 

 

For the simplest case of zero external electric field )0,( 00 LE , the amplitude 

of the first harmonic of the photo-EMF current can be expressed as [80,84]: 

,
114 0
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22
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
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
i
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J D
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
     (2. 60) 

where the characteristic cutoff frequency   can be defined as:  

,)]1([ 1221

0

  Ddisc LK            (2. 61) 

here sc  is equal to the recording/erasure time of the electric field grating [85].  

 

There are some dependencies of the effect that are important to mention. First, 

the frequency transfer function of 


J  is similar to the transfer function of RC circuit 

[86], i.e. at low frequencies 0  the signal grows up to the cutoff frequency 0 , 

and then has a constant level at frequencies 0  (see Fig. 2.8). 

 

 

 

Fig. 2.8. Dependence of the photo-EMF signal versus the modulation frequency  . 
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This kind of transfer function of 


J  is responsible for the inherent adaptive 

properties of the photo-EMF effect for detection of phase-modulated signals. In other 

words, by the nature of the photo-EMF effect the photodetector has the ability to 

compensate slow environmental phase drifts [81], i.e. possess additional robustness to 

the environmental vibrations.  

 

In addition the effect possess spatial adaptability to the wavefront irregularities 

in the interfering beams, since the space charge field and concentration distribution 

are the exact replica of the intensity distributions, i.e. the detection can be performed 

in presence of speckle or aberrations.  

 

For these outstanding properties photo-EMF based detector has already been 

proposed for a number of practical applications such as it was mentioned before. 

 

Another is the dependence of the photo-EMF signal in function of the spatial 

frequency K  of the interference pattern, and it is shown in Fig. 2.9.  

 

 

 

Fig. 2.9. Dependence of the photo-EMF signal versus the spatial frequency K . 

 

One can see that the signal grows linearly with the increasing spatial frequency, 

reach some maximum and then decays. The linear growth is determined by the 

increasing with spatial frequency diffusion field KDED  , while the decay is 



 32 

produced by the reduced effective contrast when the transport length of the carriers 

are greater than the spatial period of the interference pattern. The maximum of this 

dependence corresponds to a spatial frequency equal to the inverse carriers’ diffusion 

length: 

.1 Dopt LK      (2. 62) 

This spatial frequency is considered to be an optimum one when using the 

photo-EMF effect for the detection purposes since the maximal value of the signal-to-

noise ratio is observed. 

 

The theoretical dependence of the photo-EMF signal amplitude 


J  [Eq. (2.60)] 

as a function of modulation amplitude   is shown in Fig. 2.10. One can see that for 

arbitrary modulation amplitudes the photo-EMF signal is proportional to the product 

of two Bessel functions [87]: 

),()()( 10  JJJ     (2. 63) 

where )(0 J  and )(1 J  are the zero-order and the first-order Bessel functions 

respectively. At small vibration amplitude )1(   the photo-EMF signal grows 

linearly with the amplitude of the phase modulation 

J . This property of photo-

EMF effect allows its use as an adaptive detector of the vibrations amplitudes in laser 

vibrometry, and ultrasound detection. 

 

 

Fig. 2.10. Dependence of the photo-EMF signal versus the modulation amplitude K  at frequency 

0 . 



 33 

 

Finally, Eq. (2.60) shows that the output current amplitude is proportional to the 

square of the light pattern visibility or contrast 
2VJ 

 , which makes the photo-

EMF effect suitable for the direct measurements of the changes on the light pattern 

visibility.  

 

Because of this property, the photodetector based on photo-EMF effect was 

used in Ref. 88 for analyzing the Talbot effect, since an electrical current that is 

proportional to the square of the visibility of the Fresnel diffraction patterns can be 

produced directly. It was demonstrated that photo-EMF effect can be used for Talbot 

self-images localization in real time, with high spatial resolution, and without any 

signal processing. 

 

However, the direct application of the photo-EMF effect for the general 

problem of measurement of contrast distribution and related Talbot self-images 

localization requires solving several problems.  

 

First of all, most of the practical applications of Talbot effect use the diffraction 

on a binary grating, which means that more than one spatial harmonic is involved in 

intensity distribution on photo-EMF detector. However, the widely used theoretical 

model of photo-EMF effect available up to now is based on the assumption that the 

intensity distribution is a sinusoidal one. 

 

The details of photo-EMF current formation in the presence of additional spatial 

harmonics are not clear. It is necessary to verify also how the dynamics of space 

charge grating formation is affected in such a case. And, the most important, the 

global question of “what is the visibility which is measured in such condition” should 

be answered. 

 

In addition, the comparative analysis of the photo-EMF effect with the already 

existent techniques which are currently used for a measurement of contrast is still 

absent.  
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Therefore, the main objective of this thesis is the theoretical and experimental 

investigation of the non-steady-state photo-EMF effect induced by light distributions 

that contains spatial harmonics i.e. periodical one-dimensional (1-D) light patterns, 

and its applications to Talbot interferometry. 
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Chapter 3 

Experimental Methods 

 

3.1 Introduction 

 

 

This chapter gives a general description of the experimental arrangements, 

equipment, and materials used for the localization and analysis of the diffraction 

patterns generated by a Ronchi grating. Two principle schemes are described: the first 

one that uses an adaptive photodetector based on the non-steady-state photo-

electromotive force (photo-EMF) effect and the second one uses CCD as an input 

sensor (RMS and semivariogram techniques). The relevant characteristics of devices 

used in the experiments are presented. The main characteristics of experimental 

methods for characterizations and localization of the Talbot patterns are discussed.  

 

 

3.2 Description of experimental setup for self-images generation  

 

A schematic of the experimental arrangement for self-images generation is 

shown in Fig. 3.2. The experiments were basically performed with a standard Melles 

Griot He-Ne laser linearly polarized with a wavelength nm633  and an output 

power of approximately mW11 . 

 

Using a 



10 x  microscope objective the beam from the laser was expanded and 

pinhole with a diameter equal to m10  was used to filter out the light. The diverging 

beam was incident on the collimating lens of focal length cm20 . This collimated 

beam illuminated the binary grating. 
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A binary grating, also called Ronchi grating or Ronchi ruling consists in 

alternate dark and clear stripes. The geometry of a Ronchi grating is illustrated in Fig. 

3.1, where 



A  is the amplitude, and 



 is the period of the slit. These gratings usually 

are used for optical testing purposes. In the experiments, a binary grating with a 

period of m100 , i.e. 



10,000 lines m  is used. 

 

 

 

 

 

 

Fig. 3.1. Geometry of a Ronchi grating. 

 

The expected Talbot distance (where the self-images are located) was 

estimating by the equation 



zT  2
2  . Substituting the period of the grating and the 

wavelength, the value for the Talbot distance is approximately .6.31 mmzT    

 

Both detectors (photo-EMF detector or CCD camera) were mounted in a 

Newport translation stage (the resolution of its milimetric screw was approximately 

m5  with steps of m10 ) for scanning along the optical axis 



z , and were placed 

around th5  self-image (approximately cm15  from the grating where the self-image 

had better contrast). 

 

Fig. 3.2. Schematic diagram of experimental set-up for self-images generation.  

A 

x 

 

/2 0 

Tz

Tz

z
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3.3 Characterization of adaptive photodetectors 

 

The experimental setup for the characterization of adaptive photodetectors is 

presented in Fig. 3.3. The experiments were performed with the same Melles Griot 

He-Ne laser. 

 

The beam from the laser passed through a beam splitter and was divided into 

two beams, which intersected on the surface of the photoconductive crystal (adaptive 

photodetector) and produced interference fringes.  

 

A mirror was attached to the piezo-electric transducer to induce the vibrations 

of the interference fringes. The piezo-electric was driven by the signal generator, 

which also provided the reference signal to the lock-in amplifier. Finally, the lock-in 

amplifier detected the photo-EMF signal. 

 

The frequency of excitation from the function generator was approximately 

kHz1  and the amplitude applied to the piezo-electric was approximately Vpp20 , 

which ensures that the condition 



 1 holds in our experiment. 

 

 

Fig. 3.3. Experimental setup for characterization of photo-EMF detectors. Here 



M1 and 



M 2 are 

mirrors, 



BS1 and 



BS2  are beam splitters, and 



  is the angle.  

 

The experiments were carried out with two crystals (principally), which 

consisted in a semi-insulating GaAs crystals, with a pair of silver paste electrodes 

deposited onto the front face. The dimensions of the crystals are shown in the next 

figures. 
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                                          Crystal 



1                                                      Crystal 



2                                   

 

Fig. 3.4. Dimensions of adaptive photodetectors. 

 

In Fig. 3.5 and Fig. 3.6 the dependence of photo-EMF signal as function of the 

beam crossing angle can be observed. 

 

As it is shown in Fig. 3.5 and Fig. 3.6, the photo-EMF current behavior with the 

variations of beam crossing angle is consistent with the predictions of standard theory 

of the photo-EMF effect [1] when the beam crossing angle increases the photo-EMF 

signal grows up linearly until it reaches a maximum and then the signal decays. 
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Fig. 3.5 Dependence of the photo-EMF signal as a function of the beam crossing angle  

for crystal 



1. 
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Fig. 3.6. Dependence of the photo-EMF signal as a function of the beam crossing angle 

 for crystal 



2 . 

 

Solid line in Fig. 3.5 and Fig. 3.6 are the theoretical fitting of experimental data. 

It is well known (see Ref. 2) that the maximum of the photo-EMF signal occurs when 

the product of spatial frequency of the interference fringes and diffusion length equals 

to one 



KLD 1, so the carriers’ diffusion length can be determined from the maxima 

position.  



LD Kmax
1 

max

2
.    (3.1) 

In paraxial approximation (for small angles) the period of fringes can be 

approximated as 



    , obtaining max2DL . 

 

Fitting of theoretical results gave the values of 0025.0  rad and 032.0  rad for 

the values of beam crossing angles at which maximal photo-EMF signal have been 

observed. Using the expression (Eq. 3.1), the carriers’ diffusion length 



LD  was 

approximately m40  for crystal 



1 and m3  for crystal 



2. 

 

 

3.4 Description of detection system of self-images  

 

Grating 



100m
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Two kinds of experiments were performed: first one consists in acquiring 

images by CCD camera with posterior image processing and analysis by RMS and 

semivariogram-based methods, and the second one uses the adaptive photo-EMF 

detector.  

 

 

3.4.1 CCD 

 

For CCD-based experiments (see Fig. 3.7) the light distribution was scanned 

along the optical axis 



z  (moving the translation stage) with steps of mm1 . 

 

In each step an image of the light pattern (512 x 480 pixels in size) was 

recorded by a CCD video camera. This is a SONY device and corresponds to XC-75 

series. The XC-75 is a monochrome instrument with a total number of pixels of 

[811(H) x 508(V)]. 

 

All the images recorded, were processed using software of CCD camera [beam 

analyzer (Spiricon)] in order to determine the intensity distributions generated by 

binary grating. These data (the intensity distributions) were processed using RMS and 

semivariogram algorithms. Finally, the numerical computations of these algorithms 

were realized with two different programs (Octave [3] and Matlab). 

 

 

Fig. 3.7. Schematic diagram of experimental set-up for CCD camera.  

 

Tz

Tz

z
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In Fig. 3.8, as an example, the image captured by CCD camera at a distance 



z  5zT  that corresponds to a self-image of the binary grating is shown. 

 

 

Fig. 3.8. Image of Talbot self-image for the binary grating recorded by CCD camera. 

 

It is important to mention that for CCD experiments, a filter was used for avoid 

saturation of the camera. 

 

 

3.4.2 Photo-EMF 

 

In the photo-EMF experiments (see Fig. 3.9) the binary grating was attached to 

the piezo-electric transducer to induce vibrations of the light patterns.  

 

To achieve the requisite of small phase modulation 



 1 the piezo-electric 

transducer was set to generate amplitude of vibrations smaller than the wavelength of 

the laser. Therefore, the piezo-electric was exited with a frequency of 



600Hz  and 

with amplitude of 



11Vpp by the function generator. 

 

The ac current induced by a vibrating light pattern was detected by an adaptive 

photodetector placed on a translation stage. The crystal 



1 described in Section 3.3 was 

used as photodetector. 
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The photo-EMF signal was scanned along the optical axis 



z  with steps of mm1  

and m250  moving the translation stage. A SR530 lock-in amplifier detected photo-

EMF current generated by the photodetector, with an input resistance of M100  and 

an input capacitance of pF25 , by a coaxial cable connected to the silver electrodes 

of the photodetector. The SR530 is an instrument that can measure AC signals as 

nanovolts in the presence of much larger noise levels. 

 

 

 

Fig. 3.9. Details of photo-EMF based arrangement. 

 

 

3.4.2.1 Characterization of the piezo-electric 

 

In Fig. 3.10 the results of the dependence of photo-EMF signal as a function of 

the peak to peak voltage Vpp  applied to the piezo-electric are observed. In this case 

the frequency of excitation from the function generator was fixed in Hz600  and the 

Vpp  applied to the piezo-electric varied from 



1 to 



20. 

 

The behavior of the results (Fig. 3.10) shows that when the Vpp  increase the 

photo-EMF signal grows linearly. 

 

z

Tz

Tz
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Fig. 3.10. Dependence of photo-EMF signal as a function of the 



Vpp . Here the wavelength 



  633nm, the output power of 



11mW , and with a frequency of 



600Hz . 

 

In Fig. 3.11 the results of the dependence of photo-EMF signal as function of 

the frequency applied to the piezo-electric are observed. In this case the amplitude 

from the function generator was fixed on Vpp11 . The frequency of excitation varies 

from Hz400  to Hz800 . Here, the maximum of the signal is located at approximately 

Hz600  i.e. the frequency approaches to resonance frequency of piezoelectric 

transducer. In our experiments this frequency of modulation was used, since it ensures 

the large modulation amplitudes. 

 

Fig. 3.11. Dependence of photo-EMF signal as a function of the frequency. Here the wavelength 



  633nm, the output power of 



11mW , and with amplitude of 



11Vpp . 
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In Fig. 3.12 the results of the dependence of photo-EMF signal as a function of 

the output power are shown. In this case the amplitude from the function generator 

was fixed on Vpp11  and the frequency in Hz600 . A filter modified the output power 

and it varies from mW1  to approximately mW11 . Here, the photo-EMF signal grows 

linearly as a function of the output power. 

 

Fig. 3.12. Dependence of photo-EMF signal as a function of the output power. Here the 

wavelength 



  633nm, with a frequency of 



600Hz , and with amplitude of 



11Vpp . 

 

In Fig. 3.13 the results of the dependence of the distance between self-images 

versus position of the collimation lens are shown. 
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Fig. 3.13. Dependence of the distance between self-images versus position of the collimation lens. 

Here the wavelength 



  633nm, the output power of 



11mW , with a frequency of 



600Hz , 



z  zT
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 and with amplitude of 



11Vpp .  

 

In this case the amplitude from the function generator was fixed on Vpp11  and 

the frequency in Hz600 . The collimation lens was mounted in a translation stage for 

scanning along the optical axis 



z , and was placed close to th5  self-image 

(approximately cm15  from the grating where the self-image had better contrast). The 

distance was scanned along the optical axis 



z  with steps of mm1  moving the 

translation stage. 

 

Here, the distance between self-images has a linear trend as function of the 

position of the collimation lens.  

 

 

3.5 Description of detection system of self-images for turbid media 

 

The possibility for localization of self-images in turbid media was also 

investigated. A turbid media can be defined as a medium that contain suspended 

particles that scattering light in all directions under illumination. 

 

To carry out the experiments of the localization of Talbot self-images, a glass 

cell that contained different concentrations of semi-skimmed milk (Parmalat brand), 

as a strongly-scattering or turbid media, diluted in deionized water was used. 

 

Milk is an opaque white fluid. The chemical composition of the milk is 

complex, is a colloid of butterfat globules within a water-based fluid, and shows 

analogy with blood [4]. The appearance of the milk is determined by its optical 

properties. Light scattering by fat globules and caseins micelles causes milk to appear 

turbid and opaque [5]. 

 

Hence, the experimental arrangement for localization of self-images in turbid 

media for photo-EMF detector is observed in Fig. 3.14. 
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Fig. 3.14. Details of photo-EMF based arrangement with glass cell. 

 

 

3.6 Analysis of diffraction orders collected by system 

 

If a screen or detector is placed some distance away from the grating, the light 

intensity coming from the grating produces several spots, which corresponding to 

different orders of diffraction (see Fig. 3.15). In fact, for a grating a mathematical 

relationship can be derived which relates the angle of the diffraction 



 , the period of 

the grating 



, the wavelength 



 , and the diffraction orders 



m , this is called the 

grating equation [6,7] and is given by: 



m 
sin


,     (3.2) 

where 1tan ( Tzy 5 ) 1tan ( mmy 158 ). For the experimental analysis the 

number of diffraction orders collected by the system (both detectors) was calculated 

using Eq. (3.2), and substituting the period of the grating m100 , the wavelength 

nm633 , and the angle 



 . 

 

z

Tz

Tz
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Fig. 3.15. Diagram for calculation of the diffraction orders collected by the system. 

 

It was found that in general three diffraction orders were collected ( 3m ) 

[see Fig. (3.16)].  

 

 

Fig. 3.16. Diagram of the diffraction orders collected by the system. 
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Chapter 4 

Non-steady-state photo-EMF effect induced by an arbitrary 

periodical one-dimensional light pattern 

 

 

4.1 Introduction  

 

In this chapter detailed theoretical analysis for non-steady-state photo-EMF 

effect induced by a periodical one-dimensional (1-D) light pattern in a 

photoconductive sample is developed. As a result of this analysis the expression for 

photo-EMF current density induced by light distribution containing only odd 

harmonics is derived. This expression was used to analyze an axial distribution of 

photo-EMF current produced by light pattern generated by diffraction in binary 

grating on near field. Next to the theoretical analysis, experimental results on 

investigation of photo-EMF effect induced by light patterns produced by Fresnel 

diffraction on Ronchi grating using GaAs detector at different experimental 

conditions are presented. Finally, the discussion of the obtained results is 

performed.  

 

 

4.2 Theoretical analysis 

 

4.2.1 Incident light distribution  

 

First, an infinite photoconductor illuminated by an arbitrary one-dimensional (1-

D) periodical (with a period 



) light pattern with the intensity distribution 



I x  is 

considered. The periodical function 



I x  can be represented in terms of Fourier [1,2] 

series: 
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  ,, 





l

ilKx

leAtxI         (4. 1) 

where 



K  2  is the fundamental spatial frequency, 



l is the number of spatial 

harmonic and the coefficients 



Al  are defined as: 



Al 
1


I x 

0



 eilKx dx.         (4. 2) 

If the light pattern is oscillating periodically in time with a frequency 



 and 

amplitude 



 , then the resulting spatial and temporal dependence of 



I(x,t)  can be 

written as [3]: 



I x,t  Ale
il Kx sint 

l



  Ale
ilKx eil  sint

l



 ,  (4. 3) 

Considering small amplitude of vibrations 



 1, the exponential function can 

be expanded on Taylor series [4] where only the linear term is left: 

 



e
il  sint  1 il  sint      (4. 4) 

Using Euler’s formula [5]: 



sint 
eit  eit

2i
.        (4. 5) 

The expression for the intensity distribution can be represented by the following 

series: 
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
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







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






 



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


       (4. 6) 

where 



Al1  Al0
 l

2
, and 



Al1  Al0
 l

2
,        (4. 7) 

here the first sub-index indicates the number of spatial harmonic and the second one is 

the number of temporal harmonic. 
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4.2.2 Main equations of the theoretical description of the photo-EMF effect in 

monopolar photoconductor 

 

Next, let us consider the main equations, which we are planning to use in our 

theoretical analysis. For the simplicity the widely assumed model of a monopolar (n-

type) photoconductor with a single deep impurity level is used. The recombination 

that occurs through the same deep trap level is used. Dark conductivity (due to the 

thermal excitation) and saturation of the impurity centers are neglected. Besides, no 

external bias is applied to the sample 



E0  0 . 

 

Absorption of light photon leads to the excitation of the mobile electron from 

the impurity center with the generation rate 



g . The mobile carriers are driven by drift 

and/or diffusion and they are redistributed on the conduction band. After some time, 

defined as a recombination time 



 , their recombine on available acceptor level. 

 

The standard set of equations [(2.54) - (2.58)] – balance equation, current 

equation, continuity and Poisson equations – have been used in order to describe the 

processes of charge generation transport and trapping, as well as the process of space 

charge field formation. 

 

Once again, in order to simplify the solution of the set of equations [(2.54) - 

(2.58)], the quasi-stationary condition, which is valid when the carriers’ lifetime 



  is 

negligible compared to any other characteristic time of the process: period of 

oscillations 



T  and dielectric relaxation time 



 di is assumed. This approximation 

allows neglecting the temporal derivatives 



n t  0 and, combining the equations 

[(2.54) - (2.58)], two master equations are obtained: 

 



0  g x,t 
n x,t 


 n x,t 
E

x
 E

n

x
 D

2n

x2








.        (4. 8) 



2E x,t 
xt


e

0

N 

t

e

0
g
n











 

e

0
n

E

x
 E

n

x
 D

2n

x2








.       (4. 9) 
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4.2.3 Solution in linear approximation 

 

The set of equations [(4.8) and (4.9)] cannot be solved analytically. The usual 

approach is to get analytical solution applying a linearization procedure assuming an 

approximation of low (or small) contrast of spatial modulation: 



Al A0 1.     (4. 10) 

The value of contrast can be controlled by an additional uniform illumination or 

if the grating with the transmittance different from 



0 and 



1. 

 

Then, all unknown variables can be written in a similar way to that of the input 

excitation [Eq. (4.3)]. This allows writing [6]: 



E x,t  E l0 e
ilKx  E l1

l0



 e
i lKxt   E l1 e

i lKxt   c.c.,       (4. 11) 



n x,t  nl0 e
ilKx  nl1

l0



 e
i lKxt   nl1 e

i lKxt   c.c..       (4. 12) 

 

The next step is to find the complex amplitude of space charge field 



E x,t  and 

the concentration distribution 



n x,t . 

 

Here, the input light distribution contains only odd harmonics 



l 1, 3,  (like 

e.g. in case of a binary grating). Substituting Eq. (4.8) and (4.9) to Eq. (2.57) and 

(2.58) the expressions for 



nlm  and 



E lm  can be obtained. 

 

 

4.2.4 Steady-state solution 

 

The solution for steady-state distribution of charge carriers’ concentration 

yields: 



nl0  gl0 ,            (4. 13) 

where 



nl0  is the average concentration of photoelectrons, and 



gl0 is the average 

photogeneration rate of the carriers. 
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Next, the expression for 



E l0 can be obtained. Since odd harmonics only are 

presented Eq. (4.9) can be written in a following way: 



n0
E l0 e

ilKx

x
 E0

nl0 e
ilKx

x
 D

2nl0 e
ilKx

x2
 0.    (4. 14) 

Applying the partial derivative 



 x  one can obtain: 



n0 El0 iKl D nl0 iKl 
2
 0,             (4. 15) 



E l0  iKl
D



Al0

A00
.    (4. 16) 

One can see that this result is quite similar to that obtained in case of sinusoidal 

light distribution: the 



l th  spatial harmonic of space-charge field is proportional to the 

modulation depth of the corresponding intensity distribution harmonic, and to the 

diffusion field  KlDEDl  . 

 

 

4.2.5 Solution for the first temporal harmonics 

 

Now, the expression for first temporal harmonics of space charge field 

distribution 



E l1 and carriers’ concentration 



nl1 can be obtained. Using master 

equations and applying temporal and spatial derivatives, one can get: 

     ],[
2

110

0

1 iKlnDiKlEn
e

iiKlE lll  


           (4. 17) 



E l1  il
nl1

n0

1

i di 1 
ED,          (4. 18) 

where 



ED  KD   is the diffusion electric field. 

 

Using the first master equation [Eq. (4.8)] and Eq. (4.9), the expression for 



nl1 

can be written as following: 

  ],[0
2

110
1

1 iKlnDiKlEn
n

g ll
l

l  


        (4. 19) 



nl1

n0

Al1

A0

i di 1 
i di 1 1 LD

2 K 2l2  LD2 K 2l2















Al1

A0

i di 1 
1 i di 1 LD

2 K 2l2 
.     (4. 20) 
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The result of Eq. (4.20) can be substituted into Eq. (4.18), and 



E l1 can be finally 

expressed as: 



E l1  ilED
Al1

A0

1

1 i di 1 LD
2 K 2l2 














 ilED 

Al1

A0

1

1 i scl 
,   (4. 21) 

where 



Al1

A0

Al

A0

 l

2
,              (4. 22) 

and the term 



 scl  is the space charge field build-up time to thl  harmonic given by the 

expression 



 scl  di 1K
2LD
2 l2 .  

 

Note, that in case of short diffusion lengths 



lKLD 1 the characteristic time of 

space charge electric field recording is the same for all spatial harmonics and it is 

determined by the dielectric relaxation time 



 scl  di. For the opposite case of large 

diffusion lengths 



lKLD 1 the expression for the characteristic time becomes 



 scl  di K
2LD
2 l2  and it is clear that higher harmonics possess longer recording time. 

 

 

4.2.6 Photo-EMF current density 

 

Total current flowing through the short-circuited photoconductor with Ohmic 

contacts can be calculated using the equation derived in reference [3]: 



JphotoEMF 
e


E x,t n

0



 x,t dx.     (4. 23) 

It can be shown that substituting Eq. [(4.11) and (4.12)] into Eq. (4.23) three 

components of current appear, corresponding to DC current, to the fundamental and to 

the second temporal harmonic:  



JphotoEMF  e E l0 e
ilkx  E l1 e

i lkxt   E l1 e
i lkxt   c.c 

l



 

e nl0 e
ilkx  nl1 e

i lkxt   nl1 e
i lkxt   c.c ,

l





JphotoEMF  J0  JphotoEMF
 e it  JphotoEMF

2 e i2t  c.c.

 (4. 24) 
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Now, the interest is the analysis of photo-EMF current at fundamental temporal 

harmonic. Reducing Eq. (4.24) one can show that the complex amplitude of photo-

EMF total current density is given by the expression: 

 

 .

,01011010
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  (4. 25) 

Inserting the equations that correspond to 



nl0  [Eq. 4.15)], 



E l0 [Eq. (4.16)], 



nl1 

[Eq. (4.20)], and 



E l1 [Eq. (4.21)] into Eq. (4.25) the expression for the photo-EMF 

current component induced by the thl  spatial harmonic of the input light distribution 

can be obtained [7]: 



Jl
 

l2

2

Al

A0











2

 0ED
 di

1 i scl
,   (4. 26) 

It can be seen that the current amplitude 



Jl
 is proportional to modulation 

amplitude 



 , the square of the number of harmonic 



l, the square of input harmonic 

contrast 



Al A0 , the photoconductivity 



 0 , and the electric diffusion field 



ED . 

 

 

4.2.7 Analysis of the dynamics of photo-EMF current in the presence of multiple 

spatial harmonics 

 

It is clear from the Eq. (4.26) that the frequency transfer function of each spatial 

harmonic possesses a high pass filter shape observed for a sinusoidal input light 

distribution: i.e. the current amplitude grows linearly up to some cut-off frequency 

and keeps constant at higher frequencies. 

 

However, as it was mentioned above (section 4.2.5) that the characteristic time 

of recording for each spatial harmonic depends on the product number of harmonic, 

spatial frequency and diffusion length 



lKLD : for 



lKLD 1 all spatial harmonics are 

recorded with the same speed and for 



lKLD 1 the higher spatial harmonic is, the 

slower is its rate of recording. 
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The dynamic of the first, third and fifth component of photo-EMF current can 

be observed in figures 4.1(a) and 4.1(b). It can be seen that for a case of short 

diffusion length 



lKLD 1 the cut off frequency is independent on the number of 

harmonics [Fig. 4.1(a)], while for a case of long diffusion length 



lKLD 1 the cut of 

frequency 



l  of higher harmonics is shifted to the lower frequency region and it is 

proportional to the inverse square of the number of harmonic 



l  1 l
2  [Fig. 4.1(b)]. 

 

 

                                    (a) 



l 1                                                                (b) 5,3,1l  

Fig. 4.1. Theoretical dependence of the photo-EMF current 



J l
  amplitude versus modulation 

frequency 



 for different values of 



KLD  0.1,3 and different harmonic number 



H 1,3. 

 

 

                                  (a) 



KLD  0.1                                                          (b) 



KLD  3                 

Fig. 4.2. Theoretical dependence of the total photo-EMF current 



J photoEMF


 amplitude versus 

modulation frequency 



 for different values of 



KLD  0.1,3 and different harmonic number 



H 1,3,10. 
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As to the total photo-EMF current amplitude, which is composed by the sum of 

the current component induced by corresponding harmonic of spatial distribution of 

light intensity, its dynamics for a different limiting cases is shown in Fig. 4.2.  

Once again at the limiting case of short diffusion length 



lKLD 1 the 

characteristic cut off frequency is independent on the total number of harmonics being 

presented in the input intensity distribution and the frequency transfer function 

possess a classical high pass filter form [Fig. 4.2(a)]. For a case of long diffusion 

length 



lKLD 1, however, even when the cut of frequency is independent on the 

harmonic content of the input signal, the different speed of recording for higher 

harmonics leads to the dispersion of the photo-EMF current at low modulation 

frequency 



 scl 1 and the dependence of the 



JphotoEMF
  vs. 



 is not linear anymore 

[Fig. 4.2(b)]. 

 

Next, the obtained equation [Eq. (4.26)] 



l th  component of photo-EMF current 

amplitude is analyzed under the simplifying assumption of high modulation frequency 



 scl 1:  



Jl
 

l2

2

Al

A0











2

 0ED
1

1 l2K 2LD
2
,   (4. 27) 

It can be seen from the Eq. (4.27) that two limiting cases may be distinguished 

depending on relation between carriers’ diffusion length 



LD , spatial frequency 



K  and 

harmonic number 



l: 

 

a) Short diffusion length 



lKLD 1 : 



Jl
 

l2

2

Al

A0











2

 0ED,        (4. 28) 

as a consequence total photo-EMF current: 



JphotoEMF
  Jl



l



 


2
0ED l2

Al

A0











l




2

.        (4. 29) 

 

One can see [Eq. (4.29)], that the complex amplitude of photo-EMF total 

current density is proportional to the sum of the square of input harmonics contrasts 
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times square of the number of harmonic 



l, for spatial harmonic whose period 



  2 K l is shorter than inverse diffusion length. Therefore, in this regime, for 

higher spatial harmonics in the input illumination pattern the photo-EMF current 

response is amplified by factor 



l2. 

 

b) Large diffusion length 



lKLD 1 : 



Jl
 

l2

2

Al

A0











2

 0ED
1

l2K 2LD
2
,    (4. 30) 

as a result: 



JphotoEMF
  Jl



l



 


2
0

ED

K 2LD
2











Al

A0











l




2

.          (4. 31) 

 

One can observe [Eq. (4.31)], that for a limiting case of large diffusion length 

the signal (the complex amplitude of photo-EMF total current density) is proportional 

to the sum of squares of corresponding harmonics contrasts 



Vl  Al A0 . 

 

Next the expression obtained above can be applied to the light distribution 

corresponding to the specific case of a binary grating with the complex amplitude of 

thl  harmonic 



Al  2 l . 

 

a) Short diffusion length 



lKLD 1 : 

 

For the case of a binary grating with the period of fundamental harmonic   

much bigger than the carriers’ diffusion length 



LD  two factors (



l2 and 



Al
2) cancel 

each other, as a result the relative contributions of different harmonics to 



JphotoEMF
  are 

exactly the same, i.e.: 
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lEJJ
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   (4. 32) 

 

One can see that the obtained solution in this case has no physical meaning 

because the infinite sum at 



l diverges 



JphotoEMF . However, one has to keep 

in mind that at 



l at least two conditions at which the above analysis has been 
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performed are no longer valid. First of all at 



l the above inequality 



lKLD 1 

does not hold. Second, the condition of small vibration amplitude 



l 1 is violated 

and the linearization procedure described above cannot be applied. And finally, in real 

optical system the number of harmonic is always finite. 

 

b) Large diffusion length 



lKLD 1 : 

 

For a limiting case of large diffusion length: 
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 (4. 33) 

 

The complex amplitude of photo-EMF total current density is proportional to 

the sum of squares of corresponding harmonics contrasts 



Vl  Al A0 . Note, that in 

this case the sum of squares of Fourier coefficients converges and its value can be 

easily calculated using Parseval’s theorem [8]. By this theorem the sum of squares of 

Fourier coefficients is equal to the integral (on an interval equal to the period) of the 

original function (intensity distribution): 

  .
2

1
22

dxxIA
l

l 



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






         (4. 34) 

For a case of binary grating with transmission amplitude 



1, the above integral 

equals to 22

0I . Since zero order coefficient of Fourier series representing intensity 

distribution is 



A0  I0 2, the total sum in Eq. (4.33) become unit. The physical 

meaning of this result is clear, if one reminds another possible formulation of 

Parseval’s theorem [8], namely that the normalized power of a periodic signal is equal 

to the sum of squares of the amplitudes of its harmonic components. Taking all this 

into account the expression for a total photo-EMF current becomes: 

,
2 220

D

D
EMFphoto

LK

E
J 




         (4. 35) 

and its value does not depend on the shape of the input intensity distribution.  

 

Next the main dependencies of the photo-EMF current amplitude can be 

analyzed in details. 
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4.3 Graphs of the limiting cases  

 

Graphs of the theoretical dependence of both limiting cases (depending on 

carriers’ diffusion length) applied to a binary grating were performed in Perl and the 

results are shown in the next figures. The expression for 



l th  harmonic of the photo-

EMF current amplitude 



Jl
 and the complex amplitude of photo-EMF total current 

density 



JphotoEMF
  for the limiting cases were programmed. For the simplicity the 

following conditions have been assumed: 



 1 and 



0ED 1. 

 

In Fig. 4.3 the results of the dependence of photo-EMF total current versus 

number of harmonic 



l for different values of diffusion length 



LD  can be observed. 

Here 



K 1 in all cases. 

 

Fig. 4.3. Theoretical dependence of the photo-EMF total current 



J
photoEMF

  versus number of 

harmonic 



l  for different values of 



KLD  0.03,0.1,1,10.  

 

For a case of 



KLD  0.03 [see Fig. 4.3 where relation 



lKLD 1 holds] the 

response is constant (i.e. the intensity distribution varies as the grating) which 

illustrates that at this condition photo-EMF response depends on number of harmonic 

but not as strongly as the others. 

 



 66 

 

At the increasing diffusion length the signal is constant at low harmonic and it 

decays as 



1 l2  at higher harmonics. At large diffusion length 1DlKL  the signal 

decays at the increasing the number of harmonic 



l. 

 

The dependence of photo-EMF total current on spatial frequency 



K  for different 

harmonic number 



H 1,2,3,10 being presented in the input intensity distribution is 

shown in Fig. 4.4. Here 



LD 1, and 



K  represent the spatial frequency of the 

fundamental harmonic. 

 

Fig. 4.4. Theoretical dependence of the photo-EMF total current versus spatial frequency 



K  for 

different harmonic number 



H 1,2,3,10 where 



LD 1. 

 

One can observe that the 



JphotoEMF  vs. 



K  dependencies present some common 

features, namely: the signal first grows linearly at low spatial frequencies, when 

1 DLK  the photo-EMF current reaches its maximum absolute and then it starts to 

decay as the inverse of the spatial frequency 



1 K . 

 

All this features are well described by the standard theory of photo-EMF current 

[6]: the linear growth occurs due to the increasing diffusion field 



ED , while the decay 

at high spatial frequencies is due to the diffusion-induced decay of contrast of the 

mobile carriers’ grating. In difference from the conventional theory when the 

harmonic content of the input light illumination increases the maximum of the graphs 
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in the vicinity of 



lKLD 1 flattens more and more. It means that increasing the 

harmonic number 



H , there is a region where the photo-EMF current does not depend 

on the period of the input grating. 

 

It is important to note, that at in agreement with our theory, at low spatial 

frequency the amplitude of the photo-EMF current is bigger for a cases when more 

spatial harmonics are presented in the input illumination (Fig. 4.3), while for a high 

spatial frequencies all curves converges, independently on the harmonic content of the 

input intensity distribution. 

 

 

4.4 Theoretical analysis of axial distribution of the photo-EMF 

current produced by light pattern generated by diffraction on binary 

grating on near field 

 

In order to be able to analyze the axial distribution of the photo-EMF current 

produced by light pattern generated by diffraction on binary grating on near field the 

complex amplitude of the thl  harmonic 



Al  at a different 



z  should be evaluated. 

 

Using Eq. (2.45) the amplitude of thl  spatial harmonic of light intensity 

distribution can be written as: 
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   (4. 36) 

where nlna ,  are the Fourier coefficients of the transmission function of a binary 

grating [Eq. (2.45)]. For ideal binary grating the coefficients nlna ,  are non-zero only 

for odd values of sub index n  and l : 12  sl , 12  tn , 3,2,1,0 ts . Since the 

sum )1(2  tsnl  produce an even number, practically all coefficients of the sum 

in Eq. (4.36) are zero, except for two terms with 0n  and ln  . Thus Eq. (4.36) 

reduces to: 
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  (4. 37) 
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Since the Fourier coefficients are real, and they are even function of l , 
l la a

  

Eq. (4.37) can be rewritten as: 
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        (4. 38) 

Finally, the expression for thl  component of photo-EMF current amplitude 

[Eq. (4.26)] is: 

,
1

12
cos2

2
)(

2220

2
22

D

D

T

ll
LKl

E
z

lz
a

l
zJ



















 


     (4. 39) 

and the total current density [Eq. (4.25)] is given by: 
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In the following, the axial dependencies of the photo-EMF current )(zJ EMFphoto  

are discussed. 

 

The evolution of the photo-EMF current amplitude as a function of the position 

along the optical axis 



z  normalized to the Talbot distance 



zT  for a grating with only 

one spatial harmonic (sinusoidal distribution), for different 



KLD  0.1,1, 3 is presented 

in Fig. 4.5.  
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                                          (a)                                                                             (b) 

Fig. 4.5. Theoretical dependence of the photo-EMF current amplitude (a) versus axial position 



z zT  and (b) versus 



KLD  for 



H 1 



l 1 . 
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One can see that, when only one harmonic is present the signal varies 

sinusoidally and exhibits a maximum at 



zT , where the Talbot self-image should be 

situated, and it is zero at 



3zT 4  and 



5zT 4  when minimal visibility is expected. The 

largest signal is observed at 



lKLD 1 as it is expected from the standard photo-EMF 

theory.  

 

When an additional harmonic is introduced to the input grating transmittance 

function (



1st  and 



3rd harmonics are now presented) the axial dependence of the 

photo-EMF current is changed in a way shown in Fig. 4.6. Again [Fig. 4.6(a)] the 

signal exhibits a maximum at 



zT  i.e. where the Talbot self-image should be situated, 

and it is almost zero at 



3zT 4 .  

 

One can see that the presence of the 



3rd spatial harmonic in the grating 

transmittance function leads to the appearance of nine peaks superposed to the 

fundamental sinusoidal distribution shown in Fig. 4.5. These peaks correspond to a 

nine secondary Talbot self-images, produced by a third harmonic of the input grating 

at distances: 



zT
3  2   3 

2
 . 
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                                         (a)                                                                             (b) 

Fig. 4.6. Theoretical dependence of the photo-EMF current amplitude (a) versus axial position 



z zT  and (b) versus 



KLD  for 



H  2 



l 1,3 . 

 

As in the previous case the signal amplitude is maximal at 



lKLD 1. At small 

diffusion length 



lKLD 1 the shape of the signal is the same, though the overall 

amplitude is reduced in accordance with the theoretical predictions (Fig. 4.4 and Eq. 



z zT 
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4.37). However at large diffusion length 



lKLD 1 one can see that the relative 

contribution of 



1st  and 



3rd harmonics is almost the same, again as it is expected 

from the theoretical analysis (Eq. 4.38 and Eq. 4.40). 

 

Fig. 4.7(a) and Fig. 4.7(b) illustrate the axial dependence of the photo-EMF 

current in presence of three 



l 1,3,5  and ten 



l 1,3,5, 19  spatial harmonics in the 

transmittance function of the input grating. 
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                                                (a)                                                               (b) 

Fig. 4.7. Theoretical dependence of the photo-EMF current amplitude versus axial position 



z zT  

for (a) 



H  3 



l 1,3,5  and (b) 



H 10 



l 1,3,5, 19 . 

 

The same features as in the previous cases can be observed, however, the side 

peaks are sharpened due to the presence of higher harmonics in input grating: there 

are 25 new Talbot planes 



zT
5  2   5 

2
 [Fig. 4.7(a)].  

 

Note that at small diffusion length 



lKLD 1 the axial dependence of photo-

EMF current possesses sharp peaks and dips, but overall structure seems to be offset. 

The reason for this once more is that the relative contributions to the photo-EMF 

current amplitude 



Jl
 produced by different harmonics of the input grating are exactly 

the same (Eq. 4.37). 
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                                                                                      (c) 

Fig. 4.8. Theoretical dependence of the photo-EMF total current versus axial position 



z zT  for 

different values of harmonic number 



H 1,2,3,10 where 



KLD  0.1,1, 3. 

 

Fig. 4.8 illustrates the dependence of the photo-EMF total current versus axial 

position 



z zT  for different values of harmonic number 



H 1,2,3,10 in the input 

grating transmittance function and for different product of fundamental spatial 

frequency and carriers’ diffusion length 



KLD  0.1,1, 3. These figures are the 

compilation of all the results obtained from Fig. 4.5 to Fig. 4.7 and summarize the 

above results. 
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Fig. 4.9. Theoretical dependence of the photo-EMF current amplitude versus axial position 



z zT  

for different values of 



A0  where 



KLD 10 . 

 

Fig. 4.9 shows the evolution of the photo-EMF current amplitude as a function 

of the position along the optical axis 



z  for different values of coefficients 



A0, which 

corresponds to different levels of average light intensity transmitted through the 

grating. Here the product of fundamental spatial frequency and carriers’ diffusion 

length is 



KLD 10. As it is expected from the theoretical analysis the reduction of 

visibility leads to the decrease of the photo-EMF current amplitude: the signal decays 

proportionally to the inverse square of visibility. 

 

Next, the results of detailed experimental investigation of non-steady-state 

photo-EMF effect induced by a 1-D periodical light pattern are presented.  

 

 

4.5 Experimental results of axial distribution of the photo-EMF 

current produced by light pattern generated by diffraction on binary 

grating on near field 

 

Here, the experimental results on investigation of photo-EMF effect induced by 

light patterns produced by Fresnel diffraction on Ronchi grating using GaAs detector 

at different experimental conditions are presented.  

 



z zT 
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Illumination patterns created by diffraction in near field on binary grating are 

well suited for this purpose: they can be easily generated and modified, and in 

addition allows applying the results of this investigation to the practical case of 

detection of Talbot self-images for metrological application [9,10]. GaAs based 

detectors have been used for this investigation.  

 

The choice of active material for the detector was motivated by its fast response 

(dielectric relaxation time in microsecond range at nm633  and 



0.1W cm2  average 

light intensity) and also by the fact that typical values of carriers’ diffusion lengths 

(ten microns range) are comparable to the period of Ronchi grating used in our 

experiment, which allow us to check the most important theoretical results shown 

above.  

 

As a first step the detectors used in our experiment have been characterized. 

 

 

4.5.1 Experimental results of adaptive photo-detectors  

 

Next the results of experimental investigation on detection of periodical patterns 

by photo-EMF detectors, using for this purpose Fresnel diffraction patterns of Ronchi 

grating are presented. The experiments were carried out with the experimental setup 

described in Fig. 3.10 in Chapter 3. 

 

The experimental dependence of photo-EMF current using the crystal 



2 as a 

detector versus axial position 



z  is presented in Fig. 4.10. 

 

One can observe that the signal is almost zero at 



3zT 4  and 



5zT 4  when 

minimal visibility is expected. In between there are 



11 peaks. The amplitude of the 

peaks is almost constant, except for two peaks (number 



4  and 



8), whose amplitude is 

higher. 
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Fig. 4.10. Experimental dependence of the photo-EMF signal versus axial position 



z  for crystal 



2  

with 



LD  3m . Here the wavelength 



  633nm, the output power of 



11mW , with a 

frequency of 



600Hz , with amplitude of 



11Vpp , and the binary grating with a period of 



 100m.  

 

Let us now to compare the obtained dependence with the predictions of our 

theoretical model. Remember that carriers’ diffusion length 



LD  in this crystal was 

approximately m3 . For the Ronchi grating used in our experiment (fundamental 

period m100  and spatial period 



KLD  0.25) the condition 



lKLD 1 holds. 

 

On the other side, the analysis of the numerical aperture of the optical system 

performed in Section 3.3 in Chapter 3 showed that at the distance where the axial scan 

has been performed (



z  5zT 16cm  from the grating) there are three diffraction 

orders, and as a consequence three spatial harmonics ( st1 , rd3  and th5 ) are involved 

in formation of periodical light pattern.  

 

Our theory predicts that at these experimental conditions the expected axial 

dependence corresponds to that shown in Fig. 4.7(a). Indeed, the theory predicts that 

25  peaks of almost comparable amplitude due to the condition 



lKLD 1, at which 

photo-EMF effect amplifies higher spatial harmonics, and as a result the relative 

contribution of all harmonics is almost the same. The disagreement with the theory 

can be observed in a number of peaks (



11 observed vs. 25  expected) and large 



z mm 
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z  3zT 4
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z  5zT 4
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amplitudes of peaks 



4  and 



8. The number of peaks is less than expected because of 

not sufficient resolution of the scanning system. 
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Fig. 4.11. Experimental dependence of photo-EMF signal versus axial position 



z . Here the 

wavelength 



  633nm, the output power of 



11mW , with a frequency of 



600Hz , with 

amplitude of 



11Vpp , and the binary grating with a period of 



 100m.  

 

One can expect that when the detector is situated closer to the grating plane, the 

higher harmonics can participate on the formation of periodical pattern, which can 

lead to the formation of multiple peaks in 



JphotoEMF  dependence. Axial scan of photo-

EMF current at the distance equal to 



2zT  was performed (Fig. 4.11) and indeed, 

noticed that the photo-EMF output current presented sharp variations along the scan 

which can be attributed to the superposition of multiple Talbot planes due to the 

presence of higher harmonics. 

 

Fig. 4.12 shows the experimental dependence of photo-EMF in GaAs crystal 



1. 

It can be observed that, besides the common feature of pronounced dips at the 

position 



z , which corresponds to the expected plains of minimal visibility (



3zT 4  and 



5zT 4 ), the qualitative behavior of non-steady-state photo-EMF current as a function 

of axial position is rather different from that observed in crystal 



2. Indeed, there are 

several peaks but their amplitude varies significantly, being the central peak the 

highest one. 
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Fig. 4.12. Experimental dependence of photo-EMF signal versus axial position 



z  in steps of 



250m  for crystal 



1 with 



LD  40m. Here the wavelength 



  633nm, the output power  

of 



11mW , with a frequency of 



600Hz , with amplitude of 



11Vpp , and the binary grating  

with a period of 



 100m.  

 

The explanation for this difference relays in the fact that crystal 



1 possess much 

larger carriers’ diffusion length (approximately 



40m) than crystal 



2. It means that 

for this crystal the opposite condition 



lKLD 1 is valid, which, as it was shown by 

the above theoretical analysis, remarkably changes the axial dependence of the non-

steady photo-EMF current.  

 

Indeed, at this condition the signal is proportional to the sum of the squares of 

the harmonics contrasts, and as a result the axial dependence is the superposition of 

fundamental, third and fifth harmonic diffraction patterns 



zT
5  2   5 

2
 [Fig. 

4.7(a) and Eq. (4.33)]. This leads to the appearance of 25  peaks (produced by 25  

secondary Talbot planes) offset by fundamental sinusoidal distribution with the period 

equal to the Talbot distance 



zT . This behavior is quite similar to that observed 

experimentally, except for a number of peaks: there are five pronounced peaks, 

instead of 25  and another four can barely be distinguished on the experimental 

dependence (Fig. 4.12). 

 

The same experiment was repeated in GaAs crystal 



1 , but with a grating with 

bigger spatial period m508 , such as 



KLD  0.5 and the previous condition 



z mm 
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

lKLD 1 is inverted. It can be observed (Fig. 4.13) that the axial dependence of the 

photo-EMF signal changes drastically: instead of the absolute maximum there are 

multiple peaks of comparable amplitude (the difference is within a factor of 2) in a 

way similar to that predicted by the theory. The remarkable feature, for which it is not 

feasible to provide a reasonable explanation, is that the central peak is almost absent, 

while two lateral are quite pronounced. 
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Fig. 4.13. Experimental dependence of photo-EMF signal versus axial position 



z  for crystal 



1 

with 



LD  40m. Here the wavelength 



  633nm, the output power of 



11mW , with a 

frequency of 



600Hz , with amplitude of 



11Vpp , and the binary grating with a period of 



  508m.  

 

Fig. 4.14 shows experimental dependence of photo-EMF current at the 

condition 



lKL 1 in two different GaAs crystals (like crystal 



1), aiming to prove that 

theoretical results are valid independently on the crystal geometry and its 

photoconductive properties. The crystals possess different inter-electrode distance: 

mm1  and mm5.2 .  
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Fig. 4.14. Experimental dependence of the photo-EMF signal versus axial position 



z  of two 

crystals with different inter-electrode distances: 



1mm  and 



2.5mm . Here the wavelength 



  633nm, the output power of 



11mW , with a frequency of 



600Hz , with  

amplitude of 



11Vpp , and the binary grating with a period of 



 100m.  

 

One can see that photo-EMF dependence on 



z  is qualitatively the same in both 

crystals, the only difference is the absolute value of signal amplitude: the signal is 

higher for the crystal with bigger inter-electrode spacing.  

 

Summarizing, theoretical analysis of non-steady-state photo-EMF current 

induced by arbitrary 1-D periodical pattern have been performed using the model of 

monopolar photoconductor with a single impurity center. Analytical expression for 

complex amplitude of the photo-EMF current density has been derived in a general 

case of periodical light pattern containing only odd harmonics. 

 

The analysis of this expression showed that for a case of small diffusion length 



lKLD 1 photo-EMF current is proportional to the sum of square of harmonics 

contrasts times square of the number of harmonic 



l, i.e. the higher harmonics are 

amplified. In the opposite case of large diffusion length 



lKLD 1 the photo-EMF 

current is proportional to the sum of squares of harmonics contrasts.  

 

As to the dynamics of the photo-EMF current, it was demonstrated that at 



lKLD 1 the characteristic time of space charge grating rebuilt is not sensitive to the 



z  3zT 4
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harmonic content, while at 



lKLD 1 this characteristic time is larger for a higher 

harmonics, leading to a sub-linear dependence of photo-EMF current at low frequency 

of modulation. 

 

The results of this analysis have been applied to the specific case of axial 

dependence of the photo-EMF current induced by the illumination patterns produced 

by the diffraction of light on binary grating. Theoretical dependencies of photo-EMF 

current on axial position have been derived and analyzed in details. 

 

Theoretically predicted axial dependencies of photo-EMF current have been 

observed at different experimental conditions using different GaAs detectors and main 

results of the theoretical analysis have been confirmed. It was shown that the observed 

axial dependence rely strongly on the relation between the fundamental spatial 

frequency 



K  of Ronchi ruling and the transport properties of the semiconductor used 

for the detector, namely on its carriers’ diffusion length 



LD .  

 

Depending on 



lKLD  product, two qualitatively different kinds of axial 

dependencies can be observed. At 



lKLD 1 the sequence of peaks of comparable 

amplitude produced by different Talbot planes appears on axial dependence of photo-

EMF current. As a consequence the main Talbot plane, produced by the fundamental 

harmonic cannot be identified unambiguously. At 



lKLD 1 the peaks produced by 

higher harmonic are offset by the large sinusoidal signal produced by the fundamental 

spatial frequency, hence the main Talbot plane can be detected directly from the 

position of absolute maximum. 

 

Aiming the use of adaptive photo-EMF detectors for a purpose of Talbot 

interferometry it is feasible to realize that as a result of the above analysis, that the 

main criteria for a choice of detectors operation regime is that the condition 



lKLD 1 should be avoided. The condition 



lKLD 1 seems to be the best optimal 

one since in this case the condition for unambiguous identification of Talbot plane is 

still observed, while signal-to-noise ratio is maximized. 
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Chapter 5 

Comparative analysis: photo-EMF versus CCD methods 

 

5.1 Introduction 

 

In this chapter the comparative analysis (numerical simulations and the 

experimental study) of three methods that are used for localization and analysis of the 

Talbot patterns generated by a Ronchi grating is performed.  

 

The first method uses an adaptive photodetector based on the non-steady-state 

photo-electromotive force (photo-EMF), the second and third ones are conventional 

CCD-based methods (RMS and semivariogram techniques) for the localization and 

analysis of the Talbot patterns.  

 

Numerical simulations of light patterns created in near field by the diffraction 

on binary grating object are performed in order to generate an input data for the three 

proposed methods. These data are processed using RMS and semivariogram 

algorithms and the photo-EMF equation.  

 

The comparative experimental analysis of the technique based on photo-EMF 

effect against the CCD-based methods using RMS and semivariogram function is 

performed.  

 

Finally, the possibility for localization of self-images in turbid media is also 

investigated, using a milk solution as a strongly-scattering media. 
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5.2 Theoretical comparison of axial dependence of contrast 

distribution evaluated by RMS, semivariogram, and photo-EMF 

effect 

 

5.2.1 Numerical simulations of diffraction intensity distributions generated by 

binary grating 

 

First, the input images for the comparative analysis of the three proposed 

methods are generated. Since the goal of this work is the Talbot self-images 

localization problem, the convenient source of images can be the numerical 

simulation of light patterns created by the diffraction of periodical object (binary 

grating) in near field. 

 

For the numerical computation of diffraction intensity distributions generated 

by binary grating, the complex amplitude 



U(x,z) , and the image intensity distribution 



I(x,z)  of the Fresnel diffraction pattern [see Eq. (2.42) and Eq. (2.43) in Chapter 2] 

were programmed in Octave or Matlab and the results are shown in Fig. 5.1. 

 

In Fig. 5.1, the intensity distributions created by diffraction on a binary grating 

which only contains 3 spatial harmonics 



l 1,3,5  at different axial positions in units 

of Talbot distances 



zT  (between 



zT  3zT 4  and 



z  zT  in steps of 



zT 32) are shown. 

Note that because of the symmetry of the effect, only a quarter part of Talbot period 

was scanned. 
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                    (a) 



z  z0  z4T  3zT 4                                           (b) 



z  z0  zT 32               

 

 

                        (c) 



z  z0  3zT 32                                              (d) 



z  z0  4zT 32          

 

 

                        (e) 



z  z0  6zT 32                                           (f) 



z  z0  8zT 32  5zT       

 

Fig. 5.1. Numerical simulations of intensity distributions generated by a binary grating which 

contains 3 harmonics at different positions of 



z -axis. 
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5.2.2 Axial dependence of contrast using the RMS and semivariogram methods 

 

Using the above input data (intensity distributions), RMS and semivariogram of 

a given data array 



Ii  at different 



z  positions were calculated applying the RMS 

contrast equation and the semivariogram function [see Eq. (2.35) and Eq. (2.38) in 

Chapter 2] programmed in Matlab. The axial dependence of the contrast evaluated 

using these methods are shown in the next figures [1]: 
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Fig. 5.2. Contrast dependence versus axial position using (a) RMS and (b) semivariogram 

function. 
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In Fig. 5.2, the planes where the Fresnel diffraction patterns have minimum 

visibility or contrast at 



z  3zT 4  and maximum contrast at 



z  zT  and side peaks are 

identified.  

 

In case of the numerical simulation with RMS method Fig. 5.2(a), the maximum 

position cannot be defined clearly, since there are two other side lobes with the same 

amplitudes, while in case of semivariogram-based method Fig. 5.2(b), there is an 

absolute maximum. 

 

 

5.2.3 Axial dependence of contrast using the photo-EMF effect 

 

The photo-EMF response for a given intensity distribution 



I x  was analytically 

calculated in previous Chapter, and here the axial dependence of photo-EMF signal 

generated by Eq. (4.33) (for the case of 



KLD 1) shown in Section 4.4 for comparison 

purposes is presented (see Fig. 5.3). Note that the array of data for statistical analysis 

is not created, as in previous cases, since analytical solution is known. 

 

 

Fig. 5.3. Contrast dependence versus axial position using Eq. (4.33) for photo-EMF effect. 

 

Fig. 5.3 presents resembles dependencies shown in Fig. 5.2. The signal is 

almost zero at 



z  3zT 4 , i.e. when minimal visibility is expected. There is a 



z  3zT 4



z  5zT 4



z  zT



z zT 
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maximum at 



z  zT , i.e. where the Talbot self-images should be located, and nine side 

peaks are identified. These peaks correspond to a 25 secondary Talbot self images, 

produced by the fifth harmonic of the input grating at distances 



zT
5  2   5 

2
 

superimposed to the fundamental one 



zT 2  
2 . One can observe only nine side 

peaks because of the resolution of the graph. 

 

These side peaks are barely distinguished in RMS and semivariogram axial 

dependencies methods while they are very well pronounced in the theoretical curve 

generated by photo-EMF equation. 

 

 

5.3 Experimental analysis of axial dependence of contrast 

distribution evaluated by RMS, semivariogram, and photo-EMF 

effect 

 

5.3.1 Experimental intensity distributions generated by a binary grating 

 

The input images used in the experimental analysis for the RMS and 

semivariogram methods were generated by recording the diffracted light pattern by 

CCD camera. The 2-D image was processed averaging the intensity on 



y  direction to 

obtain the intensity patterns in one dimension (1-D). 

 

The experimental set up is shown in Fig. 3.7 in Chapter 3. The examples of 

intensity distribution 



I x  averaged in 



y  at different axial positions 



z  are shown in 

Fig. 5.4.  

 

It is important to notice that the distance 



z  at which the CCD camera started the 

scanning corresponds to the position, 



z0  z4T  3zT 4 , where 



z4T 126.4 mm is the 

position of th4  Talbot plane. 
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                      (a) mmzz 1500                                     (b) 



z  z0  zT 32 151mm      

 

 

               (c) 



z  z0  3zT 32 153mm                            (d) 



z  z0  4zT 32 154mm          

 

 

                (e) 



z  z0  6zT 32 156mm                     (f) 



z  z0  8zT 32 5zT 158mm      

 

Fig. 5.4. Experimental 1-D intensity distributions generated by a binary grating recorded by 

CCD at different positions of 



z -axis. 
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Comparing Fig. 5.4 with Fig. 5.1, the same general characteristics are observed. 

At a distance equal to 



z  3zT 4  the intensity of the image of the grating, is 

practically uniform. At a distance equal to 



z  zT  the intensity of the image of the 

grating corresponds to Talbot self-image. In between there are some complicated 

structures [Fig. 5.4(b)-5.4(e)] due to the superposition of different harmonics. 

 

One can observed from the intensity distributions, that the system acts as low-

pass spatial filter cutting all spatial harmonics higher than fifth. This can be explained 

by the fact that at the given axial position (distance from the grating to the detector) 

and the optics used only three first diffracted orders are collected by the system. 

 

 

5.3.2 Experimental results in free space 

 

5.3.2.1 RMS and semivariogram methods 

 

Applying the experimental 1-D intensity distributions (see Fig. 5.4), RMS and 

semivariogram at different 



z  positions were determined. In the case of RMS method, 

the RMS contrast equation was employed and for convenience the program Excel was 

used. On the other case, the semivariogram function was used, and it was 

programmed in Matlab. The results are shown in Fig. 5.5 [2]. 

 

 

                                                            (a) 



z mm 

z  3zT 4



z  5zT 4



z  zT
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                                                                                    (b)                                                 

 

Fig. 5.5. Experimental dependence of contrast estimated by (a) RMS and (b) semivariogram 

using the data generated by CCD camera as a function of the axial position 



z .  

Here the wavelength 



  633nm, the output power of 



11mW , and  

the binary grating with a period of 



 100m. 

 

The difference obtained experimentally between the position of planes of 

minimal and maximal contrast are in good agreement with the estimations of Talbot 

distance 



zT  for a grating with a 



100m period that is approximately 



31.6mm.  

 

Comparing these experimental results with the contrast estimated by numerical 

simulations (see Fig. 5.2), one can recognize that at 



z  3zT 4  the Fresnel diffraction 

patterns have the lowest level of contrast and at 



z  zT  the upper level of contrast. The 

maximum is clearly visible, with both techniques, but is more pronounces in the case 

of semivariogram. 

 

The ratio between minimal (at 



3zT 4 ) and maximal (at 



zT ) value of the contrast 

is approximately 



4.2 for RMS and 



5.5 for semivariogram. However, the axial 

dependence of contrast determined in our experiment also presents some secondary 

periodical structure (side peaks: 



3 for RMS and 



5 for semivariogram), though this 

structure is less pronounced than that predicted by the theory.  

 



z mm 


z  3zT 4



z  5zT 4



z  zT
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Comparing the experimental results obtained in Ref. [3] against our 

experimental results, there is a good agreement between them: the planes of minimal 

and maximal (where the Talbot self-image should be located) contrasts are well 

defined for RMS, and semivariogram methods. However, is clearly visible that the 

secondary peaks in the axial distribution are almost imperceptibles in Ref. [3]. It can 

be explained considering that in our experiment a better overlapping of the diffracted 

orders is achieved. 

 

 

5.3.2.2 Photo-EMF  

 

The experimental results obtained by axial scanning of the adaptive 

photodetector based on the photo-EMF effect instead of CCD camera, are presented 

in Fig. 5.6.  

 

Here, the results are obtained directly the lock-in amplifier (the integration time 

of the lock-in amplifier was set at 



1s) and an image processing is not necessary. Note, 

however, that photo-EMF measurements does not provide the absolute value of the 

contrast (value between 



0 and 



1) in difference from the methods discussed above.  

 

Fig. 5.6 shows the photo-EMF signal as a function of the axial position of the 

detector, scanning a range where the 



5 th  Talbot self-image is located [Fig. 5.6 (a)] in 

steps of 



50m [Fig. 5.6 (b)], 



250m [Fig. 5.6 (c)], and 



1mm  [Fig. 5.6 (d)]. Again, 

the planes of maximal and minimal contrasts can be easily identified on this figure 

and their position coincides very well with the numerical estimations. 

 

In Fig. 5.6, the sharp maximum is well defined, and the value of the ratio of the 

signal amplitude at the plane of maximal (at 



zT ) and minimal (at 



3zT 4 ) contrast is 

approximately 



12. The amplitude of the signal at the plane of minimum contrast is a 

result of two components: due to the vibrating speckle pattern, which cannot be 

avoided and electric noise of the detection system. In our experiment, the second 

component was the dominating one, and by proper grounding the signal-to-noise ratio 

as large as 



50 can be obtained. 



 91 

 

Note, that in addition to the main periodical structure defined by fundamental 

harmonic (main Talbot planes) with a period 



zT 2  there are secondary periodical 

structure (5 peaks) that are related with higher harmonics of the input grating, as it 

was shown in previous Chapter. Note that similar to the case of RMS and 

semivariogram this secondary structure is less pronounced than the predicted by the 

theory. 
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(b) steps of 



50m  
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 (c) steps of 



250m  

 

 

 

(d) steps of 



1mm  

 

Fig. 5.6. Experimental dependence of photo-EMF signal as a function of the axial position of the 

detector. Here the wavelength 



  633nm, the output power of 



11mW , with a frequency of 



600Hz , with amplitude of 



11Vpp , and the binary grating with a period of 



 100m.  
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5.3.2.3 Discussion 

 

Considering the experimental results (Fig. 5.5 and Fig. 5.6), one can verified 

that the three methods are suitable for effective localization of Talbot self-images, 

since the planes of minimal and maximal visibility can be identified. Next, the 

comparative analysis of advantages and limiting factors of these techniques is 

performed. 

 

First of all, CCD based techniques needs image recording and posterior signal 

processing, so its response time is limited by the CCD acquisition time and the 

velocity of the signal processing which can be as fast as video rate, as stated in Ref. 

[3]. In its turn, the response time of the photo-EMF based photodetector is limited by 

the dielectric relaxation time of the crystal which can be as short as few nanoseconds 

in semiconductor illuminated by light with the wavelength at which band-to-band 

absorption occurs. 

 

It can be an important advantage in applications which require fast response 

time, for instance for measurements of vibrations or axial displacements, as is 

described in following Chapter 6. 

 

Next, the sensitivity of the techniques to the changes of contrast is discussed. 

The ratio of the maximum and minimum signal obtained by the photo-EMF technique 

is larger than that observed in CCD-based experiments, even when in CCD-based 

experiments a bandpass filter at the wavelength of the He-Ne laser was used, while 

the photo-EMF experiment was performed with environment lighting on. 

 

We believe that the possible explanation can be drawn if one takes into account 

the photo-EMF signal is proportional to the square of the contrast, while the CCD-

based techniques are linearly dependent on the contrast. Also, note that the maximum 

of the photo-EMF signal is determined by the square of the contrast of the 

fundamental harmonic, and this contrast is larger than unit 



1.2 . The minimum 

signal (if one controls the electrical noise) is proportional to the square of the 

background illumination contrast. This latter is speckle-like and it is produced by the 
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grating imperfections and random fluctuations in its transmission and it is always 

much less than unit. So, the ratio of maximal to minimal signal will always be larger 

for the case of photo-EMF since its output is the square of this ratio. 

 

It means that photo-EMF technique is more sensitive to the small variations of 

contrast compared to CCD-based techniques. The resolution (i.e. the minimal changes 

in contrast which can be detected by the system) of photo-EMF based detectors will 

be discussed in next chapter. It worth to note that CCD based techniques, in exchange 

to relatively low sensitivity to the contrast variations, can work efficiently at very low 

illumination levels (few 



W ), while photo-EMF based detectors needs higher 

intensities (one order of magnitude larger, at least). 

 

Finally, the experimental data against theoretical predictions are compared. In 

general terms (related with the propagation of fundamental spatial harmonic) there is 

a good agreement between them: the planes of minimal and maximal contrasts are 

well defined. However the “fine structure”, i.e. secondary peaks in the axial 

distribution of contrast obtained experimentally is less pronounced than that predicted 

by theory (this is especially noticeable in case of CCD-based techniques). We believe, 

that it can be explained considering that in theory a perfect overlapping of the 

diffracted orders is assumed, while experimentally there is a small shift between 

them.  

 

 

5.3.3 Experimental results in turbid media  

 

Light propagation through of a strongly-scattering media is a field that has been 

studied (analytically and numerically) for many authors [4], because of the need for 

the development of biomedical imaging techniques [5]. The research in this area had 

given promising results in optical coherence tomography [6], and in diffusing wave 

spectroscopy [7]. In many of these cases is necessary to analyze the contrast of the 

images and its relation with the turbidity of the media. 
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The interest of this work is to analyze the problem of self-images localization in 

presence of strong scattering using photo-EMF based method. 

 

The experimental evolution of the contrast as a function of the position along 

the optical axis 



z , scanning a range where the 



5 th  Talbot self-image is located in 

steps of 



1mm , for different concentrations of semi-skimmed milk diluted in deionized 

water (expressed as volume ratio) contained in a glass cell, is presented in Fig. 5.7. 

Again, the results are obtained directly the lock-in amplifier, and an image processing 

is not necessary.  

 

One can notice that the photo-EMF technique (Fig. 5.7) is still able to identify 

the planes of maximal 



z  zT  and minimal contrast 



z  3zT 4  of the Fresnel 

diffraction patterns even at the condition of strong contrast degradation. 

 

 

 

Fig. 5.7. Experimental dependence of photo-EMF signal as a function of the axial position of the 

detector in turbid media. Here the wavelength 



  633nm, the output power of 



11mW , with a 

frequency of 



600Hz  and with amplitude of 



11Vpp , and the binary grating with a period of 



 100m.  
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Fig. 5.8. Behavior of the maximum obtained by photo-EMF signal and the transmitted power 

versus milk concentration on the solution. 

 

The increase of the turbidity of the media leads mainly to the decrease average 

light intensity arriving to the detector, as well as to the contrast degradation. 

 

Both of these factors, intensity and contrast, affect the photo-EMF response at 

Talbot plane. The amplitude of the photo-EMF signal (Fig. 5.8) decays exponentially 

with the increasing milk concentration, at the same rate as it does the average light 

intensity 



I0  transmitted through the turbid media (Fig. 5.8), which is in agreement 

with the theoretical predictions [see Ref. [8] or Eq. (2.43) in Chapter 2] 



J 0  I0 , and with the experimental dependence shown in Fig. 3.12 in Chapter 

3.  

At our experimental conditions cannot be separated the contribution of the 

intensity and contrast to the decay of the maximal signal. 

 

The contrast degradation is evident mainly in the less pronounced fine structure 

of the axial distribution with the increased turbidity since the spatial coherence loss 

affects mainly higher spatial harmonics. 

 

Theoretical analysis of Talbot images under illumination of the partially 

coherent light was reported by Yoshimura et al. [9], and they found that the contrast 
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of Talbot images is dependent on spatial coherence length. Furthermore, theoretical 

degradation of coherence by turbulence was estimated based on the measurement of 

spatial coherence by Ho [10] and Andrews et al. [11]. Experimentally this was 

verified by Okoyama et al. [12]. Finally the theoretical behavior of intensity 

distribution on self-images systems into turbulent media were reported by Pérez et al. 

[13], and they described that the degradation on image formation is influenced by 

turbulence. 

 

We believe that photo-EMF detectors can be potentially used to address and 

quantify the problem of contrast degradation due to the coherence loss in the 

scattering media, analyzing its fine structure and measuring the decay of higher 

spatial harmonics. This problem requires, however, more detailed theoretical and 

experimental investigation. 

 

Summarizing, the experimental results confirmed that the three methods (photo-

EMF effect, RMS, and semivariogram) are suitable for effective localization of Talbot 

self-images. The photo-EMF based detector potentially has shorter response time 

since it does no need image processing. In addition, they possess higher sensitivity to 

the contrast variations, but it needs higher light intensity, while CCD can work 

efficiently at very low illumination levels (few W ). Finally, the photo-EMF 

detectors can be potentially used for analyzing the spectral content of periodical 

objects since the fine structure of axial distribution of contrast is better defined 

comparing with that of CCD-based methods.  
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Chapter 6 

Displacement measurement using the adaptive photodetectors and 

the Talbot effect 

 

6.1 Introduction 

 

Measurements of distances, displacement or axial shifts are very important tasks 

in different technological applications and there are many well established optical 

techniques to measure it, which can be grouped as: time of flight techniques [1,2], 

geometrical or triangulation techniques [3,4], and phase or interferometric techniques 

[5,6]. 

 

Talbot effect [7] has been proposed in several and different metrological 

applications [8,9,10] including the measurement of displacements or axial shifts of a 

target [11]. Unlike the previous techniques, here the phenomenon exploited is the 

diffraction and the measured variable is the contrast of the light pattern. 

 

Fig. 6.1 shows a typical setup to measure distance: 

Laser diode

CCD camera

Interference filter

Ronchi grating Target

 

Fig. 6.1. Typical setup to measure distance (image from reference 11).  

 

nm675

z
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The experiments were performed with a laser diode with a wavelength  

nm675  and an output power of mW15 , and a Ronchi grating with a period of 

mm254.0 . 

 

In the proposed technique by Spagnolo et al. [11] the procedure to measure the 

distance 



z  from the grating to the target is the following: the light pattern diffracted 

from a Ronchi grating is projected to a target and a CCD camera is focused to this 

target. The grating is mounted in a translation stage and the target is located at 

different distances from the grating. The image is recorded, and then an image 

processing with the fast Fourier transform (FFT)-based algorithm is performed. 

Finally, a band-pass filtering of this signal to decode the distance is realized. 

 

Here in this chapter a novel technique based on the adaptive photodetectors and 

the Talbot effect to measure distance or the axial shifts of a mirror-like target is 

proposed. 

 

 

6.2 Displacement measurement by adaptive photodetector and 

Talbot effect 

 

First is needed to consider the effect of the aperture of the diaphragm on our 

system used to localize the Talbot or self-images planes (see Fig. 3.9 in Chapter 3). 

 

The next figure (Fig. 6.2) shows the photo-EMF signal as a function on the 

aperture of the diaphragm, scanning a range where the th5  Talbot self-image is 

located in steps of mm1 . 

 

One can observe that as the aperture is reduced (from mm7.12  to mm8.5 ) the 

details (side peaks) of the signal are lost and that the signal becomes “softer”. In fact 

as the aperture is reduced less orders of diffraction passes through the aperture; when 

only the 



1 and 



1 (besides the order cero) passes through the diaphragm, the image 

of the grating becomes a sinusoidal grating in the Talbot plane [11,12].  
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Fig. 6.2. The amplitude of photo-EMF signal as a function of the aperture of the diaphragm. 

Here the wavelength 



  633nm, the output power of 



11mW , with a frequency of 



600Hz , with 

amplitude of 



11Vpp , and the binary grating with a period of 



 100m.  

 

For a sinusoidal grating it can be shown that the axial visibility [13] is given by: 



V z V0 VS cos
2 z

zT 2









,    (6.1) 

where 



V0  is the average visibility, 



VS  is the amplitude of the visibility, and the Talbot 

distance is 



zT  2
2  . 

 

Therefore is expected that the photo-EMF signal would be given by: 



J z  V z  
2

.    (6.2) 

 

This property has to be used to implement a system to measure distances or 

axial displacements of a mirror. The experimental arrangement is shown in Fig. 6.3.  

 

The experiments were basically performed with a He-Ne laser linearly polarized 

with a wavelength nm633  and an output power of approximately mW11 . Using 

a x10  microscope objective the beam from the laser was expanded and pinhole with 

a diameter equal to m10  was used to filter out the light. The diverging beam was 

incident on the collimating lens of focal length cm20 . This collimated beam 

illuminated the binary grating. 
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After illumination with a collimated beam, the diffracted light from the grating 

(with a period m100 ) is sent to a mirror by a beam splitter. The adaptive 

photodetector is illuminated by the light reflected from the mirror, which was 

mounted in a translational stage. The aperture of the diaphragm was adjusted to 

produce a photo-EMF signal proportional to square of a sinusoidal function (as a 

function of the axial distance). 

 

He Ne-  laser

Diaphragm
Grating

Translational
stage

B.S.

Lock-in

Photo-EMF detector

Piezoelectric

Signal
generator

 

Fig. 6.3. Experimental setup to measure distances or axial displacements of a mirror.  

Here 



BS  is the beam splitter. 

 

For the geometry of the setup: 



3 Talbot distances )3( Tz  from the grating to the 

beam splitter, 



3 Talbot distances )3( Tz  from the beam splitter to the mirror, and 



2 

Talbot distances )2( Tz  from the beam splitter to the adaptive photodetector are used. 

 

The next figure shows the experimental dependence of the photo-EMF signal as 

a function of the axial displacement of the mirror. In this case, the value of the 

aperture of the diaphragm is mm8.5 . 
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Fig. 6.4. The amplitude of photo-EMF signal as a function of the mirror’s position. 

Here the wavelength 



  633nm, the output power of 



11mW , with a frequency of 



600Hz , with 

amplitude of 



11Vpp , and the binary grating with a period of 



 100m.  

 

In Fig. 6.4 the circles are the experimental points and the solid line is the 

theoretical fit. In this plot one can observe that the photo-EMF signal corresponds 

very well to the theoretical estimate: 



J z  J0  JS cos
2 z

zT 4





















2

.    (6.3) 

 

Note also that the signal has a periodical dependence with the period 



zT 4  8mm. This property can be useful to calibrate the displacements.  

 

The maximum of the signal corresponds to the position of the mirror where the 



6 th  self-image is located, and the minimum in the signal corresponds to the plane of 

minimum visibility.  

 

Between these points there is a linear region, which extension depends on the 

binary grating utilized. For the grating used this region proves to be around 



5 mm in 

an interval of approximately 



1.5mm. A close up to this linear region is shown in Fig. 

6.5. 

 

 

 

4Tz
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Fig. 6.5. The amplitude of photo-EMF signal as a function of the mirror’s position. Here the 

wavelength 



  633nm, the output power of 



11mW , with a frequency of 



600Hz , with 

amplitude of 



11Vpp , and the binary grating with a period of 



 100m.  

 

To test the resolution of the proposed system the signal was measured even 

between closer points. The limit in this case is the resolution of the screw of the 

translation stage, which was 



10m. In the next figure is plotted the result: 

 

 

Fig. 6.6. The amplitude of photo-EMF signal as a function of the mirror’s position. Here the 

wavelength 



  633nm, the output power of 



11mW , with a frequency of 



600Hz , with 

amplitude of 



11Vpp , and the binary grating with a period of 



 100m.  
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Note that main uncertainty in the plot corresponds to that of the translation 

stage, while the photo-EMF signal proved to be very stable (integration time 



1s). 

From these results one can state that the technique has a resolution higher than 



10 m . 

The proposed technique can be self-calibrated in terms of the Talbot distance.  

 

The analysis can be simplified assuming that 



J0  JS  in Eq. 6.3, and that 

photo-EMF current is measured with a trans-impedance amplifier (amplifier that 

converts current to voltage) and an oscilloscope. In this case the photo-EMF current is 

given by: 



J z  J0
2  2J0JS cos

2 z

zT 4









    (6.4) 

If 



J0 (the DC term) is removed by an electronic filtering, if the operating point 

is set of on, and if the optical setup halfway between the maximum and minimum 

signal, then for displacements 



z  zT 4: 



J z 16 J0JS
z

zT









     (6.5) 

from this equation the displacement of the target can be determined as: 



z  J z 
zT

16 J0JS









     (6.6) 

which is valid whenever 



z  zT 4 . 

 

 

6.3 Discussion 

 

Considering the experimental results (see Fig. 6.5 and Fig. 6.6), one can observe 

that the technique based on the adaptive photodetectors and the Talbot effect is 

suitable for effective distance measurements of a mirror-like target, if the aperture of 

the diaphragm is adjusted to produce a photo-EMF signal proportional to square of a 

sinusoidal function (as a function of the axial distance). 

 

Comparing our technique with the method used in Ref. [11], one can verify that 

both systems are simple and the results are obtained in real time, but an important 

advantage of our technique is that there is not any image recording by a CCD-camera 
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and a posterior signal processing. 

 

From the experimental results (Fig. 6.6), one can state that the resolution of the 

technique (i.e. the minimal changes in contrast which can be detected by the system) 

is higher than 



10 m , and that in terms of the Talbot distance the technique can be 

self-calibrated. It means that photo-EMF technique is very sensitive to the small 

variations of distance.  
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Chapter 7 

Conclusions 

 

The use of non-steady-state photo-EMF effect for measuring the contrast 

distribution and its application as an adaptive detector for Talbot interferometry have 

been investigated both theoretically and experimentally. The main results of this 

investigation can be summarized as follows: 

 

1) For the first time detailed theoretical analysis of non-steady-state photo-EMF 

current induced by arbitrary 1-D periodical light pattern using the model of 

monopolar photoconductor with a single impurity center was performed. 

 

 Analytical expression for complex amplitude of the photo-EMF current 

density generated by a periodical light pattern containing only the odd 

harmonics was obtained. 

 Two qualitatively different regimes were identified on non-steady-state 

photo-EMF effect depending on the relation between carriers’ diffusion 

length and spatial frequency of the fundamental harmonic. For a case of 

large diffusion length 



lKLD 1 the photo-EMF current is proportional to 

the sum of squares of the harmonics contrasts, that is, the fundamental 

harmonics contribution is the largest one. In the opposite case of small 

diffusion length 1DlKL  this last factor (square of harmonic contrast) is 

multiplied by the square of harmonic number, which means that the higher 

spatial harmonics are amplified. 

 Using the results of this analysis, the axial dependence of the photo-EMF 

current induced by the illumination patterns produced by the diffraction of 

light of a binary grating in the near field was studied.  

 The optimum regime for localization and analysis of Talbot self-images is 

when the detector response is proportional to square of the harmonics 
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contrasts, i.e. when the condition of large diffusion length (compared to 

the grating’s fundamental spatial period) was met. 

 

2) Theoretically predicted axial dependencies of photo-EMF current were 

observed at different experimental conditions using different GaAs detectors. 

The main results of the theoretical analysis for two limiting cases (large and 

small diffusion length) were confirmed experimentally. 

 

3) The comparative analysis (theoretical and experimental) of the photo-EMF 

based-method against the conventional CCD-based methods (RMS and 

semivariogram techniques) for measuring contrast distribution and for 

localization of Talbot self-images was realized. 

 

 The photo-EMF based detector potentially has shorter response time since 

it does no need image processing.  

 The photo-EMF based detector possess higher sensitivity to the contrast 

variations, but it needs higher light intensity, while CCD can work 

efficiently at very low illumination levels (few W ). 

 The photo-EMF detectors can be potentially used for analyzing the 

spectral content of periodical objects since the fine structure of axial 

distribution of contrast is better defined comparing with that of CCD- 

based methods.  

 

4) The possibility of practical application of the adaptive photo-EMF detectors 

and the Talbot effect for effective distance measurements from a mirror-like 

target was demonstrated experimentally. 

 

 The photo-EMF signal amplitude depends linearly on the displacement 

within a range of displacement 32Tz . The proposed method is self-

calibrated in terms of Talbot distance. 

 For our particular experimental scheme, the resolution of the photo-EMF 

technique was better than m10  for a maximal displacement of mm1 . 
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