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Resumen

La acusto-óptica es la rama de la Física que estudia los efectos de la interac-

ción entre ondas acústicas y ópticas. Existen sistemas destinados al análisis de

señales, tales sistemas necesitan dispositivos que permitan la interacción de ondas

de sonido y de luz. La llegada del láser a principios de la década de los años 60

hizo posible, entre otras cosas, el uso del efecto acousto-óptico para modular la luz

en casos de transmisión de señales. Sin embargo, para el correcto funcionamiento

de dichos sistemas es necesario caracterizar los materiales en los cuales se llevará

a cabo la interacción acusto-óptica.

Es necesario analizar los materiales, con los que se desea fabricar dispositivos

acusto ṕticos, para determinar si serń útiles en el análisis de señales. En este

trabajo se presenta el estudio realizado sobre dos celdas acusto-ópticas destinadas

al análisis de señales ópticas y señales de radio, dichas celdas acusto-ópticas están

fabricadas de molibdato de calcio y KRS-5, respectivamente.

4



Abstract

Acousto-optics is the branch of physics devoted to the study of the effects of

the interaction between acoustic and optical waves. For signal analysis systems,

that allow the interaction of sound and light waves, acousto-optical devices are

needed. The advent of lasers made possible, among other things, the practical

use of acousto-optical effect to modulate light for signal transmission and manip-

ulation. It is necessary to characterize the materials, in which the acousto-optical

interaction will be hold, for the proper functioning of these systems.

To determine the usefulness of acousto-optical devices it is necessary to un-

derstand the properties of acousto-optical materials, wich are desirable to make

acousto-optical devices. This thesis presents the study of two acousto-optical cells

for optical signal and radio signal analysis, namely calcium molybdate and KRS-5

single crystals, respectively.
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Chapter 1

Introduction

Acousto-optics is a branch of physics which studies the interaction between

both acoustic and optic waves. Both optics and acustic have a history of almost

same duration. Nevertheless, the acousto-optic effect has had a relatively short

history, beginning with Brillouin predicting the diffraction of light by an acous-

tic wave being propagated in a medium of interaction, in 1922 [1]. In the past

decades great progress has been made in acousto-optics, and now it is a widely

used technique in the field of signal processing [2,3]. Acousto-optics has progressed

thanks to several technological developments in different areas. The first impor-

tant developmet was the laser [4], which has made available sources of intense

monochromatic coherent light. The laser made the acousto-optic effect easier to

observe and measure. A second area of developments has been dedicated to the

search of new materials to fabricate acoustic wave devices. The research of trans-

ducer design has allowed the development of large-bandwidth, large aperture delay

lines with good light-diffraction efficiency. Moreover, a notable portion of mod-

ern technical achievements in a high-bit-rate optical data processing is directly

connected with utilizing such nonlinear phenomena as, for example, wave-mixing,

various cross-and self-actions, etc. [5, 6]. Recently, two-cascade processing based

on a three-wave interaction between coherent waves of different natures (optical

and non-optical) had been successfully realized [7]. Then, in parallel, potential

performances connected with using a collinear wave mixing in the specific case of
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a medium without any group-velocity dispersion with strongly dispersive losses

had been demonstrated [8, 9]. Both optical and radio wave signals will be ana-

lyzed. The techniques used for this purpose involve the use of acousto optical

filters (AOFs) and heterodyning process.

In 1970-80s, novel optical spectral devices, known as electronically tunable

acousto-optical filters had been proposed and developed. During these years

AOFs have been remarkably progressed and widely exploited, for instance, in

astrophysical observations. The principle behind the operation of acousto-optic

filters is based on the diffracted light wavelength being dependent on the acous-

tic frequency. By tuning the frequency of the acoustic wave, the desired wave-

length of the optical wave can be acousto-optically diffracted. There are two

types of acousto-optic filters, the collinear and non-collinear filters. The type

of filter depends on geometry of acousto-optic interaction. Collinear acousto-

optical interaction was initially predicted and studied in the middle of sixties by

R.W. Dixon [10]. An advanced collinear acousto-optical filter, based on a calcium

molybdate (CaMoO4) single-crystal, is used to analyze the optical signals.

Heterodyning is a radio signal processing technique invented in 1901 by Regi-

nald Fessenden. In heterodyning process high frequency signals are converted to

lower frequencies by combining two frequencies. [11]

Heterodyning is useful for frequency shifting information of interest into a

useful frequency range following modulation or prior to demodulation. In our

case, the two frequencies are combined in the AO cell. Heterodyning creates two

new frequencies, according to the properties of the sine function; one is the sum

of the two frequencies mixed, the other is their difference. These new frequencies

are called heterodynes. Typically only one of the new frequencies is desired, the

higher one after modulation or the lower one after demodulation. The other

signal is filtered out of the output of the mixer. Heterodyning is widely used in

communications engineering to generate new frequencies and move information

from one frequency channel to another. The technique proposed, to analyze the
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radio wave signals, implies a two-stage integrated processing, these are the wave

heterodyning and the optical processing in the same solid state cell. A thallium

bromine-thallium iodine (TlBr-TlI) solution, which forms KRS-5 cubic-symmetry

crystals with the mass-ratio 58% of TlBr to 42% of TlI, is used to analyze this

radio wave signals.

In both acousto-optical filter and heterodyning techniques, for spectrum anal-

ysis process, there are several kind of devices involved. These are lasers, lens

arrays, acousto-optical cells, detectors, etc. The acousto-optical cell allows the

interaction between the optical wave, coming from the laser, and the ultrasonic

wave generated by the piezotransducer attached to the material. The acustic wave

changes the refraction index troughout the crystalline material within the cell, see

figure 1.1. The changes in the index refraction cause that the material act as a

diffraction grating.

Piezotranducer

Absorber

D

Λ

Figure 1.1: An acousto-optic cell. A piezoelectric transducer creates sound waves in

the material, the refraction index changes and the material acts as a diffraction grating.

The light beam is diffracted into +1 order.

In the Bragg regime, after the expanded beam light fit through the aperture of

the cell, is possible to observe only two diffraction orders going out of the opposite

face of the cell. Those diffraction orders are collected by a positive lens, which

focuses them on the surface of a detector.
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In this work, some aspects of the acousto-optical spectrum analysis are con-

sidered . The bandwidth, frequency resolution and efficiency of acousto-optical

interaction, for both CaMoO4 and KRS-5 single crystals, are estimated. Also,

within the KRS-5 cell, a two cascade algorithm of processing will be exploited for

direct parallel and precise optical spectrum analysis. It is necessary estimate the

technical requirements to performance data of the acousto-optical cell as well as

to acceptable values of the operating frequencies.



Chapter 2

Acousto-optic effect and

some considerations

2.1 Introduction

Acousto-optic devices use the interaction between light and an ultrasonic waves

[12]. When a sound wave is applied inside of a material, with initial refractive

index n, the atoms are displaced, forming layers of different density. In other

words, in acousto-optic materials the ultrasonic wave induces refractive index

changes caused by the photoelastic effect. Those changes have the periodicity,

amplitude and phase modulation of the acoustic wave, and they act as a phase

grating to diffract the incident optical beam.

The elastic and acoustic behaviour of the materials will be taken into acount

in this section, because of that is necesary to solve the problem mentioned in the

last chapter.

2.2 Elastic properties of crystals

All kind of materials in the nature are comformed by atoms, which are highly

mobile within their structure. Inside of a crystalline acousto-optical material the

atoms are slightly displaced, from its structure, when it is applied an external

12



2.2. Elastic properties of crystals 13

force. The concepts like stress, strain, elasticity, etc. help to understand what

happens to the material when it is under the action of an external force. The

elasticity of crystals also determines their optical behaviour, such a behaviour

with penetrating light is characteristic for each crystal.

2.2.1 The stress tensor

When a body is under the action of external forces, it is said that the body is in

a state of stress. Considering a volume element located within the stressed body,

one may recognize two types of forces acting on it. There are body-forces which act

throughout the body on all its elements and whose magnitudes are proportional to

the volume of the element. There are forces exerted on the surface of the element

of volume caused by the material surrounding it, and they are proportional to the

area of the surface of the element. The force per unit area is called the stress [13]

and it is denoted by σ. A stress is said to be homogeneous if the forces acting on

the surface of an element of fixed shape and orientation are independent of the

position of the element in the body.

b

x3

x2

x1

σ33

σ23
σ13

σ11

σ31

σ21
σ12

σ32

σ22

Figure 2.1: The forces on the faces of a unit cube in a stressed body.
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Now, focusing to states in which: 1) The stress is homogeneuos troughout the

body, 2) All parts of the body are in statical equillibrium and 3) There are no

body-forces or body-torques, it will be possible to analize the stress effect on a

body. Figure 2.1 shows a unite cube within a body. Its edges are parallel to the

axes Ox1, Ox2, Ox3. The material outside the unite cube exerts a force, that is

transmitted across each face of the cube, upon the material inside the cube. The

force transmitted across each face may be resolved into three components. First,

consider the three faces which are towards the three positive ends of the axes.

σij denotes the component of force in the +Oxi direction transmitted across that

face of the cube which is perpendicular to Oxj.

Because of the stress is homogeneous the forces exerted on the cube across the

three opposite faces must be equal and opposite to those shown in the figure 2.1.

σ11, σ22, σ33 are the normal components of stress and σ12, σ21, σ23, etc. are the

shear components. σij form a second-rank tensor.

The assumtion (2) imposes conditions on the σij. Taking moments about an

axis parallel to Ox1 passing troughout the centre of the unit cube, see Fig. 2.2.

O

x3

x2

σ23

σ33

σ22

σ32

σ22

σ32

σ33

σ23

Figure 2.2: Forces on the face of a unit cube in a stressed body. The axis Ox1 is

perpendicular to the page.

Because the stress is homogeneous, the three components of force on any face
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all pass through the mid-point of the face, then all the components on the Ox1

faces give no moment. Therefore it is found the condition for equilibrium

σij = σji (2.2.1)

This relation holds even if the stress is inhomogeneous, the body is not in statical

equilibrium, and body forces are present, provided body-torques are not present.

2.2.2 The strain tensor

One can consider an acoustic wave propagating through a crystaline material.

The atoms, which conform the crystalline structure, vibrate parallel to the di-

rection of the wave propagation. Now, ~k = k~m is the acoustic-wave propagation

vector and ~U = U~u is the vector that represents the motion of the atoms. The

strain tensor γ can be obtained by calculating a dyadic product

γ = 1
2

kU {~m · ~u + ~u · ~m} (2.2.2)

To write 2.2.2 in the matrix notation, one can substitute as follows

γ =


γ11 2γ12 2γ13

2γ21 γ22 2γ23

2γ31 2γ32 γ33

 → γ =


γ1 γ6 γ5

γ6 γ2 γ4

γ5 γ4 γ3

 → γ̄ = (γ1 , γ2 , γ3 , γ4 , γ5 , γ6)

Now, it is considered that the wave normal ort (unit vector) ~m is passing

along the [100]-axis, while the vector ~u, of the transversal elastic displacements,

is oriented along the [001]-axis in the crystalline material, i.e. ~m = [1 0 0] and

~u = [0 0 1]. Then it is obtained the deformation tensor γ

γ = γ0

2


0 0 1

0 0 0

1 0 0

 (2.2.3)

In this case the atoms of the crystal are vibrating perpendicularly to the acoustic

wave propagation, this is an example of shear strain. γ0 is the amplitude of the
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shear deformation. Now, the tensor γ of the second rank with the components γkl

with k, l =1,2,3 can be converted1 into a 6-dimension vector γ̄ = γ (0, 0, 0, 0, 1, 0)

with the components γ̄µ where µ = 1, 2, ..., 6, using the matrix notation [13, 14],

which includes re-notating γ̄µ = γkk with µ = 1, 2, 3 and γ̄µ = 2γkl where k 6=

l, µ = 4, 5, 6.

Taking the wave vector ~K and the displacement vector ~u = u~m, when these

waves are passing along the crystallographic axis [111], so that ~K ‖ ~m ‖ [1 1 1].

Due to ~K ‖[111] and ~u ‖[111], one can write ~q = ~K/| ~K| = (1/
√

3)(1,1,1) and

~u = (1/
√

3)(1,1,1), so that the corresponding deformation tensor γ takes the form

γ = 1
3


1 1 1

1 1 1

1 1 1

 (2.2.4)

The tensor γ converted into a 6-dimension vector is γ̄ = (1/
√

3) (1, 1, 1, 2, 2, 2).

This example shows the linear combination of both longitudinal and shear strain.

2.2.3 Elasticity

The elastic property of a crystal is a relation between stress and strain, which

are examples of a second-rank tensor and thus sensitive to direction [15]. When a

solid body is under the act of stress forces, the body changes its shape; but if the

applied stress is below of the elastic limit, then the strain is recoverable, namely,

the body returns to its shape. It has been observed, that for sufficiently small

stresses, the amount of strain is proportional to the magnitude of the applied

stress [13].
1This change is realized to make possible to calculate the product between the stress and

photoelastic tensors. See sections 3.4 and 4.2
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Hooke’s Law

The Hook’s law states that in an elastic solid the strain is directly proportional

to the stress. Nevertheless this law applies to small strains only [13,16].

It is seen that a both homogeneous stress and strain are each specified, in

general, by second-rank tensors, now the generalized form of Hook’s Law is written

by

γij = sijklσkl (2.2.5)

where sijkl are the compliances of the crystal and σij are the stresses. The elastic

stiffness constants and the elastic compliance constants are fourth-rank tensors.

As an alternative to below-mentioned equations, the stresses can be expressed

in terms of the strains by the equations

σij = cijklγkl (2.2.6)

here the cijlk are the stiffness constants of the crystal.

Due to the symmetry [13] in the suffixes of sijkl and cijkl (ijkl = jilk, ijkl =

jikl), it is possible to use the matrix notation for stress and strain tensors, then

them take the shorter form

γi = sijσj, (i, j = 1, 2, ..., 6) (2.2.7)

and,

σi = cijγj, (i, j = 1, 2, ..., 6) (2.2.8)

The effective elastic modulus C can be obtained by

C = γicijγj (2.2.9)

2.2.4 Piezoelectricity

When a stress is applied to certain crystals, they develop an electric moment.

Its magnitude is proportional to the applied stress and it is called the direct
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piezoelectric effect. The polarization charge per unit area is given by [13]

Pi = dijkσjk (2.2.10)

where d is the piezoelectric tensor.

When an electric field is applied in a piezoelectric crystal the shape of the

crystal changes slightly, this phenomenon is called the converse piezoelectric effect.

The components of the electric field Ei within the crystal are linearly related with

the components of the strain tensor γij by

γjk = dijkEi (2.2.11)

Writing the above-mentioned equation in its matrix form, it is obtained

γj = dijEi (i = 1, 2, 3; j = 1, 2, ..., 6) (2.2.12)

The discovery of the direct piezoelectric effect is credited to the Curie brothers.

Nevertheless, the converse piezoelectric effect was mathematically deduced, from

the fundamental thermodynamic principles, by Lippmann (1881). The existence

of the converse effect was immediately confirmed by Curie brothers in the following

publication (1881) [17–19].

Piezotransducer

Piezotransducer is a device that converts one type of energy to another by

taking advantage of the piezoelectric properties of materials, such a device can be

used for several purposes, but in generally the piezotransducers can be used to

both convert electricity into ultrasonic waves as well as convert ultrasonic waves

into electricity. When electricity is applied to a piezotransducer in the form of an

alternating current, positive and negatives charges within the element repeatedly

repel and attract each other in a way that causes the piezotransducer to vibrate.

As the piezotransducer vibrates, the air around it is displaced and a high pitch

sound is created in the form of ultrasonic sound waves [17].
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2.3 Acousto-optical interaction

The interaction within an acousto-optical cell involves the wave vectors ~k0 and
~k1 related by ~k1 = ~k0 + ~K. The are two types of acousto-optical interaction, these

are non-collinear and collinear interaction. Each one depends of the direction of

these vectors. The parameters peculiar to the material affect the efficiency, band-

width and aperture size. Most good acousto-optic materials have been identified

by noting the strong dependence of figures of merit M2 (see section 2.3.1), on the

index of refraction n and acoustic velocity V [20]. To find the maximal values of

M2 for a given material requires detailed calculations, as one can see on chapters

3 and 4

~k0

~k1

~K

o

θ1

θ0

(a)

~k0

~k1

~K

o e

θ1

θ0

(b)

Figure 2.3: Acousto-optical interaction. (a) Isotropic diffraction. (b) Anisotropic

diffraction

2.3.1 Photoelasticity

The refractive index, permittivity and dielectric constants are in general func-

tions not only of the applied electric field, but also of the stress on the crystal. The

change of refractive index caused by stress is called the photoelastic effect [13].

The stress-optical coefficients deal with the photo-elastic behaviour and give

the relation between the optical coefficients of the crystal and the components of

an applied stress tensor. Their maximum number is 36 and this number remains
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undiminished in the triclinic system of crystals because the relation cij = cji

does not generally hold good for stress-optical coefficients. Just as in the case of

optical coefficients, the largest number of moduli of elasticity and of stress-optical

coefficients that are required in each case depends on the symmetry properties of

the crystal in question [21].

Here is shown the photo-elastic tensor p, of the fourth rank, taken and con-

verted into the form of a 6 × 6 matrix with the components pλµ. In the particular

case of a CaMoO4-crystal, whose point symmetry group is 4/m, one can write [14]

pλµ =



p11 p12 p13 0 0 p16

p12 p11 p13 0 0 −p16

p31 p31 p33 0 0 0

0 0 0 p44 p45 0

0 0 0 −p45 p44 0

p61 −p61 0 0 0 p66


(2.3.1)

Where p11 = 0.17,p12 = −0.15, p13 = −0.08, p16 = 0.03, p31 = 0.10, p33 = 0.08,

p44 = 0.06, p45 = 0.06, p61 = 0.10, p66 = 0.03.

For the cubic KRS-5 crystal, whose point symmetry group is m3m, the matrix

representation for the tensor p is

pλµ =



p11 p12 p12 0 0 0

p12 p11 p12 0 0 0

p12 p12 p11 0 0 0

0 0 0 p44 0 0

0 0 0 0 p44 0

0 0 0 0 0 p44


(2.3.2)

Where p11 = 0.21, p12 = 0.22, and p44 = 0.15.
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Acousto-optical figures of merit

A large acousto-optical figure of merit is desired for device applications. The

interes in practical applications of acousto-optics caused a demand for more sen-

sitive acousto-optic materials, and thus, the study of acousto-optic materials em-

phasizes on the device optimization. There are several AO figures of merit that

have been used for judging the usefulness of an AO material. The relevant one to

be used depends on the specific applications. Smith and Korpel proposed a figure

of merit for difraction merit for difraction efficiency [22] and other figures of merit

addressing different aspects, such a bandwidth optimization and resolution were

also proposed [23, 24]. Several AO figures of merit are defined in the literature.

These include [3, 12,22,25]

M1 = n7 p2

ρ V
M2 = n6 p2

ρ V 3 M3 = n7 p2

ρ V 2 M4 = n8 p2 V

ρ
M5 = n8 p2

ρ V 3

n is the refraction index, p is the photoelastic constant, ρ is the material density,

and V is the acoustic wave velocity. These figures of merit are generally listed as

the normalized quantities M (normalized to values for fused silica).

The acoustic figure of merit is one of the fundamental parameters in materials

selection. M2 is the AO figure of merit most often referred to in the literature

and is widely used for the comparison of AO materials. This is a misconception,

since from the viewpoint of device applications, M2 is usually not appropriate.

Comparison of AO materials (or modes) based on M2 can lead to erroneous con-

clusions.

M1. This quantity can be considered as the figure of merit of the material

when the efficiency-bandwidth product is an important criterion [25, 26]. The

modulator bandwidth is an important design parameter, this is why the factor

M1 provides a useful figure of merit for materials to be used in modulators and

deflectors [27].

M2. The constant M2 is related to material properties, it is useful for estimat-

ing the efficiency of the acousto-optic diffraction. It shows the relation between
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the diffracted light power and the acoustic wave intensity. M2 is used only when

efficiency is the only parameter of concern.

M3. This constant is relevant for optimized efficiency for a specified bandwidth

and aperture time, because of in the design of AO deflectors, or Bragg cells, besides

efficiency and bandwidth, a third parameter of interest is the aperture time t. A

minimum acoustic beam height H must be chosen to ensure that the aperture is

within the near field of the acoustic radiation.

M4. This is the appropriate acousto-optical figure of merit when the acoustic

power density is the limiting factor.

M5. In the design of acousto-optical tunable filters, the parameters to be

optimized are the product of efficiency η, the resolving power λ0/∆λ, and the

solid angular aperture ∆Ω. In this case the appropriate AO figure of merit is M5.

2.3.2 Bragg diffraction

In a grating there are generally two regimes, known as Raman-Nath and Bragg,

based on the number of diffraction orders. In Bragg regime only one diffraction

order persists, in this case some 95% of incident light power is concentrated in the

first diffraction order [28]. In Raman-Nath regime there are multiple diffraction

orders, but the existence of multiple orders is usually not technologically desirable

[29]. The distinction between Raman-Nath and Bragg diffraction regimes is given

by the diffraction parameter Q, introduced by Klein and Cook [30]

Q = 2πλl

nΛ2 (2.3.3)

l is the acousto-optical interaction length, n is the refraction index.

When Q < 1, the Raman-Nath regime takes place, and when Q >> 1 the

diffraction is said to be in the Bragg regime, in this mode is required high sound

frequency and adequate interaction length. The intermediate region where 1 <

Q < 10 gives a mixture of the characteristics of both Raman-Nath and Bragg

regimes [3].
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In an isotropic medium, the maximun diffraction efficiency is obtained when

the incident light direction is at an angle θB to the acoustic wavefront. The

principle of momentum conservation requires that the acoustic and optical wave

vectors form a closed triangle. For isotropic AO diffraction the triangle is isosceles

(see Fig.2.3(a)), and the incident and diffracted optical wave vectors make the

same angle with the acoustic wavefront at the Bragg angle, which is given by [3,25]

sin θB = λ

2 n Λ
= λf

2 n V
(2.3.4)

Where λ and Λ are the light and acoustic wavelengths, respectively, n is the

refraction index, V is the acoustic velocity and f is the acoustic frequency.

Considering that the acousto-optical interaction occurs in an anisotropic uni-

axial crystal, then there are an ordinary optical wave and an extraordinary optical

wave. The refraction indices depend of the direction of propagation and the po-

larization of the optical wave. The acoustic wave could couple the incident and

diffracted optical wave of the same polarization or orthogonal polarization.

Applying the law of cosine to the triangle (see fig.2.3(b)), then the following

pair of equations, for the incident and diffraction angle, are obtained.

sin θ0,1 = λ f

2 n0,1 V

[
1 + V 2

λ2 f 2

(
n2

0 − n2
1

)]
(2.3.5)

n0,1 are the refractive indices for the incident and diffracted light, respectively.

+2

+1

+3

-1

-2

-3

0

Incident beam

Diffraction orders

θ0

+1

0

θ0 θ1

Incident beam

Diffraction orders

Figure 2.4: This figure shows both Raman-Nath and Bragg regimes
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2.3.3 Non-collinear acousto-optical interaction

Non-collinear interaction, within an acousto-optical cell, involves the wave

vectors ~k0, for incident optical wave, and ~k1, for scattered optical wave. These

vectors are related by ~k1 = ~k0 + ~K. There are two cases in the non-collinear

process, these cases are normal and anomalous scattering. Normal scattering

is obtained when ~k0, ~k1 and ~K have the same polarization state. Anomalous

dispersion is given by a change in the polarization state of those vectors. The

change in polarization state of ~k0, ~k1 and ~K is caused by a transition between

ordinary (o) to extraordinary (e) surface or vice versa. Figures 2.5 and 2.6 show

both normal and anomalous scattering cases in an uniaxial crystal.

~k1

~k0

~K

e o

(a)

~k1

~k0

~K

e o

(b)

Figure 2.5: Normal dispersion in an uniaxial crystal for non-collinear case

~k1

~k0

~K

e o

(a)

~k1

~k0
~K

e o

(b)

Figure 2.6: Anomalous dispersion in an uniaxial crystal for non-collinear case
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2.3.4 Collinear acousto-optical interaction

One have collinear interaction when the wave vectors ~k0 and ~k1 are on the same

line. The are two kind of collinear process, they are the forward and backward

cases, see Figure 2.7. Forward process will be considered.

Forward process

When the frequency f of acoustic wave is less than a few gigahertz, so called

regime of the forward scattering takes place, and the wave vectors ~k0 and ~k1 are

oriented co-directionally. During such a process, the wave vectors ~k0 and ~k1 of the

incident and scattered light beams lie along the acoustic wave vector ~K, so that

one can consider a scalar equality k1 = k0 + K for modulus of the corresponding

vectors. This scalar relation can be rewritten together with the needed equality

for frequencies as

n(λ1)
λ1

= n(λ0)
λ0

+ f

V
(2.3.6a)

ν1 = ν0 + f (2.3.6b)

where f << ν0,1.

~k1

~k0 ~K

e o

(a)

~k1
~k0

~K

e o

(b)

~k1

~k0~K

e o

(c)

Figure 2.7: Normal and anomalous dispersion in an uniaxial crystal for collinear

case. a) shows forward anomalous process, b) and c) belong to normal and anomalous

backward process
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2.4 Conclusions

The selection of acousto-optic materials depends on the specific device appli-

cation, namely, some material could be used for one type of device, but maybe

the same material is not applicable for another, for example, an optically isotropic

material can not be used for tunable filter purposes. The obtained information,

about the elastic and acoustic behaviour of the materials, makes possible to con-

sider a few estimations related to device design and how to exploit it to take

it on both optical and radio wave signal analysis. This knowledge will allow to

determinate if both calcium molybdate and KRS-5 single crystals are useful for

acousto-optical spectrum analysis. Such analysis is shown in chapters 3 and 4,

respectively.



Chapter 3

Acousto-optical spectrum

analysis of optical signals using a

collinear filter

3.1 Introduction

In this chapter is devoloped the exact and closed analytical model of the

collinear light scattering by continuous acoustic waves in birefringent crystals with

the presence of both the acoustic attenuation and divergence the acoustic beam.

The difference between the velocities of light and ultrasound gives an opportunity

for applying the quasi-stationary approximation.

3.2 Potential contribution of the dispersion

Consider the collinear geometry of stationary Bragg light scattering by coher-

ent acoustic wave in an optically dispersive medium, and take into account the

Eqs. 2.3.6a and 2.3.6b. One can expand both n(λ1) and λ−1
1 from Eq.2.3.6a in

27
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power series respect to λ in the vecinity of a point λ0. This means that

n(λ1) ≈ n(λ0) +
(

∂n

∂λ

)
λ0

∆λ + 1
2

(
∂2n

∂λ2

)
λ0

∆λ2 (3.2.1a)

1
λ1

= 1
λ0 + ∆λ

≈ 1
λ0

(
1 − ∆λ

λ0
+ ∆λ2

λ2
0

)
(3.2.1b)

in the second approximation. Now, the are two options, which will be analized.

The first option supposes that the magnitude of ∆λ is determined only by

parameters of a medium, so that ∆λ is perfectly independent on the magnitude

of the acoustic frequency f and it can be arbitrary valued.

The second option allows a dependence of ∆λ on f , so that, due to λ = c/ν

and ∆ν = ν1 − ν0 = f (see Eq.2.3.6b), one can obtain that ∆λ = −c−1λ2∆ν =

−c−1λ2f ≈ −c−1λ2
0f . Because of the carrier acoustic frecuency is limited by f <

1010Hz, λ0 ≤ 10−4 cm for the visible range and c = 3 × 1010cm/s, one can obtain

a small parameter |∆λ/λ0| ≈ λ0f/c ≤ 3 × 10−5. In the second approximation

relative to the above-estimated parameter (∆λ/λ0), the Eqs.3.2.1 convert the

Eq.2.3.6a to

n(λ1)
λ1

= n(λ0)
λ0

+
(

∂n

∂λ

)
λ0

∆λ

λ0
+ 1

2

(
∂2n

∂λ2

)
λ0

∆λ2

λ0
− n(λ0)

∆λ

λ2

−
(

∂n

∂λ

)
λ0

∆λ2

λ2
0

− 1
2

(
∂2n

∂λ2

)
λ0

∆λ3

λ2
0

+ n(λ0)
∆λ2

λ3
0

+
(

∂n

∂λ

)
λ0

∆λ3

λ3
0

+ 1
2

(
∂2n

∂λ2

)
λ0

∆λ4

λ3
0

= n(λ0)
λ0

+ f

V
(3.2.2)

Now the terms in equation 3.2.2 must be estimated.

Estimating the first derivative

The light group velocity Vg can be expressed as Vg = c
ng

= c
[
n − λ

(
∂n
∂λ

)
λ0

]−1
,

so that ng − n > 0 and ng − n = −λ0
(

∂n
∂λ

)
λ0

. The corresponding diagram for

bulk fused silica is depicted in figure 3.1. It is seen [31] from figure 3.1 that
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ng − n ∈ [0.015, 0.030] when λ0 is varied from about 1000nm to 500nm. This

means that for λ0 ≈ 500 nm one can take the estimating value of about

|ng − n| =
∣∣∣∣∣λ0

(
∂n

∂λ

)
λ0

∣∣∣∣∣ ≤ 3 × 10−2 (3.2.3)

Figure 3.1: Group and phase refractive indices in bulk fused silica

Estimating the second derivative

The group velocity dispersion is described by k2 = (λ3
0/2πc2) (∂2n/∂λ2)λ0

which

is directly proportional to the dispersion parameter D(λ0) = −2πck2/λ2
0. It is

possible to write (
∂2n

∂λ2

)
λ0

= − c

λ0
D(λ0) (3.2.4)

k2 and D(λ0) are usually represented graphically in the bibliography.Thus, for

example, for λ0 ≈ 500 nm one can estimate∣∣∣∣∣12λ2
0

(
∂2n

∂λ2

)
λ0

∣∣∣∣∣ = 1
2

|λ0cD(λ0)| ≤ 5 × 10−2 (3.2.5)

After these estimations, one has to simplify the Eq.3.2.2 and compare the

terms. Multiplying Eq.3.2.2 by λ0 and extracting the terms corresponding to the
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(a) (b)

Figure 3.2: Dispersion parameters in bulk fused silica

estimations from Eq.3.2.3 and 3.2.5

λ0

(
∂n

∂λ

)
λ0

∆λ

λ0
+ 1

2
λ2

0

(
∂2n

∂λ2

)
λ0

∆λ2

λ2
0

− n(λ0)
∆λ

λ0

−λ0

(
∂n

∂λ

)
λ0

∆λ2

λ2
0

− 1
2

λ2
0

(
∂2n

∂λ2

)
λ0

∆λ3

λ3
0

+ n(λ0)
∆λ2

λ2
0

+λ0

(
∂n

∂λ

)
λ0

∆λ3

λ3
0

+ 1
2

λ2
0

(
∂2n

∂λ2

)
λ0

∆λ4

λ4
0

= fλ0

V
(3.2.6)

Equation 3.2.6 should be analyzed separately for two above-mentioned options.

In the first case, of mutual independence ∆λ and f , it is possible to use the first

approximation when the Eq. 3.2.6 could be simplified to

f = V

λ0

[
λ0

(
∂n

∂λ

)
λ0

− n(λ0)
](

∆λ

λ0

)
(3.2.7)

In the particular case of conventional codirectional collinear acousto-optical

interaction in anisotropic medium, one could find dλ ∼ ∆λ and dn ∼ ∆n with

∆n � n(λ0)|∆λ/λ0|, so that

f = V ∆n

λ0
(3.2.8)

In the second case of ∆λ = −c−1λ2
0f , one has to take into account the terms
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being quadratic on |∆λ/λ0|. This circumstance leads to the relation

λ0

(
∂n

∂λ

)
λ0

∆λ

λ0
+ 1

2
λ2

0

(
∂2n

∂λ2

)
λ0

∆λ2

λ2
0

− n(λ0)
∆λ

λ0

−λ0

(
∂n

∂λ

)
λ0

∆λ2

λ2
0

+ n(λ0)
∆λ2

λ2
0

= fλ0

V
(3.2.9)

Simplifying the Eq.3.2.9 by the factor ∆λ = −c−1λ2
0f , one can obtain

f =
(

c

λ0

) c
V

+ n(λ0) − λ0
(

∂n
∂λ

)
λ0

n(λ0) − λ0
(

∂n
∂λ

)
λ0

+ 1
2λ2

0

(
∂2n
∂λ2

)
λ0

(3.2.10)

With λ0 ≤ 10−4 cm for the visible range and c = 3 × 1010 cm/s, one can estimate

c/λ0 ≤ 3 × 1014 Hz

3.3 Collinear AO interaction in a slightly

dispersive uniaxial material

A set of stationary evolution equations for the amplitudes C0(x) and C1(x)

of the incident and scattered light waves, respectively, with slightly mismatched

wave vectors is given by [32,33]

dC0,1

dx
= ∓q1,0

2
C1,0 exp(∓ i ∆k x), (3.3.1)

q0,1 are the amplitude parameters of the anomalous light scattering, ∆k = |~k1 −
~k0 − ~K| is the mismatch of wave vectors. Due to mismatch ∆k 6= 0, the corre-

sponding frequency bandwidth is

∆f ≡ δf = V L−1, (3.3.2)

L is the length of collinear interaction. Now, to take into account the linear

acoustic losses and divergence of the acoustic beam in a crystalline material, it will

be supposed that the parameters q0,1 are now some functions of the coordinate x.

The linear acoustic losses can be described, if there are setting q0,1(x) ∝ exp(−αx),
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where α is the amplitude factor of losses. The divergence of the acoustic beam

can be characterized by the plane angle θ = κ Λ d � 1, where the factor κ ≈ 1, Λ

is the acoustic wave lenght, and d � Λ is the transducer aperture. The acoustic

beam aperture D(x) at the distance x can be estimated as D(x) = d + θx. The

contribution of divergence looks like q0,1(x) ∝ (1 − βx)−2, where β = θ/d. To

combine both these effects, q0,1(x) ∝ q0,1 exp(−αx)(1 + βx)−2 will be taken and

Eq. 3.3.1 will be modified as

dC0,1

dx
= ∓ q1,0

2(1 + βx)2 C1,0 exp[(−α ∓ i ∆k) x], (3.3.3)

with the conservation law in the form of q0|C0|2 + q1|C1|2 = const. Eqs. 3.3.3

should be solved with the boundary conditions

C0(x = 0) = A0 (3.3.4a)

C1(x = 0) = 0 (3.3.4b)

where A0 is the incident light amplitude. One can extract from Eq. 3.3.3 an

individual stationary evolution equation for the scattered light wave

d2C1

d2x
+ dC1

dx

(
2β

1 + βx
+ α − i ∆k

)
+ q2

4
C1(1 + βx)−4 exp(−2αx) = 0, (3.3.5)

where q = √
q0 q1 = πλ−1√2M2 P SA [32, 33], M2 is the coefficient of acousto-

optical merit inherent in a crystal, P is the acoustic power, and SA is the initial

cross-section area of acoustic beam close to the piezo-transducer. In the particular

case of ∆k = 0 and A0 = 1, Eq. 3.3.5 has the following analytical solution

C1(x) = sin
{

q

2β

[
1 − e−αx

1 + βx

]
+ αq

2β2 exp
(

α

β

)[
Ei

(
−α

β

)]

− αq

2β2 exp
(

α

β

)[
Ei

(
−α

β
− αx

)]}
(3.3.6)

in terms of the exponential integral function Ei(z)

Ei(z) = −vp
∫ ∞

−z
t−1e−tdt
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where the principal value of this integral is taken [34]. Equation 3.3.6 can be

exploited to estimate the contributions of both the linear acoustic attenuation

and the angular divergence to a collinear acousto-optical interaction. These two

effects have different dependences on the acoustic frequency due to α ∝ Ω2 [35],

while β ∝ 1/Ω. When ∆k 6= 0 Eq. 3.3.5 can be exploited for estimating

the effects of linear acoustic attenuation and angular divergence of the acous-

tic beam on the bandwidth of collinear interaction. For this purpose one can

take C1(x) = A(x) exp[iϕ(x)], substitute it in Eq. 3.3.5 and obtain a set of two

following equations

d2A

d2x
+ dA

dx

(
2β

1 + βx
+ α

)
+ A

∆k
dϕ

dx
−
(

dϕ

dx

)2

+ q2e−2αx

4(1 + βx)4

 = 0 (3.3.7)

A
dϕ

dx
+ ϕ

[
2dA

dx
+ A

(
2β

1 + βx
+ α

)]
− ∆k

dA

dx
= 0 (3.3.8)

The equation 3.3.8 has the integral solution

ϕ(x) = A−2(1 + βx)−2e−αx

[
ζ + ∆k

2

∫ d (A2)
dx

(1 + βx)2eαxdx

]
(3.3.9)

First, one can show that the integration constant ζ in Eq. 3.3.9 is perfectly

inessential for the further consideration, so ζ can be taken to be zero. Second, it

will be supposed that varying the last two terms under the integral in Eq. 3.3.9 is

much slower than the first one and, consequently, these last terms can be factored

out from the integral. After these two steps, Eq. 3.3.9 gives the approximate

solution ϕ(x) ≈ ∆k/2 to Eq. 3.3.8, which corresponds to the case of neglecting

the effects of linear attenuation and angular divergence on the acoustic beam in

the phase ϕ(x), i.e. of α = 0 and β = 0.

Unfortunately, an exact solution to Eq. 3.3.7 can not be expresed in the closed

analytical form even under the above-listed simplifications. That is why one are

forced to make the third step in our approximations; namely, the Eq. 3.3.7 will

be considered for the lowest approximation relative to the parameters α and β in

each particular term. Such a strongly reduced form of Eq. 3.3.7 is given by
d2A

d2x
+ dA

dx
(2β + α) + A

4
[
(∆k)2 + q2

]
= 0 (3.3.10)
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An exact solution to Eq. 3.3.10, with the natural boundary conditions, can be

written as

A(x) ∝ exp
[
−
(

α

2
+ β

)
x
]

sin
[
x

2

√
q2 + (∆k)2 − (α + 2β)2

]
(3.3.11)

The bandwidth of scattering can be estimated by the first zero of a sinus

function in Eq. 3.3.11, so one yield L
√

q2 + ∆k2 − (α + 2β)2 = 2π, therefore a

small signal bandwidth with q → 0 can be expressed as

∆f = V

√
1

L2 + (α + 2β)2

4π2 (3.3.12)

∆f is the corresponding frequency bandwidth. It should be noted that the con-

tributions obtained in Eq. 3.3.12 for the considered effects are not additive to the

portion listed in Eq. 3.3.2

3.4 Efficiency of collinear AO interaction in a

calcium molybdate single crystal

Now, considering a few practically useful estimations related to experimental

observation of the collinear acousto-optical interaction, with linear acoustic losses

in a two-mode crystalline cell made of a calcium molybdate (CaMoO4) single

crystal, is possible to observe only anomalous process of light scattering, so that

the parameters q0,1 are described [32] by

q0,1 =

∣∣∣~k0,1

∣∣∣
4n2

0,1

(
~̃e0 ∆ε~e1

)
(3.4.1)

n0,1 are the refractive indices for the interacting light waves,
∣∣∣~k0,1

∣∣∣ = 2πn0,1/λ, λ

is the light wavelength in a vacuum, and the last term in brackets, describing the

efficiency of interaction, is subject to find. This term includes the eigen-orts ~e0,1

of polarizations for the incident and scattered light beams as well as the tensor ∆ε

of perturbations of the dielectric permittivity under action of the acoustic wave
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in a medium. To estimate the efficiency of collinear acousto-optical interaction

in a calcium molybdate cell, i.e. to find the contribution of brackets to Eq.3.4.1,

it is necessary to find the dielectric permittivity perturbations tensor ∆ε whose

components can be written as ∆εij = εim εnj pmnkl γkl

The unperturbed dielectric permittivity tensor ε in the main crystallographic

axes is

ε =


ε0 0 0

0 ε0 0

0 0 εe

 (3.4.2)

ε0 = n2
0 and εe = n2

e are the eigen-values of the unperturbed dielectric permittivity

tensor ε.

Using the same procedure like in section 2.2.2 and taking the photoelastic

tensor p (see section 2.3.1) of the fourth rank for a calcium molybdate single

crystal in the form of a 6 × 6 matrix p̂, it will be allowed first to construct and

to calculate the product p̂γ̄ = γ0(0, 0, 0, p45, p44, 0), and then to convert the result

back to the form of a standard tensor (pγ) of the second rank. Then, the result

of calculating has the form

∆ε = γ0 ε0 εe


0 0 p44

0 0 p45

p44 p45 0

 (3.4.3)

Now, taking into account the orts (unit vectors) ~e0,1 of polarization for the

incident and scattered light waves. When the wave vectors of these light waves

are collinear to both the wave normal ort ~m, for the acoustic wave, and to the

[100] -axis in calcium molybdate crystal, the eigen-orts ~e0,1 of light polarizations

should be oriented along the [0,1,0] and [0,0,1] axes [see Eq. 3.4.2], so that one

can take for example ~e0 = [0, 1, 0] and ~e1 = [0, 0, 1] with n0 = no and n1 = ne.

And it is obtained the contribution of the brackets in Eq. 3.4.1

~̃e0 ∆ε~e1 = ~̃e1 ∆ε~e0 = γ0 ε0 εe p45 (3.4.4)
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In so doing, it is possible to find that q0,1 = π(2λ)−1 ne,o γ0 n2
o,e p4,5. The

difference beetwen q0 and q1 is rather small, because qo/q1 = no/ne. Due to the

amplitude of deformation can be explained as

γ0 =
√

2P

ρV 3

one can finally obtain

q0 = π

λ

√√√√P

2

(
n2

e n4
o p2

45

ρV 3

)
(3.4.5a)

q1 = π

λ

√√√√P

2

(
n2

o n4
e p2

45

ρV 3

)
(3.4.5b)

P is the acoustic power density. The factors taken in brackets in Eqs. 3.4.5 repre-

sent the acousto-optical figures of merit M2 peculiar for estimating the efficiency

of crystalline materials in acousto-optics [36].

Numerical estimations

At this step, it is possible to perform a few numerical estimations. First,

the acousto-optical figures of merit M2, peculiar to the geometry of collinear

interaction under consideration, will be estimated. The magnitude of M2 depends

pricipally on the constant p, which can vary over a wide range from crystal to

crystal. Suffiently effective collinear scattering of light by bulk acoustic wave

associated with |p| ≥ 0.05, had been observed in cell made of the three following

single crystals: quartz (α-SiO2) and lithium niobate (LiNbO3) on the longitudinal

acoustic waves passing along the x-axis and on the shear waves running along y-

axis, and then, calcium molybdate (CaMoO4) on the shear wave passing along

the x-axis. Among these crystals, collinear interaction on the shear acoustic wave

in calcium molybdate with p = p45 = 0.06 exhibits the lowest frecuency Ω lying

in a frequency range of about 30 − 100MHz for light beams in visible range of

spectrum. The other parameters are: ρ = 4.34g/cm3 and V = 2.95 × 105cm/s,

while the refractive indices are slightly dispersive in behavior (see Table 3.4.1) [37].
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Taking, for example, p45 = 0.06, ne = 2.0239, and no = 2.0116 at the cho-

sen light wavelength 532nm [38, 39] and calculate M2 ≈ 2.07 × 10−18s3/g in a

quite acceptable approximation of q0 ≈ q1, i.e. with an accuracy of about 1%.

Then the dependence of the acoustic frequency f on the light wavelength λ can

be found from Eq. 3.2.8 and Table 3.4.1. For instance, the magnitude of this

frequency can be estimated as f ≈ 61MHz at the green light wavelength λ

of 532nm. Then, the parameter of linear acoustic losses for the shear acous-

tic waves passing along the x-axis is about Γ = 60dB/(cm GHz2), that gives

us, for example, the above-introduced amplitude factor of acoustic attenuation

α = (ln 10/20)Γf 2 ≈ 0.025cm−1 at the frequency of 61MHz. The angular di-

vergence of acoustic beam in a calcium molybdate collinear cell at the frequency

f = 61MHz can be estimated as well. Practically, a realiable spatial size of the

initial acoustic beam aperture, which will be consider, is close to d ≈ 0.3 cm.

Thus one can estimate Λ = V/f = 4.82 × 10−3cm, β = Λ/d 2 = 5.35 × 10−2cm−1

and conclude that α and β have the same order of magnitudes in the particular

case of calcium molybdate under consideration.

λ (nm) 500 600 700 800 900 1000

ne 2.0239 1.9983 1.9843 1.9781 1.9705 1.9658

no 2.0116 1.9884 1.9775 1.9683 1.9634 1.9597

Table 3.4.1: Dispersion of the main refractive indices ne and no in the calcium

molybdate single crystal [38,39]

3.5 Scheme for the experiments within a

calcium molybdate cell

To realize experimentally the process of acousto-optic filtering, it will be used

the schematic arrangement depicted in Fig. 3.3. It consists of a continuous-wave
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laser, a crystalline acousto-optical cell with a pair of polarizers, whose combinated

scheme is presented in details on Fig. 3.4, a photo-detector, and a set of electronic

equipment for generating and registering the corresponding electric ultra-high-

frequency (UHF) radio-wave signal, which is applied to the electronic input of the

collinear acousto-optical cell (see Fig. 3.4) and to the oscilloscope as the etalon

signal (see Fig. 3.3). A two-mode copropagating collinear CaMoO4 crystalline

cell was characterized by a crystal length L = 44mm along the [100]-axis, and

an acoustic velocity V = 2.95 × 105 cm/s for the shear elastic mode, whose

displacement vector is oriented along the [001]-axis.

Continuous-wave laser Collinear acousto-optical cell
Photo

detector

b

generator
Oscilloscope

Band-pass

filter

UHFSignal

generator

Polarizer 1 Polarizer 2

Figure 3.3: Schematic arrangment of the experimental set-up

Electronic UHF-signal

Polarizer 1

Prism 1

Incoming

light beam

Crystalline material

Piezotransducer

Continuous acoustic wave

Prism 2 Polarizer 2

Issuing light

beam

Absorber

Figure 3.4: Scheme of the copropagating collinear calcium molybdate acousto-optical

cell providing the traveling-wave regime of interaction

The continuous-wave beam at a green light wavelength λ = 532nm was used

as an optical pump during the experiments. The first polarizer was precisely



3.6. Conclusions 39

aligned in correspondence with the optical axes of a crystal in the cell. After the

interaction with an acoustic signal, already two ortogonally polarized light beams,

incident and signal ones, passed through the cell. The second polarizer gave an

opportunity to be aligned in correspondence with the polarization of the signal

beam and to extract the output optical signal.

3.6 Conclusions

The obtained experimental data make possible considering a few estimations

of an advanced collinear AOF based on calcium molybdate single-crystal. This

new AOF with a 15-microsecond time-aperture operates over all the visible range

exhibiting 60%-efficiency at the electric power 1.0 W. Its bandwidth, which in fact

characterizes the resolution due to the well-known relation ∆f ≡ δf between the

frequency bandwidth and the frequency resolution in the case of collinear scheme,

includes two contributions. The first one does not depend on the divergence angles

of both optical an acoustic beams, and it prevails when these angles are under a

critical angle.

The second contribution dominates with really wide-angle divergence of these

beams or when AOF crystal is sufficiently long; so that the bandwidth shows a

quadratic growth as the divergence angles increase. Estimating that critical angle

shows that it does not exceed 10 degres when the crystal is shorter than 6 cm in

length and the acoustic frequency is lower than 100 MHz.



Chapter 4

Acousto-optical spectrum

analysis of radio-wave signals

using collinear wave heterodyning

4.1 Introduction

The technique under proposal for a precise spectrum analysis within an algo-

rithm of the collinear wave heterodyning implies a two-stage integrated processing,

namely, the wave heterodyning of a signal in a square-law nonlinear medium and

then the optical processing in the same solid state cell. Technical advantage of this

approach lies in providing a direct multichannel parallel processing of ultrahigh-

frequency radio-wave signals with essentially improved frequency resolution.

Analytic expression for the corresponding effective acoustic modulus of the

third order in KRS-5 has been found. Contrary to the recently developed the-

oretical approach based on the technique of substantial approximations [8, 9], a

regime of the coupled acoustic modes is considered, which provides more accurate

analysis.

40
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4.2 Efficiency of acousto-optical interaction in a

KRS-5 cubic single crystal

One can start from estimating the potential efficiency I of Bragg light scat-

tering by the longitudinal acoustic waves in a KRS-5 single crystal. Taking the

same orientation shown in Fig. 4.1. To obtain the figure of acousto-optical merit

M2 inherent in the selected cut of a KRS-5 crystal, first of all both the effec-

tive photo-elastic constant peff = ~e1(pγ(L))~e0 and the velocity VL must be found.

Taking into account the result in eq. 2.2.4 and the photoelastic tensor in 2.3.2,

one can calculate the matrix product pγ̄(L) = (1/3)(p11 + 2p12, p11 + 2p12, p11 +

2p12, 2p44, 2p44, 2p44) and convert it back to the form of a standard tensor ( p γ(L) )

of the second rank [14]. The effective photo-elastic constant can be written from

the scalar form

peff = 1
3
~e1


p11 + 2p12 2p44 2p44

2p44 p11 + 2p12 2p44

2p44 2p44 p11 + 2p12

~e0 (4.2.1)

~e0 and ~e1 describe the polarization states of incident and scattered light beams,

respectively.

Figure 4.1: Crystallographic orientations for the piezoelectric transducer and the

crystalline material in a KRS-5 cell.

Due to ~K||[111], if the Bragg angles are omitted as small values, the wave

vectors ~k0 and ~k1 of the incident and scattered light beams, respectively, should
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lie in the (111)-plane to be orthogonal to ~K]. One can put ~k0 = ~k1 = ~k when

the Bragg angles are neglected. Due to optical isotropy of cubic KRS-5 crystal,

one can select ~k||[11̄0]. In this particular case, one has an opportunity to consider

the vectors ~e0 and ~e1 belonging to (11̄0)-plane, which includes [110], [111] and

[001] axes; therewith the axes [110] and [001] give an orthogonal basis, because

[110]⊥[001]. In so doing, one takes at first the angles α0 , 1 as current angles

between ~e0 , 1 and the [001]-axis. Consequently, one can easily obtain that ~e0,1 =(
sin α0,1/

√
2, sin α0,1/

√
2, cos α0,1

)
, so that ~e0,1||[001] when α0,1 = 0. Changing

the initial position for the vectors ~e0,1 via the substitution the angles α0,1 by the

new angles α0,1 + β1, where β1 = arccos(1/
√

3) ; i.e. one can write

~e0,1 =
(

1√
2

sin(α0,1 + β1),
1√
2

sin(α0,1 + β1), cos(α0,1 + β1)
)

(4.2.2)

After such a substitution, one will have finally obtained that ~e0,1||[111] when

α0,1 = 0. Usually, two types of light scattering can be realized. At first, one can

consider the normal scattering when α1 = α0. In this case,

p
(n)
eff = 1

3
{
(p11 + 2p12 + 2p44) sin2(α0 + β1) + 2

√
2p44

× sin[2(α0 + β1)] + (p11 + 2p12) cos2(α0 + β1)
}

(4.2.3)

Eq. 4.2.3 was simulated numerically with p11 = 0.21, p12 = 0.22, and p44 =

0.15 (see Fig. 4.2(a)). The oscillating plot exhibits a maximum magnitude

p
(n)
eff max = 0.417 at α0 = πk, k = {· · · , −1, 0, 1, · · · } and a minimum magni-

tude p
(n)
eff min = 0.117 at α0 = (π/2) + πk. The second type is associated with the

anomalous light scattering when α1 = α0 +(π/2). Similar process is characterized

by

p
(an)
eff = p44

3
{
sin[2(α0 + β1)] + 2

√
2 cos[2(α0 + β1)]

}
(4.2.4)

This value reaches its maxima p
(an)
eff max = 0.15 with α0 = (π/4) + (πk/2). The

plots associated with these angular distributions for the effective photo-elastic

constants in a KRS-5 single crystal are shown in Fig. 4.2(b).
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(a) (b)

Figure 4.2: Abolute dependences for the effective photo-elastic constants in a KRS-5

single crystal versus the angle α0: normal light scattering (a) and anomalous light

scattering (b)

One can use the tensor C of elastic moduli to estimate the velocity of the lon-

gitudinal wave. Its components Cλ µ will be non-zero only with C11 = C22 = C33,

C44 = C55 = C66, and C12 = C13 = C21 = C23 = C31 = C32. The corresponding

effective elastic modulus of the second order is

C2 = (1/3)(C11 + 2C12 + 4C44) (4.2.5)

which describes the velocity VL inherent in the selected pure elastic longitudinal

mode as VL =
√

C2/ρ, where ρ is the material density. Using C11 = 3.4 · 1011

dyne/cm2, C12 = 1.3 · 1011 dyne/cm2, C44 = 0.58 · 1011 dyne/cm2, and ρ = 7.37

g/cm3 peculiar to a KRS-5 crystal and estimate VL = 1.92 · 105 cm/s. Together

with this, one has to note that acoustic attenuation peculiar to this acoustic mode

is not too low and is characterized by the factor Γ = 10 dB/(cm GHz2) [38,39].

The maximal magnitude inherent in the corresponding figures of acousto-

optical merit, M2 = n6
(
p

(n)
eff max

)2
/(ρV 3

L ) ≈ 930 × 10−18 s3/g with n = 2.57

at λ = 671 nm, is related to the normal scattering in a KRS-5 single crystal.

The performed calculations demonstrate that the normal light scattering by the

longitudinal elastic wave is a few times more efficient than the anomalous one.

The other side of estimating the efficiency of acousto-optic interaction is con-
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nected with choosing the regime of light scattering. The most efficient one is the

Bragg regime, which is shown in fact in Fig.4.3(a). It allows a 100% efficiency of

light scattering and occurs with large enough length L of interaction between light

and acoustic waves when the dynamic acoustic diffractive grating is sufficiently

thick.

(a) (b)

Figure 4.3: Schematic arrangment of the interacting beams in a two-cascade acousto-

optical cell (a), and the illustrating spatial distribution for powers of the interacting

acoustics waves (b).

Such a regime can be realized only when the angle of light incidence on that

acoustic grating meets the corresponding Bragg condition, which can be assumed

to be provided in advance, and the inequality Q = 2πλLf 2
D/(n V 2

L ) >> 1 for the

Klein-Cook factor Q [30] is satisfied.

Taking, for example, λ = 671nm, L = 1.0 cm, and VL = 1.92 × 105 cm/s, one

can estimate Q > 7 for fD > 40MHz. Thus, the Bragg regime of light scattering

could be expected for the acoustic difference-frequencies at least exceeding 40MHz

in a KRS-5 single crystal, so that the acoustic frequency fD = 40MHz can be

considered as a lower limit for the Bragg regime of light scattering.
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4.3 Codirectional collinear acoustic wave

heterodyning

At this stage, effect of a three-acoustic wave mixing associated with the lon-

gitudinal elastic wave propagating along the [111]-axis in a KRS-5 single crystal

is under consideration. It can be done using the Shapiro-Thurston equation [40]

reduced down to terms of the third order in its general form

ρ
∂2ui

∂t2 − Cijkl
∂2uk

∂xj∂xl

= C̃ijklqr
∂uq

∂xr

∂2uk

∂xj∂xl

(4.3.1)

C̃ijklqr = Cijklqr + Cijlqδkr + Cilqrδjk + Ciklqδjr (4.3.2)

These equations include all the components. In the above-chosen configura-

tion, the direction cosines ni (i = 1, 2, 3) should satisfy a pair of the following

obvious conditions n1 = n2 = n3 and n2
1 + n2

2 + n2
3 = 1, so that ni = 1

/√
3 .

Using Eqs.4.3.1, 4.3.2, and after some calculations, one can obtain the following

effective elastic modulus of the third order

C3 = C111+2C123+6C112+12C144+16C456+24C155+9C11+18C12+36C44 (4.3.3)

and (exploiting, for example, the data from Ref. [41]) conclude that the longitu-

dinal elastic wave propagating along the [111]-axis is definitely capable of mixing

the acoustic waves in a KRS - 5 single crystal.

Now, one can introduce the new coordinate axis x oriented along the [111]

crystallographic axis of KRS-5, so that ~x||~m||[111] and Eq.4.3.1 takes the form

∂ 2 u

∂ t2 − V 2
L

∂2 u

∂ x2 = C3

ρ

∂ u

∂ x

∂ 2 u

∂ x2 (4.3.4)

The first term in Eq.4.3.4 can be approximately converted within the quasi-

linear linear form of ∂ u/∂ t ≈ −VL( ∂ u/∂x ) as ∂ 2u/∂ t2 ≈ −VL( ∂2u/∂x ∂ t ).

Then, using the obvious relation 2 (∂ u/∂x) (∂2 u/∂x2) = ( ∂/∂ x )(∂ u/∂ x)2, one
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can integrate Eq. 4.3.4 with respect to x. After that an additional phenomenolog-

ical term α VL u can be included to take into account linear acoustic losses, which

are physically characterized by the amplitude decrement α , reflecting usually just

the square-law frequency dispersion of losses in solids. As a result, one can write

∂ u

∂ t
+ VL

∂ u

∂ x
+ α VL u = Γ

2
VL

(
∂ u

∂ x

) 2

(4.3.5)

where Γ = − C3/ C2,VL =
√

C2/ρ, and C2 = ( C11 + 2 C12 + 4 C44 )/3 is the

elastic modulus of the second order for ~x||~m||[111]. A one-dimensional wave

equation [Eq. 4.3.5] for the complex amplitude of an elastic wave is peculiar for

characterizing a three-wave mixing in a medium with linear dispersive losses and

square-law nonlinearity. Because of a square-law dispersion of acoustic losses,

the complex amplitude u can be taken in the form of a superposition of only a

triplet of waves including the pump, the signal wave, and the difference-frequency

wave, namely, u = uP + uS + uD, while the second harmonics of both the pump

and the signal wave as well as their sum-frequency component can be omitted in

this project of the chosen solution. Starting, for example, from the pump, one can

write the corresponding complex amplitude as uP ( x , t ) = AP ( x ) exp [ i ( kP x−

ωP t ) ] + A∗
P ( x ) exp [ − i ( kP x − ωP t ) ] and note its losses as αP . Substituting

this formula into the left hand side of Eq. 4.3.5, one can calculate

V − 1
L

∂ uP

∂ t
+ ∂ uP

∂ x
+ αP u =

[
αP AP + d AP

d x

]
exp [ i ( kP x − ωP t ) ]+[

αP A∗
P + d A∗

P

d x

]
exp [ − i ( kP x − ωP t ) ]

(4.3.6)

It is seen that the relations analogous to Eq.4.3.6 can be obtained for the signal

and difference-frequency waves. To construct the contribution (∂ u/∂ x) 2 in the

right hand side of Eq.4.3.5 one has to estimate the summands. Applying the

slowly varying amplitudes technique, one has to take into account the inequalities

| d Aj ( x )/d x | << kj | Aj ( x ) |, j ∈ [ P , S , D ] . Consequently, the following
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approximation appears(
∂u

∂x

)2

≈ (ikP {AP (x) exp[i(kP x − ωP t)] − A∗
P (x) exp[−i(kP x − ωP t)]}

+ikS {AS(x) exp[i(kSx − ωSt)] − A∗
S(x) exp[−i(kSx − ωSt)]}

+ ikD {AD(x) exp[i(kDx − ωDt)] − A∗
D(x) exp[−i(kDx − ωDt)]})2

(4.3.7)

Now, one must consider two different regimes of a three-wave mixing. The

right hand sides of Eqs.4.3.6 and 4.3.7 give

1. fS = fP + fD :
d AS

dx
+ αS AS = βS AD AP (4.3.8a)

d AP

dx
+ αP AP = − βP A∗

D AS (4.3.8b)

d AD

dx
+ αD AD = − βD A∗

P AS (4.3.8c)

2. fP = fS + fD :

d AP

dx
+ αP AP = βP AD AS (4.3.9a)

d AS

dx
+ αS AS = −βS A∗

D AP (4.3.9b)

d AD

dx
+ αD AD = − βD A∗

S AP (4.3.9c)

where β S = 0.5 Γ kP kD, β P = 0.5 Γ kS kD, and β D = 0.5 Γ kP kS are the

coupling factors. At this step, one can take AD, S,P = aD, S,P exp [ i ( ϕD, S,P ) ] ,

where aD, S,P and ϕD, S,P are the real-valued amplitudes and phases of non-optical

waves. Consider, for example, Eq. 4.3.8 governing the system in a regime of

fS = fP + fD with sign( fP − fS ) = −1. Dividing real and imaginary parts in Eq.

4.3.8, one can find two groups of the real-valued equations
d aS

dx
+ αS aS = βS aD aP cos ( ϕS − ϕD − ϕP ) (4.3.10a)

d aD

dx
+ αD aD = − βD aS aP cos ( ϕS − ϕD − ϕP ) (4.3.10b)

d aP

dx
+ αP aP = − βP aD aS cos ( ϕS − ϕD − ϕP ) (4.3.10c)
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d ϕS

dx
aS = βS aD aP sin ( ϕS − ϕD − ϕP ) (4.3.11a)

d ϕD

dx
aD = − βD aS aP sin ( ϕS − ϕD − ϕP ) (4.3.11b)

d ϕP

dx
aP = − βP aD aS sin ( ϕS − ϕD − ϕP ) (4.3.11c)

Equations 4.3.10 and 4.3.11 can be analyzed with the natural for similar prob-

lems boundary conditions UP 6= 0, US 6= 0, and UD = 0, where UP , S , D =

AP , S , D ( x = 0 ). With these conditions, one can find from Eq.4.3.10b that
d aD

dx
( x = 0 ) = − βD UP US. Here, the following quite natural approximation

can be done; namely, putting aP >> aS, aD almost everywhere in an area of in-

teraction. In this particular case, Eq.4.3.10c can be solved in a given field approx-

imation as aP = UP exp ( −αP x ), while Eq.4.3.11c gives d ϕ P

dx
= 0. Substituting

these solutions into Eqs.4.3.10 and 4.3.11 and dividing real and imaginary parts,

one can obtain
d aS

dx
+ αS aS = βS aD UP exp ( −αP x ) cos ϕ (4.3.12a)

d aD

dx
+ αD aD = − βD aS UP exp ( −αP x ) cos ϕ (4.3.12b)

d ϕ

dx
= UP exp ( −αP x ) sin ϕ

(
βD

aS

aD

− βS
aD

aS

)
(4.3.12c)

ϕ = ϕ S − ϕ P − ϕ D (4.3.12d)

From the first integral of Eqs.4.3.12, with allowance for the boundary condi-

tion aD (x = 0) = 0, which is characteristic of wave heterodyning, one can find

that dϕ/dx ≡ 0 and sin ϕ ≡ 0, so that one can take, for example, cos varphi = 1.

Equations 4.3.9a-4.3.9c, associated with the regime fP = fS + fD with sign( fP −

fS ) = +1, can be analyzed by similar way via substituting βS → − βS. Con-

sequently, Eqs.4.3.12a and 4.3.12b give the two following pairs of the combined

ordinary differential equations of the first order
d aS

dx
+ αS aS = − sign ( fP − fS ) βS aD UP exp ( −αP x ) (4.3.13a)

d aD

dx
+ αD aD = − βD aS UP exp ( −αP x ) (4.3.13b)
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Excluding aS from Eq. 4.3.13, one can write a linearized version for the needed

second-order ordinary differential equation

d2aD

dx2 + (αP + αS + αD)daD

dx
+ [αD(αP + αS)

− sign(fP − fS)βSβDU2
P exp(−2αP x)

]
aD = 0 (4.3.14)

Because of the above-mentioned dispersion of losses included in the factors αP ,

αS and αD, one can extract their square-law proportionalities to the corresponding

carrier frequencies of acoustic waves αP,S,D ∼ f 2
P,S,,D and write

αP + αS + αD = 2 αP [ 1 + δ sign ( fP − fS ) + δ2 ] (4.3.15a)

αP + αS − αD = 2 αP [ 1 + δ sign ( fP − fS ) ] (4.3.15b)

with δ = fD/fP << 1. Introducing the notations g = − δ sign ( fP − fS ) + δ2,

and h = δ sign ( fP − fS ), so that g ≈ − h due to the smallness of δ, one can

express the exact solution to Eq.4.3.14 in terms of the Bessel functions as

aD (x) = exp [−αP x(1 + g)]
{
C1Z(h−1) [ξ exp (−αP x)] (4.3.16)

+C2Z(1−h) [ξ exp (−αP x)]
}

where ξ = α−1
P UP

√
βS βD, is the normalized acoustic wave amplitude. Then,

Zν = Jν when fP < fS and sign( fP − fS ) = −1, while Zν = Iν with fP > fS

and sign( fP − fS ) = +1 (for example, see Ref. [42]). Jν and Iν are the first

and second orders Bessel, respectively. Exploiting the above-mentioned boundary

conditions for aD and its spatial derivative, one can determine the constants C1 , 2

of integration in Eq.4.3.16 as

C1 =
(

− 2 βD UP US

αP ξ

)
Z ( 1−h ) ( ξ )
W ( ξ , h )

(4.3.17a)

C2 =
(

2 βD UP US

αP ξ

)
Z ( h−1 ) ( ξ )
W ( ξ , h )

(4.3.17b)

W ( ξ , h ) = Z(1−h)( ξ ) [Z ( h−2 )( ξ ) + sign(fP − fS)Zh( ξ )]

−Z (h−1)( ξ ) [Z ( −h )( ξ ) + sign(fP − fS)Z(2−h)( ξ )](4.3.18)
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Thus, Eqs.4.3.16 - 4.3.18 represent the solution describing the spatial distribution

for the difference-frequency acoustic wave along the acousto-optical cell exploit-

ing collinear acoustic wave heterodyning. In the above-noted particular cases,

Eq.4.3.18 can be simplified as W ( ξ , h ) = − 4 ( π ξ )−1 sin ( π δ ) sign ( fP −fS ),

so that one can write

1. fS = fP + fD, sign(fP − fS) = −1:

aD (αP x) =
πβDUP US

{
J(−δ−1)(ξ)J(1+δ) [ξ exp(−αP x)]

}
2αP sin(πδ) exp[αP x(1 + δ + δ2)]

−
πβDUP US

{
J(1+δ)(ξ)J(−δ−1) [ξ exp(−αP x)]

}
2αP sin(πδ) exp[αP x(1 + δ + δ2)]

(4.3.19)

2. fP = fS + fD, sign(fP − fS) = +1:

aD (αP x) =
πβDUP US

{
I(1−δ)(ξ)I(δ−1) [ξ exp (−αP x)]

}
2αP sin(πδ) exp[αP x(1 − δ + δ2)]

−
πβDUP US

{
I(δ−1)(ξ)I(1−δ) [ξ exp (−αP x)]

}
2αP sin(πδ) exp[αP x (1 − δ + δ2)]

(4.3.20)

The amplitude distributions, which are inherent in the difference-frequency

acoustic wave components and normalized by the factor π βD UP US/( 2 αP ), for

the same pairs of the normalized acoustic wave amplitudes ξ are presented in

Figs.4.4 and 4.5.

4.4 Estimating the frequency potentials peculiar

to a multi-channel direct optical spectrum

analysis with a novel acousto-optical cell

Potential frequency limitations can be analyzed within nonlinear acoustic

mechanisms of collinear heterodyning. Without the loss of generality, it is possible
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(a) ξ = 0.5 (b) ξ = 1.0

Figure 4.4: Normalized amplitudes for the difference-frequency acoustic waves versus

the product αP x when fS = fP + fD

(a) ξ = 0.5 (b) ξ = 1.0

Figure 4.5: Normalized amplitudes for the difference-frequency acoustic waves versus

the product αP x when fP = fS + fD

to take Eq. 4.3.19 for further analysis at length. This equation, related as before

to the case of fS = fP + fD, can be rewritten with z = αP x as

aD (z) = FDΦ (z, δ, ξ) (4.4.1a)

F D = πβDUP US

2αP

(4.4.1b)

Φ (z, δ, ξ) =
J(−δ−1)(ξ)J(1+δ) [ξ exp(−z)]
sin(πδ) exp[z(1 + δ + δ2)]

(4.4.1c)

−
J(1+δ)(ξ)J(−δ−1) [ξ exp(−z)]
sin(πδ) exp[z(1 + δ + δ2)]
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At this stage, the coordinate zm of a maximum of the amplitude function

Φ(z, δ, ξ) must be found. For this purpose, one must analyze the condition

[dΦ(zm, δ, ξ)/dz] = 0. The condition of an existing maximum for Φ(z, δ, ξ) takes

the form

J(−1−δ)(ξ)
{
δ2J(1+δ)[ξ exp(zm)] + ξ exp(zm)J(δ)[ξ exp(zm)]

}
− J(1+δ)(ξ)

×
{
δ2J(−1−δ)[ξ exp(zm)] − ξ exp(zm)J(−δ)[ξ exp(zm)]

}
= 0 (4.4.2)

This condition can be easily analyzed numerically by considering δ and zm as

the independent and dependent variables, respectively, while ξ plays the role a

discrete independent parameter. One can find from Eq. 4.4.2 that

zm(δ, ξ = 0.5) ≈ 2.66 − 2.1 × 10−4δ−2 + 0.0405δ−1 − 8.17δ + 10.3δ2 (4.4.3a)

zm(δ, ξ = 1.0) ≈ 2.587 − 6 × 10−6δ−2 + 0.0016δ−1 − 8.26δ + 11.4δ2 (4.4.3b)

see Fig. 4.6(a). These formulas are rather important because they make it possible

to estimate potential frequency limitations for optical spectrum analysis.

(a) (b)

Figure 4.6: In figure (a), plots determine the coordinate zm as an approximate

function of the frequency ratio δ from numerical solution to Eq. 4.4.2, whereas in

(b), the curves characterize the relative accuracy of approximate plots in Fig. 4.6(a).

Substituting the obtained zm(δ, ξ) into Eq. 4.4.2 allows, first, to estimate the

accuracy of the performed approximations. Figure 4.6(b) illustrates the closeness

of the derivative dΦ[zm(δ, ξ), δ, ξ]/dz to zero in terms of its relative fall off from
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zero for two particular cases of ξ = 0.5 and ξ = 1.0. One can see from Fig. 4.6(b)

that the maximal value of an error does not exceed 0.3% within δ ∈ [0.01; 0.30].

Then, Figs. 4.4 and 4.5 exhibit a nonuniformity of distributing signals associated

with various difference-frequency acoustic components inside the cell, so that a

larger non-uniformity is associated with the component of a higher value of δ.

Thus, one can take the upper-difference frequency component and restrict itself

by an upper value δu of the parameter δ. Then, substituting the obtained zm(δU , ξ)

into Φ(z, δ, ξ) makes it possible to formulate the requirement to the cell’s optical

aperture. One can see it as follows: decreasing the normalized acoustic field

distribution down to a level of −3 dB along the cell’s optical aperture at a point

zD(δU , ξ) gives the equality

Φ2[zD(δU , ξ), δU , ξ] = 0.5Φ2[zm(δU , ξ), δU , ξ] (4.4.4)

in terms of the intensities. In fact, the value of zD(δU , ξ) determines the total

geometric length xD(δU , ξ) of acousto-optical cell with the collinear wave hetero-

dyning. Then, one can explain xm,D = α−1
P zm,D and obtain

D = xD(δU , ξ) − xm(δU , ξ) (4.4.5)

where D is the really operating part of the cell’s optical aperture available for

parallel optical processing at given ξ and some range of the parameter δ. Never-

theless, it is seen from Figs. 4.4 and 4.5 that the normalized intensity distributions

Φ2(z, δ, ξ) are the obviously decreasing functions of the parameter δ. As a result,

similar dependences on δ lead to a nonuniformity of distributing signals associ-

ated with various difference-frequency components inside the cell. Moreover, this

nonuniformity is as large as the corresponding parameter δ is high, so that the

lowest magnitude δL of the parameter δ leads to almost uniform acoustic signal

distribution along the cell’s optical aperture. Together with this, Figs. 4.4 and 4.5

show that the parameter δ is as high, as the absolute maximum of the correspond-

ing dependence is low, and consequently, the corresponding frequency components
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have to be adequately preamplified. Under these circumstances, one can suggest

the following criterion for such a pre-amplification, namely, one equalizes various

frequency components in a central vicinity of the above-noted operating part D

inherent in the cell’s optical aperture. In so doing, one can suggest re-normalizing

maximal intensity determined by the expression

Φ2
m[zm(δ, ξ), δ, ξ, G] = G

zm(δ, ξ)
Φ2[zm(δ, ξ), δ, ξ] (4.4.6)

with possible linear gain G, whose magnitude can be taken rather arbitrary. The

corresponding distributions, both allowing δU up to 0.35 and δL down to 0.05, are

presented in Fig 4.7 in the particular case of, for instance, G = 4. This diagram

illustrates the simplest possibility of the above-noted equalizing the frequency

components involved.

Figure 4.7: Renormalized maximal intensities Φ2
m [Zm(δ), δ, ξ] versus the parameter

δ with G = 4: the dashed line is for ξ = 0.5, whereas the solid line is for ξ = 1.0.

Then, one can consider the renormalized spatial intensity distributions

Φ2
0(z, δ, ξ) = G

zm(δ)
Φ2(z, δ, ξ) (4.4.7)

along the cell’s aperture. These distributions are depicted in Fig. 4.8 in the same

particular case of G = 4 as before, together with the magnitudes δU = 0.17 and

δL = 0.034, also taken, for example, in a view of the further consideration.

Taking into account Eq. 4.4.4, one can find from Fig. 4.8 that the really

operating part D of the cell’s optical aperture available for parallel optical pro-



4.4. Frequency potentials of a multichannel optical spectrum analysis 55

cessing in Eq. 4.4.5 is practically independent on the magnitude of ξ. Very slight

dependence on ξ manifests itself mainly in concrete localization of D within total

aperture of the cell. However, this dependence is rather weak as it follows from

the data in Fig. 4.8 , so that potentially it could be neglected in practice.

(a) ξ = 0.5 (b) ξ = 1.0

Figure 4.8: Renormalized spatial intensity distributions Φ2
0(z, δ, ξ) along the cell’s

aperture with G=4 for various δ.

At this point, an opportunity exists to simplify the process of determining the

value of xD(δU , ξ). In so doing, one rewrites Eq. 4.4.1c as Φ (z, δ, ξ) = Φ1 + Φ2,

where

Φ1 (z, δ, ξ) =
J(−δ−1)(ξ)J(1+δ) [ξ exp(−z)]
sin(πδ) exp[z(1 + δ + δ2)]

(4.4.8a)

Φ2 (z, δ, ξ) =
−J(1+δ)(ξ)J(−δ−1) [ξ exp(−z)]

sin(πδ) exp[z(1 + δ + δ2)]
(4.4.8b)

Comparisons of these contributions to the right from the planes zm(δ) in two

above-chosen cases of ξ = 0.5 and ξ = 1.0 are presented in Fig. 4.9 . If Φ1 → 0,

one can put Φ (z, δ, ξ) ≈ Φ2 (z, δ, ξ) within at least z > 2zm(δ, ξ) in Eq. 4.4.1b

and take the reduced, but well-approximated, form of Eq. 4.4.1a

aDR (z) = −
(

πβDUP US

2αP

)
J(1+δ)(ξ)J(−δ−1) [ξ exp(−z)]
sin (πδ) exp[z(1 + δ + δ2)]

(4.4.9)

The corresponding contributions after substituting Φ (z, δ, ξ) ≈ Φ2 (z, δ, ξ) into
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Eq. 4.4.7 (i.e., after normalizing) are presented in Fig. 4.10 with δ = 0.17 in the

cases of ξ = 0.5 and ξ = 1.0 under discussion.

(a) (b)

Figure 4.9: Comparing the contributions of the terms Φ1 and Φ2 from Eq.4.4.8 to

the right of the plane zm ( δ , ξ ) with: (a) ξ = 0.5 and (b) ξ = 1.0. The 0 dB-levels are

shown as well for a convenience.

(a) ξ = 0.5 (b) ξ = 1.0

Figure 4.10: Coinciding the terms Φ2
0 and Φ2

0,2 obtained from Eqs.4.4.7 and 4.4.8 to

the right of the area 2zm(δ, ξ) with G = 4, δ = 0.17 and: (a) ξ = 0.5 and (b) ξ = 1.0.

The 0 dB and −3 dB levels are shown as well.

Now, directing our attention to the particular case of a KRS-5 crystalline cell

with Γ0 = 10dB/(cm GHz2) and practically operating optical aperture D = 5.0

cm and make a few practical estimations. At first, to provide higher operating

frequencies inherent in the cell under consideration together with the simplicity

of realizing a low-frequency pump, it looks preferable to choose an area of fS =
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fP + fD and sign(fP − fS) = −1 related to Eq. 4.3.19 in spite of the fact that this

area is more sensitive to variations of the parameter δ (see Fig. 4.4). Applying

Eq. 4.4.9 and Fig. 4.10, one can find that the upper difference-frequency about

fUD ≈ 250 MHz provides approximately 3 dB level of acoustic losses along the

taken optical aperture D ≈ 5.0 cm of the cell. It should be noted at this step that

the numerical estimations adduced here should be considered as rather simplified

illustrations, while practically notable technical calculations must be performed

much more precisely. Nevertheless, one can say that these estimations reflect

the proposed principle of operation in the full measure. Because of the upper

magnitude of δ in this case is δU = 0.17, as it follows also from Fig. 4.10, and

initial determination of the parameter δ gives fUD/δU = fP , one can find that the

pump frequency will be fP = 1470 MHz and the upper signal frequency will be

fUS = 1720 MHz. Then, one can choose the bandwidth ∆ f of spectrum analysis,

for example, in the range of 200 MHz, which leads to the lower difference-frequency

fLD = 50 MHz restricted by the Bragg regime condition (see the corresponding

estimation at the end of section 4.2). Consequently, the lower signal frequency

is fLS = 1520 MHz, and the lower magnitude of the parameter δ is δL = 0.034.

These estimations are conditioned by the relations

fUD = fUS − fP = fP δU (4.4.10a)

fLD = fLS − fP = fP δL (4.4.10b)

It should be noted that direct exploitation of similar KRS-5 cell with the

active optical aperture D = 5.0 cm at the signal frequencies of already 1000 MHz

is definitely impossible because the acoustic attenuation is about 50 dB along this

aperture. Nevertheless, applying the collinear acoustic wave heterodyning allows

to operate on these gigahertz-range carrier frequencies. The above-mentioned

non-uniformities in the distributions of signals associated with various difference-

frequency components in the KRS-5 cell under consideration are illustrated in Fig.

4.8. Using Eq. 4.4.3 at the pump frequency fP = 1470 MHz providing α P = 2.485
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cm−1, one can estimate with δU = 0.17 that zm = 1.80 and xm = 0.720 cm for

ξ = 0.5 as well as zm = 1.52 and xm = 0.608 cm for ξ = 1.0. Then, estimating

these non-uniformities in the distributions of acoustical signals along the cell’s

aperture at δU = 0.17 even graphically makes it possible to conclude from Figs.

4.8 and 4.10 that one can obtain zD = 14.2 and xD = 5.71 cm for ξ = 0.5 as well as

zD = 13.8 and xD = 5.55 cm for ξ = 1.0. At this point, it is worthwhile to make

two refining remarks. First, the analysis should, naturally, include considering

the behavior of another frequency components inherent in the complete spectrum

of the difference-frequency signal, in particular, the component with δL = 0.034.

Nevertheless, one can see from Fig. 4.8 (as well as from Figs. 4.4 and 4.5 that total

irregularity inherent in this lowest-frequency component is practically insignificant

even taking into account the appropriateness zm(δL) > zm(δU). Second, some

small part of the cell’s aperture placed to the left of zm(δU), which exhibit more

or less “acceptable” level of signal irregularity can be also exploited practically.

Thus, the really operating optical aperture D, lying between zm(δU) and zD(δU)

for δU = 0.17 at a level of −3 dB with the above-mentioned remarks, consists in

approximately D = 5.0 cm [43].

4.5 Estimating the efficiency of collinear wave

heterodyning

Now, the efficiency of collinear wave heterodyning in the chosen regime of a

given pump intensity and coupling between signal and difference-frequency acous-

tic modes must be estimated. Without loss of generality, one takes Eq. 4.3.19

in the form of Eq. 4.4.1, which describes the case of fS = fP + fD, for fur-

ther analysis. At this case, the contributions involved in the term FD from Eq.

4.4.1, which does not include any coordinate dependence contrary to the function

Φ (z, δ, ξ), are estimated. One can start from the pump losses that are described
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by the factor αP = Γ̃0f
2
P . Usually, the acoustic attenuation factor Γ0 is used

in bibliography (see [38, 39]) measured in decibels per centimeter per gigahertz

squared, but here one needs it in the form of Γ̃0 (in seconds squared per centime-

ter)= [(ln 10)/10] · 10−18 · Γ0 [dB/(cm GHz2)] within estimating the efficiency of

collinear wave heterodyning. Then, the factor βD, introduced in Eqs. 4.3.8 and

4.3.9, takes the form βD = 2π2V −2
L ΓfP fS. Finally, the deformation tensor γ(L),

described initially by Eq. 2.2.4 in the normalized form, can be converted to the

axes chosen in connection with orienting the coordinate axis x as ~x ‖ ~m ‖ [1 1 1]

in Eq. 4.3.4. In so doing, one can write γ(L) = ~u · ~q for the longitudinal acoustic

mode. After that, recovering the magnitudes of the vectors included into γ(L),

one can explain the unique nonzero component of this tensor in dimensional form

as γ
(11)
j ≡ γj = Uj kj, where j ∈ [P, S, D] as before, [see comments to Eq. 4.3.7].

This dimensional form represents a scalar relation as well, so that it can be in-

verted as Uj = γj/kj,wherekj = 2πfj/VL. In its turn, the chosen component of

deformations can be explained in terms of the corresponding acoustic power den-

sity Pj as γ2
j = 2Pj/(ρV 3

L ) [33]. Exploiting these relations, one can obtain from

Eq. 4.4.1 that

F 2
D = π2Γ2PP PS

4Γ̃2
0ρ

2V 6
L f 4

P

(4.5.1)

Together with this, the left-hand side of Eq. 4.4.1a gives

a2
D (z) Φ−2 (z, δ, ξ) = PD

2π2ρVLf 2
D

(4.5.2)

Combining Eq. 4.5.1 and 4.5.2, one can find the power density of the difference-

frequency acoustic wave

PD = 4π2PP PSm

(
f 2

D

f 4
P

)
Φ2 (z, δ, ξ) (4.5.3a)

m = π2Γ2

8ρΓ̃2
0V

5
L

(4.5.3b)

Now, one can estimate the total efficiency I of Bragg light scattering by the

difference-frequency acoustic wave. In the particular case of rather weak acoustic
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signals, when nonlinearity inherent in acousto-optical interaction can be omitted

[33], one can use only a few terms from the corresponding expansion and write

I = sin2(qL) ≈ q2L2 − 1
3

q4L4 + · · · (4.5.4a)

q ≈ πλ−1
√

M2 PD/2 (4.5.4b)

Under natural condition q2L2 << 3, i.e. under inequality

PD << 6λ2/
(
π2M2L

2
)

(4.5.5)

one may restrict himself by the first term on the right- hand side of Eq. 4.5.4a and

rewrite Eq. 4.5.4a as I = π2M2L
2PD/ (2λ2). Sometimes, [see for instance, Eq.

??], it is worthwhile to exploit the parameter µ = (π2/2) M2m, which combines

characterization of both nonlinear acoustic and linear acousto-optic properties of

material under consideration. The magnitude of I determines the combined effi-

ciency of the acousto-optical cell under consideration in terms of light scattering.

This result makes it possible to characterize the contribution of acousto-optical

interaction exploiting Eq. 4.5.4a in the form of

Imax = 1
(2λ2)

π2M2L
2PD max (4.5.6)

With a maximally allowed level PD max ≈ 5 ·10 5 g/s3 = 0.05 W/cm2, obtained

from Eq. 4.5.5, one can find Imax ≈ 0.3. This estimation makes it possible to

consider the above-chosen level of PD as more or less tolerable for an upper limit

in a KRS-5 single crystal under the aforementioned condition given by Eq. 4.5.5.

An undoubted merit of this characterization consists of practically convenient

direct proportionality between the efficiency I and the power density PD.

After that the contribution of acoustic wave mixing should be briefly analyzed.

With this object in view, one can use Eqs. 4.3.19 and 4.3.20 for estimating the

acoustic pump power density PP 0 needed to reaching a preassigned peak level

of the difference-frequency power density PD max at a given ratio α = PS/PP 0.

From the start, it should be noted that a peak magnitude peculiar to the squared
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coordinate dependence Φ2
m [zm(δ, ξ), δ, ξ, G] = (G Φ2 [zm(δ, ξ), δ, ξ]) /zm(δ, ξ) in, for

example, Eq. 4.4.6 can be estimated as Φ2
m[zm(δ, ξ), δ, ξ, G] ≈ 0.1 with G = 4 (see

Fig. 4.7). Consequently, one can find

PP 0 = fP

2πδΦm[zm(δ, ξ), δ, ξ, G]

√
PD max

α m
(4.5.7)

In the particular case of KRS-5 single crystal, when the required magnitude of

Imax is for instance equal to 3% (which is quite reasonable for the spectrum analysis

in a small-signal linear regime), Eq. 4.5.6 gives PD max ≈ 3.0 · 104 g/s3 = 0.003

W/cm2. Then, taking m ≈ 1.1 · 10 11 s/g, α = 0.1, G = 4, δ = 0.15, ξ = 1.0, and

fP = 1.5 GHz, one can estimate from Eq. 4.5.7 the needed value of the acoustic

pump power density by PP 0 6 0.83 ·107 g/s 3 = 0.83 W/cm2, which is acceptable.

4.6 Conclusion

The presented data demonstrate both the possibility and the potential advan-

tages of applying a codirectional collinear wave heterodyning to essential, about

an order of magnitude or more, improvement of the frequency resolution within

a multichannel parallel acousto-optical spectrum analysis of gigahertz-frequency

range analog radio-wave signals. In so doing, the phenomenon of a codirectional

collinear wave heterodyning has been theoretically investigated, it is taken in the

particular case of mixing the longitudinal acoustic waves of finite amplitudes. The

methods for estimating the total efficiency of operation and optimizing aperture

parameters for the cell of a new type have been developed.



Chapter 5

General conclusions

1. The obtained experimental data make possible considering a few estimations

of an advanced collinear acousto-optical filter (AOF) based on calcium molybdate

(CaMoO4) single-crystal. This new AOF with a 15-microsecond time-aperture

operates over all the visible range exhibiting 60%-efficiency at the electric power

1.0 W. Its bandwidth, which in fact characterizes the resolution due to the well-

known relation ∆f ≡ δf between the frequency bandwidth and the frequency

resolution in the case of collinear scheme, includes two contributions. The first

one does not depend on the divergence angles of optical and acoustic beams, and

it prevails when these angles are under a critical angle. The second contribution

dominates with really wide-angle divergence of these beams or when AOF crys-

tal is sufficiently long; so that the bandwidth shows a quadratic growth as the

divergence angles increase. Estimating that critical angle shows that it does not

exceed 10 degrees when the crystal is shorter than 6 cm in length and the acoustic

frequency is lower than 100 MHz.

2. The proposed technique exploiting a two-cascade algorithm of processing

provides more than 5000-frequency-channels for processing analog radio-wave sig-

nals in a gigahertz-frequency range with the relative frequency resolution about

10−5, which is usually unattainable for conventional direct acousto-optical meth-

ods. The obtained results reflect the fruitful character of modern approaches based

on applying various non-linear phenomena to improving the performance data of

62



63

optical processing and give an appropriate example of this kind. At the moment,

a few practical advantages of the presented approach can be noted. First, the

proposed device does not need not additional electronic equipment for mixing the

signals and selecting the resulting carrier frequency, because heterodyning can be

performed directly in a cell and provides potentially the dynamic range of about

90 dB peculiar to wave processes in solids. Then, the approach under consider-

ation decreases the required relative bandwidth of piezoelectric transducer from

50-100% at the resulting frequency within a conventional cell to 15% at the ini-

tial carrier frequency. Third, in the case of a spatially multichannel arrangement

of the acousto-optical cell, the identity of neighboring spatial channels to each

other can be provided by adjusting the corresponding heterodynes. Finally, one

should note that the number of isotropic or crystalline materials, which are appro-

priate for acousto-optical cells processing signals in a gigahertz-frequency range,

is definitely restricted due to fast-growing influence of square-law frequency de-

pendence for the acoustic attenuation in solids. One can easily show that the

above-discussed KRS-5 cubic crystal cannot be used for creating a conventional

acousto-optical cell operating with signals whose carrier frequency exceeds about

400-500 MHz. Nevertheless, just this crystalline material, alone, can be, in prin-

ciple, exploited for the control over f0 = 1.6 GHz signals. Consequently, one can

conclude that a two-cascade arrangement of a cell presented here allows extending

the spectrum of acousto-optical materials being appropriate for direct processing

of ultra-high-frequency analog radio wave signals.
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