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ABSTRACT 

In this dissertation we show a theoretical study on quantum nanostructures of 3D 
confinement better known as Quantum Dots (QDs). We explore the collective and 
cooperative potential of such systems under a quantum scheme that is all quantum 
i.e. radiation-matter quantization (QDs and EM field), also we make a semi-
classical approach for solve the collective system derived of the Heisenberg 
picture. We make use of Excited Atomic Coherent States in order to facilitate the 
theoretical study of nonlinear Hamiltonian. Subsequently we reduce our system to 
a simple system of two QDs in its own cavity for research the quantum 
entanglement necessary for producing qubits (bits of quantum information 
processing) for quantum computing and information.  

 

Looking for ways of light the essence of the beings and things (Lola Álvarez Bravo, 1913-1993 mexican-
Photographer) 
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RESUMEN  

En esta tesis se presenta un estudio teórico sobre nano-estructuras cuánticas de 
confinamiento tridimensional mejor conocidas como Puntos Cuánticos. Se exploran 
las potencialidades colectivas y cooperativas de dichos sistemas bajo un esquema 
todo cuántico es decir cuantización de la materia-radiación (Puntos y Campo EM), 
además hacemos una aproximación semi-clásica para la solución del sistema 
colectivo derivada de la imagen de Heisenberg. Hacemos uso de Estados Atómicos 
Coherentes Excitados para facilitar el estudio teórico no lineal del Hamiltoniano. 
Posteriormente reducimos nuestro sistema a un sistema simple de dos puntos en 
su propia cavidad para estudiar el entrelazamiento cuántico necesario para 
producir qubits (bits para procesamiento de información cuántica) para 
computación e información cuántica.  

 

Busco por los caminos de la luz la esencia de los seres y de las cosas (Lola Álvarez Bravo, 1913-1993-
Fotógrafa mexicana) 
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PREFACE 
“I know that when I was in my late teen and early twenties the world was just a Roman candle –rockets all the time… You 
lose that sort of thing as time goes on… physics is an otherworld thing. It requires a taste for things unseen, even unheard 
of- a high degree of abstraction… These faculties die off somehow when you grow up… profound curiosity happens when 
children are young. I think physicists are the Peter Pans of the human race… Once you are sophisticate, you know too much 
– far too much. Pauli once said to me ‘I know a great deal. I know too much. I Am a quantum ancient.”  (Isidor Rabi-Nobel 
Laureate) 

 

For several decades since the last century have been studied by different 
researchers worldwide individual and collective dynamics of atoms interacting with 
other atoms or with electromagnetic field, called Radiation-Matter Interaction, 
either in free space or in structured environments, such as micro-cavities, 
crystalline molecules or micro and nano-electronic devices including solid state and 
condensed matter environments. Not only as an aspect of disinterested pursuit and 
curiosity about the mystery of quantum world, but because it allows performing 
experiments and technological development results to provide science and 
technology for human consumption. On other hand there have been developed a 
wide variety of theoretical models for their description and understanding, creating 
complete theories in order to insight the deeper meaning of their behavior in 
isolation from one or two atoms as far as a lot of atoms systems as a collective 
dynamic. The most famous contributions are, in the case of single two-level atom 
interacting with a cavity mode, the famous Jaynes-Cummings Model (JCM) with 
the phenomenon of quantum revivals. In addition to the collective issue is the 
Dicke model (DM) dealing with systems of many atoms of two-levels, with no 
mutual interaction between them, but in interaction with EM field, it is a 
phenomena similar to the JCM. This model is also known as the Tavis-Cummings 
model, which has especially the phenomenon of cooperative Superradiance. The 
importance of studying theses systems is because they provide an understanding 
almost exactly at the theoretical level of quantum behavior in structured 
environments, allowing perform experiments and implementation of technology 
support with reduced systems of the few atoms as far as a large number of them, 
i.e. collectively.  

These atomic models have helped to develop other models for more 
complex structures such as quantum wells and quantum wires as far as quantum  



 ix 
 

 

dots (QDs) or artificial atoms, which have similar features to natural atoms, 
although not identical, by the quantization their energy levels and the confinement 
of charge carriers. The models have been very different for distinct approaches 
and applications. But all models based on the JCM and DM. Some are extensions of 
these and some more by adding other dynamic features. Whose Hamiltonian have 
a variety of solutions. From traditional solutions using Schrödinger (picture) 
equation, the Heisenberg picture with equation operator systems, Dirac picture, 
which is a hybrid of two previous pictures as far as solutions complex with 
stochastic equations, density matrix, quantum trajectories, and so on.  In the 
midst of complexity we choose a Hamiltonian with complete features [Quiroga et. 
al. and Surendra et. al.] yet synthesized which contains the physical information of 
radiation-mater interaction (atoms, quantum structures, so on) and included the 
property of Förster interaction better known as Förster Resonant Energy Transfer 
(FRET) which is an important feature not only for quantum molecular structures 
but also of type chemical and biological. In these latter areas has been quite 
results significant in explaining the energy transfer phenomena in biochemical 
reactions between biological molecules, such as the photosynthesis. We will use it 
as a way of understanding the mechanisms of energy and information transfer 
between quantum dots, which by its dimensions seen tiny molecules of the order 
of a few to several hundred nanometers. 

The virtue of this Hamiltonian is done by the algebra of the angular 
momentum operators which synthesizes the collective characteristics of the charge 
carriers (excitons, electron-hole) into these quantum dots. This allows one to treat 
the number of dots needed under study. In particular our system for the collective 
issue in chapter 2 through 4 is to research the dynamic behavior of a few QDs 
using the algebraic operator technique including the Hamiltonian diagonalization to 
find their eigenvalues (eigenenergys) and eigenvectors (wave functions).  In this 
way, we may understand the collective and cooperative behavior, especially for 
cases in resonance. On other hand we use the Heisenberg picture which given us a 
differential equation system of the operators involved in the Hamiltonian (chapter 
4), considering the complex conjugate simplifications as well as the constants of 
motion. Systems of this kind is not easy to solve because it is nonlinear, then we 
resourse the so-called Atomic Coherent States (ACS), and Excited Atomic Coherent 
States (EACS) [Obada, et.al.] that allows us to factor out the angular momentum 
operators as a non-commutative algebra. Considering a classical EM field 
interaction which leads us to make the analysis of the evolution in semiclassical  
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way and thus understand the dynamic behavior in time of this system. The 
solutions are given as functions of the values of expectation in the appropriate 
basis and numerically solved, since it is not feasible analytically.  

Furthermore we analyzed in chapter 5 for a pair of quantum dots (bipartite 
system) implemented as a pair of quantum bits (qubits) to measure the degree of 
quantum entanglement. With the peculiarity of these QDs previously was 
entangled (under some special mechanism, we do not know) and embedded in a 
cavity Jaynes-Cummins type. It is for this reason that our study is in the context of 
cavity Quantum Electrodynamics (CQED). Based upon previous studies with only 
two-level atoms (TLA) [Yonac, et.al.] and QDs [Loss, Di Vincenzo; Mitra et. al.] but 
not immersed in CQED.  There are other proposes with CQED [Imamoglu, et. al.] 
but with configurations more complicate that our proposed. 

In the case of our qubits comes into play not only the interaction with the field but 
also the Förster energy transfer (interaction), which makes them have a greater 
interdependence between themselves, but the benefit is to preserve entanglement 
longer. With our analysis allows us to observe that there are few areas of the so-
called Entanglement Sudden Death, at least lower that in order to the atomic case 
of Yu-Eberly-Yonac. In our system remain open many possibilities for analysis of 
initial states with different combinations with the field (i.e. change of conditions for 
the initial entanglement state), which provides dynamics to evolve very different 
behavior each.  

Our interest in researching the dynamics of bipartite quantum dots as qubits 
is not just a fashion forward, but rather we are interested in fundamental aspects 
that arise as a possibility of new physics and not only as an implementation of the 
so dreamed quantum computer, it is a race behind the theoretical and 
experimental quantum technology now where there are large groups of experts 
sponsored by the best wide world universities and large computer companies 
(hardware) and programming (software) in around of the globe. Making it very 
challenging compete with these groups, however our theoretical contribution with 
new fundamental physics aspects of the behavior of quantum dots as qubits leaves 
a better chance to further research these quantum systems in parallel to other 
developments including technological and experimental. Such as production of 
more efficient solar cells, light emitting diodes lasers and physics technologies yet 
to be explored, as far as biology and medicine applications.  
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PREFACIO 
Sé que cuando era adolecente y mis primeros años de juventud el mundo era solo como un velero romano –

cohetes todo el tiempo-… Pero se pierden ese tipo de cosas con el paso del tiempo… la física es una cosa de otro mundo. Esta 

requiere el gusto por las cosas invisibles, incluso inauditas- inclusive un alto grado de abstracción… Estas facultades 

mueren de alguna manera cuando creces… sucede una profunda curiosidad cuando eres un niño pequeño. Creo que los 

físicos somos los Peter Pan de la raza humana… una vez que son sofisticados, que sabes tanto, demasiado. “Pauli una vez 

me dijo: Yo sé demasiado, yo sé tanto, que Yo Soy un Ancestro Cuántico”. (Isidor Rabi- Nobel Laureado) 

 

Durante varias décadas desde el siglo pasado se han venido estudiando por 
distintos investigadores a nivel global la dinámica individual y colectiva de átomos 
en interacción con otros átomos o bien con la radiación electromagnética, la 
llamada Interacción Radiación-Materia, ya sea en espacio libre o bien en entornos 
estructurados, como pueden ser micro-cavidades, moléculas cristalinas, o 
dispositivos de micro y nano-electrónica entre otros entornos de estado sólido y 
materia condensada. No solo como un aspecto de búsqueda desinteresada y 
curiosidad por el misterio del mundo cuántico, sino porque permite ejecutar 
experimentos y desarrollo tecnológico con resultados que aporten ciencia y 
tecnología para el consumo humano. Por otra parte se han desarrollado una gran 
variedad de modelos teóricos para su descripción y comprensión, creando teorías 
completas que permitan entender el significado más profundo de su 
comportamiento aislado de uno o dos átomos, o bien de sistemas de muchos 
átomos como una dinámica colectiva. Los estudios más celebres son, para el caso 
de un solo átomo de dos niveles en interacción con un modo de la cavidad, el 
famoso Modelo de Jaynes-Cummings (JCM) con el fenómeno de los resurgimientos 
cuánticos. Por otro lado para el caso colectivo está el Modelo de Dicke (DM) que 
trata con sistemas de muchos átomos de dos niveles, sin interacción mutua entre 
ellos, pero sí en interacción con el campo EM y con fenómenos similares al de JCM. 
A este modelo también se le conoce como el Modelo de Tavis-Cummings, el cual 
trata en especial el fenómeno de la Superradiancia como fenómeno cooperativo.  

La importancia de estudiar estos sistemas es porque nos proporcionan un 
entendimiento casi exacto a nivel teórico del comportamiento cuántico en entornos 
estructurados, lo cual permite la ejecución de experimentos y la implementación 
de tecnología con ayuda de sistemas reducidos de uno a unos cuantos átomos  
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hasta un gran número de ellos, i.e. colectivamente.  Estos modelos atómicos han 
permitido desarrollar otros modelos para objetos más complejos de estructuras 
cuánticas como pozos y alambres hasta los Puntos Cuánticos (QDs) o Átomos 
Artificiales, que tienen características, si bien no iguales, pero si similares a los 
átomos naturales, por la cuantización de sus niveles de energía y el confinamiento 
de los portadores de carga. Estos modelos han sido muy variados, para distintos 
enfoques y aplicaciones. Pero todos basados en los modelos de JCM y de Dicke. 
Algunos como extensiones de estos, y algunos más añadiéndoles características 
dinámicas adicionales. Cuyas soluciones a partir del Hamiltoniano es también muy 
variada. Desde las tradicionales soluciones, usando la ecuación de (imagen) 
Schrödinger, pasando por la imagen de Heisenberg con sistemas de ecuaciones de 
operadores, la imagen de interacción de Dirac, que son un hibrido de las dos 
anteriores, hasta complejas soluciones de tipo estocástica con matriz de densidad, 
trayectorias cuánticas, etc.  En medio de tanta complejidad nosotros elegimos un 
Hamiltoniano de características muy completas [Quiroga, et. al. And Surendra et. 
al.] y a la vez sintetizadas en el cual contiene la información física de la interacción 
radiación-materia (átomos, estructuras cuánticas, etc.) así como la propiedad de 
incluir la llamada interacción de Förster mejor conocida como Transferencia 
Resonante de Energía de Förster (FRET, por sus siglas en inglés) la cual es una 
importante característica de moléculas no solo de tipo cuántico sino químico y 
biológico. En estas últimas áreas ha dado bastantes resultados importantes al 
explicar fenómenos de transferencia de energía en reacciones bioquímicas entre 
moléculas biológicas, como la fotosíntesis. Por nuestra parte la usaremos como 
una forma de entender los mecanismos de transferencia de energía e información 
entre puntos cuánticos, los cuales por sus dimensiones suelen parecer diminutas 
moléculas del orden de unos pocos a unos cientos de nanómetros.  

La virtud de este Hamiltoniano se hace gracias a los operadores del algebra 
de momento angular con los cuales se sintetizan las características colectivas de 
los portadores de carga (excitones: electrón-hueco) dentro de estos puntos 
cuánticos. Esto permite tratar de uno hasta el número que se necesite de puntos 
bajo estudio. En particular nuestro sistema para el caso colectivo en capítulos 2 a 4 
consiste en investigar el comportamiento dinámico de unos cuantos puntos usando 
la técnica algebraica de operadores incluyendo la diagonalización del Hamiltoniano 
para encontrar sus eingenvalores (eigen-energías) y eigenvectores (funciones de 
onda). De tal manera que podamos comprender el comportamiento colectivo y 
cooperativo, en especial para casos en resonancia. Por otra parte usamos la  
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imagen de Heisenberg para obtener un sistema de ecuaciones diferenciales 
acopladas de los operadores involucrados en el Hamiltoniano (capitulo 4), 
considerando simplificaciones con los complejos conjugados así como las 
constantes de movimiento. Sistemas de esta clase no son fácil de resolver debido a 
que es no lineal, entonces recurrimos e los llamados estados atómicos coherentes 
excitados [Obada, et. al] que nos permiten factorizar los operadores de momento 
angular como un algebra no conmutativa. Considerando un campo 
electromagnético de interacción clásico lo que nos lleva a hacer el análisis de la 
evolución de un sistema semi-clásico y así entender el comportamiento dinámico 
en el tiempo de este sistema. Para la solución se hacen con funciones que 
contienen los valores de expectación en la base adecuada y se resuelven 
numéricamente, ya que analíticamente es poco factible.  

Por otra parte analizamos en el capítulo 5 el caso de un par de puntos 
cuánticos (sistema bipartita) implementados como un par de quantum bits (qubits) 
para medir su grado de entrelazamiento cuántico (quantum entanglement). Con la 
peculiaridad de que estos puntos previamente entrelazados (bajo algún 
mecanismo especial, que desconocemos), son inmersos dentro de una cavidad del 
tipo Jynes-Cummings. Es por esta razón que nuestro estudio es en el contexto de 
la electrodinámica cuántica de cavidades (CQED, por sus siglas en inglés). 
Basándonos en estudios previos solo con átomos de dos niveles [Yonac, et. al.] y 
con puntos [Loss, Di Vincenzo;  Mitra, et. al] pero sin estar inmersos en cavidades 
QED. Hay otras propuestas usando CQED [Imamoglu, et. al.] pero en 
configuraciones más complicadas que la de nuestra propuesta.  

Para el caso de nuestros qubits entra en juego no solo la interacción con el 
campo sino también la transferencia de energía (interacción) de Förster, la cual los 
hace tener una mayor interdependencia entres sí mismos, pero que resulta en 
beneficio para conservar el entrelazamiento por mayor tiempo. Lo cual con el 
análisis que  hacemos nos permite observar que hay pocas zonas de la llamada 
muerte súbita del entrelazamiento (Entanglement Sudden Death), al menos 
menores que para el caso atómico de Yonac-Yu-Eberly. En nuestro sistema quedan 
abiertas muchas posibilidades de análisis de combinaciones con distintos estados 
iniciales con el campo (es decir cambiar las condiciones para el estado inicial de 
entrelazamiento) que al evolucionar proporcionan dinámicas de comportamiento 
muy diferentes cada una.  
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Nuestro interés al investigar la dinámica bipartita de puntos cuánticos como qubits 
no es solo por una moda de vanguardia, sino más bien nos interesan los aspectos 
fundamentales que surgen como una posibilidad de obtener nueva física y no solo 
como una implementación del tan soñado computador cuántico, que es una 
carrera teórica y experimental tras la tecnológica cuántica de actualidad en la que 
hay grandes grupos de expertos patrocinados por las mejores universidades del 
mundo y las grandes compañías de computación (hardware) y programación 
(software) alrededor del globo. Con lo cual es un desafío muy grande competir con 
esos grupos, más sin embargo nuestra aportación teórica con nuevos aspectos 
físicos fundamentales del comportamiento de puntos cuánticos como qubits deja 
una mejor posibilidad para seguir investigando paralelamente estos sistemas 
cuánticos inclusive para otros desarrollos tecnológicos y experimentales. Tales 
como producción de celdas solares más eficientes, emisores de luz, diodos láseres, 
como otras tecnologías aún por explorar, hasta aplicaciones en biología y 
medicina. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

The many-particle systems are a topic that has been studied since the 
beginning of classical physics. Many efforts have been devoted to trying to 
understand the laws governing these systems under a collective scheme in which 
their behavior is not as simple as a single particle. This is because the collective 
behavior produces a dynamic that can be either cooperative or chaotic, in this case 
by itself is very interesting study, but has its own problems in ordered chaos 
theory even at the level of classical physics. However their study was not limited 
only to classical mechanics but also to thermodynamics, as well as statistical 
mechanics, which study the collective behavior of many particles based on 
statistical averages. Upon entering the realm of quantum mechanics the situation 
is further complicated because their feature is not only random but also 
indeterministic of the systems of many particles and quantum. Speaking 
specifically to study atomic systems from a few to many particles interacting with 
electromagnetic radiation field, the interest arises not only at the fundamental level 
but also by the novel experimental and technological applications. The 
technological development of micro and nano-technology has brought new 
challenges at a fundamental level in quantum theory, especially in the Quantum 
Optics and Cavity quantum electrodynamics (CQED). These systems are studied 
phenomena of interaction radiation with matter as well as quantum confinement. 
Taking into account its quantum properties thus how it can be studied in 
semiclassical level (quantization particles only) or fully quantum (quantization both 
particles of matter and radiation).The model for excellence has been used is the 
Jaynes-Cummings (JCM), widely studied and applied to various phenomena in 
these areas. In this model we study in a little more detail in Chapter 3. JCM 
basically shows the effects of quantized radiation and as to affect an atom with  
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two levels. Despite its physical simplicity, but not mathematical gives us a lot of 
information at a fundamental level to insight the phenomenon of interaction which 
in turn is the basis for collective systems of many atoms or many particles at the 
atomic scale. Collective systems are based on atomic Dicke model (DM) which 
studies systems of several particles, nevertheless can be solved only for a few 
atoms. In our research we have implemented approximate methods [1], where we 
explore various perspectives of research and application in this dissertation. Here 
we review various methods of distinct kinds, especially algebraic and differential 
methods in the respective images of Schrodinger, Heisenberg and Interaction 
obviously. The understanding and revelation of the fundamental aspects are of our 
interest in this thesis to propose experimental applications and technology 
implementations. Within the last two or three decades, a great deal of attention 
has grown in semiconductor nanostructures for the wide range of possible 
technological applications and for the simplicity with which basic principles of 
quantum mechanics can be studied experimentally. Among these semiconductor 
nanostructures are quantum dots (QDs), which are sought after for their 
optoelectronic properties. In particular the study of so-called artificial atoms [3], 
also known as quantum dots (QDs). Due to quantum nature, the three-dimensional 
confinement leads to discrete energy levels much like the ones found in atoms, 
thus giving them the common-known name of artificial atoms [2,3,4]. QDs are 
semiconductor heterostructures (quantum wires, wells, and dots) whose size is on 
the order of nanometers, where charge carriers are confined in all three spatial 
directions to lengths which are smaller than their de Broglie wavelengths [5-8]. 
These structures of micro and nano-metric size serve for the confinement of 
atomic and subatomic entities that allow a more detailed understand of quantum 
behavior that otherwise would be impossible to perceive or detect without this 
confinement. Thus we seek a deeper meaning within these research fields, which 
serve not only for applications, as mentioned above, but as more fundamental 
contributions in quantum physics, especially quantum optics and CQED. Quantum 
dots have been widely studied under traditional theoretical frameworks (3D 
potential at Schrödinger equation, for instance). Mean field theories like Hartree, 
Hartree-Fock and density-functional theories, being the simplest approach, are 
used to describe QDs by assuming the charge carriers to be moving independently 
within an average field created by particle interactions and external confinement. 
Empirically, the mean field is approximated by an effective potential [9]. But 
mainly experimental [3, 11, 12] since they have implemented works that has 
allowed the design of technology to small, medium and large scale. However there  
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are still without understanding fundamental aspects, such as quantum 
entanglement that serves as a cornerstone of quantum computing and quantum 
information. Because is into our interest to study under the scheme of QDs. The 
coupling of several QDs interacting with the electromagnetic field modes brings a 
lot of valuable information that helps to understand these systems collectively and 
cooperatively. As a result of coupling two of more quantum dots to a common 
electromagnetic environment (quantum electromagnetic field), the dynamics of 
spontaneous emission from these system is different than that observed for a 
single dot. This effect is well known in atomic systems (superradiance) In the case 
of quantum dots, it is essential to take into account the inhomogneity of their 
parameters (in particular, of the energy of radiative transition) as well as the 
possible strong coupling (of dipole or tunneling origin) between the dots. Due to 
these couplings collective emission effects can appear for these systems in spite of 
considerable differences between their energetic parameters, which is manifested, 
e.g., by the enhanced rate of spontaneous emission (exciton recombination).   

Another aspect of great interesting in the study of collective QDS systems is 
the interaction between two dots, i.e. the interaction in pairs. It is type Coulombian 
interaction, this interaction has been little studied, until the work of [Quiroga, 
Surendra] where the collective Hamiltonian of type Dicke acquires a nonlinear 
characteristic due to this interaction non radiative. That is reflected in the 
nonlinear terms into collective atomic operator of angular momentum. This feature 
distinguishes the QDs systems and its Hamiltonian of the multi-atomic Dicke 
model. In the latter model the study of groups of atoms is in the context of Cavity 
Quantum Electrodynamics (CQED). This explores the phenomena of cooperative 
spontaneous emission, known as Superradiancia. So we will seek to insight the 
meaning of these phenomena in QDs by analyzing the complete Hamiltonian with 
nonlinear characteristic, which extends the use of these quantum objects for more 
impacting innovative technology applications.  

On class challenges in this dissertation comes from the field of quantum 
computation and quantum information due to the key strengthening for insight the 
quantum entanglement and the so called quantum bit implementation in real 
systems how it to be best efficient performance. 

Not only are the energy levels of the charge carriers in the mean field 
potential of the QD atomic-like in their being discrete; but they also present a shell 
structure analogous to atoms, where degenerate or nearly-degenerate levels  
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bunch up together and are separated from other bunches by energy gaps. This 
level bunching is a result of dimensionality and symmetry of the mean field 
potential, and is not exclusive to QD systems, but can be found in the properties of 
other finite quantum, many-fermion systems, such as conductance, ionization 
energies, etc. A high degree of symmetry, hence high degeneracy, results in a 
pronounced level bunching.  

Another important feature for the development of technologies for quantum 
computing is to understand the transfer of quantum entanglement without the loss 
of this characteristic, which is lost by the Decoherence phenomena. In this 
dissertation [chapter 5] is in our interest to research a system (Bipartite) of two 
quantum dots embedded in its own cavity have previously been entangled, to 
measured the degree of Entanglement based on the measures established for the 
quantification of entanglement: Entanglement of Formation and Concurrence [13-
15] It is among several reasons why we study this bipartite system, where 
entanglement plays a key role.  What is perhaps the most basic question in 
entanglement dynamics is considered: what resources are necessary in order to 
create entanglement between distant particles? The answer is surprising: sending 
separable states between the parties is sufficient; entanglement can be created 
without it being carried by a messenger particle. 

So that in this thesis we deal with two essential problems: i. e. first one 
study collective and cooperative phenomena in quantum dot (QDs) systems 
[chapters 3, 4 and 5] together with the Hamiltonian that includes the Förster’s 
interaction (FRET) [1, 17, 18], which provides significant information on these 
phenomena that are not otherwise apparent. On the other hand we study a simple 
system of two QDs in its own cavity [Chapters 2 and 5], where we assume that are 
entangled, and therefore we are able to measure the degree of entanglement [13, 
15] transfer without loss of coherence.  

In following we explain how the distribution of this thesis. In Chapter 2 we 
collect into particular way the theoretical foundations necessary for the 
development and insight of this work, under which we develop our theoretical, 
purpose in quantum mechanics framework and especially the Quantum Optics, we 
focus into quantum entanglement. We studied the fundaments of deeper meaning 
as quantum entanglement, i.e. entangled states as fundamental states of quantum 
information processing. We also study the Rabi oscillations, and implications for 
Quantum Information Theory, where it is used to measure the Quantum  
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Entanglement Degree. In Chapter 3, we study concisely the so called Quantum 
Dots (QDs), we reviewing the state of art, as well as introducing the theoretical 
concepts necessary to model out and implement different ways of QDs systems, 
because we used to generate the results of our research. We get early 
developments grounded in mathematical models of Jaynes-Cummings and Dicke 
atomic collective model. We present the nonlinear QDs Hamiltonian, which includes 
the Förster interaction to non radiative transfer energy between dots (nonlinear 
part). We diagonalized this Hamiltonian at the QDs excitons basis that is very 
useful in the description and implementation of Quantum-bits (qbits). It is also 
introduced the so-called Coherent Atomic States (ACS) or Angular Momentum 
States and its generalization consistent as Excited Atomic Coherent States (EACS) 
which we will use in our work in the  next chapter.  For Chapter 4, more results 
are obtained by applying the theoretical concepts studied in previous chapters. It 
shows the collective effects of QDs systems relaying on the Hamiltonian model of 
QDs, as well as the use of EACS in the general case, and for sake of simplicity we 
study a particular soluble case into the semiclassical regime. Ok, so now we are 
getting somewhere, digging a bit deeper to introduce into Chapter 5 the 
application to Theory of Quantum Information and Computation. In this we study 
the effects to apply and implement QDs systems for Quantum Computing, where 
we get results when we diagonalized the Hamiltonian to obtain the necessary 
ingredients for Quantum Entanglement Measure for a pair of entangled QDs. 
Because the collective effects of nonlinearity are evident in the QDs system. Finally 
in Chapter 6 we give the general conclusions of this work and future prospects of 
our proposed by use and implementation of QDs systems.  
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CHAPTER 2 

 

QUANTUM ENTANGLEMENT FUNDAMENTS  

 

 

2.1 Introduction 

In this chapter reviews and introduces concepts and tools of the theory of 

Quantum Entanglement (QE) and quantum theory. We rely on classical texts [1-4, 

25] and in some with more modern focus in matter [23, 24, 26]. We describe the 

QE not only because it is hot topic in modern quantum theory, despite having been 

already proposed by E. Schrödinger since the time of beginning of the theory in 

the 20’s years with his famous Schrödinger’s Cat. Since 30 years ago, the QE has 

acquired a great interest not only for its theoretical aspect, but by its potential 

applications to the development of Quantum Computation and Quantum 

Information, among other branches of quantum physics. It is very important to 

understand the quantum concepts in order to develop our proposal to use of 

Quantum Dots (QDs) in cavity QED as a system of quantum bits entangled in 

chapter 5. Further that these quantum fundaments are fully general and help us to 

develop in this chapter and next the topics that we need to following 

developments to our proposals of the thesis.  There are many aspects into 

quantum theory that is our interests: namely those special topics as quantum  
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theory of Radiation together to Cavity Quantum Electrodynamics (CQED), which 

are the foundations in Quantum Optics. Because quantum optics to perform a 

service into this work. So we study specific subjects necessary in order to develop 

our theoretical system proposal.  

The interaction of matter with radiation has been one of the driving forces 

of modern physics. The problem of blackbody radiation led Planck to reluctantly 

introduce the idea of quantization at the turn of the previous century. In describing 

the photoelectric effect Einstein, in one of his seminal papers of 1905, introduced 

the concept of the photon. The problems of spectral radiation from atoms 

culminated in the development of Quantum Mechanics during of 1920s. Physics’ 

most accurate theory, Quantum Electrodynamics (QED) describes the interaction of 

electrons and other leptons with the electromagnetic field. The advent of the laser 

has not only opened up new vistas in physics research, but also revolutionized 

communications. In more recent years the advent of atom trapping and optical 

microcavities has opened new opportunities to test fundamental physics and 

possible links to future technologies, for example Quantum Computing. One of the 

areas of Quantum Optics that relates to this is known as Cavity Quantum 

Electrodynamics (CQED). CQED is an area of considerable theoretical and 

experimental interest. The core system of Cavity QED is that of cold atoms held 

inside an optical resonator interacting with external laser light fields. In this report 

we examine a model of this system. The Jaynes Cummings Model describes a two 

level atom in the radiation field. Much of the initial work on two level systems was 

undertaken in the context of magnetic resonance of spin-1/2 particles. In an optics 

context this two level model was put forward in 1963 by Jaynes and Cummings 

[1]. The Jaynes Cummings Model is the one of the simplest systems in quantum 

optics. Not only can it be solved exactly but it also displays interesting phenomena 

of more general interest, e.g. collapse-revival phenomena. This means that the 

Jaynes-Cummings Model serves as a useful approximation to more complicated 

systems. Hence it is still a research topic some 40 years after its introduction. 

 

2.2 Quantum Spin and Pauli Matrices 

For beginning this review [23, 25], we study a class the interest operators 

(matrix representation) that appears at quantum theory are the Pauli Matrices. 

These are introducing in Quantum Angular Momentum in the study of Electron- 
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Spin. Furthermore these matrices are very use at Quantum Optics and Quantum 

Computation Theory.  

The Pauli matrices, also known as the spin matrices, are defined (three 

forms due to use in quantum optics and quantum computation) by 

 

 

1 2

3 0

0 1 0
;     ;

1 0 0

1 0 1 0
;     ;

0 1 0 1

x y

z

i
X Y

i

Z I

σ σ σ σ

σ σ σ

−   
= = = = = =   

   

   
= = = = =   −   

 (2.1) 

Let us consider spin 1/2 particles, such as an electron or a proton. These 

particles have an internal degree of freedom: the spin-up and spin-down states. 

(To be more precise, these are expressions that are relevant when the z-

component of an angular momentum z
S  is diagonalized. If x

S  is diagonalized, for 

example, these two quantum states can be either spin-right or spin-left. Moreover 

we must remember that 2Sσ =
��

). Since the spin-up and spin-down states are 

orthogonal, we can take their components to be 

 
1 0

;    
0 1

e g
   

= ↑ = = ↓ =   
   

 (2.2) 

Verify that they are eigenvectors of z
σ  satisfying z

σ ↑ = ↑  and zσ ↓ = − ↓ .In 

quantum information, we often use the notations 1 = ↑  and 0 = ↓  (Some 

authors use convention: 0 = ↑  and 1 = ↓ ). Moreover, the states 0  and 1  

are not necessarily associated with spins. They may represent any two mutually 

orthogonal states, such as horizontally and vertically polarized photons. Thus we 

are free from any physical system, even though the terminology of spin algebra 

may be employed. 

For electrons and protons, the spin angular momentum operator is conveniently 

expressed in terms of the Pauli matrices k
σ  as ( )/ 2k kS σ= ℏ . We often employ   
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natural units in which 1≡ℏ . Note the tracelessness property ( ) 0ktr σ =  and the 

Hermiticity 
†

k kσ σ=  (Mathematically speaking, these two properties imply that k
iσ  

are generators of the (2)su  Lie algebra associated with the Lie group (2)SU ). In 

addition to the Pauli matrices, we introduce the unit matrix I in the algebra, which 

amounts to expanding the Lie algebra (2)su  to (2)u . The Pauli matrices satisfy the 

anticommutation relations 

 

 { }, 2
i j i j j i ij

Iσ σ σ σ σ σ δ= + =  (2.3) 

Therefore, the eigenvalues of k
σ  are found to be ±1. The commutation relations 

between the Pauli matrices are 

 , 2
i j i j j i ijk k

k

iσ σ σ σ σ σ ε σ  = − =  ∑  (2.4) 

where 
ijk

ε  is the totally antisymmetric tensor of rank 3, also known as the Levi-

Civita symbol, with value +1 if  
ijk

ε  even permutation,  -1 if 
ijk

ε  odd permutation, 

and 0 in otherwise.  

The commutation relations, together with the anticommutation relations, yield 

 
3

1

i j ijk k ij

k

i Iσ σ ε σ δ
=

= +∑  (2.5) 

The spin-flip (“ladder”) operators are defined by 

 ( ) ( )0 1 0 01 1
;     

0 0 1 02 2
x y x y

i iσ σ σ σ σ σ+ −

   
= + = = − =   

   
 (2.6) 

We can verify that eigenvectors are 0σ σ+ −↑ = ↓ = , σ + ↓ = ↑  and 

σ − ↑ = ↓ . The projection operators to the eigenspaces of z
σ  with the 

eigenvalues ±1 are 

 ( ) ( )
1 0 0 0

1/ 2 ,   1 / 2
0 0 0 1

z z
σ σ+ −

   
Ρ = ↑ ↑ = Ι + = Ρ = ↓ ↓ = Ι − =   

   
 (2.7) 
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In fact, it is straightforward to show ,   0,   0,   + + − −Ρ ↑ = ↑ Ρ ↓ = Ρ ↑ = Ρ ↓ = ↓ . 

Finally, we note the following identities: 

 2 20,   ,   0σ ± ± ± + −= Ρ = Ρ Ρ Ρ =  (2.8) 

Other interesting identities that we obtained independent of the above are as 

follows  

 

 ( ) ( )2 2 2σ σ σ σ σ σ σ σ+ − + + − − + −± = ± + +  (2.9) 

And 
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2.3 Applications: Rabi Oscillations  

 A of the most interesting cases in the quantum theory of radiation is 

understand the phenomena of dynamic interaction of light with atoms, it is so-

called Rabi problem. The original Rabi problem is of magnetic origin, but in the 

optic case consists do it comparison with the system of the two-level atom (TLA) 

and radiation electromagnetic field in interaction. A  TLA is formally similar to a 

spin-1/2 system with two possible states. We can do an approximation, i.e. in the 

dipole approximation; when the field wavelength is larger than the atomic size, the 

atom-field interaction problem is mathematically equivalent to a spin-1/2 particle 

interacting with a time dependent magnetic field. Just as this system undergoes 

the so-called Rabi Oscillation between the spin-up and spin-down states under the 

action of an oscillating magnetic field, the TLA also undergoes optical Rabi 

oscillations under the action of the driving electromagnetic field. These oscillations 

are damped if the atomic levels decay.  An insight of this simple model of the 

atom-field interaction enables us to consider more complicated problems involving 

an ensemble of atoms or other quantum structures system interacting with the 

field. There are two approximations to investigate this problem (which we study 

completely in next sections and chapters): namely Semi-classical and totally 

quantum approximations. The first one is when the field is it consider as only 

classically, i.e. without quantization, so only matter (atoms or atomic structures) 

must be quantized. Another one both field and matter must be quantized. This has 

many implications, not only mathematically but physically. Since in many instances 

where a classical field fails to explain experimentally observed results and 

quantized description of the field is required. This is true of spontaneous emission 

of the atomic system. It is need to quantized the field for understand this 

phenomenon. By mean a rigorous treatment of the atomic level decay in free 

space, we need to consider the interaction of the atom with the vacuum modes of 

the space.  

Even in the simplest system involving interaction of a single mode radiation 

field with a single TLA, the predictions for the dynamics of the atom are quite 

distinct in the semi-classical theory and fully quantum theory. In the absence of 

the decay process, the semi-classical theory predicts Rabi oscillations for the 

atomic inversion whereas the quantum theory predicts a interesting phenomena 

known as Collapse and Revival due to the quantum aspects of the field. These 

interesting theoretical predictions have been experimentally verified.  In reality this 

problem (Rabi) originally is most complicate, due to that their energy potential  
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characteristic depends of the time, which we must solve with help of Time 

dependent Perturbation theory besides the interaction picture. Thus, Let us 

consider a spin-1/2 particle in a magnetic field along the z-axis, whose Hamiltonian 

is given by 

 0
0

2
z

H
ω

σ= −  (2.12) 

It is assume the particle is irradiated by an oscillating magnetic field of angular 

frequency ω, which introduces transitions between two energy eigenstates of 0H

(We will take the natural unit 1≡ℏ  to simplify our notation throughout this 

example). Then the perturbed Hamiltonian ( 0 ( )H H V tγ= + ), is modeled as 
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 
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 (2.13) 

where 0g >  is a parameter proportional to the amplitude of the oscillating field. Let 

us evaluate the wave function ( )tψ  at time t > 0 assuming that the system is in 

the ground state of the unperturbed Hamiltonian  

 
1

(0)
0

ψ
 

=  
 

 (2.14) 

At t = 0. Do not use directly the solution equation (2.2) to Hamiltonian, since note 

that we cannot simply exponentiate the Hamiltonian since it is time-dependent. 

Surprisingly, however, the following trick makes it time independent. Let us 

consider the following “gauge transformation”: 

 
/2

( ) ( )zi t
t e t

ωσϕ ψ−=  (2.15) 

What must satisfiers the Schrodinger equation for the interaction Hamiltonian, i.e. 

a straightforward calculation shows that ( )tϕ  satisfies  

 ( ) ( )
d

i t H t
dt

ϕ ϕ− = ɶ  (2.16) 
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Because with ( ) 0V t ≠ we are no longer dealing with stationary case; the time 

evolution operator is no longer as simple as /iHt
e

− ℏ  when H itself involves time.  We 

can show that Hɶ is given for, 
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 (2.17) 

 

If we attempt to diagonalize this Hamiltonian we find the corresponding 

eigenvalues 

 

( )( )

( )

2 2 2 2

2 2 2

2 2

0

( )

g
g g

g

g

g

λ
λ λ λ

λ

λ

−∆ −
= − ∆ + ∆ − − = −∆ + −

∆ −

= − ∆ + + =

⇒ Ω ∆ = ∆ +

 (2.18) 

Where
0ω ω∆ = − ; is the detuning in this case between ω  and 

0ω . In fact Hɶ  is 

time independent.  We do the algebraic change as 2 2
( ) gΩ ∆ = ∆ + , multiply and 

dividing, so [see reference 23], 

 
1 1 1

2 2 2
z x x z

g g
H σ σ σ σ

∆ Ω ∆   = − + = −  Ω Ω Ω Ω Ω   
ɶ  (2.19) 

 

Also the operator Hɶ  can be put into the form 

 ˆ
2

H nω σ= − ⋅
ℏ �

 (2.20) 
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Where n̂  is a unit vector in 3
ℝ . The time-evolution operator is readily obtained, by 

making use of the result of (remember that for our purpose 1≡ℏ ), 

 

 ( ) ( ) ( ) ( )ˆ( ) exp / 2 cos / 2 sin / 2U t iHt t i n tω σ ω= − = Ι + ⋅
�

 (2.21) 

 

Thus the Hamiltonian time independent is (ω → Ω ), 

 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ˆ( ) exp / 2 cos / 2 sin / 2

                                cos / 2 sin / 2

cos / 2 sin / 2 sin / 2

( )

sin / 2 cos / 2 sin / 2

x z

U t iHt t i n t

g
t i t

g
t i t i t

U t
g

i t t i t

σ

σ σ

= − = Ω Ι + ⋅ Ω

∆ = Ω Ι + − Ω Ω Ω 

∆ Ω + Ω Ω Ω Ω=  
∆ − Ω Ω − Ω 

 Ω Ω 

�ɶ

ɶ

 (2.22) 

 

The wave function ( )tϕ  with the initial condition 
1

(0)
0

ϕ
 

=  
 

 is 

 
( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

( ) ( ) (0)

cos / 2 sin / 2 sin / 2
1

         
0

sin / 2 cos / 2 sin / 2

cos / 2 sin / 2

( )

sin / 2

t U t

g
t i t i t

g
i t t i t

t i t

t
g

i t

ϕ ϕ

ϕ

=

∆ Ω + Ω Ω  Ω Ω=   ∆  − Ω Ω − Ω 
 Ω Ω 

∆ Ω + Ω Ω=  
 − Ω
  Ω 

ɶ

 (2.23) 

We find ( )tψ  from Eq. (2.15) as 
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( ) ( )

( )

/2 /2

cos / 2 sin / 2

( ) ( )

sin / 2

z zi t i t

t i t

t e t e
g

i t

ωσ ωσψ ϕ+

∆ Ω + Ω Ω= =  
 − Ω 
 Ω 

 (2.24) 

Let us assume the applied field is in resonance with the energy difference of 

two levels, namely ω = ω0. We obtain 0∆ =  and gΩ =  in this case. The wave 

function ( )tψ  at later time t > 0 is, 

 

( )
( )

( )
( )

0

0

0

/2/2

/2

/2

cos / 2
( ) ( )

sin / 2

cos / 2
( )

sin / 2

zz

z

z

i ti t

i t

i t

gt
t e t e

i gt

e gt
t

ie gt

ω σωσ

ω σ

ω σ

ψ ϕ

ψ

+  
= =  

− 

 
=   − 

 (2.25) 

 

Where, we made a spectral decomposition of the operator, or we can regard it 

operator as a rotation operator ˆ ( )R θ , ( 0t tθ ω ω= = ) which is expanded in Taylor 

series as 

 ( )
/2

/2

/2

0

0

z

i t

i t

i t

e
R t e

e

ω
ωσ

ω
ω

+
+

−

 
= =  

 
 

Thus, we obtain the wave function with an additional phase, but it does not 

affect the outcome final, of the probabilistic interpretation (atomic inversion, etc.). 

The probability with which the system is found in the ground (excited) state of H0 

is given by 

 

 
( )
( )

2

1

2

2

cos / 2 ,        ground state

sin / 2 ,        excited state

gt

gt

Ρ =


Ρ =
 (2.26) 

  

 



18 2. QUANTUM ENTANGLEMENT FUNDAMENTS 

 

 

This oscillatory behavior is called the Rabi oscillation. The frequency g is called the 

Rabi frequency, while Ω  in Eq. (2.18) and (2.19) is called the generalized Rabi 

frequency [23]. In the graphics we show the Rabi Oscillations for both states, 

 

 

Figure 2.1 Plots of the Rabi Oscillations in Ground and Excited States 

 

2.4 Quantum Entanglement and Multipartite Systems 

It is possible for a particle to interact with another particle in such a way 

that the quantum states of the two particles form a single entangled state. The 

definition of an entangled state is that it is not entirely independent of other states 

[see reference 23, 25, 24, 26]: its state is dependent on another state in some 

way. Because of this dependency it is a mistake to consider either state in isolation 

from the other. Rather we should combine the states and treat the result as a 

single, entangled state. 

First recognized by Einstein, Podolsky and Rosen [7] and Schrodinger [8], it 

is one of the most astonishing features of the quantum formalism. The main 

problem in Entanglement Theory is that we do not fully understand what 

entanglement is. More precisely, we only know is its mathematical definition and 

its manifestations [4, 5, 9]. Entanglement appears as the consequence of the 

combination of two of the quantum postulates [26]: 
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Contrary to the entangled states are the separable states, i.e., a state is entangled 

if and only if it is not separable. Whether a given state is entangled or just 

classically correlated is easy to determine for pure states. However, for arbitrary 

mixed states it is a hard problem [9]. We will see this later. 

 

2.4.1 Multipartite Systems and Tensor Product 

So far, we have assumed implicitly that the system is made of a single 

component. Suppose a system is made of two components; one lives in a Hilbert 

space 1H  and the other in another Hilbert space 2H . A system composed of two 

separate components is called bipartite. Then the system as a whole lives in a 

Hilbert space 1 2H H H= ⊗ , whose general vector is written as 

 
, 1, 2,

,

i j i j

i j

c v vψ = ⊗∑  (2.27) 

Where { },k jv , (k=1.2) is a orthonormal basis in kH and 
2

,,
1i ji j

c =∑ .  A state 

Hψ ∈  written as a tensor product of two vectors as 1 2ψ ψ ψ= ⊗ , ( a aHψ ∈ ) 

is called a separable state or a tensor product state. A separable state admits a 

classical interpretation such as “The first system is in the state 1ψ , while the 

second system is in 2ψ .”It is clear that the set of separable states has dimension

( ) ( )1 2dim dim( ) dimH H H= + . Note however that the total space H has different 

dimensions since we find, by counting the number of coefficients in (2.26), that

( ) ( )1 2dim dim( )dimH H H= . This number is considerably larger than the dimension of 

the separable states when ( )dim
a

H  (a = 1, 2) are large. What are the missing 

states then? Let us consider a spin state 

 
1

2
ψ  = ↑ ⊗ ↑ + ↓ ⊗ ↓   (2.28) 

Of two separated electrons. Let us assume that ψ may be decomposed as  
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1 2 1 2

1 1 1 2 2 1 2 2     

c c d d

c d c d c d c d

ψ    = ↑ + ↓ ⊗ ↑ + ↓   

 = ↑ ⊗ ↑ + ↑ ⊗ ↓ + ↓ ⊗ ↑ + ↓ ⊗ ↓ 

 

However this decomposition is impossible because the constants cross should be 

nullified in order to this system to maintain consistency, since we must have  

 1 2 2 1 1 1 2 20,    1 / 2c d c d c d c d= = = =  

Simultaneously, and it is clear that the above equations have no common 

solution. Therefore the state ψ  is not separable. Such non-separable states are 

called entangled in quantum theory [10]. The fact 

 ( ) ( )1 2 1 2dim( )dim dim( ) dimH H H H+≫  

Tells us that most states in a Hilbert space of a bipartite system are entangled 

when the constituent Hilbert spaces are higher dimensional. These entangled 

states refuse classical descriptions. Entanglement will be used extensively as a 

powerful computational resource in quantum information processing and quantum 

computation. 

Let to assume a bipartite state (2.28) is given. We are interested in when the state 

is separable and when entangled. The criterion is given by the Schmidt 

decomposition of ψ . 

 

2.4.2 Separability and Entanglement 

Deciding whether several systems are entangled or whether they are just 

classically correlated is known as the separability problem [24, 26]. In this section 

we present the separability condition for pure and mixed states, i.e., the definition 

of entangled states. We will be referring to bipartite systems in a Hilbert space

A BH H H= ⊗ , as mentioned above. 

Pure States A pure state ψ  is entangled if and only if it is not separable, i.e., it 

cannot be written as a tensor product 

 1 2   or  A Bψ ψ ψ ψ ψ ψ= ⊗ = ⊗  (2.29) 
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THEOREM 2.1 (Schmidt decomposition). Let to we assume ψ  is a pure state of a 

composite system, AB. Then there are orthonormal states { }Ai  for system A, and 

orthonormal states { }Bi  of system B such that 

  i A B

i

i iψ λ= ⊗∑  (2.30) 

where iλ are non-negative real numbers satisfying 2 1
ii

λ =∑  known as Schmidt 

coefficients. If there is no degeneracy, this decomposition is unique up to arbitrary 

opposite phases in A
i and B

i .  

The Schmidt rank is defined as the number of non-vanishing Schmidt coefficients. 

Then, the criterion for pure states is 

ψ  is pure ⇔ ψ has Schmidt rank one. 

Mixed States: A mixed state ρ is entangled if and only if it is not separable, i.e., it 

cannot be written as [11] 

 
1

N
i i i i

i A A B B

i

pρ ψ ψ ψ ψ
=

 = ⊗ ∑  (2.31) 

That is, a separable state can be prepared by two distant observers who receive 

instructions from a common classical source and prepare the different pure states 
i

Aψ  and i

Bψ  with probability 
i

p (Fig. 2.1). So, entangled states are those that 

cannot be created using local operations and classical communication. 

The criteria for entanglement of mixed state are many and diverse. Here we start 

introducing two of them [12, 13]. The symbol 
i

Τ  indicates the transposition of 

subsystem i , i.e., partial transposition of the entire system with respect to i (see 

section 2.4). 

THEOREM 2.2 (Peres) If ρ  is separable then 

 ( )0  and  0A B Aρ ρ ρ
ΤΤ Τ Τ≥ = ≥  (2.32) 
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Figure 2.2: Separable-states factory. A classical source gives with probability 
i

p   the output i , indicating far 

away partners which state to prepare. (Alice and Bob) 

Generalization to a system with more components, i.e., a multipartite system, 

should be obvious. A system composed of N components has a Hilbert space 

 1 2 i N
Η = Η ⊗ Η ⊗ ⊗ Η ⊗ ⊗ Η⋯⋯ ⋯  (2.33) 

Where aΗ  is the Hilbert space to which the tha component belongs. Classification of 

entanglement in a multipartite system is far from obvious, and an analogue of the 

Schmidt decomposition is not known to date for N ≥ 3. 

 

2.4.3 Density Operator (Matrix) and Mixed States 

It might happen in some cases that a quantum system under consideration is in 

the state i
ψ  with a probability

i
p . In other words, we cannot say definitely which 

state the system is in. Therefore some random nature comes into the description 

of the system. This random nature should not be confused with a probabilistic 

behavior of a quantum system. Such a system is said to be in a mixed state, while 

a system whose vector is uniquely specified is in a pure state. A pure state is a 

special case of a mixed state in which 1
i

p =  for some i and 0
j

p = , ( j i≠ ). Mixed 

states may happen in the following cases, for example: 

 

• Let us assume we observe a beam of totally unpolarized light and measure 
whether photons are polarized vertically or horizontally. The measurement 
outcome of a particular photon is either horizontal or vertical. Therefore 
when the beam passes through a linear polarizer, the intensity is halved. 
 



 23 
 

  
The beam is a mixture of horizontally polarized photons and vertically 
polarized photons.  

• A particle source emits a particle in a state i
ψ with a probability 

i
p  (1 ≤ i ≤ 

N). 
• Let us consider a canonical ensemble. If we pick up one of the members in 

the ensemble, it is in a state i
ψ  with energy

i
E , and probability

( )exp / / ( )
i i B

p E k T Z T= , where ( )/
( ) BH k T

Z T Tr e
−=  is the partition function. 

 

In each of these examples, a particular state i
ψ ∈Η  appears with probability

i
p , in 

which case the expectation value of the observable a is i i
Aψ ψ , where we 

assume i
ψ  is normalized; 1

i i
ψ ψ = . The mean value of a is then given by 

 
1

N

i i i

i

A p Aψ ψ
=

=∑  (2.34) 

where N is the number of available states. Let us introduce the density matrix by 

 
1

N

i i i

i

pρ ψ ψ
=

=∑  (2.35) 

Then the equation (2.33) is rewritten in a compact form as 

 ( )A Tr Aρ=  (2.36) 

Properties which a density matrix ρ satisfies are very much like axioms for pure 

states. 

A1. A physical state of a system, whose Hilbert space is H, is completely specified 

by its associated density matrix ρ :H→H. A density matrix is a positive semi-

definite Hermitian operator with ( ) 1Tr ρ = . 

A2. The mean value of an observable a is given by 

 ( )A Tr Aρ=  (2.37) 
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A3. The temporal evolution of the density matrix is given by the Liouville von 

Neumann equation, 

 [ ],
d

i H
dt

ρ ρ=ℏ  (2.38) 

Where the H is the Hamiltonian of system. 

THEOREM 2.4 A state ρ is pure if and only if ρ2 = ρ. 

DEFINITION 2.1 A state ρ is called uncorrelated if it is written as 

 1 2ρ ρ ρ= ⊗  (2.39) 

It is called separable if it is written in the form 

 ( )1, 2,i i i

i

pρ ρ ρ= ⊗∑  (2.40) 

Where 0 ≤ pi ≤ 1 and  1
ii

p =∑ . It is called inseparable if ρ does not admit the 

decomposition (2.39). It is important to realize that only inseparable states have 

quantum correlations analogous to that of an entangled pure state. However, it 

does not necessarily imply separable states have no non-classical correlation. It 

was pointed out that useful non-classical correlation exists in the subset of 

separable states [14]. 

2.4.4 Entanglement Measures 

Perhaps the most remarkable feature of quantum mechanics, a feature that 

clearly distinguishes it from classical physics, is this: for any composite system, 

there exist pure states of the system in which the parts of the system do not have 

pure states of their own. Such states are called entangled. 

One can also define the concept of entanglement for mixed quantum states: a 

mixed state is entangled if it cannot be represented as a mixture of unentangled 

pure states. For both pure and mixed quantum states, there are good measures of 

the degree of entanglement. In the case of pure states of a bipartite system there 

is a single widely accepted measure of entanglement, whereas for mixed states of 

such systems there are three measures that have been extensively studied.  
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Quantifying quantum entanglement is one of the main challenges in quantum 

theory and more specifically in the quantum computation theory. Thus the 

questions that arise:  

� How can entanglement be measured or quantified,  

� how can entanglement be classified, i.e., what physically different 

types of entanglement exist, and  

� Finally how does entanglement behave as a physical resource for 

quantum communication, quantum computation, etc.? 

 

To begin, we must know how to quantify entanglement [15, 26] and what do such 

a measure. We answer this important question by stating the conditions that every 

measure of entanglement E has to satisfy: 

• Entanglement is non-negative. It is zero if and only if the state is separable 
 

 ( ) ( )0  ,   0   is separableE Eψ ψ ψ ψ≥ ∀ = ⇔  

• Entanglement of independent systems is additive 
 

 ( ) ( )n
E nEψ ψ⊗ =  

• Entanglement is conserved under local unitary operations 
 

 ( ) ( ),    :A BU U U U E E Uψ ψ ψ ψ→ = ⊗ =  

֏ a local change of basis has no effect on E 

 

• Its expectation value cannot be increased by local non-unitary operations 
 

 { } ( ) ( )local non-unitary , :
j j j j

j

p p E Eψ ψ ψ ψ− → ≤∑  

For more on this see the pioneering paper on entanglement measures [15]. 
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A pure state's entanglement is measured by its entropy of entanglement ( )E ψ  

 ( ) ( ) ( ):    i i

i A B A B

i

p E S Sψ ψ ψ ψ ρ ρ= ⊗ = =∑  (2.41) 

i.e., the apparent entropy of any of the systems considered alone, where 

 ( ) ( )logS Trρ ρ ρ=  (2.42) 

is the von Neumann entropy, A B
Trρ ψ ψ=  is the reduced density matrix of A, 

obtained after tracing over B's degrees of freedom, and the logarithm is to base 

two (the information is stored in qubits). The entropy measures how much 

uncertainty there is in the state of the physical system. For example, if 
A

ρ  and 
B

ρ  

describe pure states (there is no uncertainty in the individual systems), then

( ) 0E ψ =  (there are no quantum correlations between them). 

We define an ebit as the amount of entanglement in a maximally entangled state 

of two qubits, for which E = 1. 

Another possibility is to use the rank of the Schmidt decomposition (SD) as a 

measure. If A is a subset of n qubits and B the rest of them, the SD of ψ  with 

respect to the partition A: B reads 

 [ ] [ ]
1

A

p A B
χ

β β β
β

ψ ψ ψ
=

= ⊗∑  

The rank Aχ  of Aρ  (the reduced density matrix for block A) is a natural measure 

[16] of the entanglement between the qubits in A and those in B. Therefore, a 

good measure to quantify the entanglement of state ψ  would be the maximal 

value of Aχ  over all possible bipartite splits A: B of the n qubits, namely 

 ( ): max
A

A
χ χ=  

or the related entanglement measure Eχ , then ( )2: logEχ χ= . 

In the bipartite setting, Eχ  upper bounds the more standard measure entropy of 

entanglement.  
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For mixed states we have a lot of measures, there is not a unique measure of 

entanglement. The choice of one measure or another depends on what you need. 

We will see some examples in what follows. In principle, there are two approaches 

to quantify entanglement [17, 18]: 

Abstract approach. A state function can be used to quantify entanglement if it 

satisfies the natural properties stated before as definition of a measure. 

1. Von Neumann entropy S: already introduced in (2.3.4).  
2. Relative Entropy of Entanglement ER: it is based on the idea of distance; the 

closer the state is to the set of separable states, the less entangled it is.  
3. Other measures: Squashed Entanglement Esq, Rényi Entropy Eα , Logarithm 

of the Negativity EΝ , Concurrence C, etc. 

 

Operational approach. The system is more entangled if it allows for better 

performance of some task impossible without entanglement. 

1. Entanglement of Formation EoF : having a large number n of Bell states, we 
want to produce as many (high-fidelity) copies ψ  using LOCC, getting 

finally m copies, therefore 's E of formation is the limiting ratio n/m.  
2. Distillable entanglement ED: performing the reverse process, it is the limiting 

ratio m/n, when having a large number m of copies of ψ  and we want to 

distill as many Bell states using LOCC (local operations and classical 
communications), getting finally n EPR pairs.  

3. Other measures: Entanglement Cost EC, Entanglement of Assistance EoA , 
etc. 

 

All these measures are equivalent in certain limits, e.g. [19]. We have so many 

definitions not only due to the diverse interpretations, but because calculating 

some of they are of the Big Open Problems of QIT. 
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CHAPTER 3 
 

 

PHYSICAL PRINCIPLES OF QUANTUM DOTS 

SYSTEMS 

 

In this chapter introduced many concepts and tools referents to quantum 
structures but especially the quantum dots, because are these items which we 
research in this dissertation theoretically. However we are interesting in a focus 
experimental and technological application. The firsts sections 3.1 and 3.2 we 
review the art state about quantum structures, mainly QDs. The following sections 
3.3 and 3.4 present a series of theoretical calculations related to physical 
processes in atomic systems for quantum structures, especially the modelling of 
QDs, the concept CQED of the Jaynes-Cummings Model, and so on. In sections 3.5 
and 3.6 we study and review the Förster interaction (Förster Resonance Energy 
Transfer), the QD-Hamiltonian and we diagonalized this Hamiltonian. Later in 
section 3.7 we review the collective systems from the Dicke model and in section 
3.8 we introduce the Atomic Coherent States (ACS) and Excited Atomic Coherent 
states (EACs) as generalized collective states.  
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3.1 Introduction 

Theoretical research on electronic properties of mesoscopic systems 
in condensed matter has focused primarily on the degrees of freedom of the 
electron charge, while the degrees of freedom of spin had not yet received the 
same attention. However, an increase in the number of experiments [1-6] in 
connection with the spin, show that the spin of the electron offers unique 
possibilities to find new mechanisms for processing and transmission of 
information as most remarkable quantum-confined nanostructures usually with 
long dephasing [2, 3, 4] about microseconds, as well as long distances above 
10 microns [2] on which the spin can be transported coherently in phase. Behind 
the intrinsic interest in the spin-related phenomena, mainly there are two 
promising areas for future applications: conventional devices based on the 
spin [1] as well as quantum computer hardware [7]. In conventional 
computers, the electron can be expected to increase the performance 
of quantum electronic devices; examples include spin transistors (based 
on spin currents and spin injection), non-volatile memories, single spin as 
the ultimate limit of information storage, etc. [1]. On the other hand, none 
of these devices already exist, and progress experimental and theoretical 
research are needed to provide guidance and support in the search for 
feasible implementations. On the other hand the emerging field of quantum 
computing [8,9] and quantum communication [9, 10] require a radically new 
approach to the appointment of the necessary hardware.  As noted in reference [7, 
11] principle, the electron spin is the natural candidate for quantum bit (quantum-
bit: qbit) the fundamental unit of quantum information. We [7] observed    that 
qbits spin, when located in quantum confinement structures such as 
semiconductor quantum dots or atoms or molecules; satisfy all the 
requirements for a scalable quantum computer. Moreover, such qbits spin are 
attached to an electron with orbital degrees of freedom, and can be 
transported along the conducting wires between different subunits in a quantum 
network [9]. In particular, can be created entangled electron spin (spin-
entangled) quantum dots - as pairs mobile Einstein-Podolsky-Rosen (EPR) [9] - 
and then provide the necessary resources for quantum communication.  In 
both areas related to the spin - conventional computers and quantum computers-
needed physical tools and concepts similar and sometimes identical, the 
immediate goal is to find common ways of controlling the coherent dynamics of 
electron spin confined in nanostructures. This is the common goal to do research  
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on electron-spin in nanostructures-spinotronics - a highly 
attractive area. While advances in our understanding of the physics of spin 
in many-body systems, we will gain meaning that promises to be useful for future 
technologies.  As first highlighted [11] have been many proposals for solid state 
implementations of quantum computers along with all other proposals. One very 
clear reason is that the solid-state physics is a branch of physics 
more versatile in almost any possible phenomenon in physics can be covered 
in a properly designed system of condensed matter. A related reason is that 
the solid-state physics has been closely allied with computer technology and 
has exhibited great versatility in creating artificial structures and devices. This is 
being exploited to produce more capable computing devices. Seem natural to 
expect that this versatility is also extended to the creation of solid state quantum 
computers, the proposals indicate that indeed this is true, but only time will tell if 
any of these proposals actually provide a successful path to quantum 
computer . In the following will review the current status found in our theoretical 
efforts towards the goal of implementing quantum computation 
and communication with the electron spin in quantum 
confined nanostructures. Much of the results presented here have been 
discussed in several places in the literature, (for an excellent review see for 
example [25] and references therein), for which we refer for details to reader’s 
interested want. 

Quantum dots have become a system of study in a broad range of 
disciplines in a relatively short time. The incredible progress in synthesis, growth 
and fabrication quality fed further the advances in optical investigations in physics, 
biology and chemistry. Particular to quantum physics, quantum dots allow optical 
studies of confined charge and spin systems and in parallel studies on engineering 
light–matter interaction and even the suppression of spontaneous emission. We 
star below with an introduction about quantum structures, defining the concept 
of different quantum structures based on their degrees of freedom. The following 
sections develop the atomic theory needed to understand the meaning of 
the interaction of radiation-matter, ie from the first principles of the interaction of 
a single mode within the cavity with a single atom (Jaynes-Cummings Model [24]). 
Also review the basic models of QDs and their similar and difference features with 
purely atomic systems. 
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3.2 Quantum Structures 

Essentially there are three types of quantum structures studied in the 
literature, from basic textbooks to books and papers on advanced research, 
namely: Quantum Wells (QW), Quantum Wires (QWI), and Quantum Dots (QD). 
Their difference lies mainly in its attributes to confine or trap atomic and subatomic 
particles (electrons, protons, ions, etc.), i.e. the degrees of freedom 
that allows each quantum structure.  To be more precise, the reduction in 
dimensionality produced by confining electrons (or holes) to a thin semiconductor 
layer leads to a dramatic change in their behavior. This principle can be developed 
by further reducing the dimensionality of the environment electrons from two-
dimensional QW to a dimensional one-dimensional QWI and eventually to a zero-
dimensional QD. In this context, of course, the dimensionality refers to the degrees 
of freedom in the electron momentum; in fact, within a quantum wire, the electron 
is confined across two directions, rather the just the one in a quantum well, and so 
on, therefore, reducing the degrees of freedom to one. In quantum dot, the 
electron is confined in all three-dimensions, thus reducing the degrees of freedom 
to zero. If the number of degrees of freedom is labeled as 

f
D  and the number of 

directions of confinement is labeled as
c

D , then we have clearly, 

 3
f c

D D+ =  (3.1) 

 

For all solid state systems. These values are highlighted for the four 
possibilities shown in Table 3.1. Tradition has determined that the reduced 
dimensionality systems are labeled by the remaining degrees of freedom in the 
electron motion, i.e.

f
D , rather that the number of directions with confinement

c
D . 
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System Dc Df  

Bulk 

Quantum Well 

(QW) 

Quantum Wire 

(QWI) 

Quantum Dot 

(QD) 

0 

1 

   

  2 

  

  3 

3 

2 

 

1 

 

0 

 

Table 3.1 The number of degrees of freedom f
D  in the electron motion, together with the extent of the 

confinement
c

D , for the four basic dimensionality systems. 

The systems studied in this work are semiconductor quantum dots embedded in an 
optical microcavity.  In this Chapter, we set the stage for the detailed discussions 
in the main part of the thesis. To facilitate the understanding of the physical 
system, basic principles of quantum dots and optical transitions in quantum dots 
shall be introduced in Section 3.2.1.  

The aim of this thesis is to achieve faithful storage of the state of an optical 
microcavity in the nuclear spins of a quantum dot. The interaction between light 
and nuclear spins is mediated by the hyperfine interaction between the singly 
charged quantum dot electron and the nuclear spins. Section 3.2.1, introduces 
basic concepts used in this work to describe the hyperfine interaction between the 
electron and the nuclear spin ensemble. In the present work, high polarization of 
the nuclear spins is assumed. Thus, state of the art techniques for polarizing 
nuclear spins in quantum dots shall be discussed. Next, assuming high polarization 
of the nuclei, an approximation enabling the description of collective spin operators 
in terms of bosonic operators will be reviewed. 

The main objective of quantum electrodynamics (QED) is to describe the 
interaction between light and matter; indeed it is regarded as one of the (if not 
the) most precise theories of physics in its agreement with experimental results. 
Despite its exceptional explanatory power, QED still has unexplored areas; one of 
these concerns systems with many particles – a rich field of research even in  
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classical mechanics. For example, the subtle limit between microscopic (quantum) 
and macroscopic (classical) systems is a fundamental problem in many-body 
quantum mechanics, yet to be fully understood. One of the main difficulties in 
dealing with many-body problems in quantum mechanics is computational. For a 
number N of two level atoms, 2N states are needed to fully describe the state of 
the system, and one must seek approximation methods. In the quantum optics 
context the main tool to deal with macroscopic problems is the quantum-to-
classical correspondence, which maps a discrete many-body system onto a 
description in terms of a continuous probability distribution, generating partial 
differential equations to be solved or simulated. 

 

3.2.1 Quantum Dots characteristics: from the growth to energy levels  

The quantum heterostructures has been provided in the progress of the so 
called material science that have allowed its growth to exhibit inhomogeneities at 
atomic and subatomic scales that alter the spectrum of excitons into these 
materials [25]. As mentioned above the quantum dot (QD) heterostructures are 
designed to provide three-dimensional spatial confinement for excitons (electron-
hole pairs).  In QDs yields a discrete energy spectrum similar to that of atoms, so 
it is no coincidence that they refer to as artificial atoms. A series of quantum 
confined systems for physical applications that display a discrete energy spectrum, 
for example there exist fluctuations in the QDs interface formed in gallium 
arsenide/ aluminum gallium arsenide (GaAs/ AlGaAs) barrier boundary in quantum 
well, core-shell cadmium selenide/zinc sulfide nanocrystals (CdSe/ZnS) formed by 
both methods and colloidal QDs grown by metal organic vapor phase epitaxy 
(MOVPE), electrically defined QDs through gate electrodes patterned on the two-
dimensional electron gas giving precise control over the local electrostatic potential 
and self-assembled QDs grown by molecular beam epitaxy (MBE).  

The process of epitaxial growth is where a new crystal is grown over a host 
crystal surface via layer-by-layer atomic deposition [12]. These techniques are 
capable of depositing high quality semiconductors with a sudden change in 
material composition having monolayer ( 3∼ Å) accuracy. The formation of 
InAs/GaAs QDs is a natural process and is the manifestation of a strain-driven 
phase transition that occurs when combining two materials of different lattice 
constants during one material growth cycle. All materials have its own lattice 
constant and this commonly leads to formation of strain on two layers constituting  
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an abrupt interface. Figure 3.1(a) illustrates the two typical cases of strain release: 
a monolayer-thick material embraces a lattice constant dictated by the host 
material or a sufficiently thick material recovers its own lattice constant resulting in 
strain release via dislocations and defects at the interface. The formation occurs 
exactly during the transitional period linking the two regimes of strain release. If 
the lattice constants are significantly different (e.g. 7% mismatch between 

a
l  and 

b
l , as is the case for GaAs and InAs lattices), the epitaxial growth of InAs with the 

GaAs lattice cannot be sustained for more than two monolayers of growth. At one 
point, the newly formed layer goes through a phase transition forming miniature 
islands, very much like mercury droplets do on a smooth flat surface. Further 
growth with the same material as the handle wafer, in this case GaAs, caps the 
QDs and protects them from the surrounding environment. After growth, the 
height of the QDs is typically 4–5 nm, as determined by cross-sectional scanning 
tunnelling microscopy image of Figure 3.1(b) [13]. It should be noted that, 
although the self-assembled QDs exhibit pristine optical properties, the in-plane 
QD distribution is chaotic and great efforts are still made today in this field in order 
to achieve better control over the island size distribution and location of nucleation.  

 

 

Figure 3.1 (a) An illustration of lattice constant mismatch for two materials grown by MBE for strained thin 
layers and dislocated thick layers. (b) Cross-sectional scanning tunnelling microscopy of a self-assembled InAs 
QD grown by MBE [13]. 
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In the case of MBE growth process results in strong three-dimensional carrier 
confinement for electrons in QDs resulting in quantization of energy states. 
Nevertheless, QDs are composed of around 105 atoms, and thus form a 
mesoscopic system with arbitrary shape and composition which differ from QD to 
QD. The distribution in shape and composition combined with the strain profile 
experienced by the QD all influence the single particle QD energy levels in the form 
of inhomogeneous broadening. In addition to material properties, if multiple 
charges are confined in the QD the Coulomb interaction between the quantum 
confined carriers has to be taken into account when calculating the multiparticle 
energy levels. All the previous complications make an analytical determination of 
QD properties practically impossible and modelling typically relies on perturbative 
or numerical methods. Even with all these complications it is striking that the 
roughly 105 InAs atoms in the GaAs matrix conspire to exhibit a discrete atomic-
like energy spectrum. The QDs of InAs/GaAs are semiconductors in bulk (three-
dimensional) form. Therefore, to solve for the energy levels of QDs, it is natural to 
begin from the bulk material properties and determine the consequences of 
reducing the system’s dimensionality. For bulk semiconductor band structures is 
necessary to make a phenomenological approach satisfactory enough to resort to a 

perturbative k p
� ��
i  model. In k p

� ��
i  single-particle wavefunctions and energy 

eigenvalues are assumed to be known at 0k =
�

 and the band dispersion is obtained 

in the small k
�
 approximation around the Γ -point [14]. In order to QDs can also be 

applied perturbative methods because the k
�
-vector distribution of confined 

charges is concentrated around 0k =
�

. In figure 3.2 is showed a schematic of the 
band structure of bulk GaAs with relevant parameter values at room temperature. 
The band structure of InAs looks essentially identical, but, the values of the 
indicated parameters differ significantly from GaAs.  Excitation of an electron 
across the bandgap leaves an empty electronic state in the otherwise electron 
filled valence band. These holes can equally be treated as positively charged 
particles with modified mass and g-factor. The lowest conduction band has to a 
very good approximation parabolic dispersion around the Γ -point, as indicated by 
the red curve in Figure 3.2. The wavefunctions for this band have s-wave character 
sustaining a twofold spin-degeneracy with 1 / 2 1/ 2

z
S S   = ±    .  The valence band 

wavefunctions have p-wave character that would normally sustain a six-fold spin-
degeneracy forming a 3 / 2 3 / 2, 1 / 2 ± ±   quadruplet and 1/ 2 1/ 2 ±   doublet. 

However, spin orbit coupling in these semiconductors causes the 1/ 2 1/ 2 ±    
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doublet to be separated in energy forming what is referred to as the split-off band 
(Figure). Further, upon including the influence of other bands, even the fourfold 
degeneracy of the 3 / 2 3 / 2, 1 / 2 ± ±   states is lifted for 0k ≠

�
forming the heavy hole 

and the light-hole bands with near-parabolic negative curvature dispersion as seen 
in Figure 3.2.  When the dimensionality of the system is reduced such that the 
effective Bohr radius becomes comparable to the physical extent of the confining 
material, quantum confinement strongly influences the density of states, band 
dispersion and degeneracies. In the case of QDs, the dimensionality is zero 
resulting in motional confinement along all three directions. Therefore, a set of 
discrete energy levels arise with level spacing’s determined by the, not necessarily 
equal, confinement strength along each direction. In fact, due to their particular 
lens-like topology (see Figure 3.1(b)), the QDs considered here display strongest 
motional confinement along the growth (z) axis. Therefore, the main features of 
the energy levels of these QDs can be seen by simply considering a strong 
confinement along the z direction with a two-dimensional quasi-parabolic 
confinement in the two remaining directions. A generally accepted approach to 
quantifying the QD energy levels and the corresponding wavefunctions relies on 
pseudopotential theory [15, 16]. 

 

 

Figure 3.2 A simplified band structure scheme for III–V semiconductors such as GaAs and InAs with the 
typically accepted values for key energy scales. 



 39 
 

 

From the optics point of the view an important trait of the quantum confinement is 
that despite the energy spectrum of the QD is modified when compared to the bulk 
semiconductor, the electrons and holes that become trapped in the QD inherit the 
spin structure of the bulk semiconductor. This determines the optical (polarization) 
selection rules for transitions between QD electron and hole states mediated by a 
photon. Explicitly, focusing on the conduction band and heavy hole valence band, 
we can specify the QD electron and hole spin. The QD levels derived from the 
conduction band levels sustain their twofold spin degeneracy, while the QD levels 
derived from the valence band states display a confinement-induced splitting into 
heavy-hole and light-hole doublets. We qualitatively established the energy levels 
of electrons and holes confined in all three dimensions in semiconductor QDs. We 
now identify the energy scales of common InAs/GaAs QD charge configurations 
that are probed optically. The simplest charge configuration linked to an optical 
emission is the neutral exciton X0 (see Figure 3.3), i.e. a single electron–hole pair 
occupying the lowest discretised energy levels within the original conduction and 
valence bands. The electron in the conduction band can have spin quantum 
number 1/ 2 1/ 2zS S  =  ±     .The heavy hole in the valence band has spin

3 / 2 3 / 2zJ J  =  ±     . Using the angular momentum theory, specifically addition of 

angular momentum, a single electron–hole pair in the QD can end up in any one of 
four spin-state combinations. The total angular momentum of these combinations 
being 1J∆ = ±  or 2J∆ = ± , but each doublet is degenerate. The angular momentum 
must be conserved into of an optical transition, and this is evidence in the 
polarization of the emitted photons. Recombination via a single-photon emission 
process can only occur for the 1J∆ = ±  exciton doublet, since single photons carry 
angular momentum 1± .  
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Figure3.3. Neutral exciton (X0), biexciton (XX) transitions under excitonic level splitting and negatively charged trion (X1-) 
transitions under magnetic field along the growth axis for a typical quantum dot. The wavy arrows indicate photon mediated 
transitions between the states. For the negatively charged trion (right illustration) the up (down) arrow represents the 
electron spin projection of +1/2 (-1/2) along the growth direction and the up (down) triangle is the hole projection of +3/2 
(-3/2). The ground state of the trion transition is a single electron with its spin projection up or down. Each transition is 

decorated with a symbol indicating the emitted photons polarization 
X

−Γ  (
Y

Γ ) for horizontal (vertical) and +Σ  ( −Σ ) for 

right (left) circularly polarized photons. The direction of linear polarization (horizontal and vertical) is defined with respect to 
the major and minor axis of the elliptical QD base (as opposed to circular) due to strain-induced anisotropy of the dot 
geometry. 

We can see the angular momentum conservation in the polarization emitted 
photon. Specifically, photons carrying +1 (-1) angular momentum are left (right) 
hand circularly polarized and are denoted with the symbol +Σ  ( −Σ ). The exciton 
doublet 1J∆ = ±  that is linked to photon emission is called bright, while the 
remaining optically inactive doublet is called dark (the 2J∆ = ±  excitons). The 
polarization selection rules also constrain the set of excitons that may be created 
optically to the 1J∆ = ±  doublet. Of course, in the practice is not simple! The 
previously mentioned shape non-uniformity and strain act to coherently mix the 
bright 1J∆ = ±  exciton doublet via the electron–hole exchange interaction. This 
interaction couples the spins of the electron and hole confined in the QD and 
depends sensitively on the structural symmetry of the QD. The electron–hole 
exchange serves to both break the 1J∆ = ±  exciton doublet’s degeneracy and alter 
the polarization of the emitted photons from circular to linear, indicated by /

X Y
π π  

in Figure 3.3. Therefore the new polarization basis, which is defined along the 
major and minor axis of the elliptical QD base, led to the phrase X – Y splitting to 
denote this effect. Because to exchange interaction, an electron–hole pair once 
created in 1J∆ = +  state will precess coherently between 1J∆ = ±  spin 
configurations.  This are diagonalized Hamiltonian after including this interaction 
leads to new eigenstates with the degeneracy of their energies lifted in proportion  
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to the interaction strength. Typical energy scale for the 1J∆ = ±  exciton doublet 
fine structure splitting is 10 meVµ∼  for self-assembled InAs/GaAs QDs. The 

interested in a more complete discussion of the exchange interaction between 
electrons and holes we refer them to the reference [17]. Another QD charge 
complex that we discuss is two electrons and one hole. We call this singly charged 
excitonic QD excited state a trion, see Figure 3.3 (right diagram), and label it as X1-

. In forming the trion complex, Pauli’s principle forces the electron pair to form a 
spin singlet state where the closest triplet state has energy much higher than 
typical ambient temperature (4 K). Since the resident hole can have either spin up 
or spin down, each QD has two trionic transitions that are energetically 
degenerate. Due to Coulomb interactions in this three-body problem, the 
recombination energy is modified with respect to the original neutral X0 excitonic 
transition energy (ignoring fine structure) by 

ee eh
E E E∆ = −   the direct energy due 

to electron–electron and electron–hole Coulomb interaction [18] as dictated by the 
wavefunctions via the form 

 

 
,(1 ) 2

0

( ) ( ')( 1)
'

4 | ' |

m n

m n

mn

r

r re
E drdr

r r

δ ψ ψ
πε ε

−−
∝

−∫∫  (3.2) 

 

In the InAs/GaAs QDs considered here the result is a total shift of 6 meVE∆ =  to 
lower energy for the trionic transitions. In contrast to the neutral exciton where 
the electron–hole spin exchange breaks the twofold degeneracy, the electronic 
spin singlet is immune to electron–hole exchange and the two trion states remain 
degenerate. In this case, the polarization of the emitted photon is in the circular 
basis and using the right hand rule is determined the direction of the resident hole 
spin. Conceptually this situation is similar when there are two electron–hole pairs 
present in the QD referred to as the biexciton (XX) shown in Figure 3.3 (middle 
diagram). The shift in the transition energy for a biexcitonic transition can once 
more be determined by the energy difference between the initial and final states, 

2 2
ee hh eh

E E E E∆ = + − , and is on the order of 2 meV  for InAs QDs. Ultimately, every 

charge combination results in a distinct spectral signature due to the Coulomb 
interaction, and for more detailed explanation the reader can see reference [18] of 
this approach for direct and exchange type interactions. 
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We must note that here the energy scales for each mechanism considered 
are well defined. The optical transitions occur at eV  range while direct Coulomb 
interactions within a QD are at tens of  meV . The fine structure such as X–Y 
splitting is on the order of tens of  eVµ , which is still much larger than the 

characteristic transition linewidth of1 eVµ . While each quantum dot can have 

enormous different emission energies due to inhomogeneity characteristics in the 
quantum dot ensemble, the relative energy shifts are conveniently rather robust. 
With an insight of common QD charge complexes, we can begin to address how 
the tools of Quantum Optics and specially Cavity Quantum Electrodynamics reveal 
physical properties of the QD systems. 

3.3 QDs with Cavity Quantum Electrodynamics 

The dynamics of an optical and/or photonic emitter changes drastically 
when it is placed in a cavity. The cavity alters the density of states of optical 
modes, and therefore increases or inhibits interactions with the emitter. The effect 
was first put to use by Purcell in nuclear magnetic resonance for the practical 
purpose of thermalizing spins at radio frequencies, by bringing down their 
relaxation time from ≈ 10-21s to a few minutes [19]. Kleppner applied the same 
idea in the opposite way, to increase the relaxation time of an excited atom, i.e., 
to inhibit its spontaneous emission (SE) [20]. The emitter, that in the case of 
Purcell was sought to be resonant with the cavity mode to increase the photon 
density of states with respect to the vacuum, was in the case of Kleppner put out 
of resonance, namely in a photonic gap, where the photon density of states is 
smaller than in vacuum. This tuning of the relaxation time of an emitter placed in a 
cavity, now known as the Purcell effect, has many potential technological 
applications, one of the most compelling being the decrease of the lasing 
threshold. The effect, which had first been actively looked for with atoms in 
cavities [21], was therefore also intensively (and more recently) pursued in the 
solid state, more prone for massive technological implementations. Semiconductor 
heterostructures are the state of the art arena for this purpose. They allow to 
engineer, with an ever rising control, the solid state counterpart of the atomic 
system to match or isolate their excitation spectra and thus control their 
behaviour. Typical examples are quantum dots (QDs) placed in cavities made in 
micropillars, microdisks or photonic crystals, where Purcell inhibition has been 
distinctly demonstrated [22, 23]. In the description of the Purcell effect, the 
possible reabsorption of the photon by the emitter is so weak that it can be 
neglected. It is responsible for the energy shift known as the Lamb shift that, in  
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quantum electrodynamics, is interpreted as the perturbative influence of virtual 
photons emitted and re-absorbed by the emitter. In the case of inhibition of the 
spontaneous emission, this shift is indeed orders of magnitude smaller than the 
radiative broadening. In the case where emission is enhanced, and the linewidth 
narrowed, the probability of reabsorption of a photon by the emitter becomes 
closer to that of escaping the cavity, until the perturbative—so-called weak-
coupling (WC)—regime breaks down and instead strong coupling (SC) takes place. 
In this case, photons emitted are then reflected by the mirrors and there is a 
higher probability for their reabsorption by the atom than for their leaking out of 
the cavity. A whole sequence of absorptions and emissions can therefore take 
place, known as Rabi oscillations (already studied at section 2.2.3). This regime is 
of greater interest, as it gives rise to new quantum states of the light-matter 
coupled system, usually referred to as dressed states in atomic physics and as 
polaritons in solid-state physics. Experimentally, SC is more difficult to reach, as it 
requires a fine control of the quantum coupling between the bare modes and in 
particular to reduce as much as possible all the sources of dissipation. 
Theoretically, it is better dealt with by first getting rid of the dissipation, and 
starting with the strong-coupling Hamiltonian. Throughout this work we will 
consider systems of one or many atoms inter-acting with a single cavity mode.  In 
this chapter we derive the theoretical model for such a system and consider the 
case of one two-level atom as a representative example. The coupling between the 
atomic transition and the quantized cavity field is described by the Jaynes-
Cummings model introduced in section 3.3.1. 

 

3.3.1 Jaynes-Cummings model  

The interaction between a single cavity mode and a two-level atom is 
described by the Jaynes-Cummings model [24]. In the following we will introduce 
it in a similar way as in [25]. We denote the frequency of the transition between 
the ground state g = ↓  and the excited state e = ↑  of the atom by 2 1a

ω ω ω= − . 

This transition couples to a cavity mode with frequency
c

ω . The complete time-

independent Hamiltonian of the system is 

   

 ( ) ( ) ( ) ( )( )† †

2 1 2 1 1
2 2

z
H a a i g a aω ω ω ω σ ω σ σ+ −= + Ι + − + + − − −
ℏ ℏ

ℏ ℏ  (3.3) 
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Where 
1

ωℏ  and 
2

ωℏ are the energies the uncoupled states g  and e , respectively, 

and ω  is the frequency of the field mode. With the atomic operators e gσ + = , 

g eσ − =  and 
z

e e g gσ = − . †
a and a are the creation and annihilation 

operator of the cavity mode. The photon operator is a Bose annihilation operator, 

satisfying the usual commutation rule †
, 1a a  =  . Applying the unitary 

transformation, with 2 1 a
ω ω ω ω ω∆ = − − = −  and / 2δ = ∆ .  We find the Hamiltonian in 

the interaction picture is 

 ( ) ( )†

2

i t i t i t i t

z
H ig e e ae a e

ω ω ω ωσ σ σ − −
+ −

∆
= − − −  (3.4) 

 

Making the rotanting-wave approximation removes the explicit time dependence 
and gives the Jaynes-Cummings Hamiltonian (ℏ  is taken as 1 along the thesis), 

 ( )†

2
JC z

H ig a aσ σ σ+ −

∆
= − −  (3.5) 

 

Where introduce the detuning
a

ω ω∆ = − . The omitted interaction terms aσ −  and 
†

aσ + and correspond to downward transition in the atom accompanied by 

absorption of a photon and to an upward transition with the emission of a photon. 
These processes do not preserve the total number of quanta and are strongly 
suppressed.  This is the so-called rotating-wave approximation. We also neglected 
the coupling of the system to the environment. This is justified if the spontaneous 
emission rate of the atom γ and the cavity decay rate κ  obey:  

 

 
g n

g

n

γ

κ

≪

≪
 (3.6) 

 

With n  being the average photon number in the cavity. We consider an initial state 
of the system in which atom is in the lower state g = ↓ , while the field is in a  
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superposition of photon number states. Thus we will now calculate the time 
evolution of the system for an initial state 

 
0 0

(0) ,
I n n

n n

a g n a g nψ
∞ ∞

= =

= ⊗ =∑ ∑  (3.7) 

 

Where g n g n⊗ =  is the product of states with g  and n photons in the cavity 

mode. HJC  is block-diagonal in the basis { }, , , 1e n g n + , with n being the number of 

photons in the cavity. In other words, the total number of quanta is conserved and
,e n  only couples to , 1g n +  while ,0g  are uncoupled. So at subsequent times, the 

state evolves into a superposition 

 , ,

0

( ) ( ) ( )
I g n e n

n

t c t g n c t e nψ
∞

=

 = + ∑  (3.8) 

 

In general, this state is entangled in the sense that it cannot be expressed as a 
product of an atom state and a field state. The solution for the dynamics of this 
model is simplified by the fact that the operator 

 †ˆ ˆ ˆ ˆ ˆN a a σ σ+ −= +  (3.9) 
 

Representing the total number of quanta, commutes with the Hamiltonian (3.4) 
and hence that the number of quanta is conserved.  Each coupled pair of states 
evolves as a distinct two-state system. Substituting (3.7) into the Schrödinger 
equation (2.1), with the Hamiltonian (3.4), we obtain the equations of motion 

 

 
, , , , 1

, 1 , 1 , 1 ,

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
2

g n g n g n e n

e n e n e n g n

d i
c t c t c t g nc t

dt

d i
c t c t c t g nc t

dt

−

− − −

∆
= = +

∆
= = − −

ɺ

ɺ

 (3.10) 
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for the probability amplitudes with initial conditions 
,

( 0)
g n n

c t a= =  and 

, 1
( 0) 0

e n
c t− = = . The solution of  Eqs. (3.9) is given by  

  

 

,

, 1

( ) cos sin
2 2

2
( ) sin

2

g n n R R

R

e n n R

R

t t
c t a i

g n t
c t a−

 ∆   = Ω + Ω    Ω    

 = − Ω Ω  

 (3.11) 

 

Where 2 2
4R g nΩ = ∆ +  is the photon-number dependent Rabi frequency.  For the 

resonant case, we set 0∆ =  and obtain for the probability to find the system in the 
atomic ground state 

 ( )2 2

,

0 0

1
( ) ( ) 1 cos 2

2
g g n n

n n

P t c t a g nt
∞ ∞

= =

 = = +  ∑ ∑  (3.12) 

 

As an example, we consider the field to be initially in a coherent state, the mean 
photon number n  for which 

 
2

!

n n

n

n e
a

n

−

=  (3.13) 

and plot ( )
g

P t  in Fig. 3.4 for 10n = . 
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Figure 3.4: The plot shows the probability ( )
g

P t  to find the atom in its ground state g . Initially we assumed 

a coherent state with mean photon number 10n = . One observes Rabi oscillations at a frequency of 

approximately 2g n  under an envelope that periodically collapses and revives. The first revival appears at 

approximately 2 /revT n gπ≃ . 

It oscillates at a frequency approximately equal to 2g n  under an envelope 

that periodically collapses and revives. The reason for this behavior is the 
interference between the individual oscillatory terms with different 

incommensurate frequencies 2g n in eq. (3.11).  So the collapse is a consequence 

of the initial spread of different photon numbers in the field. The peak of the 
revival appears at time 

rev
T  when a significant number of oscillating terms are in 

phase. For the first revival we find 

 

 2 2 1 2
rev rev

g nT g n T π− − =  (3.14) 
 

With approximate solution  

 2 /
rev

T n gπ≃  (3.15) 

 

Also other initial field states lead to the phenomenon of collapses and revivals. 
Their form depends on the initial probability distribution of the photon numbers. 

A different behavior of the system arises if the cavity mode is initially prepared in a 
Fock state. Then the initial state is 



48 3. PHYSICAL PRINCIPLES OF QUANTUM DOTS SYSTEM 

 

 
 (0) ,

I
g nψ =  (3.16) 

 

It couples only to , 1e n −  and the system remains in the corresponding subspace. 

The time evolution is then governed by the Hamiltonian 

 ( ), 1 , , , 1
2

n z
H ig n e n g n g n e nσ

∆
= − − − − −  (3.17) 

 

which is diagonal in the basis of the so-called dressed states 

 

 
, sin cos ,

, cos sin , 1

n n

n n

n g n

n e n

θ θ

θ θ

 +    
=    − − −    

 (3.18) 

 

Here tan(2 ) 2 /n g nθ = − ∆ and 0 2 2
n

θ π≤ ≤ . Together with ,0g the dressed states 

form the eigen subspaces of
I

H . The corresponding eigenvalues are 

 

 
0

2 2

/ 2

/ 4
n

E

E g n±

= ∆

= ± ∆ +
 (3.19) 

 

This result shows that the permanent exchange of excitation between the atom 
and the cavity mode due to the Jaynes-Cummings interaction leads to a shift of 
the original eigenvalues of the system. In the resonant case ( 0∆ = ) the original 
eigen frequencies are shifted by ng± . For n = 1 one speaks of "vacuum Rabi 

oscillations" and in the Schrödinger picture for n = 1 the original resonance 
frequency 

a
ω ω=  is then shifted by g± . The effect can be verified experimentally 

by measuring the transmission spectrum of the cavity and identifying the shifted 
resonance peaks. Since dissipation (due to atom and cavity decay) suppresses the 
effect, observing it, as reported in [26], is a clear evidence for the strong-coupling 
regime ( ,g κ γ≫ ). 
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3.4 Modeling Quantum Dots Systems  

Many parameters, characteristics and behavior of the QDs were discovered 
experimentally but there are some classic and semiclassic models based on local 
perturbation of the electric field, the effective mass approximation, variational 
calculus approaches to configuration interaction techniques and Monte Carlo 
methods, among others. For an excellent review of these methods, see reference 
[27, 28, 29]. However, these methods are only applicable to a quantum dot 
containing a small number of charge carriers, as electrons or excitons either in the 
presence of magnetic field or without it. On the other hand, there are studies using 
quantum electrodynamics cavities (CQED), it have been developed only for one, 
two and three QDs [30-32]. So is the goal and purpose of this dissertation 
investigate the behavior of a system of QDs, each containing an exciton, in the 
presence of an electric field and a quantum singled-mode QD to through models 
completely quantum into pictures as Schrödinger, Heisenberg, and Dirac 
(Interaction) pictures.  In the previous sections has been revised that a quantum 
dot is the general term ascribed to a small semiconductor region that can trap a 
few electrons and holes. The dimensions of quantum dots can vary between just a 
few nanometers and a few microns and it can be defined artificially with electrodes 
or through a growth technique such as self-assembly. The term “quantum” in 
quantum dot arises from the discrete energy levels that electrons and holes can 
occupy. The discretization can arise from the Coulombic interaction among the 
small number of electrons and holes within the dot or from the physical 
confinement of these particles in a small space. The Coulombic interaction varies 
as 1/r and dominates for larger dots while the quantum confinement varies as a 
1/r2 and dominates for smaller dots, such as the ones considered in this thesis. 
There are many effects to consider which affect the energy state of bound exciton 
within a dot. An overview of the energy perturbations on a quantum dot-bound 
exciton is shown in Figure 3.5. Each of these effects is discussed below and the 
associated parameters are defined. 
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Figure 3.5. This picture shows the various effects on the fine structure of the excitons energy levels. The exciton itself is 
created by exciting an electron from the valence band into the conduction band. This energy difference, or the band-gap, is 
1.52eV for GaAs and between 1.3 and 1.44eV for InAs. The first effect diagrammed is the quantum confinement of a particle 
in a box. Then, the first correction is electrostatic attraction between the electron and hole which reduces the energy of the 

lowest occupied excitonic level by 10 20 meV−∼ . An exchange interaction,
0 100 eVδ µ∼ , splits the excitonic levels into 

bright and dark excitons. In addition, due to dot asymmetry, these states split further. Finally, the application of magnetic 
field further moves the levels. Interaction between the trapped electron spin and the nuclear spin can be considered a 
manifestation of magnetic field, but in the diagram here it is given the label of hyperfine coupling. 

 

3.4.1 Quantum Confinement and Wavefunction Approach 

There are different approaches for modeling quantum dots systems, based 
on different images of the quantum theory (Schrödinger, Heisenberg, and Dirac). 
In this dissertation, our main contribution we make in the images of Heisenberg 
and Dirac. But before continuing it is worth reviewing other approaches in the 
traditional Schrödinger picture, based on solving wave equation in this image, in 
order to find the wavefunction of system. 

To a first approximation we consider the quantum dot to be an attractive potential 
where an exciton (or electron-hole pair) can become localized. We can then solve 
either a particle in a box or a parabolic potential from which discrete energy levels 
arise. Both approaches have been used to describe the energy levels within a 
quantum dot. The actual envelope wavefunction can be calculated more precisely 
if the exact structure of the quantum dot is known [33, 34, 35, 36]. For a single 
particle (electron or hole) in a semiconductor the wavefunction is not just the 
envelope wavefunction which gives the distribution of where the electron is 

localized but also includes a periodic component ( )u r
�

, where ( )ik re u r
� �
i �

 is a Bloch 

wavefunction. The overall wavefunction of a particle with 0k =
�

 is given by 
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 ( ) ( ) ( )
i i

r r u rψ ϕ=
� � �

 (3.20) 
 

There are many approaches to calculate the states of excitons (electron 
and hole) into quantum dots, in references [37, 38], [39-42] can see 
different ways to calculate, but it depends on the ultimate goal of 
each particular system in which to use.  The aim here is to provide a simple 
illustration of how to observe resonant energy transfer between quantum dots 
experimentally, and how to exploit this inter-dot interaction to perform quantum 
logic. Therefore, we shall consider the most basic models [37, 38] [43] that can 
provide us with analytical expressions for the energies of the single particle states 
and for the dipole-dipole interaction between two dots. 

In the effective mass and envelope function approximations [44, 45] the 
Schrödinger equation for single particles may be written as: 

 
2

*

1
( ) ( ) ( ) ( ) ( )

2
i i i i i i

i

H r r V r r E r
m m

ϕ ϕ ϕ
  

= − ∇ ∇ + =  
  

� � ℏ � � �
 (3.21) 

 

where  ,i e h=  for electron or hole, ( )
i

V r
�

 is the dot confinement potential which 

accounts for the difference in band-gaps across the heterostructure, and *

i
m  is the 

effective mass of particle i . Here, ( )
i

rϕ
�

 is the envelope function part of the total 

wavefunction ( )rψ
�

, defined in (3.20). The envelope function describes the slowly 

varying contribution to the change in wave-function amplitude over the dot region 
and the physical properties of the single particle states can be derived purely from 
this contribution. ( )

i
u r
�

 is as mentioned above called the Bloch function and has 

the periodicity of the atomic lattice. Its consideration is vital when describing the 
interactions between two or more particles.  In the simple analytical model, a 
separable potential comprising infinite parabolic wells in all three dimensions 
represents the quantum dot, (With this choice of potential we are able to model 
both the convenient situation of a spherically symmetric quantum dot, and the 
more common situation in self-assembled dots of stronger confinement in the 
growth (z) direction than in the x, y plane.) 

 2 2 2

, , ,

1 1 1
( , , )

2 2 2
i x i y i z

V x y z c x c y c z= + +  (3.22) 
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where the frequency , , /
i j i j

c mω ∗=  for j = x, y, z. Hence, the Schrödinger 

equation (3.21) is also separable and provides simple product solutions for the 
electron and hole states. The envelope functions are therefore given by 

 

 
, , ,( ) ( ) ( ) ( )

i i x i y i z
r f x g y h zϕ =
�

 (3.23) 

 

for the parabolic confinement ( ( ), ,r x y z=
�

). We now drop the subscript i but 

remember that due to their differing effective masses electrons and holes may 
take different values for the constants defined throughout this thesis. The solutions 
to the one-dimensional Schrödinger equation for the potential form (3.22) are 
given by 

 

1/2
2

2

1
( ) exp

2!2

n

nn

x xx

x x
x H

d dn d
ξ

π

     
= −     

    
 (3.24) 

 

in the x- direction with analogous expressions for y and z. The constant 
(0,1, 2,3,...)n = labels the quantum state, with energy ( )1/ 2

n x
E n ω= + ℏ , the 

n
H  are 

Hermite polynomials, and ( ) ( )
1/2 1/2

/ / ( )
x x x

d m c m ω∗ ∗= =ℏ ℏ . We are only interested in 

the ground state solutions of each well so our envelope function is given by 

 

 

1/2
2 2 2

3/2 2 2 2

1
( , , ) exp exp exp

2 2 2x y z x y z

x y x
x y z

d d d d d d
ϕ

π

      
= − − −               

 (3.25) 

 

with energy ( )0 1/ 2 x y zE ω ω ω= + +ℏ  . The choice of constants 
i

c  and hence 
j

d  will 

be different for changing confinement potentials and particle masses, and so will 
depend upon the energies of the system under consideration and whether the 
particle is an electron or hole. 
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3.4.2 Excitons and Confinement 

The excitation of an electron from a valence band state to a conduction 
band state leaves a hole in the valence band. The electron and hole are oppositely 
charged and may form a bound state, the exciton, and as stated earlier we 
consider the absence or presence of a ground state exciton within a dot to form 
our qubit basis ( 0  and 1  respectively). Therefore, for excitons, we must 

consider an electron-hole pair Hamiltonian 

 
2

gap
4 ( )

e h

e h e h

e
H H H E

r r r rπε
= + − +

− −
� �  (3.26) 

 

Where
e

H and 
h

H  are given by (3.21) with the appropriate effective masses and 

potentials; 
gap

E is the semiconductor band-gap energy, and ( )
e h

r rε −  is the 

background dielectric constant of the semiconductor. We shall consider the 
simplest case of 

0
( )

e h r
r rε ε ε− = , i.e. the relative permittivity 

r
ε  is independent of 

( )
e h

r r− . The intra-dot energy shift due to the Coulomb term 2

0/ 4
eh r e h

H e r rπε ε= −
� �

 

is a small contribution to the total energy and we treat it as a first-order 
perturbation. We construct an antisymmetric wavefunction representing a single 
exciton state given by 

 [ ]1 1 2 2' ( , ), ( , )
I n m

A r rψ σ ψ σΨ =
� �

 (3.27) 

 

Where r
�
 and σ are position (from the centre of the dot) and spin variables 

respectively, n and m label the quantum states, and A denotes overall 
antisymmetry. Here, one electron 

1 1
' ( , )
n

rψ σ
�

 has been promoted from the valence 

band into a conduction band state whilst 
2 2

( , )
m

rψ σ
�

 represents a state in the 

valence band. Taking the Coulomb matrix element between the initial state 
I

Ψ  

above and an identical state 
F

Ψ  (in effect coupling an electron and hole via the 

Coulomb operator) leads to two terms [46, 47], the direct term 
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r

e r r
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r r
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And the exchange term 

 
2

Exch 2 2
1 1 1 2

0 1 2

' ( ) * ( )
'* ( ) ( )

4

n m
IF n m

r

e r r
M r r drdr

r r

ψ ψ
ψ ψ

πε ε
= ±

−∫∫
� �

� � � �
� �  (3.29) 

 

The sign of the exchange term is determined by the symmetry of the spin 
state of the two particles; triplet spin states give positive exchange elements 
whereas singlet spin states give negative values. We shall now show how to 
calculate the direct electron-hole Coulomb matrix element on a single dot where n 
and m are both taken as ground states. The exchange interaction is much smaller 
[46] and we shall not consider it here. If we consider identical potential wells in all 
three directions then we can use the spherical symmetry of the system to derive 
an analytical expression for the direct Coulomb matrix element which we call

eh
M . 

For identical wells in all three dimensions ( )x y zd d d d= = = , (3.25) may be written 

in spherical polar coordinates as 

 
3/2 2

2
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( ) exp

2

r
r

dd
ϕ

π

  
= −  
   

 (3.30) 

 

Substituting into equation (3.28) leads to 

 

 

3 3
2 2 2

1 2
1 22 2

0 1 2

1 1 1
exp exp

4
eh

r e he h

e r r
M dr dr

d d r rd dπε ε π π

       
= − −        −      

∫∫
� �

� �

 (3.31) 
 

Where we have assumed that the contribution of the Bloch functions ( )u r
�

 may be 

neglected. We now express 1 21/ r r−
� �

 in terms of Legendre polynomials as [48]  
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Substituting this into equation (3.31) and integrating over polar angles, leads to  
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 (3.33) 

 

where use has been made of the orthogonality relations of Legendre polynomials. 
The integrations are now simple and give us the following expression for 

eh
M , 

 
2

3/2 2 2
0

1 1

2
eh

r e h

e
M

d dπ ε ε
=

+
 (3.34) 

 

In a similar manner, we may also approximate the behavior of 
eh

M  in the presence 

of an external electric field. For a constant field applied to the dot, the potential in 
the field direction (for simplicity says z, although the spherical symmetry we 
assume means all three directions are equivalent) becomes 

 

 ( ) ( )V z V z qFz+֏  (3.35) 
 

Where q = −e for conduction band electrons, q = +e for holes, and F is the 
electric field strength. Substituting this into the Schrödinger equation for the z- 
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component leads us to a new Schrödinger equation that has the same parabolic 
potential form 

 
2 2

2

2 2

1
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With 

 
,

,

2

,

' /     for electrons

' /           for holes

' ( ) / 2       ,

e e z

h h z

i i z

z z eF c

z z eF c

E E eF c i e h

= −

= +

= + =

 (3.37) 

 

Therefore, electrons and holes are displaced in opposite directions and their 
envelope functions are the same as (3.25) with z replaced by z′. The simplicity of 
the change in envelope function with applied electric field is a great advantage of 
the parabolic well model, although it should be pointed out that this same 
simplicity implies that the charges can continue separating indefinitely with applied 
field strength and is therefore unrealistic at very high fields. Again, in spherical 
polar coordinates, the envelope functions in the presence of a field may be written 
as 
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For electrons, and 
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For holes, where k̂  is the unit vector in the z-direction.  This time substituting into 
equation (3.28), leads to  

 
2 2

1 2 1
1 22 2

1 2
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exp exp
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e h

r r r
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Where 
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And   
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We proceed as before, again making use of Legendre polynomials and their 
orthogonality relations, and integrate over 

2
r
�

 to leave 
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For α < 1/de (valid up to fields of order 107 V/m for ce = ch = 0.00641 J/m2, de = 
2.627 × 10-9 m), we expand the exponentials in α up to the term in α3 and 
integrate over r1. Keeping only the terms up to F2 order in the resultant 
expressions gives us an estimate for the suppression of the electron-hole binding 
energy as an external field is applied 

 

 

 



58 3. PHYSICAL PRINCIPLES OF QUANTUM DOTS SYSTEM 

 

 

 
( )

( )

222

2 23/2 2 2

0

1 1
1

32
eh

e he hr e h

eFe
M

c cd dd dπ ε ε

  
 = − + 

+ +   

 (3.44) 

 

Which reduce to (3.34) at F=0.  

 

3.5 Förster Interaction in Coupled QDs 

We have now characterized the single particle electron and hole states 
within a simple quantum dot model, as well as accounting for the binding energy 
due to electron-hole coupling within a dot when estimating the ground state 
exciton energy. In this section we shall consider excitons in two coupled quantum 
dots and the Coulomb interactions between them. More specifically, we shall derive 
an analytical expression for the strength of the inter-dot Förster coupling. We shall 
show that this coupling is, under certain conditions, of dipole-dipole type [49, 50] 
and that it is responsible for resonant exciton exchange between adjacent 
quantum dots. This is a transfer of energy only, not a tunnelling effect (If the 
electron and hole are strongly bound, so that they do not tunnel separately, a 
tunnelling between the two dots will simply add a small correction to the off-
diagonal elements in the interaction Hamiltonian). In the next section we describe 
the phenomenon known as Förster Resonance Energy Transfer: FRET (or 
Fluorescent Resonance Energy Transfer).  

 

3.5.1 Förster Resonance Energy Transfer (FRET) 

In 1946, Theodor Förster published a paper in Naturwissenschaften [60, 61] 
outlining the quantum-mechanical behavior of the transfer of electronic excitation 
energy between two molecules in a solution. His breakthrough work in 
spectroscopy was built upon the earlier theories of J. and F. Perrin, and explained 
the transfer of energy between two molecules nonradiatively. His contribution, 
FRET, is an acronym for Förster resonance energy transfer or fluorescence 
resonance energy transfer. His equations were the basis to interpret FRET results 
quantitatively in terms of parameters than can be derived experimentally [60]. 
Originally, fluorescence spectroscopy and time-resolved fluorescence were 
primarily used for research in biochemistry and biophysics to determine molecular  
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distances (FRET is an excellent spectroscopic ruler) and conformational changes; 
however, fluorescence is now used in environmental monitoring, clinical chemistry, 
DNA sequencing, and genetic analysis by fluorescence in situ hybridization (FISH) 
among other applications [61]. Therefore, FRET is an important topic of discussion 
and knowledge of the subject is vital to Biology, Chemistry and Physics. This 
section will detail Förster Resonance Energy Transfer in order to quantitatively 
describe FRET, from the labor of the Perrin’s and Förster to modern day 
experimental methods and analysis. Förster grew interested in the energy transfer 
because of the efficient photosynthetic process. He was aware from previous 
experiments, that leaves capture and use light energy much more effectively than 
would be expected, even if photons hit the reaction centers precisely [60]. The 
efficient transfer of energy between the closely spaced chlorophyll molecules must 
be responsible, allowing the absorbed energy to diffuse into the relatively sparse 
reaction centers by hopping rapidly between molecules. He knew of the earlier 
work of the Perrin’s, suggesting that energy could be transferred over distances 
longer than the molecular diameters. 

Förster developed a correct theoretical basis of FRET in first paper in 1946. 
He assumed that the oscillators were identical and the interaction energy is small 
compared to the energies of the spectral transitions [62]. From these assumptions, 
he knew that the excited molecules will experience complete relaxation to their 
equilibrium states. Therefore, probability arguments could be used in the 
calculations! With that information, he defined the probability of a resonance 
condition between two narrow band oscillators. Since the frequencies of the donor 
and the acceptor are independently spread over a wide frequency range, this 
probability will be low, and the time for transfer will be shortened considerably. 
Förster was well aware of quantum theory describing the electronic structure of 
molecules. He knew that the atomic vibrations in complex molecules and 
interactions with the solvent in condense media considerably broaden absorption 
and emission spectra [60]. The quantum theories of spectroscopic transitions had 
shown the need to take into account the effect of broadened energy distributions 
when calculating the rate of a kinetic proves between two quantum states. He also 
realized that the classical theory of the interaction of oscillating dipoles was very 
similar to the theoretical description of absorption and fluorescence spectroscopic 
transitions that occur when a single molecular transition dipole interacts with the  
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oscillating electric field of light [60]. The similarities between these two theories 
contributed to his development of a quantitative theory of the rate of transfer in 
terms of the overlap integral, which is the integral of the product of the acceptor 
absorption spectrum and the donor fluorescence spectrum over the entire 
frequency range. This integral represents the probability that the two molecular 
transition dipoles will have the same frequency. He could then show how R0 could 
be calculated, resulting in an expression for the distance dependence of FRET 
efficiency. Although the quantum theories he used are complicated, his procedures 
for determining E from fluorescence spectral measurements are fairly easy to 
understand. With the explicit expression for the fluorescence intensity, including 
direct excitation of the donor and acceptor and the energy transfer, he was able to 
take into account any pair for the excitation and emission frequency. Depending on 
the donor-acceptor pair, he needed to find a possible wavelength where only the 
donor or only the acceptor, is either excited or emits [62]. Since some of 
fluorescence spectra (excitation and emission) of the donor and acceptor he used 
were already known, it became possible to extract the individual contributions of 
the donor or acceptor from the fluorescence spectra containing emissions from 
both species. Then by using this data, he combined fluorescence with absorbance 
data, to determine E in terms of known absorption constants and quantum yields. 

The Förster theory of intermolecular energy transfer, an expression for the 
quantum yield of the donor fluorescence resulting from intermolecular transfers 
was confirmed with the experimental results for many different donor-acceptor 
pairs, such as fluorescence quenching by Rhodamine B in glycerol and for 2,5-
diphenyloxazole quenched by 9,10-dibromoanthracene in cyclohexane [63]. 
Additionally, experiments have been conducted duplicating his original papers, 
using Fluorescein and Rhodamine B in glycerol, +4% water with 0.25 mol/L NaOH, 
as well as Fluorescein and Rhodamine 6G in glycerol, +4% water with 0.25 mol/L 
NaOH. From these experiments, Förster was able to experimentally confirm his 
theory [62]. 

 

3.6 QDs Hamiltonian with Förster Interaction 

We consider L identical semiconductor quantum dots that are equally 
coupled to each other via coulombic interaction. The QDs interact with a quantized 
field (dipole interaction) in a high-Q cavity. Then the coupled QD-field system is 
described by the Hamiltonian [30-32, 51], 
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( ) ( )
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† † † † † †

1 1

† † † †

, 1

/
2

2

L L

k k k k k k k k

k k

L

k l l k k l l k

k l

H a a e e h h g e h a a h e

W
e h e h h e h e

ε
ω

= =

=

= + − + −

+ −

∑ ∑

∑

ℏ

 (3.45) 

 

where ( )† †

k ke h  is the electron (hole) fermionic creation operator in the nth QD and 

( )†
a a is the bosonic creation (aniquilation) operator for the quantized cavity field, 

ε  is the QD band gap, g  is the coupling strength between the field and the QDs, 

ω  is the field frequency, and W represents the interdot coulomb interaction. The 
coulomb interaction process known as Forster process exchanges energy, but does 
not require the physical transfer of the electrons and holes. For equal coupling 
these QDs are equidistant from each other so that the dots lie on a line for N = 2, 
at the vertices of an equilateral triangle for N = 3, and at the vertices of a regular 
pyramid for N = 4. The Hamiltonian (1) can be rewritten in a much more suitable 
in the representation of angular momentum, with the following changes [20, 27] 

 

 ( ) ( ) ( )† † † †

1 1 1

1
;     ;     .

2

L L L

k k k k z k k k k

k k k

J e h J h e J e e h h+ −
= = =

= = = −∑ ∑ ∑  (3.46) 

 

 

which satisfy the usual angular momentum commutation relations: [ ], 2
z

J J J+ − = and 

[ ],
z

J J J± ±= ±  Using these quasi-spin operators the Hamiltonian of  Eq. (3.45) can 

be written as ( 1=ℏ ), 

 

 ( ) ( )† † 2 2

z zH a a J g J a a J W J Jω ε + −= + + + + −  (3.47) 

 

In reference [51] we obtained that may consist of two parts, one with the Dicke 

DkH  Hamiltonian itself and the other is the interaction Hamiltonian Förster FH , 

defined as 
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 ( ) ( )† 2 2

 ,        =  ;      H   ,Dk z F zH J g J a a J W J Jε ω+ −= ∆ + + ∆ − = −  (3.48) 

 

Where ∆  is the detuning between the electromagnetic field and the band gap. The 
Hamiltonian of L QDs can be rewritten in the form:   ,

L
H N Hω= +  with 

†
/ 2

z
N a a J L= + +  is the number of atoms and photons and 

L Dk F
H H H= +  are 

constants of motion. However there is another way to rewrite the Hamiltonian 
(3.47), using the relations of the algebra of angular momentum given as follows 

 

 ( )† †
' ;     '=   zH a a J g J a a J WJ J Wω ε ε ε+ − + −= + + + + −  (3.49) 

 

Here we see the term of Förster WJ J+ −  ( ( )2 2
H  F zW J J= − ) as a non-linearity and 

we has introduced a new constant 'ε , as defined above.  Again we rewrite the 
Hamiltonian to include explicitly the detuning ( ∆ ) which now call Förster Detuning 
( '∆ ), so we get 

 

 ( ) ( )† †' ;     

                 '= +W=   

z z
H a a J J g J a a J WJ J

W

ω

ε ω
+ − + −= + + ∆ + + +

∆ ∆ − +
 (3.50) 

 

In a frame rotating with the field frequencyω , Eq. (3.50) takes the form 

 

 ( )†
'   r zH J g J a a J WJ J+ − + −= ∆ + + +  (3.51) 

 

In this Hamiltonian appear the Förster detuning '∆ in which we can make W=0, so 
that only stay the typical detuning ∆ , which represent the old acquaintance excited 
Dicke Hamiltonian off-diagonal, i.e.  

 

 ( )†

Dk zH J g J a a J+ −= ∆ + +  (3.52) 
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3.6.1. QDs Hamiltonian Diagonalization  

Using the Hamiltonian (3.51) we determine the state vectors describing the 
coupled QD-field system for two QDs. This will simplify the task of studying the 
time evolution of the coupled QD-field system. Starting with the initial condition 
representing the vacuum of excitons, 1, 1j m= = − , only the 1j =  subspace is 

optically active while the 0j =  subspace remains dark. We choose the basis of 

eigenstates of 2
J  and

z
J  , 0 1, 1j m= = = − , 1 1, 0j m= = = , 2 1, 1j m= = = , as an 

appropriate representation for this problem  0  represents the vacuum for 

excitons, 1  denotes a symmetric delocalized single-exciton state, while 2

represents the bi-exciton state. If we represent the field state by the Fock state 
n  and consider the QDs in the entangled state involving the vacuum and bi-

exciton states ( )1/ 2 0 2 ±  , then we will have an invariant subspace spanned 

by 0, 2 0 2n n+ = ⊗ + , 1, 1 1 1n n+ = ⊗ + , 2, 2n n= ⊗ , 0, 0n n= ⊗ , 

1, 1 1 1n n− = ⊗ −  and 2, 2 2 2n n− = ⊗ − . With these basis vectors we determine 

the matrix elements of the Hamiltonian in Eq. (7) and obtain the eigenvalues, and 
the eigenvectors. Thus the explicit matrix is,  

 

 

' 2( 2) 0 0 0 0

2( 2) 2 2( 2) 0 0 0

0 2( 1) 2 ' 0 0 0

0 0 0 ' 2 0

0 0 0 2 2 2( 1)

0 0 0 0 2( 1) 2 '

F

n

n g W n g

n g W
H

ng

ng W n g

n g W

 ∆ +
 

+ + 
 

+ − ∆ 
=  

∆ 
 −
 
 − − ∆ 

 (3.53) 

 

The characteristic polynomial is  

 

 
2 2 2

2 2 2 2

( ) ( 2 ) 2 (2 2 ) 2[ (2 )] ' (2 )( ')

( 2 ) [4( 2) 2(2 3) ] 2[ (2 )] ' (2 )( ')

P W g nW n g W W W

W g n W n g W W W

λ λ λ λ λ λ λ

λ λ λ λ λ

 = − + + − − + − ∆ + − ∆ × 

 − + + − + − + − ∆ + − ∆ 
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At resonance ( 0∆ = ) and with the field frequencyω , and we define the constants 

for simplicity as 1/2 1/2
2 2 2 2

1 28 (2 1) ;    8 (2 3)g n W g n Wδ δ   = − + = + +    , the eigenvalues, take 

the form, 

 

 
( ) ( )

( ) ( )
1 2 3 1 4 2

5 2 6 2

,  ,  (1/ 2) 3 ,  (1/ 2) 3 ,  

             (1/ 2) 3 ,  (1 / 2) 3

E E E E

E E

W W W W

W W

λ λ λ δ λ δ

λ δ λ δ

= = = − = +

= − = +
 (3.54) 

 

Due to the tensor product of the quantum states ,j k j k= ⊗   form a four-

dimensional basis in the Hilbert space SU(2)  SU(2)⊗ . So in this way the basis 

vectors take the form, for instance: 

 

 
[ ] [ ]

[ ]

0, 0 0,0,0,1,0,1 ;  2, 2 2 2 1,0,1,0,0,0 ;  

                     0, 2 0 2 0,0,0,1,1,1

T T

T

n n n n

n n

= ⊗ = − = ⊗ − =

+ = ⊗ + =
 

 

Etc. And the corresponding normalized eigenvectors take the form 
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( ) 2 ( )

4 ( 2) 4 ( 1)
0, 2 1, 1 2,

( ) 2 ( )

n n
n n

n n

n n
n n

n n

Wg n g n
n n n

W W

Wg n g n
n n n

W W

λ

λ

δ
λ

δ δ δ δ δ

δ
λ

δ δ δ δ δ

−
= − + −

− −

+ +
= − + +

+ +

− −
= − + −

− −

−+ +
= + + +

− −

∓

∓

 (3.55) 

 

Where the constants 1 2, δ δ  as defined above. Then we determine the wave 

function at any time with the help of the previous eigenvectors. In this way we 
need to consider the initial state of the system of quantum dots.  A choice of 
suitable initial state is a state of Bell, i.e. for the sake of generality, we consider  
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the initial state of the QDs to be 
0 2(0) 0 2

i

qd a a e
φψ  = +  , where 0 2 and a a are real 

constants satisfying the condition 2 2

0 2 1a a+ = . We will consider the initial state of the 

field to be coherent, or thermal. In this paper we analyze only the coherent case. 
The coherent states can be expressed as a superposition of number states

(0) ( )
Ch

n nα = Ψ = Λ , with the probability distribution given as 2
( ) ( )n P nΛ ≡ ,  is the 

probability that the intra-cavity field has n photons and depends on the state of 
the intra-cavity field. Then, the initial state for the coupled QD-field system can 
then be written as 

 0 2

0

(0) ( ) 0 2
i

n

n a a e n
φ

∞

=

 Ψ = Λ + ⊗ ∑  (3.56) 

 

We are now able to find the wave vector of the system, because the energy 
eigenstates form a complete set, so using the eigenvalues and eigenvectors of the 
equations (3.53) and (3.54), together with the initial state (3.55),  we obtain the 
following state vector at the time t  as 

 

 
6

0 1 0

( ) exp( ) (0) ( ) ( )Ek Ek Ek n

n k n

t i t n tλ λ λ ϕ
∞ ∞

= = =

Ψ = − Ψ = Λ∑∑ ∑  (3.57) 

 

Where ( )
n

tϕ  function should be in terms of the coefficients related to the 

eigenvalues and eigenvectors above, so that we can express as
6

1
( ) ( , ) ,

n kk
t x n t jm nϕ

=
=∑ , where ,jm n , represents the fundamental base used in 

the matrix Hamiltonian (8), the coefficients and the function are explicitly 
expressed as 

 1 2 3

4 5 6

( ) ( , ) 0, ( , ) 0, 2 ( , ) 1, 1

           ( , ) 1, 1 ( , ) 2, ( , ) 2, 2

n t x n t n x n t n x n t n

x n t n x n t n x n t n

ϕ = + + + −

+ + + + −
 (3.58) 

 

due to orthonormality of the basis vectors we obtain the coefficients in the form 
, ( )

n
jm n tϕ  as, 
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 (3.59) 

 

Based upon these results that were obtained, we will use later and the 
following sections and chapters to applications. For example, we find the density 
matrix, as well as reduced density matrix for the entanglement of formation in 
chapter 4. 

 

3.7 Collective Atomic Systems: Dicke Model 

With the JCM theoretical success, the experimental realization of their 
predictions were also a success, so it is much interest in finding systems of many 
atoms with new phenomena from precisely the interaction between atoms. These 
types of phenomena arising from the interaction of many particles are known as 
Collective Phenomena. Collective phenomena are central to the matter-radiation 
interaction, particularly for Cavity Quantum Electrodynamics (CQED). One such 
phenomenon is the Cooperative Spontaneous Emission, first discussed by Dicke 
[53].  As Dicke was the first consider a system of this type in 1954, the model is 
called commonly Dicke Model (DM), but also sometimes is used the name Tavis-
Cummings Model (TCM) [59]. 

This model has a collection of identical atoms in a very small cavity such 
that the wavelength of the electric field does not very greatly with the cavity and 
each atom “feels” approximately same electric field. This field must be mono- 
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mode. Another assumption in this model is that the atoms wave-function are not 
overlap each other, i.e. forces are neglected dipole-dipole type between atoms. 
The discussion up to now has been for a single atom coupled to radiation, as the 
case at JCM. In later sections we will discuss lasing, involving many atoms, but 
where (due to decoherence) each atom can be considered independently. This 
brief section, in contrast, discusses coherent effects with many atoms. We consider 
the generalization of the Jaynes-Cummings model, to consider many atoms 
coupled to a single photon mode, known as the Dicke model: 

 † †z

j j j j j

j j

H a a g a aω ε σ σ σ− + = + + + ∑ ∑  (3.60) 

 

Here jσ  are Pauli matrices, representing the two-level systems on each site. In 

order to illustrate what effects coherence between two-level systems can have, it 
is simplest to consider the uniform case, jε ε=  and jg g= . In this case, it is helpful 

to introduce new so called collective operators, 
jj

J σ=∑ . This describes the 

product of N or L spin 1/2 representations being decomposed as a sum of higher-
spin representations of the rotation group. Then, 

 ( )† †

z
H a a J g J a aJω ε − += + + +  (3.61) 

 

Considering L two levels energy systems (in beginning distinguishable) that 
do not interact each other, and denoting the states of the j-th atom for ,1j  or 

, 2j , as is in the ground or excited state, and let n
+  is  number of excited atoms 

while n
−  those found in the ground state, so that n n L

+ −+ = . Therefore the energy 
system will be  

 ( )
2

E n n
ε + −= −
ℏ

 (3.62) 

 

We will are n k
+ = , (remember that at general at this dissertation 1=ℏ , is 

normalized) 
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 ( )/ 2 ,         0,1,...,E k L k Lε= − =ℏ  (3.63) 

 

And the spectrum is equidistant and bounded.  A vector that described a system 
with k excited atoms is 

 1,2 ... ,2 1,1 ... ,1k k L+  (3.64) 

 

With degeneration of 

 
( )

!

! !

L

k

L
C

k L k
=

−
 (3.65) 

 

Because a permutation of particles remain the same energy, now assume that the 
degenerate states are indistinguishable, then a normalized linear combination of all 
these states is 

 
( )

1 1

! !
, ,2 ... ,2 ,1 ... ,1

!
k k L

p

k L k
k L j j j j

L
+

−
= ∑  (3.66) 

Where the sum is over all possible permutations of the excited particles and no 
excited. The above expression is known as Dicke Atomic State.  

The collective operators for a L atomic system, is defined by  

 ( )

1

1
,             ( , , 1,2,3)

2

L
j

i i

j

J i x y zσ
=

= = =∑  (3.67) 

 

Once again ( )j

iσ  are Pauli matrices and superscript ( j) denoting the matrix of the j-

th atom. From the definition of collective basis (3.66) we have  

 

 ( )3 , , , / 2 ,
z

J k L J k L m k L k L k L= = = −  (3.68) 

 

Where  
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2

2 2

k L n n
m

+ −− −
= =  (3.69) 

 

Inversion is defined by the system at time zero: the difference between the atoms 
number in excited state and no excited state.  Moreover the same definition of 
Pauli’s matrices follows that  
 

 ( )

1

L
j

x y

j

J J iJσ± ±
=

= = ±∑  (3.70) 

 

That act over symmetric states ,k L  as follows  
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1 1
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p

k L k
J k L L k j j j j
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−
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∑
 (3.71) 

 

Similarly, we get the action of the other collective operators on the basis of the 
subspaces of symmetric states (3.66), this is given as  

 

 

( )

( )

, ( 1) 1,

, 1 1,

, ,
2

           

J k L k L k k L

J k L k L k k L

k L
J k L k L

+

−

−

= + − +

= − + −

− =  
 

 (3.72) 

These collective operators satisfied the standard commutative relations of the 
angular momentum  
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 [ ] [ ], ,     , ,     , 2 ,
i j k ijk z z

J J J J J J J J Jε ± ± + −  = = ± =   (3.73) 

 

Return to Dicke Hamiltonian (3.61), similarly to JCM we can define an Excitation 
Number Total operator  

 

 ( )†ˆ ˆ ˆ/ 2,       with   
z

N n J L n a a= + + =  (3.74) 

 

Which obviously commute with the Hamiltonian; however unlike JCM in DM do not 

possible to associate a scalar 2
C  to this operator.  This means that if initial state 

belongs to a subspace defined with the given e excitation number, thus the system 
will always evolve into that subspace. So a suitable system basis atom-field is  

 

 , ,
a f

e n L e n n= − ⊗  (3.75) 

 

To be 
f

n  the Fock state of the electric field, ,
a

L e n−  is the Dicke atomic state. 

This basis is interpreted as follows, the atomic system have a total of excitations, 
i.e. , photons of the field more excited atoms. If in the field there are n photons, 
then there can only be e-p excited atoms, since the excitation number is constant. 
To illustrate this fact, we apply number operator to this base 
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           / 2 / 2
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 (3.76) 
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In practice as theory of angular momentum is common use a standard notation, 
this means one can label the atomic states by ,m j , with 

 2
, ( 1) , ;       , ,

z
J m j j j m j J m j m m j= + =  

 

And using 2

, ,, 0x y zJ J  =   with m j< , and 1<2j<L. Then summarizing the standard 

results, 
x y

J J iJ± = ±  implies 
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, 1,

   , , , ,

               = ( 1) ( 1)

z z

J m j m j

m j J J m j m j J J J m j

j j m m

λ

λ

−

+ −

= −

⇒ = = − −

+ − −

 (3.77) 

 

From this result, we can directly calculate the rate of radiation emission from the 
state  , ,m j n   (with n representing the number of photons) with the Hamiltonian 

(3.60) 

 
[ ]

2
†

2

1, , 1 , ,

   ( 1) ( 1) ( 1)

W m j n ga J m j n

g j j m m n

−= − +

= + − − +
 (3.78) 

 

Factorizing this expression, one has W = g2(j + m)(j − m + 1)(n + 1). Considering 
emission into an empty cavity, the maximum rate of radiation occurs when 2j = L 
and m =0, then 2 2 / 4W g L≃ . i.e., radiation intensity is proportional to the square of 

the number of atoms. If emission from each atom were incoherent, radiation 
would be proportional to the total number of excited atoms, L/2 in this case. This 
enhancement of rate of radiation, due to the interatomic coherence is known as 
superradiance [59]. Note also that if m = −j + 1, so that on average only one 
atom is excited, one can still see superradiant effects: With 2j = L, and  
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m = −j + 1, 2 22( 1)W g j g L= + ≃ . This state 1 / 2, / 2L L−  is a superposition of 

excitations of each two-level system. In contrast, the emission rate for a single 
two-level system being excited is just g2. Note also, that destructive interference is 
possible; the state 0,0  has a vanishing radiation rate, despite having on average 

half the atoms in the excited state. 

 

3.8 Atomic Coherent States or Angular Momentum Coherent States 

The atomic coherent states (ACS) or angular momentum coherent states, 
also known as Spin coherent states, are important in many models in quantum 
optics. ACS was first introduced in references [55-57].   ACS are defined as a linear 
combination of eigenstates of the angular momentum operator Jz. To generate 
through the interaction of a classical field with the dipole moment of an atom 
described by the angular momentum operator Jx of the atom, taking the atom in 
its lower level with eigenstate j−   of the operator Jz. Although interest in these 

states is not limited to limited to rotating systems, it is simplest to define these 
states of the angular momentum eigenstates ,j m  where j takes any integer or 

half-integer value and m=-j,-j+m,…,j. The actions of the angular momentum 
operators Jz , J2, J+  and J-  on the state are given by  

 

 
( )2 , 1 ,

, ,        with                 
z

J j m j j j m

J j m m j m m j

= +

= ≤
 (3.79) 

 

The operations of the operators J+ , J- and their powers on ,j m  are given by 
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 (3.80)  

 

So that , 0J j j+ =  and , 0J j j− − = . It follows from the first equation (3.80) that 

we can write ,j m  as 

 
( ) ( ) 1/2

21
, ,

!

j j m

j m
j m C J j j

j m

− +
+ += −

+
 (3.81) 

 

Where ( ) 1/2
2 j

j m
C

−

+  is the binomial coefficient. The atomic coherent state ,θ φ defined 

earlier [55, 56], with , ,j m j j j j= − = − = − , thus  

 ( )1 ˆ, exp ( , )
2

i ie J e J j R jφ φθ φ θ θ φ− +
+ −

 = − − = −  
 (3.82) 

 

This operator is unitary since † 1ˆ ˆ ˆ( , ) ( , ) ( , )R R Rθ φ θ φ θ φ−= − = and rotates the angular 

momentum vector through an angle θ  about the axis ˆ ˆsin( ) cos( )i jφ φ− . We can 

write the operator ˆ( , )R θ φ at (3.82) in the ordered form  
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    =     +    
∑

 (3.83) 
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Using the ordering theorem [57]. Then follows from (3.83), and with help of the 
exponential operator function and together with (3.81) 

 ( )
2

1/2
2, cos tan ,

2 2

j j mj
j i

j m

m j

C e j m
φθ θ

θ φ
+

− −
+

=−

   =       
∑  (3.84) 

 

In the case of the probability distribution P(m) for the operator Jz is type binomial 
since 

 
4 2( )

2
( ) cos tan

2 2

j j m

j

j m
P m C

θ θ
+

+
   =       

 (3.85) 

 

These states ACSs are not mutually orthogonal, in way similar to coherent and 
squeezed states of the EM field; the inner product between the states ,θ φ  and 

', 'θ φ  being, 

 ( )2 2 ( ') 2 2, ', ' cos ( / 2)cos ( '/ 2) 1 tan ( / 2) tan ( '/ 2)
j

ie φ φθ φ θ φ θ θ θ θ− = +   (3.86) 

 

Hence 

 ( )
2 4

, ', ' cos( / 2)
j

θ φ θ φ = Θ  (3.87) 

 

Here Θ  is defined as the angle between the directions made by ( ,θ φ ) and ( ', 'θ φ ). 

Regardless of the lack of orthogonality of the ACS, they form a over-complete set 
in that the identity on the space with total angular momentum j can be resolved as 

 

 
(2 1)

, , 1
4

j
d θ φ θ φ

π
+

Ω =∫  (3.88) 

 

This is a spherical integral; the integration must be over the entire surface of the 
sphere, i.e.  
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To calculate we plug in the expression (3.84) on the left side of (3.88) and 
integrate over the angleφ , with the help of gamma and beta functions we 

obtained  
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+
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+
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∑ ∫
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 (3.89) 

 

From the above, the trace can be obtained for some operator A, which can be 
expressed as 

 ( ) (2 1)ˆ ˆTr A , A ,
4

j
d θ φ θ φ

π
+

= Ω∫  (3.90) 

 
Since the state , ,j m j j j j= − = − = −  is an eigenstate of Jz with eigenvalue –j 

and right eigenstate of J- with eigenvalue 0.  

 

3.8.1 Excited Atomic Coherent States (EACs) 

Now let us state the generalization of these states ACS, which are 
introduced by [56, 58]. The results obtained in the references cited above, plus 
these states will help us to get some results of our thesis. So introduce the Excited 

Atomic Coherent (EAC) state , , sθ φ  by the expression  

 ( )1ˆ, , ( , ) exp ( , , )
2
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i i
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s R s e J e J s A s m
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+ −
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∑  (3.91) 
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Where ,s j s= is any state of the angular momentum states. Obviously ,θ φ is 

the state (3.91) when s=-j. The state (3.84) we can obtain in similar way, thus the 
coefficients ( , , )mA sθ φ are given by  
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(3.92) 

 

Where the hypergeometric function is defined by 
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We can prove that the state , , sθ φ  is an eigenfunction to the operator 
1ˆ ˆ( , ) ( , )

z
R J Rθ φ θ φ− with eigenvalue s. Then we will use the following formulae later, 
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 (3.93) 

 

With help of the above expressions we find the expectation values of the angular 
momentum components Jx , Jy , Jz, with the relation (3.91) 

 

, , , , cos

, , , , sin cos

, , , , sin sin

z

x

y

s J s s

s J s s

s J s s

θ φ θ φ θ

θ φ θ φ θ φ
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=

= −
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 (3.94) 

 

In the early treatments [see references] do not is treated the excited state at 
general, but in transformations (3.94) just have to do s=-j, thus we obtain   
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 (3.95) 

 

The application of the operator ˆ( , )R θ φ on these states as expectation values cause 

a rotation of the operator J because  

 
( )

( )
, J , 0,0,             and

, J , sin cos , sin sin , cos

j j j j j

j j jθ φ θ φ θ φ θ φ θ

− − = −

= −
 (3.96) 

 

For example the ACS arisen naturally in Rabi oscillations in two level 
systems. Such as two-level atom (TLA) which has j=1/2, and we make the choice 

of the ground and excited states as 1 = ↓  and 2 = ↑  with 1 / 2, 1 / 2−  and

1/ 2,1/ 2 , respectively, so the ACSs for the TLA is  

 , cos sin
2 2

i
e

φθ θ
θ φ −   = ↓ + ↑   

   
 (3.97) 

 

For now finished with the treatment of ACS, in the next chapters will deal with 
several results in this and early chapters to show some results of our research.  
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CHAPTER 4 

 

 

 

COLLECTIVE AND COOPERATIVE EFFECTS 

OF QUANTUM DOTS SYSTEMS 

 

Collective and cooperative phenomena are central to the radiation field 
interaction, particularly for Cavity Quantum Electrodynamics (CQED).  The 
corresponding Dicke model has been studied extensively and is an appropriate 
reference for the study of the interaction of L Quantum Dots (QDs) with 
electromagnetic radiation interaction. The collective behavior patterns 
characteristic of radiation, is not the only evidence of collective response in the 
case of QDs. Comparison of Rabi frequencies system of the L QDs with the Dicke 
model frequency is distinguished in that the former has a detuning dynamic mainly 
due to the Coulomb interaction between QDs force (Förster). We discuss the 
insight of the detuning of Förster and collective conditions that optimize or 
minimize the effects of the decoherence thereby we obtaining a highly coherent 
system. With help of EACs representation we factor out the atomic operators of 
angular momentum that represent the QDs system. This strategy gives us a very  
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well alternative way to reach to insight the quantum dynamics involve in this 
system that in other techniques is more difficult become calculate.  

 

4.1 QDs Hamiltonian in the Basis of Excited Atomic Coherent States 

(EACs) 

EACs as we saw in Chapter 3 are generalized angular momentum states, 
which by its algebraic features are excellent tools for synthesizing collective 
systems that can be represented by these operators (in fact made with the same 
angular momentum operators alone).  In the following we will use them to 
generalize the calculation of matrix elements and diagonalization of the 
Hamiltonian of QDs. In addition we will use the same basis for the excitons, which 
allows a broader understanding by viewing these states in the sphere of Bloch.  

In this way we use the Hamiltonian for QDS equation (3.50), especially in the 
rotating frame with equation (3.51) 
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= + + ∆ + + +

∆ ∆ − +

= + + + + −

= ∆ + + +

 (4.1) 

Now with the basis used in the subsection (3.6.1) where the basis that we choose 
is the basis of eigenstates of 2

J and zJ  , 0 1, 1j s= = = − , 1 1, 0j s= = = , 

2 1, 1j s= = = . The advantage of using this combined basis with the EACS is that 

the parameters allows us to use any value s=m, for all m=s= -j,–j+1,…,j-1,j. 
Remaining the matrix elements in terms of ACS, which is a more general solution 
of this system as we mentioned above. Therefore the analytic matrix elements [2] 
for the QDs Hamiltonian for the state 
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 (4.2) 
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Where θ, φ, are the spherical coordinates associate with the symmetries of the 
ACS [2, 7, 8], also s is the generalized parameter of the EACS, and n represent the 
number state of field. Thus the analytic matrix elements for the QDs Hamiltonian 
are  
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 (4.3) 

 

Where the
( , )z s

f ± are the matrix elements for each operator set of the Hamiltonian 

and ( ), , sτ θ φ= .  Elements are explicitly (see appendix 1) calculated given by  
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 (4.4) 

 

In For a more detailed calculation with these matrix elements, we let them in 
Appendix 1. After calculating all matrixes element involved in the angular 
momentum basis we obtain 
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 (4.5) 

 

With the help of Equations (4.4) and (4.5), we compute explicitly the matrix 
elements in the dual basis, i.e. EACs and excitonic basis in QDs, as shown in the 
preceding paragraphs and in chapter 3.  For this system we have a combined base 
of six vectors, therefore span a Space Hilbert with a array matrix of 6 x 6 with 36 
matrix elements, good many of them null. The matrix is given by 

 

 

11 12

21 22 23 24

23 33 34 35

42 34 44 45

53 45 55 56

56 66

0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0

rs rs

rs rs rs rs

rs rs rs rs

r s
rs rs rs rs

rs rs rs rs

rs rs

H H

H H H H

H H H H
H

H H H H

H H H H

H H

 
 
 
 

=  
 
 
 
 
 

 (4.6) 

 

Where the no null elements area given by 
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 (4.7) 

The off diagonal symmetric terms and nor symmetric are given by: 
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 (4.8) 

In this matrix, it elements are characterized by trigonometric functions that 
describe the respective EACs, and they allow for a broader perspective of the 
behavior of states in the Bloch sphere. It should also be noticed that by making

0θ = , it is obtained the matrix (3.53) computed in chapter 3 as a particular case.  

The diagonalization of this matrix is not easy in general form, due to the 
Hilbert dimensionality span for the vector basis, which is of 6 X 6. The simplest 
case is when 0θ = , that already was studied in chapter 3. However, in this case, 
this correspond to a more general type of matrices with elements as function of 
the EACs which provided more system information through of diagonalization and 
Bloch’s states sphere.  
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4.2 Förster Collective Dynamic Detuning in the Basis of EACs 

In this section we analyze the collective dynamic detuning of Förster on the 
ESCs basis. This analysis has already demonstrated in references [1, 2, 3, 4] in the 
case of SU(2) algebra of collective angular momentum operators. In equation (4.3) 
we have the matrix elements for QDs Hamiltonian 

 ', ', 1 ', 1 ',1r F zs n n s n n s n n s n nH f gf n gf n Wf
τ

δ δ δ δ+ − − + ±= ∆ + + + +  (4.9) 

Where 
, ,z sf± are the matrix elements given by the expressions (4.4) and (4.5) in 

general analytic form.  

Let us briefly discuss the collective role of this dipole term. According to the JCM 
and Collective Dicke model, we can rewrite the Hamiltonian for L QDs as 

 

 ˆˆ
2

L

L
H N Q

ω
ω= + −  (4.10) 

Note that the Hamiltonian is in terms of two constants of motion, namely, 
[H,N]=[H,QL]=0, such that [N,QL]=0. The number Operator N, the number of 
photons and excited atoms that characterize the states in this manifold, is given by 

 
†ˆ

2
z

L
N a a J= + +  (4.11) 

The excitation operator off diagonal is 

 ˆ
L Dk FQ H H= +  (4.12) 

 

It is expected that the concept of collectivity that gives rise to the cooperative 
superradiance in the QDs system, as in the Dicke model, shows in this system. 

This is confirmed by noticinng that ˆˆ,  ,  and 
L

H N Q in addition to J2 is also a constant 

of motion, which commutes with all the others constants of motion.  
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2 2 2 ˆˆ, , , 0

L
J H J N J Q    = = =       (4.13) 

But in particular 2 ˆ,J N commute with ,  and Dk FH H  respectively, although the latter 

two do not commute with each other 

 
2 2ˆ ˆ, , 0,   and   , , 0

F Dk F Dk
N H N H J H J H       = = = =        (4.14) 

 

The Förster’s term, in the Hamiltonian of the QDs, introduces considerable 
dynamic implications in their eigenfunctions [3, 4], even at the lower order terms. 
This section shows that the Förster detuning has an atomic dependence and 
therefore a collective variation. For convenience, we will work on resonance 

( )0∆ = . The terms FH  and DkH are not diagonal in an atomic Dicke states 

representation, and with help of the EACS have they will have the following matrix 
elements: 
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Whose explicit expressions are given with the help of Equations (4.4) and (4.5), 
where  

 

( ) ',

, , 1 ', 1

, , ' 1 ', 11

s s zs n n

s s n n

s s n n

f f f

h f n

h f n

δ

δ

δ

±

+ + − −

− − − +

= −

=

= +

 (4.16) 

 



90 4. COLLECTIVE AND COOPERATIVE EFFECTS OF QUANTUM DOTS SYSTEMS 

 

 

As demonstrated above N is a constant of motion, and in that manifold the states 
that are directly coupled by the interaction can be diagonalized in Dicke states 
representation.  An interesting and solvable case is given when we chose 0θ =  in 
the EACs. Those elements are reduced to a simpler form at function of normal 
matrix elements of quantum angular momentum.  

Let us assume that we could diagonalize that Hamiltonian, in that case the 
respective eigenvalues could take the form 0λ γ γ± = ±  and they should share some 

general properties: 

 ( ) ( )0 1

1 1 1
Trace

2 2 2
F s s

H f fγ λ λ+ − −= = + = +  (4.17) 

And 

 2 2

0 1 ,
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L s s s s
Q f f h hλ λ γ γ ∗

+ − − ± ±= = + = −  (4.18) 

 

Where, from equations (4.16) we have ,s
h±  which meaning that , ,s s

h h+ −= , it is 

because as already we discuss more above, these elements are draw with the first 
term, therefore 

 

 

2

22 2

,

, ' , , ' 1 , 11
+ W , ' ,

4 , ' ,

z z

s

L s J J J L s L s J J J L s
h L s J J L s

L s J J L s
γ + − + −

± + −
+ −

 − − − − − =  (4.19) 

 

Or in more compact form   
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2

,sh±  is identified as the diagonalization of the Dicke Hamiltonian, and therefore as 

the Rabi’s frequency QD
Ω . Therefore, this term is given as a correction to the 

Dicke’s frequency 
DkΩ , previously determined in references [1], as 

 

 
2 2 2

QD Dk F
Ω = Ω + ∆  (4.21) 

Where the Förster’s dynamic detuning is given by 

 

 

22
2

22

W 1
1

4 1

W 1
1

4 1

W 1
1

2 1

F

F

F

L s s

s L s

L s s

s L s

L s s

s L s
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+ −  ∆ = − + − 

− +  ∆ = − − + 

 (4.22) 

 

The plot of equations (4.18) is show at figures 4.1 and 4.2 in order to values of L 
and s: 
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Figure 4.1 Förster Dynamic Collective Detuning: The plot shows ∆F as a function of L and s. Note that 
detuning becomes meaningful only if s=1 or s=L.  

 

 

Figure 4.2 another perspective of the Förster Dynamic Collective Detuning: The plot shows ∆F as a function of 
L and s. Note that detuning becomes meaningful only if s=1 or s=L. 
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Figure 4.3 In this picture we show more specifically  the Förster Dynamic Collective Detuning with maximum 
and minimum coherence: The plot shows ∆F as a function of L and s. Note that detuning becomes meaningful 

only if s=1 or s=L. 

 

We should note that it is very interesting to atomic dependence shown in figure 
4.1 and 4.2, but in particular the values that are relevant to occurrence of a 
collective behavior s=L/2; with equations (4.21) and (4.22), we get 

 

 

( )
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2 2

2
2 2

W 1
               1   and   

4

W
                      / 2

2

QD Dk

QD Dk

L
s s L

L

s L
L L

−
Ω = Ω + = =

Ω = Ω + =
+

 (4.23) 

 

These expressions show that the Förster frequency dynamics for L large become 
negligible when collective behavior is dominant. The contribution of Förster term 
the QDs Hamiltonian produces a dynamic detuning, which is not noticeable in the 
case of a QD and in collective behavior. Therefore, there is no difference 
significant to the JCM, although with increasing the number of QDs becomes 
substantial differences with Dicke model, but is evident that they must appear for  
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a large group of QDs. It shows further that the in Förster dynamics detuning, there 
are two phases: one of them is a constant detuning and other one is proportional 
to the atomic state- These features point out the difference between the 
semiclassical model descriptions, and Quantum Electrodynamics model. 

 

4.3 Representation of Quantum Dots in the Basis of ACs 

In this section once again we used the ACS [5-7] to find a system of 
coupled differential equations in the Heisenberg picture and the full QDs 
Hamiltonian in turn reduces the equations to find a semiclassical collective 
dynamics of the system.  

QED interaction between EM fields and atomic systems has been crucial for 
understand the radiative properties, its complexity has made it known accurately 
and completely to a single atom, first described by a classical EN field 
(semiclassical model) and then fully QED, which correspond to the Tavis-
Cummings model [9] or JCM. These multi-atomics systems have been derived and 
the Dicke model [10] which has been studied in an approximate collective effects 
[1, 2, 11, 12].   

As we talked earlier in previous sections and chapter 3, more realistic systems 
require consideration of other interactions, such as Förster interaction in 
semiconductor QDs, which is an interaction between QDs, but not through 
electromagnetic field. This is the difference introduced by Quiroga in collective 
Hamiltonian [4] as a system of Cavity Quantum Electrodynamics (CQED) for the 
QDs and Dicke system. These systems are of great interest because it has been 
show experimentally the entanglement or quantum entanglement [5], 
“antibunching” and Rabi oscillations [6], but has not explored the interaction 
between non-radiative QDs corresponding to non-linear Förster term in the 
Hamiltonian [7], (see expressions (3.47) and (3.49)).   

Atomic Coherent States (ACS) have been used only in a context purely atomic, i.e. 
systems a few atoms to many two level atoms [8]. In this work we give them a 
wider use, when applied to groups of L QDs systems in order to factoring the 
expectation value of the nonlinear Förster term in the Hamiltonian.  
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The description of the ACS was carried out in chapter 3, and previous sections as 
particular case of the EACS. In this section we calculate the evolution equations for 
operators [2, 11] in the Heisenberg picture. These equations are calculated using 
the Heisenberg equation brackets, giving a differential system with the Hamiltonian 
operators, i.e. with the Hamiltonian (3.49) or equation (4.1) in this chapter, here 
we have the Förster term as a non-linearity. Starting from this Hamiltonian we find 
their commutator and switches with each operator involved to find the respective 
equations, this are  
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ω −

∂
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∂

 (4.24) 

 

In this system we have that only three equations are independent because only we 
need a conjugate operator or well only a conjugate into the operators of angular 
momentum and the quantized EM field.  

 

4.3.1 Semiclassical Model and numerical solutions  

The semiclassical picture that arises from the EM coherent states is one of 
the most interesting and useful for practical purposes. Therefore, it is a convenient 
question to consider if we could carry on a similar analysis in the collective atomic 
case. In this subsection we discuss a simpler model of the system Eq. (4.24). Let 
us assume that initial atomic state correspond to the ACS, therefore the collective  
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atomic operator could be changed by its corresponding amplitudes in the angular 
momentum operators (with SU(2) algebra). This is derived simply by calculating 
the expectation values with the ACS basis, making the equations in scalar form, 
where the products of the expectation value operators are factorized. However the 
Förster term becomes nonlinear and our possibility is to numerically solve it. We 
have conveniently denoted by [2]: 

 

 , , ;     , , ;     , ,     
z z

J f J f J fθ φ θ φ θ φ θ φ θ φ θ φ+ + − −= = =  (4.25) 

And analogously for the operators ,x yJ J  by 

 , , ;     , , ;     , ,
x x y y z z

J f J f J fθ φ θ φ θ φ θ φ θ φ θ φ= = =  (4.26) 

 

Therefore to obtain the actual semiclassical system, we have to consider that the 
interaction electromagnetic field is time independent, defined as real amplitude, 
i.e. a α⇒ , we get a coupled differential equations system nonlinear scalar, which 
can be solved numerically, so 

 

( )

( )

' ' 2

' ' 2 2  

' 2 .

x
x y y z

x
y x z x z

x
z y

df
f f Wf f

dt

df
f f g f Wf f

dt

df
f g f

dt

ε

ε α

α

= = − +

= = − −

= =

 (4.27) 

 

Where  '= Wε ε −  is the Förster detuning defined at equation (4.1) and chapter 3, 
W is interaction Förster constant. The constant α is amplitude of classical field and 
g is interaction constant coupling between field and dots.  

This coupled differential system can be solved by numerical techniques. But we 
have careful to observe that the variables are not only coupled by the field but also 
by the nonlinearity in the terms 

z y
J J  and z xJ J  for (4.27) in the Real part. It is 

easy to realize that in spite of this nonlinearity, these equations preserve the  
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Norm, and that in the absence of field this term corresponds to a detuning 
correction in terms of the expectation value of the atomic inversion constant. If we 
choose α as a parameter very small, we can see clearly the impact of Förster 
constant W. This should lead us to sinusoidal oscillations to the QDs operators, as 
we display below where we are going to keep constant the EM field α and the 
dipole coupling g, but vary the collective ε detuning and the dipole-dipole coupling 
W, as the competing variables. Before we show the analytic limit cases for de 
system (4.27), and we perform the solutions in this limit, i.e. if we have that the 
Förster constant is W =0, then 

 

' '

' ' 2            

                  

 

' 2

x
x y

x
y x z

x
z y

df
f f
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 (4.28) 

In this case we have harmonic solutions with frequency 2 2 24  '  g α εΩ = +  

Another case is when ' 0ε αΩ = = = , so we have, 
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 (4.29) 

Too harmonic solutions with frequency 02
W

WfΩ = .  

We can concluded that  

 

' ' ' 0
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Now we give the numerical results of the system (4.27), with parameters: 

 

0.0,   1.8,   3.0,   1/ 25.

0.5,   1.8,   3.0,   1 / 25.

0.3,   2.0,   3.0,   1 / 25.

0.3,   2.0,   3.0,   1 / 25.

W g

W g

W g

W g

ε α
ε α

ε α

ε α

= = = =

= = = =

= = = =

= = = =

 

So with these parameters the plots are 

 

Figure 4.4 Semiclassical behaviors by the system of QDs with parameters: 
0.0,   1.8,   3.0,   1 / 25.W gε α= = = =  We can observe that oscillations correspond to a case when there are not 

Förster Interaction, but there are collective radiation (classical)-matter interaction, type Dicke with Rabi 
oscillations, this indicate that behavior is correct with respect to the Dicke Hamiltonian. 
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Figure 4.5 Semiclassical behaviors of a QDs system with parameters: 
0.5,   1.8,   3.0,   1 / 25.W gε α= = = =  In this case we can observe that there is Förster 

Interaction, with oscillations type Rabi too. This collective radiation (classical)-matter interaction 
type show Rabi oscillations, however notice the role of the dipole-dipole. 

 

 

Figure 4.6 Semiclassical behavior of a QDs system with parameters: 0.3,   2.0,   3.0,   1 / 25.W gε α= = = =  In 

this case we can observe that there is Förster Interaction, with oscillations type Rabi too, and dipole-dipole 
coupling. 
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Figure 4.7 Semiclassical behaviors by the system of QDs with parameters: 
0.3,   2.0,   3.0,   1 / 25.W gε α= = = =  In this case we can observe that there is Förster Interaction, with 

oscillations type Rabi too. This collective radiation (classical)-matter interaction type show Rabi oscillations. 
With Runge-Kutta numerical method 

 

CONCLUSIONS OF CHAPTER 4 

In this chapter we research the collective dynamics of QDs systems at 
different stages. On the hand we compare the QDs Hamiltonian which includes the 
Förster term, with that Dicke model. We were able to calculate and plotting display 
different behaviors as limiting cases, noting that for a QD the difference with 
atomic model for a single atom, better known as JCM there is no big difference. 
For collective case of the Dicke model versus nonlinear QDs Hamiltonian becomes 
substantial because to the interaction of Förster (FRET). On the other hand we 
study the implementation of EACS in order to factor out as a resource for the 
atomic operators, and so we able to work in the Heisenberg picture with a 
Differential Equation Coupled System. 

Besides EACS serving to factor out the atomic operators representing the 
nonlinearity in the QDs Hamiltonian, the use of coherent atomic states allows us to 
easily recognize the modulation produced by the interaction of Förster. We show 
that the oscillations are similar to the collective dynamics of quantum dots due to 
the Förster interaction term with those of the Dicke model dynamics, which is  
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collective but with linear characteristics. This opens a wide panorama of 
exploration than usual with help of these atomic states.  
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CHAPTER 5 

 

 

Q-BIT ENTANGLEMENT MESURMENT FOR A 

REDUCED QDs SYSTEM 

 

The greatest challenge of quantum computing and quantum information is 
the physical realization and implementation of a real quantum computer. The first 
problem which is designing a physical system that allows us to build and control 
the so call Quantum bit (qubit). The qubit is the fundamental unit of quantum 
processing, so unlike his classic bit counterpart, the latter has been implemented 
satisfactorily, but the implementation of qubit is more problematic because it is a 
mathematical entity type yet. Wherefore become to a physical reality is no easy 
task for two reasons: first because it is not to keep a quantum system with feature 
that the superposition without being destroyed by the environment, the other one 
is perhaps the most complex to perform, is due to Quantum Entanglement of 
qubits to be kept in order to transferring and processing information, which is also 
dissipated and destroyed by the classical physical environment that they are 
surrounded. Because these qubits suffer a loss of coherence (Decoherence), which 
is indispensable in quantum system if want to keep all the quantum properties of 
superposition and entanglement. Already Di Vincenzo [42-44] gave the main 
criteria (Di Vincenzo Criteria) in order to the physical implementation and performs 
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of quantum processor (For more complete study sees Appendix 2 and references 
[1, 42-44]). The Entanglement of quantum systems is a key aspect in order to 
understand the dynamics and behavior of mixed systems (density matrix) as 
bipartite systems of quantum bits (q-bits). A quantifiable measure widely used is 
the Entanglement of Formation [12, 13] of a mixed state, defined as the minimum 
number of singlets needed to create an ensemble of pure states that represents 
the density matrix of the system. In this chapter considering a double quantum dot 
system coupled cavity type Jaynes-Cummings investigate the entanglement 
between two quantum dots, immersed each in its own cavity, showing analytically 
that entanglement has a very interesting effects such as temporal evolution 
including the so-called sudden death effect. 

In this chapter we research a system compose for two QDs embedded in 
own cavity, where this pair is previously entangled before that these QDs are 
introduced into cavity. We will study in Cavity-Quantum Electrodynamics (CQED) 
context. We will give an introduction to the concepts and subjects we needed for 
insights the study of our system, into sections 5.1, 5.2 and 5.3. For more complete 
reviews of these affairs about quantum computing and quantum information you 
refer to Appendix 2 and the references cited here and there in.  We want to clarify 
that this is neither a chapter nor thesis on the implementation of physical systems 
(QDs) for quantum computing. It is just a proposal on CQED context where we 
develop the main calculations, supported also by Entanglement of Formation 
theory [12, 13] (see section 5.3) as a quantitative measure for the entanglement 
between our qubits: i.e. our two QDs more cavities system.  

 

5.1 Introduction 

For several years, many authors have studied entanglement because its 
enormous importance at its fundamental level and because its applications to 
quantum information and quantum computing [1]. Entanglement has marked a 
new way to reinterpret the quantum nature of computer technology due to the 
incorporation of quantum processing units with so-called quantum bits (q-bits), 
represented as dual units that open up infinite possibilities of parallel processing, 
at least theoretically, much faster than any classical computational process. 
However this has been the case at the theoretical level, therefore it is essential to 
implement physical models that allow the incorporation of this development into 
feasible systems or where the technological inertia may lead to, and one of the 
most visible are Quantum Dots. In spite that we usually refer to Quantum Dots as 
Atom like structures, there are substantial differences such as the exchange  
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interaction (Forster interaction) [20] which has been used as the basis for 
proposals of quantum computation, and therefore deserve a careful analysis.   

Quantum entanglement has played very important roles in quantum 
information processing such as quantum teleportation, [1, 2] quantum 
cryptographic, [3] quantum dense coding,[4] and parallel computing [5]. Therefore 
a precise measurement is needed to quantify the degree of entanglement for those 
q-bits system in collaboration or competition with such exchange interaction. This 
is more interesting because the physical character and mathematical structure of 
entangled states have not been well understood and the Forster interaction tuning 
opens new possibilities to deal with its fundamental questions. There are two 
important problems for entanglement. One is to find a method to determine 
whether a given state is separable (or not entangled), and the other one, it is to 
define the best measurement quantifying an amount of entanglement of a given 
state. In order to solve the first problem, much effort has been made. [6-8]. The 
quest for proper measurement of entanglement has received also a great deal of 
attention. The entanglement of formation, distillation, and relative entropy, [9-11] 
negativity, [12] concurrence, [12, 13] concurrence related measures, or positive 
operator are used to investigate entanglement. Although the entanglement of 
formation is defined for arbitrary-dimensional bipartite systems, so far no explicit 
analytic formulates for entanglement of formation have been found for systems 
larger than a pair of qubits, except for some special symmetric states. [14]. 

Another serious problem that must be considered in entanglement, as 
mentioned earlier, in a quantum system is it may deteriorate due to interaction 
with background noise or with other systems usually called environments. Interest 
was originally concerned with the consequences for quantum measurement and 
the quantum-classical transition [15–17]. More recently, entanglement 
decoherence has been studied in connection with obstacles to realize various 
quantum information processing schemes. T. Yu and Eberly have shown that 
entanglement can decay to zero abruptly, in a finite time, a phenomenon termed 
entanglement sudden death [18, 19].  

Such quantum correlations are responsible for much of the challenge in 
understanding interacting many-body quantum systems, and it is therefore of 
fundamental importance to have quantitative knowledge of these correlations. 
Progress in quantum information theory has led to the development of new 
measures of the inseparability of a quantum state, and in the last few years these 
measures have been used to assess the quantum correlations in diverse physical 
systems. Concurrence [12, 13] is an especially useful metric for such studies 
because it can be applied to mixed as well as pure states. It therefore can be used 
to quantify the thermal entanglement in a system at nonzero temperature. It can 
also be applied to evaluate the inseparablilty of an equal incoherent mixture of 
degenerate energy eigenstates. However as we mentioned above, concurrence is 
defined only for a pair of qubits. Since a qubit is formally equivalent to a spin-1/2  
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particle when only the spin degree of freedom of the latter is considered, this has 
led to several analyses of the thermal entanglement between a pair of interacting 
spin-1/2 particles.  

The entanglement of formation, another important entanglement measure, can be 
calculated directly from the concurrence and is monotonically related to it. The 
method of calculating the concurrence for more general density matrices can be 
found in Wootters [13]. 

The importance of this issue is to find necessary and sufficient conditions for 
the development of quantum computer systems in their physical implementation 
(hardware) and the new rules of quantum processing (software). In our case we 
focus on studying the physical implementation on a fundamental level [20], 
seeking the most appropriate quantum physical system of many systems studied in 
quantum physics for many decades to more sophisticated atomic systems with 
cooperative and collective effects. Up until now, such quantum-mechanical 
computers have been proposed in terms of trapped ions and atoms [21], cavity 
quantum electrodynamics (QED) [22], nuclear magnetic resonance [23], 
Josephson junctions [24], and semiconductor nanostructures [25] schemes. All of 
the above proposals have decoherence and operational errors as the main 
obstacles for their experimental realization, which pose much stronger problems 
here than in classical computers. There is much current excitement about the 
possibility of using solid-state-based devices for the achievement of quantum 
computation tasks. In particular, semiconductor nanostructure fabrication 
technology is well developed and hence offers us a wide and promising arena for 
the challenging project of building quantum information processors. Because of 
their quantum-mechanical nature and their potential scalability properties, 
semiconductor quantum dots (QDs) are very promising candidates for the 
implementation of quantum computing processes. Several solid-state design 
schemes for quantum computation have been proposed to date: Kane [25] has 
proposed a scheme that encodes information onto the nuclear spins of donor 
atoms in doped silicon electronic devices where externally applied electric fields are 
used to perform logical operations on individual spins. Loss and Di-Vincenzo[25] 
have presented a scheme based on electron spin effects, in which coupled 
quantum dots are used as a quantum gate. This scheme is based on the fact that 
the electron spins on the dots have an exchange interaction (Forster interaction) 
[20] which changes sign with increasing external magnetic field.   
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5.2 Quantum Computing and Quantum Information Theory  

Strictly spoken, the mathematical formulation of quantum mechanics, which 
was shortly introduced in chapter 2, is not a physical theory in its own right, but 
rather provides a framework to formulate physical theories within. Depending on 
how exactly the Hilbert spaces and Hamiltonians are constructed, different theories 
to arise, from non-relativistic quantum electrodynamics, which still maintains many 
formal analogies to classical physics, to quantum chromo-dynamics which 
introduces entities like quarks and gluons which are completely meaningless 
outside the scope of quantum mechanics. Quantum computing is yet another 
theory on top of the abstract quantum mechanical formalism. It is, however, not a 
physical theory in the sense that it tries to accurately describe natural processes, 
but is built on abstract concepts like quantum-bits (qbits) and quantum gates, 
without regard to the underlying physical quantum-dynamical model. 

 
The basic idea of modern computing science is the view of computation as a 

mechanical, rather than a purely mental process. In 1936, Alan Turing formalized 
this concept by constructing an abstract device, now called Turing-Machine, which 
he proved to be capable of performing any effective (i.e. mechanical, algorithmic) 
computation. At about the same time, Alonzo Church showed that any function of 
positive integers is effectively calculable only if recursive. Both findings are, in fact, 
equivalent and are commonly referred to as the Church-Turing Thesis. In its strong 
form, it can be summarized as: Any algorithmic process can be simulated 
efficiently using a Turing machine.  
 

This means that, no matter what type of machine is actually used for a 
certain computation, an equivalent Turing Machine can be found which solves the 
same problem with only polynomial overhead. The strong Church-Turing Thesis 
came under attack when in 1977 Robert Solovay and Volker Strassen published a 
fast Monte-Carlo test for primality [1, 31], a problem for which no efficient 
deterministic algorithm was known at that time [In 2002, Manindra Agrawal, 
Neeraj Kayal and Nitin Saxena eventually found a deterministic primality test [32] 
with a worst case time complexity of O(n12).]  

 
While this challenge could easily be resolved by using a probabilistic Turing 

Machine, it raises the question whether even more powerful models of 
computation exists. In 1985, David Deutsch adopted a more general approach and 
tried to develop an abstract machine, the Universal Quantum Computer, which is 
not targeted at some formal notion of computability, but should be capable of 
effectively simulating an arbitrary physical system and consequently any realizable 
computational device [33, 36].  
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Deutsch also described a simple quantum algorithm which would be capable 

of determining in a single step whether a given one-bit oracle function :f Β → Β  
fis either constant or balanced. The algorithm was later generalized for n-bit 
functions :

n
f Β → Β  (Deutsch-Jozsa problem [35]) and demonstrates that a 

quantum computer is indeed more powerful than a probabilistic Turing machine. 
 
At the same time, Richard Feynman showed how local Hamiltonians can be 

constructed to perform arbitrary classical computations [38]. In 1994, Peter Shor 
demonstrated how prime factorization and the calculation of the discrete logarithm 
could be efficiently performed on a quantum computer [40]. The immense 
practical importance of these problems for cryptography made Shor’s algorithm the 
killer-application of quantum computing. One year later, Lov Grover designed a 
quantum algorithm for finding a unique solution to Q(x) = 1 in an unstructured 
search space of size n, requiring only O(p n) evaluations of the black-box oracle 
function Q [39]. At this time, Peter Zoller and Ignacio Cirac demonstrated how a 
linear ion trap can be used to store qubits and perform quantum computations 
[41]. In 2001, a team at IBM succeeded to implement Shor’s algorithm on an NMR 
based 7-qubit quantum computer to factorize the number 15, [37]. 

 
 
5.3 Concurrence and Entanglement of Formation 

 
Entanglement is a quality of quantum mechanics, which corresponds to the 

presence of nonlocal correlations between different parts of a system that cannot 
be explained classically. A pure state of a pair of quantum systems (bipartite) is 
called entangled if it is not factorizable (i.e., if the state total cannot be written as 
a product of states of the particle) and a mixed state is entangled if it can be 
represented as the mixed state pure factorizable [12]. One can define the concept 
of entanglement for mixed quantum states, as mixed state is entangled if it cannot 
be represented as a mixture of unentangled pure states. For both pure and mixed 
quantum states, there are good measures of the degree of entanglement. In the 
case of pure states of a bipartite system there is a single widely accepted measure 
of entanglement, whereas for mixed states of such systems there are three 
measures [9, 11, 26] that have been extensively studied. One of these, 
entanglement of formation, is a subject of this paper. We will use Wootters' 
concurrence [12, 13] as our measure in this discussion, mainly for its relevance for 
mixed states and the convenience of its definition and normalization. 

A pure m n⊗ , ( m n≤ ) quantum state ψ  is a normalized vector in the 

tensor product A BH H⊗ of two Hilbert spaces  and A BH H  for systems A and B. The 

entanglement of formation is defined to be ( ) ( )A
E Sψ ρ=  where ( )A BTrρ ψ ψ≡  is 

the reduced density matrix. Here ( )A
S ρ is the entropy. 
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Where iµ  are the eigenvalues of Aρ  and µ
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, ,...,
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µ µ µ . It 

is evident that ( )E ψ  vanishes only for product states. This definition can be 

extended to mixed states ρ  by the convex roof, 

 

 ( ) ( )
i i

i
{p }
min i

i

E p E
ψ

ρ ψ≡ ∑  (5.2) 

 

for all possible ensemble realizations 
i i ii

pρ ψ ψ=∑ , where 0ip ≥  and 1
ii

p =∑
Consequently, a state ρ  is separable if and only if ( ) 0E ρ =  and hence can be 

represented as a convex combination of product states as A B

i i ii
pρ ρ ρ= ⊗∑ where 

 and  A B

i i
ρ ρ , are pure state density matrices associated to the subsystems A and B, 
respectively [29]. The measure Eq. (5.2) satisfies all the essential requirements of 
a good entanglement measure: convexity, no increase under local quantum 
operations and classical communications on average, no increase under local 
measurements, asymptotic continuity, and other properties [9, 30]. 

 

5.3.1 for a pair of quantum bits (q-bits) 

For a pair of qubits, there exists a general formula for 
f

E  , proved first for 

special cases [9, 12] and later for all states. The formula is based on the quantity 
called concurrence, which at this point has a standard definition only for a pair of 
qubits [3, 12]. Let us first consider a pure state ψ  of a pair of qubits. The 

concurrence ( )C ψ  of this state is defined to be ( )C ψ ψ ψ= ɶ  where the tilde 

represents the spin-flip operation, ( ) *

y y
ψ σ σ ψ= ⊗ɶ . Here *ψ  is the complex 

conjugate of  ψ  in the standard basis{ }00 , 01 , 10 , 11 , and 
y

σ  is the Pauli 

operator 0

0
y

i

i
σ

− 
=  
 

. The spin-flip operation, when applied to a pure product 

state, takes the state of each qubit to the orthogonal state, that is, the state 
diametrically opposite on the Bloch sphere. The concurrence of a pure product 
state is therefore zero. On the other hand, a completely entangled state such as 
the singlet state is left invariant by the spin flip (except possibly for a phase  
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factor), so that for such states C takes the value one, which is its maximum 
possible value. It is not hard to obtain the following relation between concurrence 
and entanglement of a pure state. 

 

 ( ) ( )( )E Cψ ψ= Ε  (5.3) 

 

Where the function ( )
f

E CΕ =   is defined by 

 

 
21 1

( )
2

f

C
E C h

 + −
Ε = =  

 
 

 (5.4) 

 

And 

 

 ( ) ( )2 2log ( ) 1 log (1 )h x x x x x= − − − −  (5.5) 

 

The function ( )
f

E C  is monotonically increasing for 0 1C≤ ≤ ; so the 

concurrence can be regarded as a measure of entanglement in its own right, 
though unlike entanglement of formation, it is not a resource-based or information 
theoretic measure. The connection between concurrence and entanglement is 
particularly clear if we express the state in the standard basis:

00 01 10 11a b c dψ = + + + . One can show that ψ  is factorizable if and only if 

ad bc= , so that one might take the difference between  and ad bc  as a measure of 
entanglement. Indeed, this is what concurrence does: ( ) 2C ad bcψ = − . We can 

define the concurrence of a mixed state ρ of two qubits to be the average 
concurrence of an ensemble of pure states representing ρ , minimized over all 
decompositions of ρ . That is, according to equation (5.2),  

 

 ( ) ( )iinf
i

i

C p Cρ ψ= ∑  (5.6) 
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Where once again
i i ii

pρ ψ ψ=∑ . Now it happens that the function ( )
f

E C  

defined by Eq. (5.4), in addition to being monotonically increasing, is also convex. 
It follows that 

 

 ( ) ( ) ( )i i( ) inf ( )
i i f

i i

C p C p Eρ ψ ψ ρ
 

Ε = Ε ≤ Ε = 
 
∑ ∑  (5.7) 

 

That is, ( )( )C ρΕ  is a lower bound on ( )
f

E ρ . At this point we invoke, but do not 

prove, two remarkable facts about concurrence. First, there always exists a 
decomposition of  ρ  that achieves the minimum in Eq. (5.6) with a set of pure 
states having the same concurrence. This fact makes the inequality in Eq. (5.7) 
and equality, so that ( )( )C ρΕ  actually gives us the entanglement of formation. 

Second, one can find an explicit formula for ( )C ρ [13].  It is 

 

 ( ) 1 2 3 4max{0, }C ρ λ λ λ λ= − − −  (5.8) 

 

Where the i
λ  are the square roots of the eigenvalues of  ρρɶ  in descending order. 

Here ρɶ  is the result of applying the spin-up operation to ρ : 

 

 ( ) ( )*

y y y y
ρ σ σ ρ σ σ= ⊗ ⊗ɶ  (5.9) 

 

And the complex conjugation is again taken in the standard basis (Even though 
ρρɶ  is not necessarily a Hermitian matrix, its eigenvalues are all real and non-
negative because it is the product of two non-negative definite matrices.). 
Alternatively, we can say that the i

λ  are the singular values (in descending order) 
of the symmetric matrix 

 

 
ij i j i j

rrΑ = Ψ Ψɶ  (5.10) 

 

Where the 
i

Ψ ’s are the eigenvectors of  ρ  and the i
r 's are the corresponding 

eigenvalues. One can see that Eq. (21) reduces to the pure state formula  
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( )C ψ ψ ψ= ɶ  when ρ  is the pure state ρ ψ ψ= . We now have our formula 

for the entanglement of a pair of qubits in any mixed state ρ  

 

 ( )( )( )
f

E Cρ ρ= Ε  (5.11) 

 

With C given by Eq. (5.8) and the function E given by Eq. (5.4). 

 

 
5.4. Entanglement of Formation for a System of two QDs 
 

The key element in the quantum information processing is the so-called 
quantum bit. For this reason, understanding their behavior in quantum computing 
environments is essential to carry out external operations that perform specific 
calculations in locations on qubits by logic operations with new algorithms adapted 
to these qubits. So we should form networks of qubits at different intervals making 
full operations. In our case we have a small network of two QDs at the nodes of 
network under this study we will provide the means to insight the transfer at a 
distance of entanglement in the lattice network.   

 
Our qubits are a system of two quantum dots which are located in their 

respective single-mode ( †,  a a  and †,  b b ), lossless cavities so that a cavity includes 
only one such dots. Thus, each node of our network consists of a cavity in which 
there is a QD. We will restrict our attention to the dynamics of entanglement 
between two such nodes. We will denote the dot at the first node by A, cavity at 
the first node by a, dot at the second node by B and cavity at the second node by 
b, as sketched in Fig. 5.1. We are going to be using the QDs Hamiltonian model 
[20, 27, 28] to specify the interactions in our system, this include the Förster 
interaction. The QDs Hamiltonians (remember that 1=ℏ ) is the same we seed in 
chapter 3 and 4, i.e. equations (3.45), (3.46) and (3.47).  We consider L identical 
semiconductor quantum dots that are equally coupled to each other via coulombic 
interaction. The QDs interact with a quantized field (dipole interaction) in a high-Q 
cavity. Then the coupled QD-field system is described by the Hamiltonian [20, 27], 
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FIGURE 5.1 This diagram show our system of two QDs previously entangled. The QDs are placed in their 
respective cavity, which there are not interaction between them.  

 
in order to two subsystems A and B 
 

 

( ) ( )

( ) ( )

( ) † † 2 2

( ) † † 2 2

A

z z

B

z z

H a a J g J a a J W J J

H b b J g J b b J W J J

ω ε

ω ε

+ −

+ −

= + + + + −

= + + + + −

 (5.12) 

 

Whereε is the QD band gap, g  is the coupling strength between the field and the 
QDs, ω  is the field frequency, and W represents the interdot coulomb interaction. 
The coulomb interaction process known as Forster process exchanges energy, but 
does not require the physical transfer of the electrons and holes. For equal 
coupling these QDs are equidistant from each other so that the dots lie on a line 
for L = 2, at the vertices of an equilateral triangle for L = 3, and at the vertices of 
a regular pyramid for L = 4. The Hamiltonian (5.12) can be rewritten in a much 
more suitable in the representation of angular momentum, with the changes point 
out into references: [20, 27] and chapter 2.  In reference [20] we obtained that 
may consist of two parts, one with the Dicke Dk

H  Hamiltonian itself and the other 

is the interaction Hamiltonian Förster F
H , defined as 
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( )
( )

( )

†

†

2 2

,       = ;      

,       

     or     

A

B

Dk z

Dk z

F z F

H J g J a a J

H J g J b b J

H W J J H WJ J

ε ω+ −

+ −

+ −

= ∆ + + ∆ −

= ∆ + +

= − =

 (5.13) 

 

Where ∆  is the detuning between the electromagnetic field and the band gap. The 
Hamiltonian of L QDs can be rewritten in the form:   ,

L
H N Qω= +  with 

† / 2
z

N a a J L= + +  is the number of atoms and photons and 
L Dk F

Q H H= +  are 
constants of motion. However there is another way to rewrite the Hamiltonian 
(5.12), using the relations of the algebra of angular momentum given as follows 

 

 

( )

( )

( ) † †

( ) † †

' ;     

'=  

'  

A

z

B

z

H a a J g J a a J WJ J

W

H b b J g J b b J WJ J

ω ε

ε ε

ω ε

+ − + −

+ − + −

= + + + +

−

= + + + +

 (5.14) 

 

Here we see the term of Förster WJ J+ −  as a non-linearity and we has introduced a 
new constant 'ε , as defined above.  Again we rewrite the Hamiltonian to include 
explicitly the detuning ( ∆ ) which now call Förster Detuning ( '∆ ), so we get  

 

 

( ) ( )

( ) ( )

( ) † †

( ) † †

' ;

    

'

              '= +W= '  

A

z z

B

z z

H a a J g J a a J J WJ J

H b b J g J b b J J WJ J

W

ω

ω

ω ε ω ε

+ − + −

+ − + −

= + + + − ∆ +

= + + + − ∆ +

∆ ∆ − + = −

 (5.15) 

 

In a frame rotating with the field frequencyω , Eq. (5.15) takes the form 
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( )

( )

( ) †

( ) †

'

'   

A

F z

B

F z

H J g J a a J WJ J

H J g J b b J WJ J

+ − + −

+ − + −

= ∆ + + +

= ∆ + + +

 (5.16) 

 

5.4.1 Two QDs interacting with their own quantized cavity field: 
Hamiltonian Diagonalization.  
 
 

In this section we use the Hamiltonian (5.14), for each of the systems and 
we diagonalization in similarly way to section 3.6 into chapter 3, i.e. splits into two 
subsystems which are represented as ( ) ( ) (1) (2)A B

T
H H H H H= + = + . This will 

simplify the task of studying the time evolution of the QD-field system. Starting 
with the initial condition representing the vacuum of excitons [see for example: 20, 
27, 28 and 50], 1/ 2, 1/ 2j m= = − = ↓ , only the 1/ 2j =  subspace is optically 

active while the 0j =  subspace remains dark. We choose the basis of eigenstates 

of 2
J and z

J , 1/ 2, 1/ 2j m↓ = = = − , 1/ 2, 1/ 2j m↑ = = = , as an appropriate 

representation for this problem  ↓  represents the vacuum for excitons, ↑  

denotes a symmetric delocalized single-exciton state. If we represent the field 
state intro each cavity by the Fock state ,

a b
n n and consider the QDs in the 

entangled state involving the vacuum and exciton states  ↑↓ ± ↓↑  , then we  

will have an invariant subspace spanned by 

{ }00 ; 00 ; 10 ; 01↑↓ ⊗ ↓↑ ⊗ ↓↓ ⊗ ↓↓ ⊗  With these basis vectors we 

determine the matrix elements of the Hamiltonian in Eq. (5.14) and obtain the 
eigenvalues, and the eigenvectors by mean of diagonalization. Thus the explicit 
matrix is,  
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( ) ( )

( ) ( )

0 0

0 0

0 ' 0

0 0 '

0 0

0 0

0 ' 0

0 0 '

where    '= '

A B

T

A B

T

W g

W g
H H H

g

g

W g

W g
H H H

g

g

W

ω ε

ω ε

ω ε

 
 
 = + =
 −
 

− 

 
 
 = + =
 ∆
 

∆ 

∆ − = ∆ +

 (5.17) 

 

A interesting case is when '= ' 0W W Wω ε∆ − = ∆ + = + = , when we have resonance. 
In next subsection we will use this case in order to calculate the Concurrence 
function and thus the Entanglement of Formation, for now we calculate the 
general case for the Hamiltonian diagonalization. The characteristic polynomial is 
for matrix (5.17) is 

 
2

2( ) ( ) ( ) 'P g W Wλ λ λ λ = + − − − ∆   

 

At both cavities with the same field frequencyω , and we define the constants for 
simplicity as 

1/ 2 1/ 2
2 2 2 2 2

4 2 ' ( ') ( 2 ') (4 ( ') )g W W W W gδ    = + − ∆ + ∆ = − ∆ + + ∆    , the 

eigenvalues, take the form, 

 

 

( ) ( )

( ) ( )

1 2

3 4

(1 / 2) ' ,    (1 / 2) '

 

(1 / 2) ' ,    (1 / 2) '

E E

E E

W W

W W

λ δ λ δ

λ δ λ δ

= + ∆ − = + ∆ −

= + ∆ + = + ∆ +

 (5.18) 
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Due to the tensor product of the quantum states ,j k j k= ⊗   form a four-

dimensional basis in the Hilbert space SU(2)  SU(2)⊗ . And the corresponding 
normalized eigenvectors take the form, 

 

 

1 12 2

1

2 12 2

1

3 22 2

2

4 22 2

2

1
( ,00 2 ,10

4

1
( ,00 2 ,01

4

1
,00 2 ,00

4

1
,00 2 ,00

4

g
g

g
g

g
g

g
g

λ

λ

λ

λ

 = Ω ↑↓ + ↓↓ + Ω

 = Ω ↑↑ + ↓↑ + Ω

 = Ω ↑↓ + ↓↓ + Ω

 = Ω ↑↑ + ↓↑ + Ω

 (5.19) 

 

The constant δ as defined above. Also we define 1 2',   'W Wδ δΩ = − − ∆ Ω = + − ∆ . 
Then we determine the wave function at any time with the help of the previous 
eigenvectors. In this way we need to consider the initial state of the quantum dots 
system.  A choice of suitable initial state is a state of Bell, i.e. for the sake of 
generality, we consider the initial state of the QDs to be 1 2(0) i

qd c c e
φψ  = ↑↓ + ↓↑  , 

where 
1 2
 and a a are real constants satisfying the condition 2 2

1 2
1c c+ = . We will 

consider the initial state of the field to be coherent, or thermal. Then, the initial 
state for the coupled QD-field system can then be written as  

 

 1 2(0) (0) 00 00i

qd
c c e

φψ  Ψ = ⊗ = ↑↓ + ↓↑ ⊗   (5.20) 

 

We are now able to find the wave vector of the system, because the energy 
eigenstates form a complete set, so using the eigenvalues and eigenvectors of the 
equations (5.18) and (5.19), together with the initial state (5.20), [50]  we obtain 
the following state vector at the time t  as  
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4

1

( ) exp( ) (0)
N

Ek Ek Ek

k

t i tλ λ λ
=

=

Ψ = − Ψ∑  (5.21) 

 

This expression is written explicitly as  

 

 
1 2

3 4

1 1 2 2

3 3 4 4

( ) (0) (0)

          (0) (0)

i t i t

i t i t

t e e

e e

λ λ

λ λ

λ λ λ λ

λ λ λ λ

− −

− −

Ψ = Ψ + Ψ

+ Ψ + Ψ
 (5.22) 

 

Because to orthonormality of the basis vectors we obtain the coefficients in the 
form , ( )jm n tΨ  as 

 

 

1 3

0 2 4

1

3

2 2
( )1 2

1 1 2 2 2 2

1 2

2 2

2 1 22 2 2 2

1 2

1
3 1 2 2

1

2
4 1 2 2

2

( )
( , )

(4 )(4 )

4 4
( , )

(4 ) (4 )

2
( , )

(4 )

2
( , )

(4 )

i t

i i t i t

i t

i t

x t c e
g g

g g
x t e c e c e

g g

g
x t c e

g

g
x t c e

g

λ λ

φ λ λ

λ

λ

− +

− −

−

−

Ω + Ω
Ω =

 + Ω + Ω 

 
Ω = + + Ω + Ω 

Ω
Ω =

+ Ω

Ω
Ω =

+ Ω

 (5.23) 

 

 

Then the solution of the system in terms of the standard basis can be written as a 
simple linear combination, i.e.  

 
1 2 3 4( ) ( ) ( ) ( ) ( )t x t x t x t x tΨ = ↑↓ + ↓↑ + ↓↓ + ↓↓  (5.24) 

 



 119 
 

 

Where the coefficients ( )
i

x t are given by expressions (5.23).  Based on these 

results that were obtained, in the following section we find the density matrix, as 
well as reduced density matrix in order to calculate the concurrence and 
entanglement of formation. 

 

5.4.2 Entanglement of Formation for two QDs as qubits implementation 
 

For sake of simplicity, let us assume that both cavities are prepared initially 
in the vacuum state 0 0

a b
⊗  and the two QDs are in a pure entangled state 

specified below as a Bell state. Under these assumptions, there is never more than 
one photon in each cavity, so the cavity mode is essentially equivalent to a two-
level system. This allows a uniform measure of quantum entanglement together to 
concurrence, for both dots and the cavity modes. 
 

According to the above we must note that there are, in principle, six 
different concurrences that provide information about the overall entanglements 
that may arise. We can denote for sake of simplicity as follows: [48, 49] CAB, CAb , 
CAa, CBb, CAb, CBa. Symmetry considerations can provide natural relations among 
these, which we can see into references [46]. Here we confine our attention to

AB
C . So, it should note that we in reality have six individual systems and four 
qubits: i.e. the two QDs (A and B, see figure 5.1) represent two qubits and two 
cavities (a and b) represent other two qubits itself, plus the combinations in 
interaction between these system as we showed in concurrences. However, we 
focus only in the AB combination in order to measure the entanglement.  
 

For calculate the Entanglement of formation we need find the density matrix 
in general terms of the coefficients ( )

i
x t , [see for example: 18, 19 and 45 to 48] 

I.E. we must to compute the matrix elements, for density reduced matrix, which 
serving us in order to find out Spin-flipped matrix which is an ingredient essential 
in Concurrence function for entanglement of formation. The explicit calculate is 
showed in Appendix 3. Here we show the resulting matrix. This matrix is  

 

 

 

 

 

 



120 5. Q-BIT ENTANGLEMENT MESURMENT FOR A REDUCED QDs SYSTEM 

 

 

 

( )

( )
( )

( ) ( )

1

1 2 3 4

2

3 4

2

1 1 2 1 3 4

2

1 2 2 2 3 4

2 2

1 3 4 2 3 4 3 4

0

ˆ 0

0 0 0 0

0
ˆ

0

0

x
x x x x

x

x x

x x x x x x

x x x x x x

x x x x x x x x

ρ

ρ

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗

 
 
 = Ψ Ψ = +
 
 

+ 

 
 

+ 
 =

+ 
 
 + + + 

 (5.25) 

 

In the combination of the four qubits that we use as system, appear most 
characteristics of character universal. But the simplest is first, all reduction to a 
two-qubit form, obtained by tracing over the two qubits, will yield a two-qubit 
mixed state always having the X-form [47, 49]. The form standard is as 

 

 

0 0

0 0
ˆ

0 0

0 0

a w

b z

z c

w d

ρ ∗

∗

 
 
 =
 
 
 

 (5.26) 

 
 
Where 1a b c d+ + + = . Second, since the concurrence of this mixed state is easily 
found to be 
 
 

 { } { }2max 0, , 2max 0,C z ad w bc Q= − − ≡  (5.27) 

 

For the cases we will encounter 0w = , and this equation turns into 
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 { } { }2max 0, 2max 0,C z ad Q= − ≡  (5.28) 

 

So it is clear that Q, defined as 

 

 Q z ad= −  (5.29) 

 

This will be an important quantity. We will mention at the end certain conservation 
properties that derive from Q in some cases because it can be negative, whereas C 
cannot. 
 

The information about the entanglement of two QDs is contained in the 
reduced density matrix ABρ  for the two dots which can be obtained from 
expressions (5.24) and (5.25) by tracing out the photonic parts of the total pure 
state. The explicit 4 × 4 matrix written in the basis { }; ; ;↑↑ ↑↓ ↓↑ ↓↓  [47, 49] 

is given by 
 
 

 

2

1 1 2

2

1 2 2

2 2

3 4

0 0 0 0

0 0
ˆ

0 0

0 0 0

AB
x x x

x x x

x x

ρ
∗

∗

 
 
 

=  
 
 + 

 (5.30) 

 

This is in the standard form of the two-qubit (quantum dots) mixed state, which 
was noted previously by [47] in order to two level atoms case. Once again the 
time-dependent matrix elements are given by (5.23), which we analyzing the case 
when the detuning is zero, i.e. '= ' 0W W Wω ε∆ − = ∆ + = + = , this is in resonance. It 
must be note that only to keep the Förster interaction constant. So the total of 
constants defined into equations in order to coefficients in eq. (5.23) and 
eigenvectors (5.19) are: 1 2' 2 ,    ' 2W g W gδ δΩ = − − ∆ = − Ω = + − ∆ =  and

1/2
2 2

( 2 ') (4 ( ') ) 2W W g gδ  = − ∆ + + ∆ =  , thus the equations (5.19) and (5.23) now given 

by  
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1
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3

4

1
,10 ,00

2

1
,01 ,00

2

1
,00 ,00

2

1
,00 ,00

2

λ

λ

λ

λ

 = ↓↓ − ↑↓ 

 = ↓↑ − ↑↑ 

 = ↑↓ + ↓↓ 

 = ↑↑ + ↓↑ 

 (5.31) 

 

And for the coefficients: 
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φ

−

− − − +

− −

− +

= =

 = = +  

= = −

= =

 (5.32) 

 

It should be note that the constants 1c  and 2c  into equations (5.32) must to obey 

the normalization condition, also if compared to the eigenvectors obtained in eqs. 
(5.31), the latter are entangled states of Bell (resonant case) where the constants  
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are actually of 1/ 2 , except for the sign. Thus the equations for the coefficients 
are:  
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1 2
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 (5.33) 

 
 
Now we show that the concurrence of the density matrix (5.30), with references to 
eqs. (5.27) to (5.29), also section 5.3, this is given first by function ( )

AB
Q t  as 
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
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

 (5.34) 

 

So that the Concurrence function can be think in dual way, the first one as a 
function just of time and the phase term is keeping constant, and the another one 
as a function of two variables, i.e. as function of the time and phase parameter. 
For sake of simplicity we use only the real part in terms of the cosines functions. 
The imaginary part has a similar behavior. In the figures below we showed several 
cases for both functions with different values of parameters W and g. It must be  
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noted that the plots have a behavior of cosine oscillations type, but self-modulate 
with a function of the same nature, i.e. cosine-cosine, and the amplitude not 
exceeding the one, as it should be for Entanglement of Formation.  The graphics 
results are showed in next figures; and the functions for Concurrences are 

 
 

 

0 02
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(5.35) 

 
Before us presenting of plots, we show the analytical results without approach with 
the limit cases on the physical parameters  
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= =  (5.36) 

Now, when g W≫ ,  in this case,  is the dominant parameter, i.e. the coupling 

constant between the radiation field and the QDs,   
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 (5.37) 
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Another interesting case is when we add a parameter δ  to the others parameters, 
which enables us to get analytical expressions more general, besides being able to 
manipulate this parameter numerically and perturbative way.  
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(5.38) 

   
Now we show the Concurrence plots in order to different parameters values, also 
in two, and three-dimensionally. The case 3D we consider the 

0
φ as variable, which 

enables us visualize the contour zones of Sudden Death of concurrence.  
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Figure5.2. Plot of the Concurrence for parameters: W=0.5; g=0.365; 

0
0φ = . In this plot the oscillations 

fluctuate into of the time interval, almost become of top for entanglement of formation of one.  

 
 
 

 
Figure5.3. Plot of the Concurrence for parameters: W=0.5; g=0.365; 

0
/ 4φ π= . In this case the plot 

decreases the amplitudes of the oscillations, because we do a change of / 4π to the phase.  
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Figure5.4. Plot 3D for the Concurrence CAB(t,Φ0); for parameters: W=0.5; g=0.365 
 

 

 
 

Figure5.5. Plot 3D for the Concurrence CAB(t,Φ0), is same plot that fig. 5.4, but on reduce scale; for 
parameters:  W=0.5; g=0.365 
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Figure5.6. Plots for the Concurrence CAB(t); for parameters:  W=0.5 and plot1 g=0.8W, plot2 g=0.75W, 
Plot3 g=0.70W, plot4 g=0.72W. We can see that four combinations for constant g proportional to W. The 

more optimums combination is in order to plot2 in blue, and plot4 in green. Plot3 in blue slightly exceeds the 
allowable bound for Entanglement of formation and Concurrence of one. This is because the interaction 

constants differ by a percentage equal (or greater) to 30%, as is clearly noted in the data above. 

 
 

 

Figure5.7. Plots in 3D for the Concurrence CAB(t,Φ0); for parameters:  W=0.5 and plot1 g=0.8W, plot2 
g=0.75W, Plot3 g=0.70W, plot4 g=0.72W. We can see those four combinations in 3D for constant g 

proportional to W and the parameter of phase Φ0. 
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Figure5.8. Plots in 2D for the Concurrence CAB(t,Φ0); for same parameters:  W=0.5 and plot1 g=0.8W, plot2 
g=0.75W, Plot3 g=0.70W, plot4 g=0.72W. We can see the height as a profile without plotting the parameter 

phase Φ0. This allows us to visualize how the concurrence behaves in their maxim bound. 

 

 
Figure5.9. Plots in 3D and Contours for so-called SUDDEN DEATH ZONES by CAB(t,Φ0);  with two cases:  

W=0.5 and g=0.72W, g=0.80W and the parameter Φ0  is variable, this is consequence of the initial state of 
Bell. We can see that contour zones of sudden death are minimums of the plots on the right. The interesting is 

to note that in this small zone rescaled for sake of simplicity that there is not a total sudden death as in the 
atomic case of the other authors [45-50]. What is also seen in previous plots from figures 5.2 to 5.8 into their 

minimum points.  
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Figure5.10. Plots of Contours for so-called SUDDEN DEATH ZONES by CAB(t,Φ0);  for the case:  W=0.5 and 
g=0.72W, and the parameter Φ0  is variable, this is consequence of the initial state of Bell. We can see the 

contour zones for sudden death that are minimums on the plots in gray color, but without become null totally.  

 

 

 
Figure5.11. Plots of Contours for so-called SUDDEN DEATH ZONES by CAB(t,Φ0);  for the case:  W=0.5 and 
g=0.80W, and the parameter Φ0  is variable, this is consequence of the initial state of Bell. We can see only a 
contour zone for sudden death that is a minimum on the plot in gray color, but similarly the previous without 

become null totally. 
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CONCLUTIONS of CHAPTER 5 

 

In this chapter we study the dynamics behavior of a system of two QDs 
embedded into own cavity, previously entangled, with initial state type Bell into of 
the context CQED and Förster interaction included into QDs Hamiltonian. This 
behavior let us insight the particular dynamics of transference and quantum 
communication correlations between two qubits, in this case represent for our two 
QDs, i.e. how is the entanglement process after that qubits are entangled and 
input into cavity in this situation of communication to distance without interaction, 
i.e. how evolve this entanglement with the time and consider the initial state of 
type Bell, which include the Φ0 parameter. The way in order to understand and 
quantify this process without ambiguity is obtain a secure measure of the 
entanglement. This measure is the Concurrence and Entanglement of Formation 
for two qubits (Wotters, et. al, see [12, 13]) only. The measure is defined only for 
two qubits as entities of two states, because there is not an extension of this 
method to more qubits that to allow calculate with precision their entanglement. 
Our results between the two cavity-QD, let us see that the entanglement depend 
of both parameters of interaction, i.e. the interaction field-QDs (g) and the Förster 
interaction (W). Both interactions must be of the same order, because if either of 
the two differs significantly from another the result found is that oscillations 
slightly exceed the bound of the one for entanglement of formation. In this way 
we find that the interaction parameters must be very well controlled and should 
not be very different in order of magnitude. Also the best way to control them is 
by making one of the two is in terms of another one by a minimum percentage, as 
we can see in figures 5.6 and 5.7. Another one very important is the so-called 
Sudden Death feature where we analyzed in multiples plots in figures 5.9 to but 
with greater accurately in contour plots 5.8 to 5.11 how the characteristics zones 
are minimums, however there is not totally sudden death of entanglement as 
happen in the cases study for systems of atoms for other authors [45-49] or the 
case for QDs studied in references: [5, 27, 28, 50], in these papers the authors do 
not even mentioned the case of Sudden Death as in atomic situation. We can say 
that for these QDs system almost there is not sudden death because minimum 
zones are very sharp, i.e. they are smooth curves cosine in which do not we get 
semi-flat zones, that in atomic case is where entanglement sudden death occurs. 
This allows us conclude that our QDs system featuring to two qubits is more 
efficient for propagation of entanglement without loss of quantum correlation.  
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CHAPTER 6 

 

GENERAL CONCLUTIONS 

 

The research that we did throughout this thesis was realized in two stage of 

study of quantum systems, especially the quantum structures so-called Quantum 

Dots or Artificial Atoms (chapter 3), which are able to keep the carrier charge 

excitons (electron-hole) into a state of almost totally confined. These features 

allow us to analyze their properties and potential in order to perform manipulation 

and control of the carriers into QDs, as well as its use completely for experimental 

and technological applications. The stages were studied as a Collective Phenomena 

in chapters 2, 3 and 4. And as systems reduced to just two components of QDs in 

chapter 5 that serve as qubits for quantum computation and quantum information 

processing. The principal objective in first instance is understand the collective 

behavior into the context of the CQED and Dicke model, but with difference that 

our system are quantum structures (QDs) most complex since the charge carriers 

into them have a behavior similar to natural atoms (confinement and quantized 

levels) but with additional features which have nonlinearities that is included in QD 

Hamiltonian (angular momentum representation) between other things that span 

the applications of these structures. The analysis done with this QDs Hamiltonian 

was a carried out with different techniques and approaches used in quantum 

theory calculations. The mathematical tools and concepts were built up based on  



 137 
 

 

the theories of quantum optics (QOp), especially Cavity Quantum Electrodynamics 

(CQED).  

In chapter 2 was a review of quantum mechanics topics most relevant and 

necessary in order to our later work in this dissertation, especially regarding the 

Jaynes-Cummings model (JCM), quantum entanglement and principles of quantum 

computation and information. For the chapter 3 reviewed the state of art of 

quantum dots and introduce the important models in QOp and CQED such as JCM 

and Dicke collective model. Also we diagonalized the Hamiltonian at the basis of 

QDs, getting the eigenenergys and eigenfunctions. We introduced the so-called 

Atomic Coherent States (ACS) and Excited Atomic Coherent States (EACs) equation 

(4.2), which was used in chapter 3 and 4. These states allowed us to factorize the 

nonlinear operators of QDs Hamiltonian. The principal results were obtained in 

chapters 4 and 5. In first one we explored the phenomenon of collectivity in 

quantum system conformed of L QDs, in this case we demonstrated that the 

collective states type Dicke are not sufficient for analyzed the collective problem of 

QDs, because this issue have a deeper meaning about carriers charge into the 

QDs, which are behave as excitons in solid state structures, however with energy 

level quantized and confined in 3D, as discussed in chapter 3. We apply the 

technique of the ACS and EACs as natural states for the QDs Hamiltonian. We 

showed that can be obtained more general expressions for the matrix elements, 

and we may treat the atomic problem, as a special case of these states because 

the general expressions (4.3) to (4.5) involving the states of angular momentum 

operators used in chapter 3 in order to diagonalized the Hamiltonian; likewise 

these operators contain the Spin operators (matrices) of Pauli that representing 

the known atoms (states) of two levels used in the JCM and Dicke model as 

particular case. Another grant advantage of the EACS is that it allows factorized 

the expressions with the angular momentum operators in equation (4.24). We can 

express the expectation values in the form of scalar functions. We can calculated 

the collective dynamics of the QDs among themselves and explore the limits cases 

with the physical parameters involved.  

In the chapter 5, we analyzed the behavior of the reduced system of two 

QDs, without interaction among themselves; only we assume that they are 

entangled previously. The system consist of a pair the cavities that contain each a 

quantum dot, we calculated and showed that Concurrence function has a 

oscillatory behavior as well as showed so called Sudden Death Zones. These zones 

were first proposed by Eberly et. al. in the context of Cavities QED with two level  
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atoms. Our proposal in this dissertation was as we mentioned two QDs, which are 

technologically most feasible features in design and implementation due to that 

present these quantum structures are very studied experimentally and theoretically 

into the different technological applications. Of course there have been great 

theoretical and experimentally efforts for technological implementation of similar 

systems with other quantum objects such as aforementioned TLA of Eberly, ions, 

quantum wells, so on. But, these efforts appear to have met with little success. 

Thus our contribution in this thesis is the theoretical study of the QDs from two 

points of the view, first one collective and the other one reduced only to just two 

QDs for implementation in quantum computing systems, specially the study of the 

quantum entanglement between the two QDs, because is the vital importance in 

transfer of quantum information with high degree of coherence and no has loss of 

information.  In following we summarized the main features of our conclusions 

from study of QDs systems from the point of the view of quantum optics and 

Cavity-QED, as has been talked since the beginning of this dissertation.  

 

• Quantum Dot systems have been show to possess characteristics of type 

atomic, theoretical properties but more complex due to the Forster 

interaction which is non linear. It behavior is similar but not equal.  

• In the theoretical study using analytically handling of the algebra SU(2) the 

angular momentum proved to be of enormous help, especially with the 

Atomic Coherent States (ACS) and EACS, which served to factor non-linear 

operators and we obtained a system of coupled differential equations scalar, 

relatively most easy in order to solve numerically.  

• We show that the collective quantum dot detuning, similar to Dicke 

detuning, is a correction to include the Forster interaction.  

• The nonlinear differential equations coupled system type Bloch we found 

with Heisenberg picture provides an overview to explore the limits on the 

QDs system dynamics.  

• The Norm allows us to observe that these solutions remain in a constant 

oscillatory state.  

• The QDs reduced system in order to implement a bipartite qubits system 

have showed lower zones of Sudden Death, which means that the dots kept 

for as long as the property of quantum entanglement, which is the great 

relevance for quantum information processing theory and their physical 

implementation.  
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• The QDs have the many potential technological applications and already are 

used in multiple systems. 

• The quantum computer is still waiting to be reality; however the QDs are 

strong candidates in order to their implementation.  

• There are still many theoretical and experimental study perspectives to be 

done in these structures. In our case we can still explore and research with 

our theoretical study schemes most scope these quantum systems.  

 

Future perspective of research and remarks  

Our research was mainly focused on the study of quantum dots systems 

from a few no more a half dozen until our reduced system of only two dots with 

own cavity.  Although the Hamiltonian is essentially built to N identical 

semiconductor quantum dots, which must be equally coupled to each other by 

means of Coulomb interaction (known as the Förster process) and equidistant. This 

configuration is not always easy to get too large N, due to technical 

implementations in labs and industrial design and too theoretically. However there 

is still a very broad scope of theoretical and experimental studies with a lot of the 

applications. In the way of CQED are still many open questions related to the 

implementation of systems for quantum computing as we proposed in this 

dissertation. For example if we can increase the number of quantum dots into the 

each cavity, or if is possible manage nor only bipartite systems, but with greater 

number of members of cavity-QD, or make more complex networks such as 

quantum dots in cellular automata QCA.  

In a purely quantum context, i.e. when we completely quantized matter-

field, in this case QDs and electromagnetic field, leads us to formulate highly 

coherent system for efficient performance in quantum computing and information 

theory that allows us build entangled states with QDs systems, because these are 

the proposed to be the physical basis to generate the theoretical quantum bits or 

qubits. The physical implementation of a computer to perform quantum logic 

operations requires a minimum of two qubits, but would not perform more very 

simple tasks. Therefore we need to explore theoretical formulations that extend 

current capabilities to generate large amounts of physical systems (QDs) entangled 

that do not lose their coherence and also perform the tasks of actually computer  
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as a technology that greatly improves on existing classical computers with logical 

bits zero and one. So much work still to do in these lines of computing and 

quantum information.  

Particularly we are interesting in the physical aspect of the theory involved 

in QDs in the address of optoelectronics, photonic and other applications, such as 

solar cells most efficient and most robust QDs systems considering approaches 

semiclassical (semi-quantum) where only is quantized the matter (QDs) without 

quantized the radiation fields due to macroscopic nature of system which only 

need take account the quantum insight of the matter in interaction with driven 

classical fields. Quantum dots as already explained in more detail in previous 

chapters are very interesting objects with capabilities, which can be exploited in 

many novel physical senses for technological applications. Depending on the type 

of scale and the number of dots as well as the separation between they, different 

effects are considered to move the charge carriers (excitons) within of dots which 

can be harnessed to generate different electrical responses and radiation emitted 

when stimulated with techniques of tunneling and transport, also transfer of 

energy with or without excitons, so on. In our case consider mainly studied 

situations where the Förster energy transfer allows do transferring without charge 

carriers. In the research of Solar Cells, being robust systems with a large number 

of quantum dots and due the solar radiation nature must be consider the inverse 

Auger Effect (generation of photocurrents from stimulation of the spectral solar 

radiation) for better performance of these devices.  These studies have shown that 

efficiency of solar cells built (theoretically and experimentally) with QDs improving 

the efficiency in order to generating photocurrents of a 33% with conventional 

cells up to 50, 60 and almost 70% of efficiency with QDs. Are still in theoretical 

and experimental developing these technologies but they are in the right direction. 

There are also applications in biology and medicine where the QDs are being used 

as molecular beacons of multiplexing with different varieties of imaging modalities 

including highly correlated microscopy within the organic cells and tissues, to 

function as broad spectrum fluorescent objects. These are just some of the 

research paths to explore the techniques used in this thesis and expand to other 

methods and applications that generate novel technology and fundamental 

physics.  



 

 

 

 

A. Explicit Calculations for Matrix 

Elements in EACS and the 

Concurrence QDs System 

 

A.1 Matrix elements of exacted atomic coherent states (EACS) 

We are going to justify the results presented in Chapter 4. Namely, we will 
derive analytical results for the matrix elements in the Excited Atomic Coherent 
States (EACS) basis. In which we explained that it is more general basis than the 
known Atomic coherent states (ACS). We will be making a series of calculations 
based principally in the momentum angular algebra together to EACs basis. All 
computations are analytics and accurate without approximations, although can be 
used to make approximated calculations in problems that involving perturbation 
theory.  

 

We use the Hamiltonians (4.1), but in rotating frame, i.e.  
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The ACS are defined by equations (3.82) and (3.83) as 
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The generalized ACS are defined in equation (3.91) as 
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Where θ, φ, are the spherical coordinates associate with the symmetries of the 

ACS [2, 7, 8 into references chapter 4], also s is the generalized parameter of the 

EACS, and n represent the number state of field. In the chapter 4 we present the 

matrix elements in this basis, but we not showed the explicit calculations, because 

now we show as this are computed more explicitly. Thus the analytic matrix 

elements for the QDs Hamiltonian are  
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In order to computed these matrix elements plugging in the expression equation 

(A.3) for each operator of the Hamiltonian, i.e. element to element we obtain  

 

( )

( )

,

,

† †

,

,

' = ', ', ', ' , , ,

 

' ', ', ', ' , , ,

' ', ', ', ' , , ,

' ', ', ', ' , , ,

          

F zs n F zs F z

s n s

s n s

s n s

f f n n s n J s n

gf gf n a n g s n J a s n

gf gf n a n g s n a J s n

Wf Wf n n W s n J J s n

θ φ θ φ

θ φ θ φ

θ φ θ φ

θ φ θ φ

+ + +

− − −

± ± + −

∆ = ∆ ∆

= =

= =

= =

 (A.5) 

So, one to one are calculate with help of the EACS and the momentum angular 

algebra SU(2), i.e. 

 

( )

( )( )

[ ] [ ]

, ( ) 1 , 1

, 1 , 1

, ,

, ,     , ,     , 2 ,

           

z

i j k ijk z z

J j m j m j m j m

J j m j m j m j m

J j m m j m

J J J J J J J J Jε

+

−

± ± + −

= − + − +

= + − + −

=

  = = ± = 

 (A.6) 

Thus using the EACs more the expressions of the angular momentum algebra 

(A.6), we obtain for each matrix element explicitly  
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 ( )

, ',

†

',

= ', ', ', ' , , ,

ˆ ˆ    ', ', ' ( , ) ( , ) , ,

    ', ' cos 1/ 2 sin , ,    where '

1 1
    ', ' , cos ', ' , sin ', ' , sin

2 2

zs n zs n n z

z

i i

z n n

i i

z F F

f f s n J s n

j s n R J R j s n

j s J e J e J j s n n

j s J j s j s J j s e j s J j s e

s

φ φ

φ φ

δ θ φ θ φ

θ φ θ φ

θ θ δ

θ θ θ

δ

−
+ −

−
+ −

=

=

 = + + = 

= + ∆ + ∆

=
', ', ', ', 1

',

', ', 1

cos 1/ 2 ( )( 1) sin

1/ 2 ( )( 1) sin

i

s s j j j j s s

n n
i

j j s s

j s j s e

j s j s e

φ

φ

δ θ δ δ θ
δ

δ δ θ

−
+

−

 + − + +
 
 + + − + 

(A.7) 

The next matrix element is 

 

,

†

', 1

2 2 2

', 1

2 2 2

= ', ', ' , , '

ˆ ˆ    ', ', ' ( , ) ( , ) , ,

    ', ' cos ( / 2) sin ( / 2) sin ,

    ', ' , cos ( / 2) ', ' , sin ( / 2) ', ' , sin

s n

n n

i i

z n n

i i

z

f s J s n a n

j s n R J R j s n n

j s J J e J e j s n

j s J j s j s J j s e j s J j s e

φ φ

φ φ

θ φ θ φ

θ φ θ φ δ

θ θ θ δ

θ θ θ

+ +

+ −

+ − −

+ −

=

 = − − 

 = − − ', 1

2

', ', 1

', 1
2 2

', ', 1 ', ',

( )( 1) cos ( / 2)

( )( 1) sin ( / 2) sin

n n

j j s s

n n
i i

j j s s s s j j

n

j s j s
n

j s j s e s e
φ φ

δ

δ δ θ
δ

δ δ θ δ δ θ

−

+

−

−



 − + +
 =
 − + − + − 

 (A.8) 

 

Now we have the matrix element
,s n

f− , we should clarify that we are including in 

these elements the part for the EM field, i.e.  

 

† †

,

†

', 1

2 2 2

', 1

2 2 2

' = ', ', ' , , '

ˆ ˆ    ', ', ' ( , ) ( , ) , , 1

    ', ' cos ( / 2) sin ( / 2) sin , 1

    ', ' , cos ( / 2) ', ' , sin ( / 2) ',

s n s

n n

i i

z n n

i

f f n a n s J s n a n

j s n R J R j s n n

j s J J e J e j s n

j s J j s j s J j s e j

φ φ

φ

θ φ θ φ

θ φ θ φ δ

θ θ θ δ

θ θ

− − −

− +

− −
− + +

−
− +

=

= +

 = − − + 

= − −
', 1

2

', ', 1

', 1
2 2

', ', 1 ', ',

' , sin 1

( )( 1) cos ( / 2)
1

( )( 1) sin ( / 2) sin

i

z n n

j j s s

n n
i i

j j s s s s j j

s J j s e n

j s j s
n

j s j s e s e

φ

φ φ

θ δ

δ δ θ
δ

δ δ θ δ δ θ

−
+

−

+− −
+

  + 

 + − +
 = +
 − − + + − 

 (A.9) 



 145 

 

 

 

The last matrix element is much more complicated because of the appearance of 

the operator product is nor linear. So we must calculate more elements  

 

( )
( )

, ',

†

',

4 4 2 2 2 2 2 2

2 2

2

' = ', ', ' , ,

ˆ ˆ    ', ', ' ( , ) ( , ) , ,

cos ( / 2) sin ( / 2) cos ( / 2)sin ( / 2)

sin ( / 2) cos ( / 2) sin
    ', '

cos ( / 2)

s n s n n

n n

i i

i

z z

z

f f n n s J s

j s n R J J R j s n

J J J J J e J e

J J J J e
j s

J J J

φ φ

φ

θ φ θ φ δ

θ φ θ φ δ

θ θ θ θ

θ θ θ

θ

± − −

+ −

−
+ − − + + −

−
+ +

−

=

=

+ − +

+ −
=

− −( )
',

2

2 2

4 4

2 2 2 2

2 2 2 2

2

,
sin ( / 2) sin

sin

', ' , cos ( / 2) ', ' , sin ( / 2)

', ' , cos ( / 2)sin ( / 2)

', ' , cos ( / 2)sin ( / 2)

', ' , sin ( / 2)sin
    

n n
i

z

z

i

i

i

z

j s
J e

J

j s J J j s j s J J j s

j s J j s e

j s J j s e

j s J J j s e

φ

φ

φ

φ

δ
θ θ

θ

θ θ

θ θ

θ θ

θ θ

−

+ − − +

−
+

−

−
+

 
 
 
 
 
 
 + 

+

−

−

+
=

−
',2

2

2

2 2

', ' , cos ( / 2)sin

', ' , cos ( / 2)sin

', ' , sin ( / 2)sin

', ' , sin

n ni

z

i

z

i

z

z

j s J J j s e

j s J J j s e

j s J J j s e

j s J j s

φ

φ

φ

δ
θ θ

θ θ

θ θ

θ

−
+

−

−

 
 
 
 
 
 
 
 
 
 −
 
+ 
 
+  

 (A.10) 

 

Now we get each one of the above matrix elements independently with the help of 

angular momentum algebra, i.e. 
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',

',

', ', 2

', ', 2

', '

', ' , ( )( 1)

', ' , ( )( 1)

', ' , ( )( 1) ( 1)( 2)

', ' , ( )( 1) ( 1)( 2)

', ' , ( 1) ( )( 1)

s s

s s

j j s s

j j s s

z j j s

j s J J j s j s j s

j s J J j s j s j s

j s J J j s j s j s j s j s

j s J J j s j s j s j s j s

j s J J j s s j s j s

δ

δ

δ δ

δ δ

δ δ

+ −

− +

+ + +

− − −

+

= + − +

= − + +

= − + + − − + +

= + − + + − − +

= + − + + , 1

', ', 1

', ', 1

', ', 1

2

', ',

', ' , ( )( 1)

', ' , ( 1) ( )( 1)

', ' , ( )( 1)

', ' ,

s

z j j s s

z j j s s

z j j s s

z z j j s s

j s J J j s s j s j s

j s J J j s s j s j s

j s J J j s s j s j s

j s J J j s s

δ δ

δ δ

δ δ

δ δ

+

+ +

− −

− −

= − + +

= − + − +

= + − +

=

 (A.11) 

Therefore to putting together all the above elements is obtained  

 

( ) ( ) ( )( )

( )( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )( )

4 4

', ',

2 2 2

', 2

2 2 2

', 2

2

, ', ', 1

1 cos ( / 2) 1 sin ( / 2)

     1 1 2 cos ( / 2)sin ( / 2)

     1 1 2 cos ( / 2)sin ( / 2)

     1 1 sin ( / 2)

s s s s

i

s s

i

s s

s n s n n s s

j s j s j s j s

j s j s j s j s e

j s j s j s j s e

f f s j s j s

φ

φ

δ θ δ θ

δ θ θ

δ θ θ

δ δ θ

−
+

−

± ± +

+ − + + − + +

− − + + − − + +

− + − + + − − +

= = + + − + +

( )( )

( ) ( )( )

( ) ( )

',

2

', 1

2

', 1

2 2 2

', 1 ',

sin

    1 cos ( / 2)sin

    1 1 cos ( / 2)sin

    1 sin ( / 2)sin sin

i

n n

i

s s

i

s s

i

s s s s

e

s j s j s e

s j s j s e

s j s j s e s

φ

φ

φ

φ

θ δ

δ θ θ

δ θ θ

δ θ θ δ θ

−

−
+

−

−

 
 
 
 
 
 
 
 
 − − + +
 
 − − + − +
 
 + + − + + 

 (A.12) 

All matrix elements obtained above are quite general, of course this can be used 

with any basis that involving the angular momentum states such as that obtained 

in chapter 4 with the matrix (4.6), and other applications that involving angular 

momentum and perturbation theory in any physics theory.  
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A.2 Matrix elements of two QDs system Hamiltonian  

 

We must remember that our system consists of a QDs pair without mutual 

interaction, this is resuming into the picture (figure 5.1) 

 

 

This system has the total Hamiltonian given for Hamiltonians (5.14) 

 

( )

( )

( ) † †

( ) † †

' ;     

'=  

'  

A

z

B

z

H a a J g J a a J WJ J

W

H b b J g J b b J WJ J

ω ε

ε ε

ω ε

+ − + −

+ − + −

= + + + +

−

= + + + +

 (A.13) 

These we can rewrite as 

 

( ) ( )

( ) ( )

( ) † †

( ) † †

' ;

    

'

              '= +W= '  

A

z z

B

z z

H a a J g J a a J J WJ J

H b b J g J b b J J WJ J

W

ω

ω

ω ε ω ε

+ − + −

+ − + −

= + + + − ∆ +

= + + + − ∆ +

∆ ∆ − + = −

 (A.14) 

The first ingredients we need in order to calculate the matrix elements are a 

general wavefunction that contains a combination of states of the fields †
,a a  and 

†
,b b i.e. as equation (5.24). Also we need the spin states of the QDs, which are  
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explained into the chapters 4 and 5, and general terms in chapter 3.  Thus we 

have the wavefunction 

 
1 2 3 4( ) ( ) 0 ,0 ( ) 0 ,0 ( ) 1 ,0 ( ) 0 ,1a b a b a b a bt x t x t x t x tΨ = ↑↓ ⊗ + ↓↑ ⊗ + ↓↓ ⊗ + ↓↓ ⊗ (A.15) 

We must note that, ↑↓ = ↑ ⊗ ↓  are the spin angular momentum states, 

also the field states are en general 0 ,0 0 0 ,
a b a b a b a b

n n n n= ⊗ → = ⊗ , the 

number states of field. Both states (field and QDs) are in tensor product. 

Or simply we can rewrite as 

 
1 2 3 4( ) ( ) ,00 ( ) ,00 ( ) ,10 ( ) ,01t x t x t x t x tΨ = ↑↓ + ↓↑ + ↓↓ + ↓↓  (A.16) 

In the basis { }00 ; 00 ; 10 ; 01↑↓ ⊗ ↓↑ ⊗ ↓↓ ⊗ ↓↓ ⊗ . 
  

With this in mind, we can proceed to calculate the matrix elements with the 

Hamiltonian (A13), where the Hamiltonian total is ( ) ( )A B

Total T
H H H H= = + , so 

 
( ) ( )( ) ( ) = ( ) ( ) ( ) ( )A B

T T
H t H t t H t t H t

Ψ
= Ψ Ψ Ψ Ψ + Ψ Ψ  (A.17) 

 Plugging the Hamiltonian explicitly we have 

  

 
( )
( )

† †

† †

 ( ) ' ( )

             ( ) ' ( )

T z

z

H t a a J g J a a J WJ J t

t b b J g J b b J WJ J t

ω ε

ω ε

+ − + −Ψ

+ − + −

= Ψ + + + + Ψ

+ Ψ + + + + Ψ
 (A.18) 

The matrix elements we should calculates are explicitly the following  

 

 

 

 

 

 



 149 

 

 

 

11 12

13 14

21 22

23 24

31 32

33

00 00 ,     00 00 ,

00 10 ,     00 01 .

00 00 ,     00 00 ,

00 10 ,     00 01 .

10 00 ,     10 00 ,

10 10 ,     

T T T T

T T T T

T T T T

T T T T

T T T T

T T

H H H H

H H H H

H H H H

H H H H

H H H H

H H

= ↑↓ ↑↓ = ↑↓ ↓↑

= ↑↓ ↓↓ = ↑↓ ↓↓

= ↓↑ ↑↓ = ↓↑ ↓↑

= ↓↑ ↓↓ = ↓↑ ↓↓

= ↓↓ ↑↓ = ↓↓ ↓↑

= ↓↓ ↓↓
34

41 42

43 44

10 01 .

01 00 ,     01 00 ,

01 10 ,     01 01 .

T T

T T T T

T T T T

H H

H H H H

H H H H

= ↓↓ ↓↓

= ↓↓ ↑↓ = ↓↓ ↓↑

= ↓↓ ↓↓ = ↓↓ ↓↓  (A.19) 

 

The application of the Hamiltonian operators on the states must act on the 

tensor product of the angular momentum states and the field independently, i.e. 

the spin-vectors and field states are  

 

[ ] [ ]

' , 1 ' , 1

' , 1 ' , 1

1,0,0,0 ,    0,1,0,0 ,  so on

,     1

,     1

a a a a

b b b b

T T

a a n n a a n n

b b n n b b n n

n n n n

n n n n

δ δ

δ δ

− +

− +

↑ ⊗ ↑ = ↑ ⊗ ↓ =

= = +

= = +

 (A.20) 

These states must have their corresponding dual vectors 

↑ ⊗ ↓ → ↑ ⊗ ↓  so on. Thus the calculate each matrix element, we obtain  
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( ) ( ) ( )

11

( ) ( ) ( )

13

' , ' , 1

0 0 , ,0 0 ' ' , ,

' '
        ,          0.      ' 1.

2 2

0 0 , ,1 0 ' ' , ,

'
        0 ,         ' 0,

2 a a a a

A A A

a b a b a b a b

a a b b

A A A

a b a b a b a b

n n a n n a

H H n n H n n

n W W n n n

H H n n H n n

g n g g n n

ε ε
ω

ε
δ δ −

= ↑↓ ↑↓ = ↑↓ ↑↓

= + + = + = =

= ↑↓ ↓↓ = ↑↓ ↓↓

= − + = + = =

( ) ( ) ( )

22

( ) ( ) ( )

31

( ) ( ) ( )

33

1.

0 0 , ,1 0 ' ' , ,

' '
        0 ,         0.

2 2

1 0 , ,0 0 ' ' , ,

        

1 0 , ,1 0 ' ' , ,

        

a

A A A

a b a b a b a b

a a

A A A

a b a b a b a b

A A A

a b a b a b a b

a

H H n n H n n

n n

H H n n H n n

g

H H n n H n n

n

ε ε
ω

ω

=

= ↓↑ ↓↑ = ↓↑ ↓↑

= − = − =

= ↓↓ ↑↓ = ↓↓ ↑↓

=

= ↓↓ ↓↓ = ↓↓ ↓↓

=

( ) ( ) ( )

44

' , ' ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

12 14 21 23 24 32 34 41 42 43

' '
,         1.

2 2

0 1 , ,0 1 ' ' , ,

' '
        ,         ' 0.

2 2

0.

a a a a

a

A A A

a b a b a b a b

a n n n n a a

A A A A A A A A A A

n

H H n n H n n

n n n

H H H H H H H H H H

ε ε
ω

ε ε
ωδ δ

− = − =

= ↓↓ ↓↓ = ↓↓ ↓↓

= − = − = =

= = = = = = = = = =

(A.21) 

 

The matrix we get is, 
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( )

'
0 0

2

'
0 0 0

2

'
0 0

2

'
0 0 0

2

A

W g

H

g

ε

ε

ε
ω

ε

 + 
 
 −
 

=  
 −
 
 

− 
 

 (A.22) 

 

Similarly the matrix elements for ( )BH , 
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( ) ( ) ( )

11

( ) ( ) ( )

22

( ) ( ) ( )

24

33

0 0 , ,0 0 ' , ,

'
        ,          0.      ' 1.

2

0 0 , ,1 0 ' , ,

'
                

2

0 0 , ,1 0 ' , ,

        

B B B

a b a b b b

b a a

B B B

a b a b b b

B B B

a b a b b b

H H n H n

n n n

H H n H n

W

H H n H n

g

H

ε

ε

= ↑↓ ↑↓ = ↑↓ ↑↓

= − = =

= ↓↑ ↓↑ = ↓↑ ↓↑

= +

= ↓↑ ↓↓ = ↓↑ ↓↓

=
( ) ( ) ( )

( ) ( ) ( )

42

( ) ( ) ( )

44

( ) ( ) ( ) ( ) ( ) ( )

12 13 14 21 23 31

1 0 , ,1 0 ' , ,

'
        

2

0 1 , ,0 0 ' , ,

        

0 1 , ,0 1 ' , ,

'
        

2

B B B

a b a b b b

B B B

a b a b b b

B B B

a b a b b b

B B B B B B

H n H n

H H n H n

g

H H n H n

H H H H H H

ε

ε
ω

= ↓↓ ↓↓ = ↓↓ ↓↓

= −

= ↓↓ ↓↓ = ↓↓ ↓↓

= −

= ↓↓ ↓↓ = ↓↓ ↓↓

= −

= = = = = = ( ) ( ) ( ) ( )

32 34 41 43
0.B B B B

H H H H= = = =

(A.23) 

 

The matrix is, 

 

 
( )

'
0 0 0

2

'
0 0

2

'
0 0 0

2

'
0 0

2

B

W g

H

g

ε

ε

ε

ε
ω

 − 
 
 +
 

=  
 −
 
 

− 
 

 (A.24) 
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Therefore the add both matrices we finally get  

 

 

( ) ( )

' '
0 0 0 0 0

2 2

' '
0 0 0 0 0

2 2

' '
0 0 0 0 0

2 2

' '
0 0 0 0 0

2 2

0 0 0 0

0 0 0 0

0 ' 0 0 ' 0

0 0 0 ' 0 0 '

A B

Total

Total

Total

H H H

W g

W g

H

g

g

W g W g

W g W g
H

g g

g

ε ε

ε ε

ε ε
ω

ε ε
ω

ω ε

ω ε

= +

   + −   
   
   − +
   

= +   
   − −
   
   
 −   − 
   

   
   
   = =
   − ∆
   

− ∆     (A.25) 

 

Where ' ' ( )W Wω ε ω ε∆ = − = − − = ∆ +  is the Förster Detuning of the Hamiltonian 

system of QDs. Also is very important note that operators for angular momentum 

change by operator of the spin 1/ 2,    and  1/ 2,1/ 2j m= = − , i.e 

,    ,    and   1, /2
z z

J s J s J s+ + − −→ → → . The matrix Hamiltonian correspond to the 

matrix (5.17), which we use in order to diagonalized the Hamiltonian for the two 

entangled QDs, that enabled us we found out their wave-function (5.21-22) 
4 ( )

1
( ) (0)Ek

N i t

Ek Ekk
t e

λ λ λ
= −

=
Ψ = Ψ∑ , with this we calculate the Entanglement of 

Formation by means of Concurrence function.  
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