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Abstract 
 

Title of dissertation: 
 

Nonlinear Pulse Propagation inside Coupled Silicon Nanowires 
Néstor Lozano Crisóstomo, Master in Optics, 2011 

 
Dissertation directed by: 
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Optics Department, INAOE 
and 

Professor Govind P. Agrawal 
The institute of Optics, University of Rochester

 

     This thesis investigates nonlinear effects in semiconductor nanowires for 

optical switching. In this work we describe the nonlinear propagation of 

optical pulses through an array of silicon nanowires made with the silicon-on-

insulator (SOI) technology. A generalized analysis of the nonlinear coupled 

system is given, where we have considered the vector nature of optical 

modes and the effects of two-photon absorption (TPA) on various nonlinear 

processes. The general theoretical model includes not only the effects of free-

carrier absorption (FCA) and free-carrier dispersion (FCD), but also linear and 

nonlinear losses, and it extends previous vector nonlinear models to the case 

where coupling of supermodes of a waveguide array occurs in silicon 

waveguides. Analytical solutions are provided for the coupled-mode 

equations, in some cases in which the density of the free carrier is relatively 

low, and dispersive effects are relatively weak, assuming that the nonlinear 

effects do not affect the waveguide modes significantly. The impact of two-

photon absorption and free-carriers effect on the properties of the nonlinear 

coupling effects is studied in detail; together with the evolution of optical 

power inside an array of short silicon nanowires. 
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Resumen 
 

Título de la tesis: 
 
Propagación No Lineal de Pulsos en Nanoguias de Silicio Acopladas 

Néstor Lozano Crisóstomo, Maestría en Óptica, 2011 
 

Tesis dirigida por: 
 

Dr. José Javier Sánchez Mondragón 
Departamento de Óptica, INAOE  

y 
Professor Govind P. Agrawal 

The institute of Optics, University of Rochester

En esta tesis se investigan los efectos no lineales en nanoguías de onda 

semiconductoras para su implementación al switching óptico. En este trabajo 

se describe la propagación no lineal de pulsos ópticos a través de un arreglo 

de nanoguias de silicio hechas con la tecnología SOI. Se presenta un análisis 

generalizado del sistema no lineal acoplado donde se considera la naturaleza 

vectorial de los modos ópticos y los efectos de la absorción de dos fotones 

sobre varios procesos no lineales. El modelo teórico general incluye no solo 

los efectos de la absorción y dispersión causados por los cargadores libres, 

sino también las pérdidas lineales y no lineales, además de que se extienden 

los modelos teóricos anteriores al caso donde el acoplamiento de supermodos 

de un arreglo de guías ocurre. Se muestran soluciones analíticas a las 

ecuaciones de modos acoplados para los casos en donde la densidad de las 

cargas libres es relativamente baja, y los efectos dispersivos son 

relativamente débiles, asumiendo que los efectos no lineales no afectan a los 

modos significativamente. Se estudia el impacto de la absorción de dos 

fotónes y el efecto de las cargas libres sobre las propiedades de los efectos 

de acoplamiento, junto con la evolución del campo dentro del arreglo. 
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Chapter 1 

Introduction 

 

This thesis basically deals with the nonlinear propagation of optical pulses 

through a pair of coupled silicon waveguides at nanoscale dimensions. This is 

the study of various effects and phenomena related to the interaction of 

intense coherent light with matter, and its optical applications. Essentially, the 

topic of this work is nonlinear optics. This work involves an analytical analysis 

and modeling of the nonlinear propagation of soliton pulses in an array of 

novel nano-scale single-mode SOI rib waveguides. For applications, it is of 

particular importance the field of high-speed silicon photonic switches for a 

ultrahigh information processing in optical on-chip networks. In fact, the 

silicon all-optical switch could offer advantages for silicon interconnects and 

components. Optical signal processing is often based on ultrafast nonlinear 

effects in waveguide devices. To simplify, a structure that consist of only two 

coupled silicon nanowires is used in order to obtain the input-output power 

relations of optical pulses taking into account the linear losses, the Kerr 

nonlinearity, TPA, FCA, FCD, linear coupling and the power-dependent 

coupling effect, and implement them to the optical switching. However, the 

general modeling was made for an array of several silicon nanowires in close 

proximity to each other. In general, this report shows, in one way, how 

ultrafast nonlinear effects in silicon waveguide devices as the silicon photonic 

switch lead to the optical signal processing on high-speed optical networks. 
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Due to the tight confinement and high-power input signals, nonlinearities and 

free-carrier effects in the properties of silicon waveguides are often of 

significant relevance for the technological applications, sometimes useful, 

sometimes hampering. To understand these nonlinearities and free-carriers 

effects, and to use them for applications, will be of basic importance for the 

further development of photonic applications. 

 

1.1    Motivation 

   

Silicon photonics has aroused an increasing interest in recent years at 

international level [1,2]. Its potential applications on the photonics industry 

have attracted much attention because the recent progress on silicon-based 

photonics components, photonic integrated circuits, and optoelectronic 

integrated circuits [2]. Silicon photonics has played a steadily increasing role 

in technological innovations and it is the expected continuation to electronics. 

Silicon,  in addition of being the most fundamental material in the 20th 

century information technologies, it has  become a Photonic material and 

therefore of special interest in modern information technologies. The most 

promising applications are in the fields of optical interconnects in 

complementary-metal-oxide-semiconductor (CMOS) integrated circuits and 

optical communications, where silicon can provide low cost solutions and 

technological innovations [3-4]. Silicon photonics is now the most active 

discipline within the field of integrated optics [5] which uses the SOI wafer 

technique and nano-scale photolithography to fabricate silicon photonic 

devices. The aim of the silicon photonics industry is to obtain waveguides, 

ultrafast modulators, switches, light sources, detectors, photonic crystals and 

plasmonic devices [1], and integrate all these components into a silicon 

photonic chip. If an integrated silicon photonic chip could be developed, it 
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could bring significant, even revolutionary changes, to the next generation 

communications industry, by radically altering the price, power, and size for 

photonic components [3]. An efficient way to the optical integration of silicon-

based photonic components is using processes similar to the baseline CMOS 

processes, for which one could achieve much higher yielding optical devices, 

like passive and active opto-electronic components at a lower cost [1-5]. 

Silicon is a well-understood and robust material. It exhibits very low 

optical losses (material losses <0.01 dB cm  losses in unintentionally doped Si 

material) and is transparent at the standard fiber optical communication 

wavelengths ( 1.3 -1.6 m ) [3]. Silicon exhibit optical properties that are 

useful for a variety of applications [5]. Its processing has been developed by 

the electronics industry to a level that is more than sufficient for most 

integrated optical applications [4]. Due to the high refractive index of silicon (

3.5 approx.), one can make significantly smaller photonic devices as 

compared to those made in a low index medium (e.g. silica n=1.45 ) since 

the high index contrast. Also, its large refractive index allows for a tight 

confinement of optical waves to a sub-micron region using the SOI 

technology [3]. SOI wafers, with large sizes and high quality, are commercial 

available and an ideal platform for creating planar waveguides [1,2,5]. 

Because the strong optical confinement offered by the high index contrast 

between silicon and 2SiO , SOI waveguides can exhibit a large third-order 

nonlinearity, with Kerr coefficient more than 100 times larger than those of 

silica glass in the telecommunication band [6]. However, it is important to 

remember that silicon is a semiconductor crystal exhibiting unique features 

such TPA, FCD, FCA, anisotropic and dispersive third-order nonlinearity [7]. 

The interplay among various optical properties leads to many interesting 

features that provide new functionalities on the one hand, but may become 

obstacles in some cases on the other [7]. 
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1.2    SOI Waveguides Characteristics 

 

There is no doubt that guided wave optical devices at nanoscale will have 

an increasing impact on integrated optics in the coming years. Primarily, this 

is because of the sustained development of two extremely successful 

components: SOI waveguides and the semiconductor laser. Together, these 

are currently in the progress of revolutionizing the optical interconnects on 

the chip level, and making considerable advances in a variety of other new 

and exciting application areas. For example, the all-optical switch based on 

coupled silicon nanowires may be used to perform logic operations for the 

optical signal processing on high-speed optical on-chip networks. 

Theoretical and experimental studies have been made of optical 

waveguides produced using the SOI technology (see for example Q. Lin, et 

al. [7] and J. Zhang, et al. [8]). Soliton formation and propagation in short 

SOI waveguides have been reported by some important research groups [8]. 

Since SOI waveguide acts as a propagation medium for guided optical waves, 

and is the first essential component in silicon photonic technology [3], 

therefore, it is essential to appreciate the structure of SOI waveguides in 

order to understand the difficulties associated with some aspects of optical 

circuit design in integrated optics. SOI waveguides, widely used in photonic 

research, consists of a three-layer structure comprising a core and two 

cladding layers. The core is usually all silicon (Si) with a constant refractive 

index. It is typically of the order of hundreds of nanometers in thickness. The 

cladding consists of buried silicon dioxide (buried 2SiO ) and it is typically 

about half a micron, although individual designs vary [4]. The purpose of the 

buried oxide layer is to act as the lower cladding layer, and hence prevents 

the field associated with the optical modes from penetrating the silicon 

substrate below [3-4]. Four novel waveguide configurations are demonstrated 
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[9]. In all of these 
2SiO  is used as an optical buffer between the guiding 

layer and the silicon substrate. The most standard waveguides used for 

silicon photonics are channel waveguides and ridge waveguides (see Fig. 1 

[9]). The operating wavelengths for these waveguides is in the vicinity of the 

1.55 m  infrared band (wavelength that corresponds to the maximum 

transparency of the silica fiber), suitable for optical communication.  

 

 

Figure 1. Four configurations of waveguides in silicon: (a) Chanel waveguides; (b) Rib 

waveguides; (c) Photonic-crystal waveguides; (d) Slot waveguides. (Source: [9]). 

 

SIO waveguides with nanoscale dimensions are commonly referred as 

photonic nanowires, photonic wires or just silicon nanowires. They allow for 

small size waveguides in the sub-micrometer range, and therefore a large 

number of optical components like power splitters and combiners, optical 

switches and modulators, optical filters and attenuators, wavelength division 

multiplexers to be integrated within a small area [3,10]. These wave guiding 

devices play important roles in applications from optical fiber 

telecommunications to chip-to-chip optical interconnection. Among them, 

optical switches and modulators are core components for dense wavelength 

division multiplexing (DWDM), optical cross connection (OXC) and optical 

add/drop multiplexing (OADM) [10].  Silicon nanowires have high propagation 

losses (due to scattering off the waveguide’s sidewalls) and high fiber-to-

waveguide coupling losses [8,11]. However, it has been demonstrated that 
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single-mode photonic wires, in silicon-on-insulator, reach propagation losses 

as low as 2.4 dB cm[11].  

Since we are interested on the analysis and application of the nonlinear 

directional coupler with micrometer dimensions and fabricated with the SOI 

technology; single-mode rib waveguides with small cross-section dimensions, 

which allows two-dimensional confinement i.e. about 20.1 m , which allows 

two-dimensional confinement, are the material of this work. In ridge 

waveguides, the guiding layer consists of a slab with a dielectric ridge on top 

embedded between two low-index-of-refraction layers. In both of them, the 

channel and the ridge waveguide, the light is confined due to the total 

internal reflection between the high- and low-index-of-refraction regions [9]. 

 

 

Figure 2. Cross section and waveguide parameters of an SOI rib waveguide. (Source: [13]). 

 

The most important SOI waveguide type is the single-mode silicon 

waveguide which can support only one mode. Single-mode operation is highly 

required for most optical waveguide devices [12]. In order to design devices 

accurately, it is necessary to determine the single mode condition (SMC) of 

the silicon waveguides. The fabrication restrictions for small SOI rib 

waveguides, with deeply etched ribs ( 1 approx. m  or less in cross section), 

must be imposed on their geometry. To make them behave as single-mode 

devices, and at the same time polarization-independent, they must satisfy a 

generalized relation in terms of waveguide dimensions [13] 
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 


2

0.94+0.25H rW
0.05+

H 1-r
                             (1.1) 

 

where  0.3<r<0.5  and  1.0 H 1.5 , r is the ratio of slab height to overall 

rib height and W/H is the ratio of waveguide width to overall rib height. 

 

1.3    Objective 

 

The objective of this thesis is to obtain a theoretical platform for the 

design of a silicon waveguide integrated optical switch based on coupled 

silicon nanowires, with high switching speed. We wish to obtain a theoretical 

analysis of the coupled system, with micrometer dimensions and made with 

the SOI technology, by using a rigorous full-vectorial method. There, we will 

consider the vector nature of the optical modes and the effects of the two-

photon absorption on various nonlinear processes. Based on the analytical 

treatment of the nonlinear directional coupler, we wish for the physical 

insight that is often lost in numerical simulations. We intent to derive the 

analytical solutions for the coupled-mode equations in some cases in which 

the density of the free carrier is relatively low, and dispersive effects are 

relatively weak, assuming that the nonlinear effects do not affect the 

waveguide modes significantly. Although the switching characteristics can be 

altered for a free carrier based device at the expense of extra excess loss, a 

switch behavior of the coupled system is pursued.  

 

1.4   Synopsis 

 

In general, this work is directed to describe the nonlinear effects in 

semiconductor waveguides for optical switching and two particular SOI 
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waveguides are studied. In the first chapter, we give a short introduction 

based on three lines: the context of this work, silicon photonics and SOI 

waveguides. In the second chapter, we review some important literature 

about the novel characteristics of SOI waveguides. And we give an overview 

of phenomena in silicon waveguides that are important in the characterization 

of photonic devices. In the third chapter, we develop a model of the 

nonlinear propagation of optical pulses through coupled silicon, taking into 

account a wide range of physical effects. This includes the third-order 

nonlinear effect, TPA, FCA, FCD, the linear and nonlinear losses and the 

coupling effect. We obtain the general coupled-mode equations for the 

nonlinear directional coupler with micrometer dimensions. In the fourth 

chapter, we introduce a few particular analytical solutions for the coupled-

mode equations in those cases in which the free carrier density is relatively 

low, and dispersive effects are relatively weak, assuming that the nonlinear 

effects do not affect the waveguide modes significantly and using physical 

parameters based upon experimental investigation. Finally, conclusions are 

given in chapter 5. 
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Chapter 2 

Novel Properties of SOI Waveguides 

 

This chapter is intended to introduce some important properties of the 

SOI waveguides, before we embark into a full theoretical analysis of the 

nonlinear propagation of optical pulses through silicon waveguides at the 

nanoscale dimensions. First, we will consider the dispersion in silicon 

waveguides and show that the SOI waveguide dimensions determine the 

group-velocity dispersion (GVD) [1,2]. Then, we introduce the material 

dispersion briefly, and finally, we show the dependence of relevant nonlinear 

parameters on the waveguide dimensions.  

 

2.1    Dispersion in SOI Waveguides 

 

It can be shown that waveguide geometry dominates the dispersive 

properties of SOI waveguides [1-3]. The GVD in photonic nanowires can be 

highly-controlled, while remaining close to the optimal effective nonlinearity 

[1], due to the high confinement sensitivity to wavelength and to waveguide 

dimensions. Since the zero-dispersion wavelength (ZDWL) of a SOI 

waveguide can be shifted around 1.55 m  with reasonable device 

parameters, silicon waveguides can exhibit anomalous dispersion (  <0 ) 

[2]. In the nonlinear regime, the combination of dispersion and nonlinearity 
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result in the formation of solitons. They contain a range of frequency 

components, and are bound together by the balance between the dispersion 

of these frequency components and the nonlinearity of the system. This 

characteristic may lead to new applications of SOI waveguides related to 

optical interconnects and high-speed optical switching [2].  

 

2.1.1    Material dispersion of silicon  

 

The refractive index of any medium is a function of wavelength, and 

hence different wavelengths that see different refractive indices will 

propagate with different velocities, resulting in material dispersion (also 

named chromatic dispersion). This type of dispersion results from the fact 

that any optical source is not purely monochromatic, so the different spectral 

components of the light source may have different propagation delays, and 

hence pulse broadening may occur, even if transmitted by a single mode. The 

material dispersion of silicon is well approximated by the Sellmeier relation 

[3] 

 




  


2

1

2 2 2

1

BA
n( )= + +

-
                                 (2.1) 

 where  2A=0.939816 m , -3B=8.10461×10 ,  1 =1.1071 m  and 

=11.6858 . This relation is agreeing with experimental data [3]. In the 

range of interest (around 1.55 m), the system is far from of the resonance 

and there is not absorption of electromagnetic radiation. Since the 

birefringence of silicon corresponds to a refractive index difference of less 

than 510 , the refraction index of silicon can be approximated to a scalar 

quantity [4].  
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2.1.2   Engineered dispersion  

 

Mathematically, the effects of waveguide dispersion are accounted for by 

expanding the mode-propagation constant in a Taylor series about the 

frequency 0  at which the pulse spectrum is centered: 

 

           


     
2

0 1 0 2 0

1
=n = + - + - +

c 2
            (2.2) 

where the dispersion coefficient of the mth order is defined as 

 

 
 

 
  

 
0

m

m m

=

d
= m=0,1,2,... .

d
                          (2.3) 

The parameters 1  and 2  are related to the group velocity gv  through the 

relations 

 


g

1

g

n1
= =

v c
                                       (2.4) 

1

g

 
   

 2

d
=

d v
                                      (2.5) 

where gn  is the group index and gv  is the group velocity [5]. Physically 

speaking, the envelope of an optical pulse moves at the group velocity while 

the parameter 2  represents dispersion of the group velocity and is 

responsible for pulse broadening. This phenomenon is known as the GVD, 

and 2  is the GVD parameter [5]. The GVD is normal or anomalous 

depending on whether 2  is positive or negative. The GVD controls the 

broadening of ultrafast pulses and in a waveguide geometry is determined by 
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both the intrinsic material dispersion and by a contribution from the 

confinement of the waveguide [1]. 

The dispersive properties of SOI waveguides have been studied in [2] by 

using the effective-index method. Results indicated that based on reasonable 

device parameters, an ultra-short pulse at 1.55 m  should form a soliton as it 

propagates in the waveguide. The wavelength dependence of the second-

order dispersion parameter for the TE and TM waveguide modes is shown in 

Fig. 3.  

 

Figure 3. Calculated dispersion curves for the TE and TM modes. The design of their 

waveguide is shown in the inset (Source: [6]). 

 

This numerical calculation was made using waveguides with dimensions of 

2860×400 nm  in the cross section, and an etching depth of 300 nm. These 

waveguide parameters will be used for our physical system. The fundamental 

TM mode exhibits a GVD of 2-2.26 ps m  at 1500 nm . This value is more than 

100 times larger than that of standard silica fibers ( 2<0.02 ps m) [6]. 

 

2.2    Geometric Dependence of Nonlinear Parameters 

 

    Some investigations done in the field of silicon nanowires show that the 

effective nonlinear parameters that govern the pulse propagation in silicon 
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nanowires depend on waveguide dimensions (see for example Daniel and 

Agrawal [7]). 

 

Figure 4. Nonlinear parameter 
11  as a function of waveguide width and height at the 1550 

nm wavelength (Source: [7]). 

 

The geometric dependence of these quantities was investigated in [7] using 

channel waveguides whose rectangular silicon core is surrounded on all sides 

by silica. Their results indicated that the nonlinear parameter of a mode 

depends strongly on the dimension of the waveguide that is parallel to the 

mode’s polarization direction. Anisotropy of silicon plays a important role in 

these results. Figure 4, shows the geometrical dependence of the nonlinear 

parameters. 

 

2.3    Summary 

 

In summary, we inspected the dispersive properties of SOI waveguides 

and checked the wavelength dependence of the GVD parameter 2  for TE 

and TM waveguides modes. This calculations was made in [7] for the 

waveguide dimension that will be used in this work. We revised as silicon 

waveguides present the effect of dispersion tailoring which causes that the 

dispersion relation can be modified by altering the geometry of the 
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waveguide. Also, we revised the dependence of relevant nonlinear 

parameters on waveguide dimensions.  
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Chapter 3 

Theoretical Framework  

 

In this chapter we set the fundamental equations for a complete 

description of nonlinear propagation in coupled semiconductor waveguides. 

Principally instantaneous nonlinear processes and free-carrier effects are 

theoretically investigated and included in the modeling for an electromagnetic 

analysis of the evolution of an optical pulse in an array of M silicon nanowires 

made with the SOI technology. The material presented here is deduced for 

the first time, although it is based in some investigations already done in the 

literature (see for example Daniel and Agrawal [1]). 
 

3.1    The Wave Equation for Silicon  

 

Consider the rational theory for the propagation of light that was 

developed by Maxwell in the 1860s. The equations for the electric and 

magnetic intensity fields  E r,t  and  ,tH r  in MKS units are given by 

 





× =-

t

H
E 0                                       (3.1)   

 
  

 
 × = ,

t t

E P
H E 0                                (3.2) 
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where 0  is the magnetic constant, 0  is the electric constant,   is the 

conductivity, and  ,tP r  is the polarization density. We have ignored the 

effect of magnetization, which is justified, as silicon’s relative permeability 

differs from unity by less than -510 . The general second-order wave equation 

for the propagation of an optical field in a silicon like optical medium, valid for 

both linear and nonlinear characterization, can be obtained by taking the curl 

of Eq. (3.1) and using Eq. (3.2), that is 

 

 
 

  
 


2 2

2

2 2 2

1
- + = + ,

c t t

E P
E E 0                          (3.3) 

where c  is the speed of light in vacuum and we have used the relation 

  2=1/c0 0 . In the above equation we have applied the vector identity 

       2× × = -E E E . The solution of the wave equation for waveguides 

mathematically describes the optical modes of the waveguides and how one 

field waveguide relates to another in an optical coupling process from one 

waveguide to another. Let´s notice, that from the start and for convenience 

to ease the mathematics, we have assumed the simplification that the 

waveguide material is non-conducting (i.e. =0 ). However, theoretically we 

will introduce the free-carrier effects in the wave equation for a general 

modeling of the phenomena in the semiconductor material. 

The nature of silicon is exhibited in the relation between P  and ,E  called 

the medium equation. In general, silicon is nonlinear, dispersive and 

anisotropic media [2-4]. On a fundamental level, the origin of nonlinear 

response is related to anharmonic motion of bound electrons under the 

influence of an applied field. As a result, the total polarization P  induced by 

electric dipoles is not linear in the electric field ,E  but satisfies the more 

general relation [5] 
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   χ χ χ(1) (2) (3)= + : + + ,P E EE EEE0                     (3.4) 

 

where χ(j)  ( j=1,2,... ) is the jth order susceptibility. In general, χ(j)  is a 

tensor of rank j+1 . We are considering optical nonlinearities with more 

mathematical rigor as usual because most optically nonlinear materials, as 

silicon, are anisotropic and demand the use of tensors to describe their linear 

and nonlinear properties [4]. It is also convenient to split P  into its linear and 

nonlinear parts as (1) NL= +P P P , where (1)P  is the part of polarization that 

depends linearly on the electric field E  and NLP  is the nonlinear polarization. 

Introducing E  in terms of its Fourier transform through the relation 

 

   




 
 

-i t

-

1
,t = , e d

2
E r E r                              (3.5) 

as well as similar relation for P  in Eq. (3.3), we obtain a vector wave 

equation in Fourier space for monochromatic fields given by 

 

   


  





 
2 2

2 2 2 NL

T 02 2
- + + + n , + =0,

z c

E
E E r E P0              (3.6) 

where   is the angular frequency and the induced polarization of first order 

is given by     χ(1) (1), = ,P r E r0 . In general, χ(1)  is assumed to be a 

scalar and related with the refractive index 0n  of the whole system through 

2 (1)

0n =1+ . The corresponding Laplacian is given by    2 2 2 2

T= / z + . 

For the nonlinear polarization NLP  in Eq. (3.6), since χ(2) =0  for silicon 

[2,4,6], we only consider the third-order Kerr nonlinearity for which we can 

approximate the nonlinear polarization by NL (3)P P , where  χ(3) (3)=P EEE0  

and the higher order nonlinear effects are negligible. However, it is important 

to remember that silicon is a semiconductor crystal exhibiting unique features 



 

19 

 

such as TPA, which contributes to the material nonlinear polarization NLP . In 

semiconductor waveguides, free-carriers generated by TPA could lead to 

additional losses through FCA and refractive index changes through FCD. 

Therefore, it is important to include the free-carrier effects in the analysis of 

optical pulses propagating through silicon waveguides. After including the 

induced polarizations associated with the third-order nonlinearity and free-

carriers generated by TPA, the wave equation in the frequency domain Eq. 

(3.6) takes the form [2] 

 

       


   
 




   
2 2

2 2 2 f (3)

T 02 2
- + + + n , =- , + , .

z c

E
E E r E P r P r0   (3.7) 

In general, the induced polarizations are only small perturbations of the 

linear wave equation. Equation (3.7) is the most general wave equation for 

silicon, and describes the propagation of electromagnetic waves in it. The 

solution of the nonlinear wave equation for silicon waveguides mathematically 

describes the waveguides optical modes. 

 

3.2    Coupled-Mode Equations  

 

Thus far we have essentially built the vector wave equation for silicon. 

This section is included to learn how the nonlinear optical wave equation, that 

we derived in the previous section, can be used to obtain the coupled-mode 

equations that describe the behavior of light inside an array of silicon 

waveguides. For this, we assume that the array consists of M  identical single-

mode nanowires. From the coupled mode theory [7], we know that the 

guide, or bound, power along each nanowire in the array can be expressed 

as a finite sum of bound modes of every silicon nanowire. All the individual 

modes of the set are the source-free solutions to Maxwell’s equations for 
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each nanowire and do not satisfy the Maxwell’s equations of the whole 

system.    

The longitudinal evolution of the electromagnetic field inside each 

waveguide during the propagation can be described by a z-dependent 

amplitude a  to be found through coupling equations. The z-dependent 

amplitude of each mode is determined by a set of coupled-mode equations 

that are obtained using the well-known coupled-mode approach [7]. This 

approximation is based on the orthogonal modal fields that have unit 

normalization. Vectorial solutions for Eq. (3.7) results in a complete and finite  

orthogonal set of forward, backward and radiation propagation modes; which 

are the source-free solutions to Maxwell’s equations for the waveguide. 

However, in this work we only consider forward-propagating modes which 

travel in the positive z-direction, for which the solution of Eq. (3.7) can be 

expressed by 

 

   
   

,a  



  

M
i zm 0

m 0
m=1 m

x,y,
, z, - e

N

e
E r                  (3.8) 

where me  is the mode structure of the mth  nanowire in the absence of other 

nanowires, am  is the slowly varying modal amplitude in the frequency domain 

of the mth  waveguide,   is the total propagation constant of the field inside 

the array, 0  is the carrier frequency, and the superscript m  is an integer 

number between 1 to M ; where M is the total number of waveguides in the 

array. Let´s notice that Eq. (3.8) is a superposition of the evolution of the 

optical modal fields of the single nanowires which expresses the total field 

evolution through the array of silicon waveguides. Also, in the previous 

equation, we approximated the frequency dependence of the fields to be 

totally contained within the modal coefficients ma  and we have normalized 
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the transversal profile of the electromagnetic field where the parameter mN  

represents the transversal distribution of power flows parallel to the mth  

waveguide axis which is defined as [7] 

 

  ˆ
*

m m m

1
N = × dxdy,

2
e h z                             (3.9) 

where the integrals extend over the core cross-section. The asterisk denotes 

the complex conjugation and ẑ  is the unit vector parallel to the waveguide 

axis. The above relation expresses the combination of the vector 

orthogonality condition and the normalization for one forward-propagating 

mode.  

For convenience throughout this work, we assume that the nonlinear 

effects do not affect the mode significantly. Therefore, the fundamental mode 

supported by the mth  nanowire in the absence of other nanowires can be 

represented by         mi z(m)

m, = x,y, eE r e , where m  is the propagation 

constant corresponding to the mth  nanowire. One necessary condition for 

the fundamental modes (i.e. (m)E ) is that the fields fall off exponentially 

outside the silicon cores of the array of silicon nanowires because they are 

even functions.  

The basic mode solutions are obtained by solving Eq. (3.7) and satisfy 

the following equation: 

 

   


   





2 (m) 2
(m) 2 (m) 2 (m)

T 0m2 2
- + + + n , =0,

z c

E
E E r E            (3.10) 

where 0mn  is the linear refraction index function corresponding to the mth  

waveguide, in the absence of other nanowires. Note that Eq. (3.10) governs 

the transverse behavior of the electric field. The vectorial function me  must 

satisfy the continuity conditions at the interfaces of the waveguides. 
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Substituting Eq. (3.8) into Eq. (3.7), applying the slowly varying envelope 

approximation and assuming that the light is spectrally narrow,  we obtain 

after associating terms (see the Appendix A for its derivation) 

 

   
a

a a


  


 
 

M -i z
* f (3)k

k k km m k
m=1 k

i e
=i - +i + + dxdy.

z 4 N
e P P       (3.11) 

The terms shown on the right hand of this equation correspond respectively 

to the dispersion, coupling and nonlinearity. The integrals extend over the 

entire x-y plane and no perturbation has been considered for the dispersion 

and nonlinearity. This result represents the more general relation that the 

mode amplitudes satisfy. Here, the parameter km  is the coupling coefficient 

and is given by 

 


 

* 20
km k m m

k m

= Δn dxdy.
4 N N

e e                         (3.12) 

where 2 2 2

m 0 0mΔn =n -n  is the change in the refraction index due to the 

presence of the mth  guide mode. 

We are interested to rewrite Eq. (3.11) into the time domain. For this 

purpose we can replace the propagation constant k  with its Taylor 

expansion around 0  as: 

   



   

nn kn
k 0

n=0

= i -
n!

                            (3.13) 

where kn  are the dispersion coefficients defined as      
0

n n

kn k == d /d | .  

The constant k0 , as well as the first-order parameter k1  and  the coefficient 

k2  are important phase-factors that have a significant weight in our 

mathematical model. Note that the core frequency 0  is chosen to be the 

pump frequency. This is the principal frequency of the light fired into the 
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nanowire. Therefore, replacing  0-  with  i / t  and multiplying both sides 

of Eq. (3.11) by -i te  and integrate with respect to  , we obtain 

 

 

 

a
a a a



 

  
 

  




 



 


0

Mn
n+1k kn

k km m km kn
n=1 m=1

-i z- t
* f (3)0
k

k

= i +i +i
z n! t

i e
+ + dxdy.

4 N
e P P

                (3.14)  

where km  is the asymmetry parameter given by 

 

 




 

j0k0

km
j k

m-1
= - .

m m
                              (3.15) 

    The TPA phenomena may generate a significant number of free electrons 

and holes as a function of the peak power associated with the incident optical 

field. The contribution of free-carriers to the nonlinear polarization is given by 

[1-2] 

 

         f f f

0 0 0,t =2n n + i /2k ,t ,P r E r                  (3.16) 

where 0 0k = c  and 0n  is the refractive index of bulk silicon. The Free-

carrier index (FCI) change and FCA are described by the quantities  fn  and 

f , both of which implicitly depend on the excess carrier density. The 

response of the free-carrier induced polarization is extremely fast, as in the 

nonlinear response, and can be taken as instantaneous [4]. From the theory 

of the dynamics of free carriers we found that the free-carrier induced 

polarization varies linearly with the densities of free electrons and holes, eN  

and hN , respectively [2]. To simplify, we assume equal carrier concentrations 

and lifetimes for electrons and holes, i.e., e hN =N =N . In this case we can 

use the following approximation for the FCI and FCA [2] 
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 a  f = N,           f

nn =- N,                      (3.17) 

 

where 
a  is the free-carrier absorption cross section and n  is the free-

carrier dispersion coefficient.  

In our model of interaction of radiation with matter, we have assumed 

that a dipole can be created by an electric field and that the restoring force 

on the charges is proportional to the displacement. This led to a form of 

simple harmonic motion, and to a polarization proportional to the driving 

field. In Section 3.1 we have expressed the form of this general polarization, 

however, at this moment we are only interested in the third-order 

polarization which characterizes the nonlinear response of silicon. Therefore 

the electronic response, that is due to electrons bound to silicon atoms in the 

crystal lattice, is very fast and can be taken as instantaneous [1-2,4,6]. We 

can write the third-order polarization in the following form [11] 

 

             χ(3) (3) *

0 0 0 0 0

3
,t = - ; ,- , | ,t ,t ,t ,

4
P r E r E r E r       (3.18) 

where |  indicates the normal tensor product for the mode fields. χ(3)  is a rank 

four tensor and all its components depends on the class of symmetry of the 

crystal. Let´s notice that Eq. (3.18) does not have the sum-frequency 

generation term because we have assumed that this process is not phase-

matched. Here, we have also assumed that the optical wave in the medium 

has a frequency equal to that of the incident wave. As silicon belongs to the 

crystallographic point group m3m. Therefore the electronic nonlinear 

response ( )χ 3  has 21 nonzero elements, of which only 4 are independent, 

namely ( ) 3

xxyy ,
( ) 3

xyxy ,
( ) 3

xyyx  and ( ) . 3

xxxx  Their intrinsic permutation symmetry 

allows us to simplify considerably, and we obtain [2] [11] 
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( ) ( ) ( ) (1 )       

 
     

 


         3 3

xxxx ,
3

          (3.19) 

 

where ( ) ( )/  3 3

xxyy xxxx3  represents the nonlinearity anisotropy at the 

degenerate frequency 0  and the complex parameter ( ) 3

xxxx  is related to the 

Kerr coefficient 2n  and the TPA coefficient T  as [5] 

 

( )( ) ( )
( )

  
 

  
 

30 0
2 0 T 0 xxxx2 2

0 0 0

3i
n

c 2 4 c n
                   (3.20) 

where 0n  is the linear refractive index of silicon at the frequency 0 . 

Henceforth, the Greek subscripts are used for denoting the Cartesian 

components of the vectors.  

Equation (3.19) is written in a coordinate system, whose axes do not 

generally coincide with the crystallographic axes of the waveguide. Therefore 

to obtain the nonlinear response in our coordinate system we need to apply a 

suitable rotation of the basis to transform the tensor from the crystallographic 

coordinates into the coordinates of the waveguide. The general 

transformation for the nonlinear response tensor is given by [12] 

 

( ) ( ) ,    3 3

k l n klmnm
klmn

M M M M                           (3.21) 

where M  is the transformation matrix. Now, if we notice that the only term 

involving   is rotation variant, then Eq. (3.19) in the rotated coordinate 

system becomes 

 

( ) ( ) ( ) (1 ) .         

 
     

 


         

3

3 3

xxxx r r rr
r=1

M M M M
3

   (3.22) 
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SOI waveguides fabricated along the [110] crystallographic direction on the 

(100) wafer surface have been used in a lot of experiments in nonlinear 

optics [12],  where the rotation angle 45° and the transformation matrix is of 

the form 

.

 
 

  
 
 
 

1 / 2 -1 / 2 0

M 1 / 2 1 / 2 0

0 0 1

                             (3.23) 

 

    In the time domain, the form of the electric field in Eq. (3.8) has a carrier 

wave of the form   0exp[i z- t ]  with frequency 0 , and associated 

propagation constant  , i.e., 

   
   a  

 0

M
i z- tm

m
m=1 m

x,y
,t z,t e ,

N

e
E r                       (3.24) 

where the modal amplitude am  is related to the optical power. Therefore by 

substituting Eq. (3.24) into Eq. (3.18) and (3.16) and using them in Eq. 

(3.14), we obtain the following equation for the modal amplitudes: 

 

   

a
a a a

a

a a a



    



  
 

  

    




 


 


 

 

  

Mn
n+1k kn

k km m km kn
n=1 m=1

f f *0 0 0
h 0 k h

h k h

* (3) * *0 0
h n l ,k ,h ,n ,l

hnl k h n l

= i +i +i
z n! t

n
+i n + i / 2k dxdy

2 N N

3
+i e e e e dxdy.

16 N N N N

e e       (3.25) 

where the indices k, h, n and l take values 1 to M corresponding to the M 

modes or nanowires of the array. This is the most general relation that 

govern the behavior of the modal amplitudes of the nanowires in the coupled 

system. Rewritten Eq. (3.25) in a compact form we obtain 
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a
a a a a

a a a a

  
  

  








  

 

Mn
n+1 (k) (k)k kn

k km m km k h h hn
n=1 m=1 h

(k) (k) (k) *

h h h hnl h n l
h hnl

= i +i +i +i N
z n! t

+i N +i

       (3.26) 

 

where we can identify the nonlinear parameter (k)

hnl , 
(k)

h and (k)

h  given by 

 

  
2

(k) (k) (k)0 0 2
hnl hnl hnl2

eff

n k n
= 1+ir

n A
,  

 


(k) (k)0 0 n
h h

n k
=

n
,                                  (3.27) 

.a 


(k) (k)0
h h

n1
=i

2 n
 

The additional parameters are given by  

 

     

 ( )

    




 
 
 





 

 

(3) * *

,k ,h ,n ,l

(k)

hnl 1/4
223

xxxx v
v=k,h,n,l

e e e e dxdy

=

dxdye

                     (3.28) 

 
 
 


1/4

(v)

eff eff

v=k,h,n,l
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                           (3.30) 
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

1/2

v

v=k,h

n = n  

 

where k k 0n = k represents the mode index and the nonlinear effective mode 

area effA  of the mode k  is defined as [6] 

 

 

 




22

k
(k)

eff 22

k

dxdy
A = .

dxdy

e

e
                               (3.31) 

Note that effA  depends on the waveguide parameters such as the cross 

section of the core. Because effA  is quite small for silicon nanowires, exist an 

enhancement of the nonlinear effects in them. For the fundamental modes on 

silicon nanowires, the effective mode area effA  has a value which is similar, 

but not identical, to the cross-sectional area of the nanowire because the 

intensity is not zero totally outside the waveguide. Note that Eq. (3.30) 

represents the average of the density of free-carriers over the effective mode 

area. If we assume that free-carriers are generated exclusively by TPA, and 

that all carrier recombination processes can be described by a single time 

constant, then the average value of the free-carrier density of free electrons 

and holes, (k)

hN ,  is governed by the following equation of the form [2] 

 



(k) (k)

h h

0

dN N
=G-

dt
                                    (3.32) 
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where 0  is the free-carrier lifetime and G  is the generation rate. The above 

equation shows the rate of electron-hole pair generation and recombination 

inside the waveguide. The evaluation of the previous parameters requires the 

use of the modal distribution e  for the fundamental mode of each nanowire.  

If the single-mode nanowires of the array have the same nonlinear 

constants and thicknesses, the Kerr effect in all the nanowires will be the 

same when the same optical power is launched into any waveguide. 

Furthermore, we will assume that are coupled by superposition only with the 

closest adjacent waveguides and any others coupling can be neglected. The 

constant coupling coefficient between the k and m waveguides is given by 

km . Consequently, if we use identical nanowires, the coupling coefficients 

between the m waveguide and any photonic wire will be equal, i.e.  km mk=  

[5,9]. In this particular case, m will be able to take the values k-1 and k+1.  

Because of the superposition interaction, there will be a contribution to the 

kth mode from all the superposition coupling that will contribute to the loss 

and the phase of the kth mode. Such contribution is expressed as a self 

coupling in our equations.     
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  (3.33) 
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We should stress here that u,w,v =k -1  or k+1 , the k  term have been 

added heuristically to account for internal waveguides linear attenuations and 

the self coupling has been already explained from the near neighbor 

superposition. The terms due to the free-carriers of the adjacent nanowires 

are neglected. The nonlinear coefficients 1Q  to 6Q  are given by: 

 

 (k)

1 kkkQ = ,  

 
     

 

(k) (k) (k) (k) (k) (k)

2 k-1,k-1,k k,k-1,k-1 k+1,k+1,k k,k+1,k+1 k-1,k+1,k k,k+1,k-1

(k) (k)

k+1,k-1,k k,k-1,k+1

Q = = = = = =

= = ,
 

    (k) (k) (k) (k)

3 k-1,k,k k,k,k-1 k+1,k,k k,k,k+1Q = = = = ,  

 
     

 

(k) (k) (k) (k) (k) (k)

4 k-1,k-1,k-1 k+1,k+1,k+1 k+1,k-1,k-1 k-1,k+1,k+1 k-1,k-1,k+1 k+1,k+1,k-1

(k) (k)

k+1,k-1,k+1 k-1,k+1,k-1

Q = = = = =

= = ,
 

    (k) (k) (k) (k)

5 k-1,k,k-1 k+1,k,k+1 k-1,k,k+1 k+1,k,k-1Q = = = = ,  

  (k) (k)

6 k,k+1,k k,k-1,kQ = = . 

 

In general, we can notice that the linear contributions to the coupling in Eq. 

(3.33) arise from the overlap of the mode field with an adjacent waveguide 

and from the presence of any mode of the adjacent guide. Nonlinear 

contributions arise due to the mode interaction with the material by itself or 

in conjunction with a mode from the adjacent waveguide.  

 

In particular, we are interested in an array that consists of two 

identical silicon photonic wires in close proximity; the coupled-mode 

equations obtained for this case are given by  

  

 



 

31 

 

 

  1 1

a
a a a a a a a

a a a a a a a a a

   
  

  

 




n
2 2n+11 1 n

1 1 11 1 12 2 1 1 2 1n
n=1

2 2 2 * 2 *

3 2 1 2 1 2 1 3 1 2

+ = i +i +i +iQ +2
z 2 n! t

+iQ +2 +iQ +iQ +i N +i N

   (3.34) 

 

 

22

2 2

a
a a a a a a a

a a a a a a a a a

   
  

  

 




n
2 2n+12 2 n

2 2 2 12 1 1 2 1 2n
n=1

2 2 2 * 2 *

3 1 2 1 1 1 2 3 2 1

+ = i +i +i +iQ +2
z 2 n! t

+iQ +2 +iQ +iQ +i N +i N

   (3.35) 

 

where 3 4 6Q =Q =Q , 1 2 5Q =Q =Q , (1) (2)

1 2N =N =N ,   (1) (2)

1 2= =  and 

1 2  (1) (2)  for the symmetric form. We have used the symmetry in the 

coupling coefficients   12 21  and have assumed that the self coupling 

  11 22  is identical as well. These equations are an extended version of the 

Nonlinear Schrodinger equation used for single photonic wires [5]. The 

previous equations are the most general form of the coupled-mode equations 

for two coupled silicon nanowires. Let’s identify each term of Eq. (3.34), for 

example, we can notice that  

 

 ii  modify the propagation constant of the mode i, the 

 ij  term led to a linear coupling between the modes of the 

waveguides i and j.  

 The first term in the first parenthesis involving  

 1Q  is the strongest nonlinear term and arise from the nonlinear 

interaction of a mode with itself.   

The remaining parameters describe the self-phase modulation and the two-

photon absorption effect.  
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 The second term in the same parenthesis involving 1Q  arises from the 

nonlinear interaction of one mode with the mode in the adjacent 

waveguide. This term implicate the cross-phase modulation (XPM).  

 The terms in the second parenthesis involving 3Q  arises from the 

power-dependent linear coupling coefficients and  

 The last two terms, with   and   ,arise from the nonlinear coupling.  

The same analysis can be done for Eq. (3.35). 

 

In the next section, we are going to study some cases for the 

propagation of light through the array which help us to understand the 

nonlinear phenomena in the coupled structures and its applications to the 

optical processing.  

 

3.3    Summary  

 

In this chapter a theoretical model is developed for describing the 

evolution of an optical signal through N coupled silicon waveguides. A 

generalized theoretical analysis of the nonlinear coupled system was given 

where we have considered the vector nature of optical modes and the effects 

of TPA on various nonlinear processes. The general theoretical model 

includes not only the instantaneous nonlinear processes and free-carrier 

effects but also linear and nonlinear losses, and it extends previous vector 

nonlinear models to the case where coupling of supermodes of a waveguide 

array occurs in silicon waveguides. The material presented here was deduced 

for the first time, although it is based in some investigations already done in 

the literature [1,2].  
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Chapter 4 

Nonlinear Propagation in Coupled 

Silicon Nanowires 

 

Nonlinear propagation of optical pulses inside coupled silicon nanowires is 

theoretically investigated. Output powers relations are derived for some cases 

in which propagation of picoseconds pulses is considered concerning the 

initial switching condition. Input-output power relations account for linear 

losses, the Kerr nonlinearity, TPA, FCA and FCD, linear coupling, and the 

power-dependent coupling effect. This work can be considered as a 

generalization of some investigations already done in literature (see for 

example Amarendra [1]). In particular, nonlinear processes, TPA, FCA, FCD 

and power-dependent coupling effects on the formation and propagation of 

optical pulses inside coupled silicon nanowires are investigated. Based on our 

study, we generalize the standard definition of coupling length for our 

nonlinear directional coupler according to the catch-all phase difference. As a 

consequence of the previous theoretical work (see chapter 3), in section 4.1 

we reintroduce the general coupled system of differential nonlinear equations 

that govern the picosecond pulse evolution inside two coupled silicon 

nanowires. Before addressing the most general problem, which is planned for 

the future, in this work we consider some practically important cases in which 

the dispersion on the one hand (Section 4.1.1 and 4.1.2) and free-carriers on 
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the other hand (Section 4.1.1 and 4.1.3) are neglected. Soliton formation and 

propagation are presented and discussed in all cases. It can be easily shown 

that this scenario is achieved by a new complex amplitude reformulation.  

 

4.1    Coupled Nonlinear Equations 

 

In the previous chapter, we have obtained a set of general equations that 

provide an understanding and theoretical description of the nonlinear 

response of coupled silicon waveguides. In this section, we introduce an 

interesting new form of the coupled evolution equations that govern the 

pulse dynamics in such a coupled silicon nanowires. Raman scattering is 

excluded in all the work because we consider the pulse bandwidth shorter 

than the Raman shift (15.1 THz  for silicon [2]).  Therefore, this investigation 

lies under the picosecond regime and we neglect the higher order nonlinear 

effects induced by the delayed Raman response. Since in a single-mode 

silicon waveguide two propagating modes are typically confined, one quasi-

TE and one quasi-TM, this work is only referred to one of them as polarized 

input signals. 

Consider a pulse signal at a carrier frequency 0  propagating through 

the coupled system, as shown in Fig. 4.1 (a). By using the theoretical model 

given by Eqs. (3.32), (3.34) and (3.35), the longitudinal evolution of a electric 

field E  associated with this optical pulse signal is described by following 

coupled nonlinear equations:  

 

 

   

a a a
a a a a a

a a a a a a a a
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  ,a a


  

22 2T
1 22

0 eff 0

N N
= + -

t 2h A
                          (4.3) 

 

that describe the coupled modes and the free-carrier density of free electrons 

and holes N . The parameters 1  and 2  have their origin in the frequency 

dependence of the propagation constant, and we have assumed symmetry in 

the coupling    21 12 2  and the same self-modulation    11 22 1 . 

Here, the parameters   and are given by 

 





  
     

  0 0
n

r

n
=

n
        n

a




0=2k                        (4.4) 

where 
a

-21 2=1.45×10  m  is the FCA coefficient at the reference wavelength 

r =1550 nm , and the changes in the refractive index by free-carriers are 

given by  , where  -27 3

n =5.3×10 m  [9]. 

Lets notice that Eqs. (4.1)-(4.3) describe the time-space evolution of 

both the quasi-TE or the quasi-TM modes, also that the simultaneous solution 

of these three coupled nonlinear partial differential equations will determine 

 N z,t ,  a1 z,t  and  a2 z,t . We have assumed that the complex pulse 

amplitudes a1  and a2 , while  deriving Eqs. (4.1), (4.2) and (4.3), are 

normalized such that a
2

1  and a
2

2  represent optical powers. These 

equations have a complex mathematical structure, however, they can be 

readily solved by using the even and odd eigenmodes of the nonlinear 
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directional coupler (also called supermodes). For this purpose, we introduce 

two new complex variables 

 

a a  
 
 

1-i z1 2
1

+
b = e

2
                                   (4.5) 

         .
a a  

 
 

1-i z1 2
2b = e

2
                                  (4.6) 

These two specific linear combinations of a1  and a2  constitute the 

amplitudes associated with the even and odd supermodes of the nonlinear 

directional coupler. Before strategy makes the equations analytically 

tractable. In terms of the new complex amplitudes, 1b  and 2b , Eqs. (4.1), 

(4.2) and (4.3) can be rewritten as: 

 

 
   

 
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 


2
21 1 2 1

1 1 2 1 1 1 1 12

b b i b
+ + + b =i b +iC b b - 1+i Nb

z t 2 t 2 2
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 
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b b i b
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 
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22 2T
1 22

0 eff 0

2N N
= b + b -

t h A
                           (4.9) 

where 1 1 3C =4(Q +Q )  and 2 1 3C =4(Q -Q ) . On this reformulation, it can be 

easily shown that the even and odd supermodes are uncoupled linearly and 

coupled nonlinearly from the free-carrier terms. Phase velocities of the 

supermodes are not the same, as evident from different signs of the 2  term 

in the above equations. We may say that this set of supermodes coupled 

nonlinear equations, Eqs. (4.7), (4.8) and (4.9), have only one direct 

nonlinear term that corresponds to self-phase modulation (SPM) and some 

indirect nonlinear terms given by the free-carrier effect. 
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Equations (4.7), (4.8) and (4.9) can be rewritten in terms of the soliton 

units such as 0T  is the width of the incident pulse and 0P  the pulse peak 

power. If we introduce dimensionless quantities such as 1 1 0b =U P , 

2 2 0b =U P ,  NLz= L  and 
 = , where NL 0 0L =1 P  is the nonlinear 

length, 0 2 0 eff=n cA is the nonlinear parameter,  1=t - z  is the retarded 

time in the reference frame of the pulse, 
  is the width of the incident pulse 

and 0P  is the pulse peak power, Eqs. (4.7), (4.8) and (4.9) can be rewritten 

in the following dimensionless form: 
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 
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2 22 20 T
1 22

0 eff 0

2PN N
= U + U -

h A
.                        (4.12) 

 

where 2

D NLN =L L ,  2 NL= L , LN NL= L 2 , 

 D 2L =  is the dispersion 

length and  2sgn =±1  depending on the sign of the GVD parameter 2 . In 

fact, to analyze the switching process, we always consider as the initial 

conditions the pumping on only one core of the coupler by an external source 

of light, which is a special case of interest to optical data processing [3], such 

that     1 2U 0, =U 0,  and    a  
2 2

1 0 10, =4P U 0, .  

The proposed nonlinear directional coupler described here has two 

identical low-loss single-mode silicon nanowires placed close to each other 

throughout its length. The waveguides are close enough that the 

fundamental modes propagating in each nanowire overlap partially in the 
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cladding region between the two waveguides. Such evanescent-wave 

coupling between the tails of two modes leads to the transfer of optical 

power from one waveguide to another under suitable conditions [4]. A 

scheme of the coupler cross-section is shown in Fig. 5 (b).  

 

 

Figure 5. Coupled silicon nanowires design: (a) schematic illustration of the four-port 

device; (b) scheme of the cross-section. 

 

The Design of silicon waveguide based nonlinear directional coupler is based 

on the waveguide characteristics, in particular the width W, the height H and 

the etch depth h, and on the separation between the waveguides. The linear 

coupling coefficient 2  is completely determinate by this. In our schematic 

illustration the core-to-core distant is given by S . Ultimately, the separation 

between the waveguides is the utmost standard characteristic for the 

switching behavior. However, we will see later that the switching process is 

changed substantially by the TPA, the free-carriers-induced absorption and 

the nonlinear coupling coefficient given by 3Q . The Power-dependent 

coupling terms, as small nonlinear terms, has been studied numerically for 

symmetric directional couplers [5], however, they do not provide an intuitive 

understanding for the switching process and nonlinear pulse propagation. 

This result provides a new definition of the coupling length for each case 

where we discuss, in detail, the soliton switching in the anomalous dispersion 

regime.  
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4.1.1    Nonlinear Effects  

 

Previous to the consideration of the general nonlinear pulse propagation 

in coupled silicon nanowires in picosecond regime, we will focus on a special 

case in which the dispersive and free-carrier terms can be neglected in Eqs. 

(4.10) and (4.11). This situation occurs when the coupler length is typically 

much shorter than the dispersion length DL , the pulses repetition rate mR  is 

low  m 0R 1  and their peak intensity is not too high. In this case, the free-

carrier density N  is low enough that do not affect the pulse propagation and 

the input peak intensity 0P  satisfies the condition  0 0 eff 0P 3h A /( T )  [6]. 

we arrive to the following set of coupled nonlinear partial differential 

equations, if we discard the dispersive and the free-carrier terms in the Eqs. 

(4.10) and (4.11),  

 











LN

2-21 1
1 1 1

0

u C
=i u +ie u u                            (4.13) 











LN

2-22 2
2 2 2

0

u C
=-i u +ie u u ,                          (4.14) 

where the new complex amplitudes are given by 1 1 LNU =u exp(- ) , 

2 2 LNU =u exp(- ) . To analytically solve the coupled equation system Eqs. 

(4.13) and (4.14), we decompose complex amplitudes 1u  and 2u  into 

absolute amplitudes and phase terms such as 1 1 1u = v exp(i )  and 

2 2 2u =v exp(i ) , therefore, the equation system Eqs. (4.13) and (4.14) gives 

four real differential equations. Solving these four equations we obtain the 

power and phase of a pulse remaining in each guide as it propagates along 

the coupler. Then pumping only one core by an external source of light, such 

that     1 2v 0, = v 0, , we get  
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 
   

P2
 

 
 
 
 


 LN-2

1 2 1 2

2cosP 0, 1 1
, = + - e

4 p p p p
                (4.15) 

 
 

 
 

 

 
     1 2

1 2

1 2

Re C Re C
Δ , =2 + ln p - ln p

2Im C 2Im C
             (4.16) 

 

where P2 a
2

2 0= P  is the normalized power coming out of the output not-

pumping port,      ( )  1 1 0 effp =1+ Im C 4 P 0, L 2  and 

     )  2 2 0 effp =1+(Im C 4 P 0, L 2 . The phase difference and the effective 

length are given by             1 2, = , - ,  and      LN-2

eff LNL 2 = 1-e /

, respectively. A similar relation like Eq. (4.15) can be deduced for 

P1 a
2

1 0= P . For simplicity, in this work we assume that the input pulses 

have a Gaussian shape with the normalized power profile     2P 0, =exp - . 

Before solutions describe the evolution of the electric field along the nonlinear 

coupler. Also, they show how powers and phase difference are affected by 

the TPA. In fact, effects of TPA on nonlinear pulse propagation already have 

been demonstrated for one silicon waveguide [6]. In the most general form, 

results indicate that power-dependent coupling terms (i.e. terms involving 3Q

), in conjunction with the TPA coefficient r , affect considerably the 

propagation of pulses along the coupler. Specifically, the solutions show the 

output power as a function of the linear losses, the TPA coefficient, the 

power-dependent coupling term and the input pulse peak power given by  , 

r  3Q  and 0P , respectively. In the limit 3Q 0  and r 0  (no power-

dependent coupling coefficients and no TPA), we get back the standard 

results used for fiber couplers [7]. The form of the phase difference is 

another important result because it deviates from the standard definition. The 

terms including 3Q  have a considerably weight in changing the phase 
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difference. In the limit 3Q 0 , we get a parallel result used for silicon 

nanowires [6]. Therefore, if we take into account the power-dependent 

coupling effect incorporated into 3Q , the standard definition of the coupling 

length CL  must changes.  

To find transmittance as a function of the input pulse total power 0P  at 

the two output ports of the nonlinear coupler of length CL =L , we use the 

following energy transmission coefficient 

 

   a 



 

2

n n
-

1
T = , d                              (4.17) 

where n=1,2 , depending of the output port that we are investigating. Here 

 

      a a  



   

2 2

1 2
-

= , + , d                       (4.18) 

represents the total energy and because the presence losses in the coupled 

nonlinear equations,   changes along ξ . 

    To illustrate the switching behavior in this case and along the rest of the 

work, we will focus on a silicon nanowire based nonlinear directional coupler 

in which the individual waveguides have the following dimensions: 

W=860 nm, H=400 nm  and h=300 nm [8]. The core-to-core separation 

distance can be taken such that  -1

2 =957 m , initially. However, over all the 

work the core-to-core separation distance S  is changed to analyze the 

switching process. Also, we use the following parameters in the model: 

-5 2

2n =6×10 cm GW ,  =5 dB cm , 2

2β =-2.15 ps m , 0 =1484 nm , 

 2

effA =0.13 m , r =0.1  [8] and 0 =1 ns [6]. To simplify our illustration at 

the moment, we take  1 0Q = 1+ir , where   -1

0 2 0 eff=2 n A =195.4 W m , 

and the power-dependent coupling parameter can be represented by 
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 3 1dQ Q Q =0.05 . Figure 6 shows the evolution of the pulses along our 

nonlinear directional coupler with DL =46.5 cm  and  -1

2 =942 m . Initially, 

the nonlinear length for 0P =4 W  is given by NLL =1.3 mm. 

 

Figure 6.  Evolution of pulses inside the nonlinear directional silicon coupler for solitonlike 

input with  = 1 ps   = 1.22 , 13 = 0.05Q Q  and C
L = L : (a) o =P 4 W ; (b) 

o = 6 WP ; (c) o = WP 12 . 

 

To investigate the transmission characteristics at the two output ports of 

the nonlinear coupler of length CL =L , we need to find out the transmission 

coefficient  nT . Particularly, for the case of the output not-pumping port, 

transmission is given by 

 

 
 

 
 

 
 

 



    

1 2
2

- -
1 21 2

P 0, p +p1
T = - cos d P 0, d

p p2 p p
        (4.19) 
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In Figure 7, we show the switching transmission characteristics in the limit 

3Q 0 . The periodic behavior of output powers is appreciated for a range of 

0-120W , approximately.  

 

 

Figure 7.  Switching characteristics for a silicon nanowire based nonlinear directional coupler 

of length C
L = L .  Waveguides are separated at a distance S such that  = 1.22  when 

3
Q = 0 . Relative output powers of ports 1 and 2 are shown as a function of input pulse 

power for 1 ps  pulses.  

 

 

Figure 8. Phase difference of pulses in the nonlinear directional silicon coupler for solitonlike 

input with  = 1 ps ,  = 1.22  and C
L = L :  (a) Phase difference for different input 

powers at 13 = 0.05Q Q ; (b) Phase difference for different values of 13dQ = Q Q . 
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4.1.2  Free-Carrier Effects  

 

    Since the TPA-induced free-carrier density N  has a profound effect on the 

pulse propagation in silicon nanowires, therefore, it is desirable to construct 

an analytical description of the nonlinear evolution of optical pulses inside 

coupled silicon nanowires that includes the impact of free carriers. For this 

purpose, we derive the coupled evolution equations that describe the 

behavior of pulse envelopes, a1  and a2 , on the nonlinear coupler under 

realistic situations. In this way, the coupled nonlinear equations can be 

represented by  

 

 








LN

2-2 ξ1 1
1 1 1 NL 1

0

u C σ
=i u +ie u u - 1+iμ L Nu

2
                (4.20) 

 








LN

2-2 ξ2 2
2 2 2 NL 2

0

u C σ
=-i u +ie u u - 1+iμ L Nu

2
               (4.21) 

where the new variables are given by 1 1 LNU =u exp(- )  and 

 2 2 LNU =u exp(- ) . Here, again, we have neglected the dispersive terms 

because we are assuming that the coupler length is much shorter than the 

dispersion length DL . Therefore, the latter terms in each one of the coupled-

mode equations represent the effect of free carriers on the pulse propagation 

along the coupler. They give the change of the mode propagation constant 

by the free-carriers effect. As we have mentioned in the previous chapter, 

free carriers created by TPA are assumed to have equal densities, i.e., 

e hN =N N . In general, free carriers have a specific transverse density 

distribution inside the waveguides that form the coupler, but we can simplify 

the model by assuming that the free-carriers polarization is proportional to 

the carrier densities and so replacing N  with its averaged value N  defined in 

Eq. (3.30).  Equations (4.20) and (4.21) must be coupled to the equation that 
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govern the evolution of the averaged free carriers density N  over the optical 

mode profile, which are given by [10] 

 

 




  

LN-4 ξ2 22 20 T
1 22

0 eff 0

2P eN N
= u + u -

h A
                       (4.22) 

where 
0  is the carrier lifetime and we are assumed that effective mode 

area, effA , is nearly the same for the two waveguides, i.e., (1) (2)

eff eff effA = A = A . 

In this regime, 1u  and 2u  are functions of propagation distance only. As a 

consequence, free-carriers density can be obtained from (4.22) by setting 

 N =0  and is given by 

 

   


 



LN-4 ξ2 22 20 T 0
1 22

0 eff

2P e
N z = u + u .

h A
                      (4.23) 

Now we follow a similar treatment using in [9] to obtain the solutions of the 

system. Therefore, using Eq. (4.23) into Eqs. (4.20) and (4.21), and 

introducing the new forms of supermodes waves,  1 u1 1u = P exp i  and 

 2 u2 2u = P exp i , we get  

 

      



 


 
LN LN

2-2 -42u1
1 u1 u1 u1 u2

0

P 2
=- Im C e P -2Im e P P +P          (4.24) 

      



 


 
LN LN

2-2 -42u2
2 u2 u2 u1 u2

0

P 2
=- Im C e P -2Im e P P +P          (4.25) 

where       2 2

NL 0 T 0 0 eff=- -i L P h A . In order to solve Eqs. (4.24) and (4.25) 

analytically, we make one reasonable simplification [9]. We discard first terms 

on the right side of Eqs. (4.24) and (4.25) since TPA is known to be much 

smaller than FCA in the case of long pulses [10]. With this simplification, 

solutions of Eqs. (4.24) and (4.25) are given by 
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 
   

     
P2

ξ




  








LN-2

2

eff

1- cos Δ eP 0,
, =

2 1+4Im P 0, L 4
              (4.26)  

 
 

 
 

    
    

     
  



LN-2 ξ
3

0 LN

Re Q e 1
Δ , =2 - arcsin - arcsin

A AIm
     (4.27) 

 

where the input pulse is given by     u1P 0, =4P 0, , which is a direct 

consequence of the initial conditions. The additional parameters are given by: 

the phase difference           1 2Δ ξ, = ξ, - ξ, , this case effective length 

    LN-4 ξ

eff LNL 4ξ = 1-e / ,          2 2

LNA= +Im Γ P 0, Im Γ P 0,  and  

  2 2

NL 0 T 0 0 effIm Γ =σL P β hω A .  

 

Figure 9.  Evolution of pulses inside the nonlinear directional silicon coupler for solitonlike 

input with  = 10 ps   = 1.22 , 13 = 0.05Q Q  and C
L = L : (a) o =P 4 W ; (b) 

o = 6 WP ; (c) o = WP 12 . 
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For simplicity, we have assumed again that the input pulses have a Gaussian 

shape with the normalized power profile     2P 0, =exp - . Figure 9 shows 

the evolution of the pulses along our nonlinear directional coupler with 

DL =46.5m and  -1

2 =942m . For the case of the output not-pumping port, 

transmission is given by 

 

 

   

     

 

     


















  



 







2-
eff

2

2-
eff

P 0, cos Δ d

1+Im P 0, L 41 1
T = -

P 0, d2 2

1+Im P 0, L 4

              ( 4.28) 

 

In the limit 3Q 0 , the switching transmission characteristics are the same 

like section 4.1.1 for the same approximation.  

 

 

 

Figure 10.  Phase difference of pulses in the nonlinear directional silicon coupler for 

solitonlike input with  = 10 ps ,  = 1.22  and  C
L = L : (a) Phase difference for different 

input powers at 13 = 0.05Q Q ; (b) Phase difference for different values of dQ . 
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4.1.3  Dispersion Effects  

 

        Up to now, we have put forward the mathematical model that describes 

the passive coupler with nonlinearity and dispersion. Now we will assume that 

the coupler length L  is larger than the nonlinear length NLL  and the 

dispersion length DL . Therefore the equations system, describing the 

nonlinear coupling of dispersive waves inside the coupler, can be described 

like a special case of Eqs. (4.10) and (4.11) in a normalized form as: 

 

 
 





 

 


 

2
221 1 1

LN 1 1 12 2

0

sgnU U C
+i + - i U =i U U

2N
              (4.29) 

 
 





 

 




2
222 2 2

LN 2 2 22 2

0

sgnU U C
+i + +i U =i U U

2N τ
             (4.30) 

where   and   represent the normalized distance and time variables 

previously defined in section 4.1. This physical model is based on generalized 

coupled Schrodinger equations where dispersion properties are given by the 

group velocity dispersion (GVD). The combination of 1U  and 2U  provides us 

with the general solutions for the envelopes a1  and a2  in the domain of 

picoseconds propagation pulses. In other words,    a 2 0 1 2 1= P U -U exp i z , 

and    a 1 0 1 2 1= P U +U exp i z . The latter is input in one channel of the 

passive device to obtain the symmetric state. In order to solve the equations 

system, Eqs. (4.29) and (4.30), we take as the initial condition an arbitrary 

localized input and we use the entire scheme as a dissipative system. The 

corresponding derived equations account with the well known Ginzburg-

Landau equation (CGLE) form with complex coefficients. In terms of the 

normalized power P a
2

2 0= P , the solution becomes  
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     P2     2

1, =sech K 1-cos                      (4.31) 

 

where 
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 
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2 1LN LN

2 1

1- 1-
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 
 

 
 
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



1/2
2

0 vLN
0v

v v

ρ -2
U =

2 Re C
      (4.33) 

 

and the incident pulse has the hyperbolic secant form given by 

    2

1P 0, =sech K , 
2

01U =1 2 , where v =1  or 2 . The previous solution 

shows that the pulse maintains its shape along the propagation but its peak 

power is modulated along the coupler. This latter characteristic is related to 

the exchange of power between waveguides that form the nonlinear coupler. 

Also, the preceding solution is subject to the boundary condition that a single 

beam is incident on one of the input ports such that 

   a     11+iρ

1 0 01 10, =2 P U sech K and  a 2 0, =0 . A consequence of this 

initial condition, for the symmetric state, is 3Q =0 . But Eq. (4.31) is a 

consequence of the superposition of two identical solitary pulse solutions to 

describe the behavior of field envelopes inside the nonlinear coupler. Figure 

11 shows  the initial conditions generated by the switching case: (a) shows 

how the input pulse broaden by reducing the input total power; (b) shows 

the relationship between the input total power and the total linear losses. The 

evolution of the pulses along the nonlinear coupler with  =30 fs  for 0P = 4 ,

6  and 12 W , is shown in Fig. 12. 
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Figure 11.  Initial conditions of the silicon nanowire based nonlinear directional coupler with 

N = 1 : (a) shows the initial pulse shape for oP = 12 W  and  = 30 fs ;  (b) shows the 

relation between the input power and the propagation losses . 

 

 

  

Figure 12.  Evolution of pulses inside the nonlinear directional silicon coupler for solitonlike 

input with  = 30 ps   = 1.22 ,  3Q = 0  and L = 5  mm : (a) o =P 4 W ; (b) o = 6 WP

; (c) o = WP 12 . 
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In this case, the transmission coefficient  2T  is given by 

 

      2

1
T = 1-cos

2
                             (4.34) 

which gives the same result than Fig. 7. 

 

4.2    Summary  

 

    In this chapter, we have provided the analytical solutions for the coupled-

mode equations in those cases in which the density of the free carrier is 

relatively low, the dispersive effects are relatively weak and assuming that 

the nonlinear effects do not affect the waveguide modes significantly. The 

impact of two-photon absorption and free-carriers effect on the properties of 

the nonlinear coupling effects has been studied in detail together with the 

evolution of optical power inside an array of short silicon nanowires. 

 

References 

 

[1] Amarendra K. Sarma, "Silicon waveguide based nonlinear directional 

coupler as a soliton switch," Opt. Eng. 47, 120503 (Dec 12, 2008). 

[2] Ivan D. Rukhlenko, Malin Premaratne, Chethiya Dissanayake, and Govind 

P. Agrawal, "Nonlinear Pulse Evolution in Silicon Waveguides: An Approximate 

Analytic Approach," J. Lightwave Technol. 27, 3241-3248 (2009)  

[3] S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum 

Electron., vol. QE-18, pp. 1580-1583, 1982. 

[4] G. P. Agrawal, Lightwave Technology: Components and Devices (Wiley, 

Hoboken, NJ, 2004). 



 

54 

 

[5] J. Fraile-Pelaez, and G. Assanto., A. Opt. Vol. 29, No. 15, (1990). 

[6] L. Yin and G. P. Agrawal, "Impact of two-photon absorption on self-phase 

modulation in silicon waveguides," Opt. Lett. 32, 2031-2033 (2007). 

[7] G. P. Agrawal, Applications of Nonlinear Fiber Optics, (Academic Press, 

Elsevier, 2001), 2nd expanded ed. 2008. 

[8] Jidong Zhang, Qiang Lin, Giovanni Piredda, Robert W. Boyd, Govind P. 

Agrawal, and Philippe M. Fauchet, "Optical solitons in a silicon waveguide," 

Opt. Express 15, 7682-7688 (2007). 

[9] I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon 

photonics: Analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16, 200–215 

(2010). 

[10] Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in 

silicon waveguides: Modeling and applications,” Opt. Express 15, 16604–

16644 (2007). 

 

 

 

 

 

 

 

 

 

 



 

55 

 

 

 

Chapter 5 

Conclusions 

 

In conclusion, we may say that a comprehensive theory was developed 

for describing the nonlinear optical propagation of short pulses in coupled 

silicon nanowires. A generalized analysis of the nonlinear coupled system was 

given where we have considered the vector nature of optical modes and the 

effects of TPA on various nonlinear processes. The general theoretical model 

included not only the effects of FCA and FCD but also linear and nonlinear 

losses, This model also extends previous vector nonlinear models to the case 

where coupling of supermodes of a waveguide array occurs in silicon 

waveguides. Although, there are some investigations already done in the 

literature about nonlinear propagation of optical pulses in silicon waveguides, 

the material presented here was deduced for the first time. This theoretical 

investigation was inspired by the work done by Agrawal, et. al about 

nonlinear propagation of pulses inside silicon waveguides and its applications. 

The crucial importance of this theoretical investigation on nonlinear effects in 

coupled silicon nanowires is related to the all-optical switching application.  

It has been demonstrated theoretically that free carriers generated by TPA in 

silicon nanowires introduces large losses at telecommunications wavelengths. 

Two-photon absorption is a nonlinear optical loss mechanism derived of 

radiation matter-interaction in silicon waveguides at communications 

wavelengths. Two-photon absorption, free-carrier absorption, and free-carrier 
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dispersion  play important roles in the nonlinear propagation of optical pulses 

inside coupled silicon nanowires. They have been studied theoretically on the 

transmission of picoseconds optical pulses in silicon nanowires in this work. 
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Appendix A 

 

In this appendix we are going to derive the Eq. (3.11). For that, first we 

substitute Eq. (3.8) into Eq. (3.7), then multiply the resulting equation by *

ke , 

and finally we integrate over the transverse dimensions and associate terms. 

Therefore, we obtain that the mode amplitudes satisfy  
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(A.1) 

where the vectorial modes for the electric and magnetic fields were 

decompose into longitudinal and transverse components, parallel to and 

orthogonal to the waveguide axis, respectively, and denoted by subscripts z  

and T , where ˆ
m Tm zm= +ee e z ; ˆ

m Tm zm= +hh h z , and ẑ  is the unit vector 

parallel to the waveguide axis. Also here, the asterisk denotes the complex 

conjugation. Using Eq. (3.10) in the extended form 
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                  (A.2) 

 

and making the slowly varying envelope approximation, Eq. (A.1) becomes 
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 (A.3) 

 

where we have assumed that the light is spectrally narrow namely 

  0 0-  or in the same way   m - . Hence the approximation 

   m + 2  is justified. The first integral in the last equation has been 

analyzed in [4] following the next form: 
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                (A.4) 

With this equivalency, Eq. (A.3) becomes 
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     (A.5) 

where 2 2 2

m mΔn =n -n  is the change in the refraction index due to the presence 

of the mth  guide mode. This work will be consistent with the assumption of 

orthogonality, as follows 
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  ˆ 
* *

m k k m k mk× + × dxdy =4N ,e h e h z                       (A.6) 

 

where kN is given in the Eq. (3.9). Therefore, substituting the above relation 

into Eq. (A.5) leads to the following nonlinear amplitude equation in the 

frequency domain  

 

   
a

a a

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

 
 

-i z
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k k km m k
m k

i e
=i - +i + + dxdy,

z 4 N
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in which the parameter km  is the coupling coefficient and is given by 

 


 

* 20
km k m m

k m

= Δn dxdy.
4 N N

e e                           (A.8) 

Note that Eq. (A.7) is the most general form that the mode amplitudes 

satisfy. In this equation no perturbation has been considered for dispersion 

and nonlinearity. The terms shown in this equation correspond to the 

dispersion, coupling and nonlinearity, respectively, into the right hand. 
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Figure 6.  Evolution of pulses inside the nonlinear directional silicon coupler 

for solitonlike input with  = 1 ps ,  =1.22 , 13 = 0.05Q Q  and CL = L : (a) 

o =P 4 W ; (b) o = 6 WP  ; (c) o =P 12 W . 

Figure 7.  Switching characteristics for a silicon nanowire based nonlinear 

directional coupler of length CL = L .  Waveguides are separated at a distance 

S such that  =1.22  when 3
0Q . Relative output powers of ports 1 and 2 

are shown as a function of input pulse power for ps1  pulses.  

Figure 8. Phase difference of pulses in the nonlinear directional silicon 

coupler for solitonlike input with  = 1 ps ,  =1.22  and CL = L :  (a) Phase 

difference for different input powers at 13 = 0.05Q Q ; (b) Phase difference for 

different values of dQ . 



 

61 

 

Figure 9.  Evolution of pulses in the nonlinear directional silicon coupler for 

solitonlike input with  =10 ps ,  =1.22 , 13 = 0.05Q Q  and CL = L : (a) 

o =P 4 W ; (b) o = 6 WP . ; (c) o =P 12 W . 

Figure 10.  Phase difference of pulses in the nonlinear directional silicon 

coupler for solitonlike input with  =10 ps ,  =1.22  and CL = L : (a) Phase 

difference for different input powers at 13 = 0.05Q Q ; (b) Phase difference for 

different values of dQ . 

Figure 11.  Initial conditions of the silicon nanowire based nonlinear 

directional coupler N = 1 : (a) shows the initial pulse shape for o =12 WP  and 

 = 30 fs ;  (b) shows the relation between the input power and the 

propagation losses . 

Figure 12.  Evolution of pulses in the nonlinear directional silicon coupler for 

solitonlike input with  = 30 fs ,  =1.22 , 3 = 0Q  and L = 5 mm : (a) 

o =P 4 W ; (b) o = 6 WP ; (b) o =P W12 . 

 

 

 


