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Abstract

It is well known that with the down-scaling of the integrated circuit (IC) technology,

nanometer circuit designs become more and more sensitive to process variations. It

is caused in part by matching requirements between transistors. Those variations are

produced by fluctuations at the moment of manufacturing and have been continuously

increasing in relative magnitude as IC technology continues to scale to 45nm and below.

That is why the integrated circuit designer must study these process variations in order

to obtain more and more reliable circuits. Analog circuit designers usually perform a

Monte-Carlo (MC) simulation to analyze the stochastic mismatch and to predict the

variational responses of their designs under faults. As MC analysis requires a large

number of repeated circuit simulations, its computational cost is very expensive. In

this Thesis, a new performance bound analysis of analog circuits considering process

variations is proposed. The new method applies a recently reported graph based analysis

approach to generate the symbolic transfer function of a linear(ized) analog circuit. As a

result of applying symbolic analysis, one can have a good understanding on the behaviour
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of the analog IC with respect to its circuit elements, and for that same reason, repeated

simulations as in MC analysis aren’t needed, because the analytical expression is helpful

in determining performance bounds. For instance, in this Thesis, the frequency response

bounds (maximum and minimum) are obtained by performing nonlinear constrained

optimization, where the magnitude of the transfer function is the objective function to

be optimized subject to some ranges of process variational parameters. As shown in

this Thesis, the response bounds given by the optimization method are very accurate.

Furthermore, experimental results on testing several analog ICs show that the proposed

method gives the correct bounds, as those provided by the Monte Carlo analysis, while

the time process is comparable to the Monte Carlo simulation.
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Resumen

Es bien sabido que con el escalamiento de la tecnoloǵıa de circuitos integrados (IC),

los circuitos de dimensiones nanométricas se vuelven más sensibles a las variaciones de

proceso, debidas en parte a los requerimientos de acople entre transistores. Estas varia-

ciones son producidas por fluctuaciones al momento de fabricarlos y se han incrementado

debido al continuo escalamiento de la tecnoloǵıa por debajo de los 45nm. Es por eso

que los diseñadores de circuitos integrados deben estudiar estas variaciones de proceso

para obtener circuitos cada vez mas confiables. Los diseñadores analógicos usualmente

realizan el análisis Monte-Carlo (MC) para analizar la disparidad estocástica y para

predecir las respuestas variacionales de sus diseños bajo fallas. Dado que el análisis MC

requiere un gran número de simulaciones repetidas, su costo computacional es alto. En

esta Tesis, un nuevo método de análisis variacional para circuitos analógicos considerando

variaciones de proceso es propuesto. Este nuevo método aplica un análisis basado en

grafos, reportado recientemente, para generar la función de transferencia simbólica de

un circuito analógico linealizado. Como resultado de aplicar análisis simbólico, se puede
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tener un buen entendimiento del funcionamiento de un IC analógico con respecto a sus

elementos de circuito, y por esa misma razón, no se requiere hacer simulaciones repetidas

como en el análisis MC, porque la expresión anaĺıtica es útil para obtener los bordes de

comportamiento. Por lo pronto, en esta Tesis, los ĺımites de la respuesta en frecuencia

(máximo y mı́nimo) son obtenidos por medio de optimización con restricciones, en las

que la magnitud de la función de transferencia es la función objetivo a ser optimizada

sujeta a algunos rangos de los parámetros dados por las variaciones de proceso. Como se

muestra en esta Tesis, los ĺımites obtenidos de este método son muy exactos. Además,

resultados experimentales para varios IC analógicos muestran que el método propuesto

calcula los ĺımites correctos, como los obtenidos en el análisis MC, mientras que el tiempo

de ejecución es comparable a la simulación MC.
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Chapter 1

Introduction

It is well known that due to both complicated chemical and physical processes at

the moment of manufacturing a circuit in today’s microelectronic devices, differences

between the designed circuit and the manufactured product are present [1]. Among these

differences in manufacturing one can find variations in critical dimensions and inter-level

dielectric thicknesses which lead us to mismatch. Variations have a significant impact in

analog circuits since these become more and more sensitive to process variations given

the number of matching requirements between transistors. Manufacturing variations, as

mismatch, are random in nature, and an increasing effort is aimed in order to minimize

these effects. Nevertheless, fluctuations at the moment of manufacturing cannot be

eliminated and have been continuously increasing in relative magnitude as integrated

circuit (IC) technology continues to scale to 45nm and below, owing to the increasing

2



1.1. VARIATIONAL ANALYSIS 3

process-induced variability [2, 3]. According to [4, 5] mismatch in CMOS devices nearly

doubles for each process generation less than 90nm due to an inverse-square-root law

dependence with the transistor area.

1.1 Variational Analysis

Nowadays, designers must deal with variations to guarantee the correct functioning of the

IC design after its manufacture. On the one hand, traditional corner based verification

can not meet the required accuracy. On the other hand, Monte-Carlo (MC) is based

on semi-classical physics, and it is well known for its MC based statistical simulation

capabilities that have become the standard for statistical analysis and yield estimation

in design of digital and analog integrated circuits under process variations, due to its

advantage of high accuracy and generality [6]. It provides approximated solutions to a

variety of mathematical problems by performing statistical sampling experiments and

both can be applied to problems with absolutely no probabilistic content as well as to

those with inherent probabilistic structure. In MC method, values are assigned to the

circuit components, based on a population distribution of each component. Then the

values of a number of performance parameters are calculated and compared with standard

performance parameter acceptability limits [7]. However, simple Monte-Carlo method

is expensive and slow and its inefficiency may lead to the bottleneck of analog circuit

optimization. For this reason, many fast Monte-Carlo methods have been proposed
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in order to improve the efficiency of classical Monte-Carlo methods. Among these

approaches Importance Sampling Monte Carlo (ISMC) [8, 9, 10] can be found where one

uses an alternative sampling distribution that makes the interesting samples more likely

than under the original distribution. The twist in the distribution is then corrected for

by weighting the samples with the so called likelihood ratio [11]. Other approach is

Latin Hypercube Sampling Monte Carlo (LHSMC) [12], where LHS is a mathematical

technique pioneered by McKay [13] restricted to monotonic functions only, and later

generalized to n-dimensions by Keramat [14] and applicable to any function. This

LHSMC method is similar to the simple MC except in samples generation step where

LHS is used. Also, it is very simple and does not involve any further simulations and has

smaller variance with respect to simple MC method [14]. One last fast MC approach is

Quasi Monte Carlo (QMC) [15, 16] based method which improves the convergence rate

compared with simple MC method. QMC uses a different class of sampling methods

called low-discrepancy sequences (LDS), or also called Halton sequences which are

deterministic with no random component where the points in the sequence are generated

to satisfy some rigorous notion of uniform coverage of the sampling space [6].

Some efforts have been made using non Monte Carlo methods for statistical analysis

[17]. Performance bound methods emerged as attractive techniques for statistical

analysis. Bounding or worse case analysis of analog circuits under parameter variations

has been studied before for fault-driven testing and tolerance analysis of analog circuits

[18, 19, 20]. Some frequency domain performance bound methods were proposed in
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[21, 22] to compute the lower and upper bounds of transfer functions’ of magnitudes and

phases. Method in [21] applies Kharitonov’s functions to obtain the performance bounds

in frequency domain, but no systematic method was proposed to obtain variational

transfer functions. This method has been improved by [22] where symbolic analysis

approach was applied to derive exact transfer functions and affine interval method was

used to compute variations transfer functions. However, the affine interval method can

lead to over conservative results.

In this Thesis, a non Monte-Carlo based method is presented based on performance

bound analysis technique in frequency domain. This new method first drives the exact

transfer functions of linear (linearized) analog circuits via a graph-based symbolic analysis

method , which is described in Chapters 2 and 3. Then the frequency response bounds

of the transfer functions in terms of magnitude and phase are obtained by a constrained

nonlinear optimization technique described in Chapter 4. Constrained optimization

problems involve a function f(x) which is minimized or maximized and called the

objective function, in this case, the transfer function’s magnitude of a given circuit is

the objective function and the constraints are the elements of the circuit, i.e. resistances,

capacitances or inductances, and they can be as many as the user needs depending on

the number of elements in the circuit.
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1.2 Symbolic Analysis

Symbolic analysis is a formal technique to calculate the behavior or a characteristic

of a circuit with its variables (dependent and independent) and the circuit elements

represented by symbols [24]. This technique had a growing interest between 1960’s and

1980’s because of the increasing computing power and that many computer analysis

techniques were proposed. A growing interest from the circuit design community started

in late 1980’s and this interest is seen in the success of modern symbolic analyzers as

one can see in programs as ISAAC [25, 26] , ASAP [27, 28] , SYNAP [29, 30], SAPEC

[31], SSPICE [32], SCYMBAL [33] , SCAPP [34], and GASPAP [35].

Knowledge of the behavior of a circuit is very important in the design process. For

this reason, symbolic simulators become to be a very useful tool as they give as the result,

the analytic expression in a closed form of the circuit representing the relationships

between its parameters, this being an advantage over numerical simulators. Also

symbolic analysis is useful when many numerical cancellations lead us to large roundoff

error. However, the behavior of a circuit can be verified accurately in a numerical

simulation, this is specified only for a set of parameter values contrary to the symbolic

simulation where the returned expression is valid even if the parameter values change

(as long as the circuit topology remains the same).

Symbolic Analysis can be categorized in different approaches: Tree Enumeration

methods, Signal Flow Graph Methods and Determinant based methods [36]. Tree
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Enumeration methods were proposed by Maxwell and Kirchhoff and first used for

analysis of RCL networks represented as weighted undirected graphs. The advantage

of this method is that the expressions are irreducible, however, for RLC-gm networks

the tree enumeration cannot be applied directly and tradeoffs between sign calculation

and obtaining cancellation-free product terms are encountered [37]. Unlike Three

Enumeration methods, Signal Flow Graphs are weighted directed graphs but the product

terms obtained by this method are still not irreducible or cancellation-free. Determinant

Based Methods are also not cancellation-free but it has been proven that topological

methods (such as Tree Enumeration methods and Signal Flow Graph methods) don’t

offer any advantage over this methods. Any circuit transfer function can be obtained

by applying Cramer’s rule to the set of linear equations but solving the determinants

in order to obtain the transfer function makes this an exponential space complexity

method, in spite of that, this drawback can be mitigated by applying recursivity.

1.3 Objectives of the Thesis

In this Thesis a new method to deal with variational analysis will be shown based on

constrained optimization and an evaluation of the feasibility of this approach to analog

integrated circuits is also given. A graph-based symbolic tool will be explained and used

in order to obtain the symbolic transfer function. Constrained optimization methods

used in this work are based on line search methods [38, 39, 40, 40, 41].
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Chapter 2 talks about symbolic formulation of the AC transfer function of analog

circuits based on directed graphs and how one can, when the graph is already built

from the Nodal Admittance (NA) Matrix, factorize any expression and from that one

can directly obtain the symbolic derivative and symbolic mixed derivative . In Chapter

3 it will be explained how NullOr elements i.e., Nullator and Norator, are introduced

in the graph-based symbolic tool in order to represent MOSFET transistors and non-

NA compatible elements, a detailed explanation on how the NA matrix is built is also

explained as the matrix equations formulation of any circuit. Some experiment results are

given in this last chapter. In Chapter 4 a brief introduction on Constrained Optimization

will be given, and the different methods used in this Thesis will be explained. The

process of the proposed algorithm is shown in this last Chapter and will be explained step

by step with a simple MATLAB example on an RLC circuit using an active set method.

In Chapter 5 plots of the lower and upper bounds obtained by applying the method

proposed approach to several examples are shown and discused. Finally, conclusions of

this Thesis will be given in Chapter 6.



Chapter 2

Symbolic Formulation by

Directed Graph

In order that the whole discussion in this Thesis being self-contained, the following

text in this chapter has been taken from [42]. A very useful and studied tool for the

formulation of symbolic expressions by solving a system of equations via Cramer’s rule

is the so called Determinant Decision Diagram (DDD). Thus Determinant Decision

Diagram (DDD) based methods are classified as determinant based methods. DDDs are

adapted from a data structure called Zero Suppressed Binary Decision Diagram (ZBDD)

created in order to manage sparse subset systems. Two important observations on which

determinant decision diagrams are based are that the admittance matrix representing

a circuit is sparse and that a symbolic expression often shares many subexpressions

9



10 CHAPTER 2. SYMBOLIC FORMULATION BY DIRECTED GRAPH

[43]. In order to formulate the DDD, the determinant has to be expressed as a sum of

products (SOP) which then are classified via a ZBDD in which every sum is a subset.

Thus, DDD is an indirect method as it involves extra processing and the formulation of

the full determinant beforehand.

In this chapter an approach for the solution of a system of equations based on

simple graph manipulations is introduced and compare to the well known DDD method.

For instance, the graph structure in use is directly formulated from the matrix with

no intermediate steps. Important observations on which this graph representation

was developed are that the admittance matrix (in this case the nodal admittance

matrix described in [44]) representing a circuit is sparse and that a symbolic expression

often shares many subexpressions, characteristics that the DDD representation shares

in principle. The determinant representation by applying the proposed graph-based

technique is compact, unique and the complexity to obtain the symbolic expression

depends on the size of the graph which in turn depends on the non-zero entries of the

admittance matrix.

The code for all the functions was implemented in C and compiled in a RedHat

Linux environment with the GNU C compiler gcc-4.2, Quad-Core Intel with 24GB

RAM. ANSI-C compliance was considered of importance for migration purposes and

universality, non-compliant functions were avoided.
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2.1 Simple Case: Symbolic Determinant without node reuse

The circuit size is a challenge in performing symbolic analysis because a large number of

symbolic terms are manipulated. Fortunately, this problem is mitigated when applying

a graph-based approach. In such a case, every determinant has a unique representation,

and is liable to symbolic manipulations. To understand how this approach works, lets

us consider the following determinant [37]:

det(M) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 0

c d e 0

0 f g h

0 0 i j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= adgj − adhi− aefj − bcgj + cbih (2.1)

If the determinant’s size is n× n, we expect to have paths of n+ 1 levels. So if there

is a path that is not complete, i.e. that does not have n+ 1 levels or that has a zero

in any element of the path, it will be eliminated completely since this means that this

expression is multiplied by zero. This structure is built in a depth-first fashion. Every

element of the graph structure corresponds to a non-zero entry in the admittance matrix.

As a result, for this particular example one obtains the graph shown in Fig. 2.1, where

all multiplications by zero were already omitted.

Path eliminations are performed by sending a prune signal if a zero is found inside

the path. This prune signal is propagated all the way up until a summing point is
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Figure 2.1: Graph representation of Equation (2.1)

reached so the whole branch does not form part of the final structure and the path is

terminated to zero instead. As one sees, this graph structure implemented is a tree

in which the arithmetic operations are encoded in the depth of the tree node, that is,

different depth implies multiplication while equal depth implies addition. This leads us

to get the expression:

det(M) = a [d (gj − hi) + e (−fj)] + b [c (−gj + hi)] (2.2)

A key point is related to the assignation of signs to each node in the expanded graph.

They are established by applying the rule of signs from Cramer’s rule. When applying

graph methods to evaluate a determinant, not only one can obtain a factorized exact
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symbolic expression, but also derive all transfer relationships with respect to each node,

and in a post processing step to each branch circuit variable. The graph representation

shown on this section is compact for a large class of analog circuits.

2.2 Advanced Case: Symbolic Determinant with node reuse

If the determinant is expressed as a SOP in graph form with no reuse of information the

result is a graph with many repetitive terms (Fig. 2.1) corresponding to minors of the

matrix that are repeated as was shown in the previous section. The smallest the matrix

minor, the highest the repetition rate (if they are not zeroed out previously). In Fig. 2.1

the terms (g · j) and (h · i) are repeated twice. The information in each node is exactly

the same, the only difference being the sign which in the end is trivial as it can be easily

computed.

The main idea in the algorithm presented in this Thesis is that it is possible to reuse

the information of those repeated nodes. For the previous example it is possible to

consider the products (g · j) and (h · i), and for correctness sake also the product (f · j)

(which are the three non-zeroed product terms for the determinant of the 2× 2 minors

of M in equation (2.1)) as independent subgraphs. So now we have five two-nodded

subgraphs with vertex sets V1 = {g, j}, V2 = {h, i}, V3 = {f, j}, V4 = {g, j} and

V5 = {h, i}. An important observation is that even though it may seem that edges

E1 = {g, j} and E4 = {g, j} are equivalent as they convey the same operation which is
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the product (g · j), so that the subgraphs G1 = {V1, E1} and G4 = {V4, E4} carry the

same information and can be considered equivalent.

The reusing was possible because the information which made the graphs G1 and G4

different is somehow stripped from the subgraphs and obtained from somewhere else. It

is possible to extend this idea even more in order to reuse the nodes in the last row by

identifying the information which make nodes with same terms different from each other.

The difference between the subgraphs G1 = G4 and G3 = {V3, E3} is the ancestor of

node j. That is, for G1 = G4 it’s node g so the subgraph represents the operation g · j

whereas subgraph G3 represents f · j. Remember that each node is linked to a non-zero

matrix entry1 so there is a node for every Arow,col 6= 0, node f is in turn a representation

of A3,2 and node g is A3,3. When visiting node j the question is ”Was the previous node

f or g?”. When selecting a pivot Arow,col while formulating the determinant, row and

column are removed, reformulating the previous question into ”Have we already visited

a node from the same column as f?” if the answer is affirmative then the previous node

was g.

Extending this same procedure to the whole graph, the first obvious consequence

is that there are no repeated nodes, in other words, for a matrix A with nz non-zero

entries, there are nz nodes. So far information conveyed by relationships in the graph

from Fig. 2.1 concerning to the sign of the adjugate matrix and the already visited

columns has been stripped. The adjugate matrix sign can be computed as given by

1It’s sometimes useful to break a node representing Arow,col term into two or more parallel nodes.
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Equation (2.3) requiring to know row and column. Row is given already as the depth

of a node making necessary to store the information pertaining to the column into the

node.

sign = (−1)row+col (2.3)

The symbolic manipulations performed are agnostic of the origin of the matrix, that

is, the only condition is that the matrix be square. Each node in the graph structure

corresponds to a matrix non-zero entry, which in turn encapsulates the summation of

one or more circuit elements.

2.2.1 The Advanced Case in detail

Three different data structures are required. The first and most obvious is the node

structure which contains the following fields:

• Node Name: A unique name for the given node. It is assigned as an index number.

• Terms: An array containing the index and sign of the element (mapping it to the

element table described in section 3.1.1, in page 22).

• Column: The column of the non-zero entry in the matrix that this node belongs

to.

• Descendants: An array of node pointers linking to the descendants of the current

node in the graph structure.



16 CHAPTER 2. SYMBOLIC FORMULATION BY DIRECTED GRAPH

The second data structure is a graph type. It is useful to have a graph structure

with the fields:

• Graph name: A unique name for the current graph. It is possible to have

many different graphs. At least two graphs are required at first: numerator and

denominator.

• Matrix size: The size of the matrix. Only one dimension is required as the input

is expected to be a square matrix.

• Root node: The root of the graph. In the simple AC analysis the root node is a

trivial node with term value equal to 1 and column and row equal to zero. When

multiple graphs are constructed (i.e. Factorization) the root node can be any of

the nz nodes.

• Visited Columns: When traversing a graph to formulate the determinant the

column of a visited node is appended to this array .

The third and final structure is a matrix type. This structure stores not only the

input matrix but also the independent vector.

First of all, nz + 1 nodes are created (nz = non-zero entries) and their respective

structure fields filled in with the information read directly from the matrix. The Row

and Column fields are useful to compute the sign rule when formulating the determinant

as well as to determine which nodes are to be skipped.
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The graph is built starting with a trivial node named 0 with term value of 1.

Remember the multiplication is codified as depth in the graph. The different nodes are

linked accordingly. The algorithm to build the graph structure for the representation

of |A| is shown as Algorithm 1. With the graph already built, the expression for

Algorithm 1 buildGraph(A(i, j), Ancestor)

m← number of Columns of A
n← number of Rows of A
D ← set of descendants of Ancestor

Ensure: m > 0 ∧ n = m
function buildgraph(A,Ancestor)

if m > 1 then
prune = 1
for i = 1 to m do

for all Columns j that Ai,j) 6= 0 do
if buildGraph(Cij , Ai,j) 6= 0 then

D = D ∪Ai,j
prune = 0

else
if Ai,j 6= 0 then

prune = 0

return prune

the determinant is then formulated as in Algorithm 2. The graph structure for the

determinant of the matrix as seen in (2.1) is shown in Fig. 2.2.

Algorithm 2 Symbolic Determinant from graph

1. Read the graph in a modified DFS fashion:

(a) Keep track of which columns have been visited

(b) Skip nodes from columns already visited

2. Symbolic expression is the product of a node times the summation of its visited
descendants
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a

b

ce

f

d

g

h

i
j

1

Figure 2.2: Determinant graph

2.3 Symbol Factorization and Symbolic Derivative

2.3.1 Factorization of Symbol W

Symbol factorization is useful in order to facilitate numerical evaluation of the expres-

sion and in order to obtain the symbolic derivative with respect to a given symbol.

Factorization takes place by following a simple algorithm (Algorithm 3). The result is

the expression of the determinant as a polynomial represented by an array of sum of

products with one entry for each power of symbol W with non-zero coefficient.

Suppose one have a matrix (2.4) and we want the polynomial form as powers of w.

The resulting graph is shown in Fig. 2.3 and the polynomial expression is in (2.5).



2.3. SYMBOL FACTORIZATION AND SYMBOLIC DERIVATIVE 19

Algorithm 3 Graph to Polynomial

1. Expand the nodes of the graph containing the symbol W

2. Read the graph in DFS fashion and preserve only those routes from root to bottom
with at least one occurrence of symbol W .

3. The number of occurrences of the symbol is the power of W for a given route.

4. Each route is then expressed as a sum of products replacing the symbol for a one.

5. The summation of all appended routes for each power of W forms the coefficients.

M =



a+ w b 0 0

c d e 0

0 f g h

0 0 i j


(2.4)

w0 = adgj − adhi− aefj − bcgj + bchi

w1 = adi+ dgj − dhi− efj − bci

w2 = di

(2.5)

2.3.2 Symbolic Derivative with respect to W

The derivative ∂|A|
∂W is straightforward as symbol W in the expression |A| has already been

factorized. The graph expansion can be performed in the original structure generated

when obtaining the determinant thus reducing the memory footprint. Expansions for

more than one symbol are possible.
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Figure 2.3: Expanded graph

2.3.3 Symbolic Mixed Derivative

It is possible to get a mixed derivative of the form ∂2f
∂W1∂W2

for symbols W1 and W2.

For this purpose we make use of the resulting symbolic expression obtained previously

in Section 2.3.2. Such expression is in the form of a sum of products, which is further

separated in n coefficients (powers of W1 with coefficient 0 omitted) of W1. Each

coefficient is expressed as a graph, thus obtaining n graphs. The derivative procedure

given in Section 2.3.2 is repeated for all n graphs individually now for the symbol W2.

This is useful for some optimization problems where the Hessian matrix needs to be

computed [45].



Chapter 3

Symbolic Analysis with MOSFET

based analog circuits

3.1 Implementation of the Graph-Based Approach

The proposed graph-based approach for the solution of a system of equations starts

off with a SPICE netlist as input. The elements implemented are R, C, L, V, I, E, G

and M, being resistor, capacitor, inductor, independent voltage source, independent

current source, voltage controlled voltage source, voltage controlled current source and

MOSFET. Both independent voltage and current sources can be DC, AC or both.

The netlist is to be used as a way to input the circuit topology along with circuit

elements and values. If the numerical evaluation of the resulting symbolic transfer

functions generated is required, the small signal values for the parasitic elements and the

21



22CHAPTER 3. SYMBOLIC ANALYSISWITHMOSFET BASED ANALOGCIRCUITS

operating point conditions are read from the output listing in HSPICETM format. This

numeric values are of use when evaluating the transfer function to verify correctness.

The flow of the tool is shown in Fig. 3.1

The derivative is computed in an alternative module which is bypassed when the

only output required is the actual transfer function. The algorithm to implement this

symbolic derivative accommodates for consecutive derivatives with respect to different

variables (symbols). The flow of this module is presented in Fig. 3.2.

3.1.1 Parsing the netlist

The first step is to parse the netlist and build suitable data structures for each group

of elements. The symbol given to every device from this point onwards is the same as

its name. To keep consistency, the symbol name is taken exactly as specified in the

netlist (ex. R name, C name, M name, etc) input is not case sensitive and is parsed as

lowercase. Elements are first grouped into one of four different tables: conductances,

independent sources, controlled sources and Mosfet Table 3.1.

Values for elements and sources are considered strings of characters so the tool is

agnostic of whether they are actually numbers or functions until the numerical evaluation

of the output is performed. The symbol name is always the element identifier and it’s

name exactly as it appears in the netlist. The network relationships of the different

elements are codified in their node connections. Because it is a lot easier to treat nodes

as integer indexes, a mapping is created first by building an array with all the nodes as
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Figure 3.1: Symbolic Tool Flow
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Figure 3.2: Module for Symbolic Derivative



3.1. IMPLEMENTATION OF THE GRAPH-BASED APPROACH 25

Table 3.1: Elements Tables

Table Type Fields

Conductances Name, Node 1, Node 2, Value

Independent Sources Name, Node 1, Node 2, DC, AC

Controlled Sources Name, Node 1, Node 2, Node 3, Node 4, Gain

MOSFET Name, Drain, Gate, Source, Bulk, Width,

Length, ModelName

they appear in the netlist and any duplicate occurrences are removed.

The tool is intended to perform AC analysis so it is of no use to keep independent

sources with only DC value, as they are only valid in a DC or transient context. When

removing voltage DC sources their nodes are collapsed, while current DC sources nodes

are left floating. Collapsing two nodes in a circuit is equivalent to assigning to both

nodes the same mapping and so is done in this step. If the numerical evaluation of the

resulting transfer function is to be performed, the output listing (.lis file for HSPICETM )

is read and the values for the operating point are parsed and stored in an array with the

same index correspondence as the element symbol array so that the mapping between

the symbols and their numerical values is direct.

Up to this point the elements are separated in groups according to their type, nodes

are collected in a single array and are mapped to indexes to facilitate their treatment,
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DC sources are removed.

3.1.2 Small Signal Models and NullOr Equivalents

In the present implementation, active elements are substituted by their controlled source

based small signal model. In turn, controlled sources are modeled with combinations

of norator and nullator in order to make use of the extensive studies of NullOr based

circuits. The Nullator and Norator are abstract elements with ideal characteristics [36].

The voltage across the nullator terminals is zero and does not allow current to flow

through it. Even though it has some properties of an open circuit it doesn’t have an

immittance or a scattering representation.

V1 = V2 = arbitrary, Ix = 0 (3.1)

For the norator, the voltage between its terminals is arbitrary and an arbitrary

current can flow through it. The norator also shows some properties of an open circuit.

The circuit representations of the nullator and norator are shown in Fig. 3.3.

V1 6= V2 = arbitrary, Ix = arbitrary (3.2)

One can combine these elements in order to obtain a new one called Nullor where,

when it is modeled as a two-port element, its first port is the Nullator and the second is

the Norator, that is why the Norator and Nullator receive the name of Nullor elements.

The Nullator was first introduced by Carlin [46] . This simple element has proven its

usefulness in areas like symbolic analysis. One of the main advantages of the Nullor
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V1 V2

Ix

(a) Nullator

V1 V2

Ix

(b) Norator.

Figure 3.3: Pathological element symbol for a) Nullator and b) Norator.

Figure 3.4: Nullor representation of the MOSFET

elements is that nodal analysis (NA) of an active circuit is simple and also they can

model active circuits independently of the particular realization of the active devices

[36, 47]. For the MOSFET, the Nullor equivalent including the parasitic gate-source

and gate-drain parasitic capacitances used in the sensitivity analysis is shown in Fig.

3.4, therefore for an operational transconductance amplifier (OTA) its Nullor equivalent

would be as shown in Fig. 5.1
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The guidelines for obtaining the nodal admittance matrix by applying nodal analysis

is summarized below for convenience and is explained in detail in [44, 48].

Two sets of pairs of nodes are formed, one for ROWs and one for COLs. These

two sets are then used to form the admittance matrix by performing the Cartesian

product of every subset. In the ROW group a subset is formed for every node with no

Norator connected to it, and a different subset for every group of nodes connected by

floating Norators. In the COL group a subset is formed for every node with no Nullator

connected to it, and a different subset for every group of nodes connected by floating

Nullators. Two groups of admittances are formed, the first (group A) containing a

subset for every node listing all the admittances connected to it, the other (group B)

listing floating admittances with the corresponding pair of nodes. If a node is present in

a subset in ROWs and a subset in COLs then the corresponding subset of admittances

(from group A) is summed at the matrix position (ROW index, COL index). If a pair

of nodes is present, one in a subset of ROWs and the other in a subset of COLs, the

corresponding admittance (from group B) is summed with negative sign at the matrix

position (ROW index, COL index).

Since the method applied is symbolic NA, the independent voltage source is trans-

formed to a current source equivalent circuit. In order to simulate a differential input

in circuits like the differential pair and the three stages operational transconductance

amplifier (OTA) a voltage controlled voltage source which is converted also to a nullor

equivalent is used. The nullor representation of both elements traditionally non-NA
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Nullor representat ion of non-NA compat ible elements

Independent Voltage Source 1
I=V

Voltage cont rolled voltage source G1 G2

G = G1
G2

Figure 3.6: Nullor representation of non-NA compatible elements

compatibles is shown in Fig. 3.6.

In a previous section it was explained why symbolic modeling is intended to give

an insight into certain behaviors and tendencies of the circuit in question. With this in

mind, it is now evident that the more complex the small signal model of a device the

more accurate is the resulting simulation but at the cost of increasing machine operation

time. A compromise can be reached where the qualitative behavior is roughly preserved

at the expense of numerical accuracy. Implemented are three levels of parasitic elements

for the small signal model for the Mosfet:

• Level 0 has no parasitic elements and models only the voltage controlled current

source with gate-source as the controlling branch voltage and transconductance

gm.



3.1. IMPLEMENTATION OF THE GRAPH-BASED APPROACH 31

• Level 1 accounts for level 0 plus Cgs, Cgd and Gds.

• Level 2 accounts for level 1 plus the voltage controlled current source whose

controlling branch voltage is bulk-source with transconductance gmb.

From this first stage the elements are classified as NA compatible or NA incompatible

according to their small signal models. Incompatible elements are then treated as their

respective Nullator/Norator (Nullor) equivalents as shown before in Fig. 3.6.

There are two reasons why elements can be incompatible. Firstly if the dependent

variable of the function for a given element is voltage, as is the case for voltage sources

and secondly if the independent variable for the element function is current. The reason

behind this, as the reader may already be aware, is that in nodal analysis the unknown

vector is composed of voltages (node voltages) while the independent vector is formed by

current sources. Then, the need arises to apply a manipulation such that those conditions

are preserved while maintaining a physical equivalence.

On the other hand, a fully differential OTA can be modeled as a single VCCS, which

in turn can be viewed as a pair of MOSFET transistors in differential input configuration

Fig. 3.7.

The ideal conditions for each of the two MOSFETs are kept: infinite input impedance

(zero branch current in input Nullator), zero output impedance (arbitrary voltage) and

ideal gm. Parasitic elements can then be arranged around this basic block.

As explained before a set of Nullator-Norator equivalents are implemented to account
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Figure 3.7: Nullor Equivalent of the MOSFET Differential Pair

for the intrinsic voltage controlled current source of the Mosfet small signal model Fig.

3.4, voltage sources and controlled sources Fig. 3.6.

The basic building blocks for the equivalents are the Voltage Follower 3.8a and the

Current Follower 3.8b When replacing a certain element with it’s NullOr equivalent

there are three basic operations that have to be performed:

1. Add an element to the proper array (nullator, norator, conductance or independent

source)

2. Add extra nodes if required (MOSFET, Voltage Source, etc.)

3. Assign unique name to each element and the extra nodes (as required)

Adding a new element is as easy as appending the new entry to the corresponding

structure (conductance, independent source, nullator or norator) and updating the
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(a) Voltage Follower

(b) Current Follower

Figure 3.8: Nullor based (a) Voltage Follower and (b) Current Follower

number of elements for the given structure. As a list of the nodes originally read from

the netlist is kept, it is easier to keep track of the nodes added afterwards if any new

node is appended at the end of the structure containing the numerical mapping. When

adding an element it is useful if the name is a composition of the name of the original

element it is bound to. For instance, if CGS is included into the model for the MOSFET

named M1, the name of the new parasitic capacitor can be cgs 1. In this way it becomes

easier to tell to which netlist element a given symbol belongs to.

Now that there is a mapping of unique node elements, it is possible to begin replacing

elements for their corresponding NullOr equivalents. For the case of the MOSFET the

small signal model conformed with the selected parasitic elements and the corresponding

NullOr is replaced in the circuit netlist.
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3.1.3 Matrix equations formulation

Now that we know the node mappings we can create an adjacency matrix for each of

the elements. From this adjacency matrix the NA formulation is performed by following

the method in [44] which is reproduced here in a short form for convenience (Algorithm

4 [42]).

Algorithm 4 NA Formulation with NullOr elements

1. Two groups of nodes are formulated, one named ROW and another named COL.
The admittance matrix is formulated by performing the Cartesian product of these
two groups.

2. Formulate ROW group of nodes:

− Add a subset for each node with no Norator connected to it.

− Add a subset for every chain of nodes connected by floating Norators.

3. Formulate COL group of nodes:

− Add a subset for each node with no Nullator connected to it.

− Add a subset for every chain of nodes connected by floating Nullators.

4. Group A: Admittances seen in a node.

− A set for each node containing all admittances conected to it.

5. Group B: Floating Admittances.

− A set for each floating admittance containing its pair of nodes.

6. Formulate Matrix

− If a node is present in a subset in ROWs and a subset in COLs then the
corresponding subset of admittances (from group A) is summed at the matrix
position (ROW index, COL index).

− If a pair of nodes is present, one in a subset of ROWs and the other in a
subset of COLs, the corresponding admittance (from group B) is summed
with negative sign at the matrix position (ROW index, COL index).
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This procedure is shown for a simple common source circuit as the one shown in Fig.

3.9.

Figure 3.9: Common Source Small Signal Equivalent

Table 3.2: NA Formulation

ROWS COLS FLOATING SEEN BY NODE

(1) (1,2,3) (2,4) : sCgd 1 : 1Ohm

(3,4) (4) 2 : sCgs, sCgd

3 : gm

4 : sCgd, gds,
1
Rd
, sCL

The formulated groups are shown in Table 3.2. The resulting matrix is a 2 x 2

system as shown in (3.3).


(1, 2, 3) (4)

(1) 1 0

(3, 4) gm− sCgd −(sCgd + gds + 1
Rd

+ sCL)


 v(1,2,3)

v(4)

 =

 Iin

0

 (3.3)
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The solution for this system of equations becomes an application for the symbolic

tool presented in this Thesis. The system of equations is solved by using Cramer’s

rule by computing n + 1 determinants for [v1, v2, · · · , vn]T node voltages in order to

completely define the circuit. For the system of equations Ax = b where A is n x n

matrix, the solution by Cramer’s Rule is given as xi = |b→Ai|
|A| .

3.1.4 Experiments

For the experimental verification the symbolic transfer function of four CMOS and one

BJT (small signal model with Rpi, Cpi, Cmu and Gm VCCS) circuits was computed,

and time metrics were taken for matrix equations formulation, denominator, numerator

and transfer function computation. The test cases are the differential pair and common

source shown in Fig. 3.10, the three stages uncompensated OTA in Fig. 5.1 [49],

recycling folded cascode OTA [50] and 741 OPAMP respectively as shown in Table 3.3.

The test circuit for the UA741 is a Small-Signal model with R, C and VCCS elements.

This same circuit was tested with SCAD3 [37] which does not support reading MOST

from netlist. The running and evaluation time reported by SCAD3 is of 2.97s while the

proposed symbolic tool takes 2.7043s.

Numerical evaluation of the resulting symbolic expression is performed in order to

provide a comparison between a well known and mature technology (HSPICETM ), a

previously developed symbolic tool [43] and the proposed graph-based symbolic tool.

The test circuit is the same Differential Pair from Fig. 3.10b where the input to SCAD3
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(a) Common Source.

(b) Differential Pair.

(c) Three stages uncompensated amplifier.

Figure 3.10: Nullor equivalents of the amplifier circuits.
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Table 3.3: Symbolic Formulation and Numerical Evaluation of D(s), N(s) and H(s)

Circuit Features Computer Time (seg)

Circuit Elements Nodes Equations D(s) N(s) H(s)

Differential Pair 35 26 1.1235 0.122 0.1464 1.4895

RFC OTA [49] 106 56 1.6603 0.201 0.1869 2.2633

LV Amp 33 18 2.35 0.058 0.0464 2.4544

Common Source 8 6 0.8581 0.041 0.0205 0.9811

741 112 77 0.5123 1.37 0.822 2.7043

has been converted to VCCS equivalents. The AC analysis output is shown in Fig. 3.11.

Numerical evaluation of the resulting expressions for the RFC OTA [49] are shown

in Fig. 3.12.
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Chapter 4

Constrained Optimization

This chapter focuses on the constrained optimization problem and looks into different

methods for solving it. Constrained optimization is used in order to perform the

proposed non Monte Carlo method since the problem of finding lower and upper bounds

of the magnitude and phase responses can be formulated in a nonlinear constrained

optimization.

Given a s-expanded transfer function, i.e.,

H(ω) =

m∑
i=0

ai (p1, . . . , pm) si

n∑
j=0

bj (p1, . . . , pn) sj
(4.1)

where the coefficients ai (p1, . . . , pm) and bj (p1, . . . , pn) are obtained by the method

explained in the previous chapter. Notice that H(s, p1, . . . , pm) is a nonlinear function

of p1, . . . , pm.

41
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In this Thesis it is assumed that each parameter pi is a random variable with a

variational range. Since s = jω, instead of getting a nominal transfer function

H(s) = H(jω) = H(jω)ejθ(ω) (4.2)

one should obtain a variational transfer function with bounded magnitude and phase

regions, i.e.,

Hl(ω) ≤ H(ω) ≤ Hu(ω) (4.3)

Θl(ω) ≤ Θ(ω) ≤ Θu(ω) (4.4)

Where Hl(ω) and Hu(ω) are the lower and upper bounds of the magnitude respectively,

and θl(ω) and θu(ω) are the lower and upper bounds of the phase respectively. The

evaluation of the transfer function described by (4.2) gives a complex valued result,

where the magnitude H (ω) = |H(jω)| and the phase angle θ (ω) = ∠H (jω) are real

values. The goal of the proposed frequency response bound analysis is to derive the

bounds of magnitude and phase for H (jω), such that one can obtain (4.3) and (4.4).

Hence, in the presence of process variations, the signal is also perturbed from its

nominal behavior, and are usually bounded between its minimum and maximum limits,

as explained in Fig. 4.1

To find the bounds, one should formulate the bound computing problem into a

nonlinear constrained optimization problem. To obtain the two performance bounds for

magnitude or phase at one frequency point, two evaluation processes, or optimization

runs, of the transfer function are needed: one for H(ω), and the other for θ (ω). We use
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H(ω) ∈ [Hl(ω), Hu(ω)]

with process variation

θ(ω) ∈ [θl(ω), θu(ω)]

H(jω) = H(ω)ejθ(ω)

nominal design

Figure 4.1: Circuit system with process variation.

lower bound of the magnitude response |H(jω)| at frequency ω. The magnitude of the

transfer function, which can be evaluated from the available symbolic transfer function,

is used as the nonlinear objective function to be minimized:

minimize |H(jω, x)|

subject to xl ≤ x ≤ xu

(4.5)

which is a box constrained optimization problem and where x = [p1, . . . , pm] represents

circuit parameter variable vector, which are subjected to the optimization constraints

[xl, xu]. In circuit design, these constraints are supplied by foundries and cell library

vendors. Hence, after (4.5) is solved by an optimization engine, the lower bound of

magnitude response at ω, i.e., |H1(jω)|, is returned and a parameter set at which the

minimum is attained will also be saved as a by-product. Fig. 4.2 and Algorithm 5

summarizes the flow of the performance bound calculation.

Unlike unconstrained optimization, constrained optimization’s goal isn’t the global
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Circuit NetlistTransistors
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Symbolic Analysis
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Magnitude and Phase

Figure 4.2: Flowchart of frequency domain performance bound calculation.

optima [51, 52].

4.1 A simple example in MATLAB

This section describes a specific example to show how to approach this constrained

optimization problem. In Fig. 4.3 is shown the circuit diagram of a RLC ladder circuit,

Algorithm 5 Calculation of frequency response bounds using the graph based method
presented in Chapter 2 and symb2 and constrained optimization

1: Parse circuit netlist.
2: Set bounds on process variation affected parameters.
3: Run the graph based algorithm to generate the symbolic expression like the transfer

function.
4: for All frequencies ωi do
5: Constrained optimization to find magnitude bounds on ωi.
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where the three components are all in series with the voltage source.

LR

+

vout

−
C

+

vin

−

Figure 4.3: A RLC ladder circuit

In frequency domain, capacitors and inductors are analyzed as complex impedances,

and one can assume the voltage on the capacitors are taken for observations, then the

transfer function of this circuit is:

H(jω) =
Vout
Vin

=

1
jωC

R+ jωL+ 1
jωC

(4.6)

For this example, it can be assumed that the capacitor and inductor are under process

variation. For their nominal parameters C = 1µF and L = 1µH, and assuming

a variation of 20% on the inductor and capacitor, i.e., C ∈ [0.8, 1.2]µF and L ∈

[0.8, 1.2]µH, one obtain the results shown in Fig. 4.4 are plotted as a solid line the

nominal curve an as dashed curves the lower bound in green and the upper bound

in magenta. In the same figure, three snapshots of the transfer function at different

frequency points are shown. Each snapshot show the impact of the variations of each

element (the inductor and capacitor in this specific case) in the magnitude H(ω).

For this example an iterative method called active set was used. Active-Set methods
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Figure 4.4: Frequency response of the RLC circuit in Fig. 4.3. Solid curve is the

magnitude response with nominal parameters, while the two dashed curves are lower

and upper bounds due to process variation. The three surfaces at the top, with L and C

as x -axis and y-axis accordingly and magnitude as z -axis, illustrate the variations of

magnitude at three sampling frequencies.

are two-phase iterative methods that provide an estimate of the active set (active set

is the set of constraints that are satisfied with equality) at the solution. In the first

phase, the objective is ignored while a feasible point is found for the constraints. In the
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second phase, the objective is minimized while feasibility is maintained. In the second

phase, starting from a feasible initial point x0, the method computes a sequence of

feasible iterates {xk} such that xk+1 = xk + αkpk and H (xk+1) ≤ H (xk) via methods

like quadratic programming, where pk is a nonzero search and αk is a nonnegative step

length. This iterative search procedure in the constrained minimization is illustrated in

Fig. 4.5 for a specific frequency.
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Figure 4.5: Optimization space searching for the RLC circuit in Fig. 4.3, where both

C and L have 20% variation in this illustration. This surface shows the magnitude

variations at frequency f = 106Hz.
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4.2 Line Search

A line search algorithm searches for the decrease in f in a descent direction, using

the Armijo rule [53, 40, 41] for step size control. Most line searches used in practiced

are inexact: the step length is chosen to approximately minimize f along the ray

{x+ λ∆x|λ ≥ 0} where ∆x is called the descent direction and the point x + λ∆x is

called x+ , or even to just reduce f ’enough’ [40]. Once given the current point xc and

the descent direction ∆x, we look for λ such that:

f(xc + λ∆x) ≤ f(xc) (4.7)

However, if the decreasing achieved at the inequality above for some λ is too small,

it is not possible to guarantee convergence to a local minimum. So in order to avoid

this, it is needed that λ satisfies the Armijo rule (sufficient decrease) given by:

f(xc + λ∆x) ≤ f(xc) + λγ∇f(xc)
T∆x (4.8)

where γ ∈ (0, 1) [41]. This is shown in Fig. 4.6

In Fig. 4.6 as we can see the interval where the condition (4.8) holds is [0, λmax] so

we can rewrite it as:

f(x+) ≤ f(xc) + γ∇f(xc)
T (x+ − xc) (4.9)

The Armijo condition [54] to accept a trial point x+ is

f (x+) ≤ max
0≤j≤min{c,M−1}

f (xc−j) + γ∇f (xc)
T (x+ − xc) (4.10)
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γ=0

λ
λmax

f (x+)

0< γ < 1

γ=1

f (xc)

Figure 4.6: Line Search representation

where M is an integer greater than zero. If x+ is rejected, the steplength is redefined as

λ = max {σ1λ,min {σ2λ, λ∗}} , (4.11)

where λ∗ minimizes a quadratic model. This strategy of repeatedly testing for sufficient

decrease and reducing the stepsize if the test is failed is called backtracking for obvious

reasons. The methods described below are based on backtracking line search.

4.3 Projected Gradient Method

The gradient projection algorithm [38, 55] is the natural extension of the steepest descent

algorithm [41], used in unconstrained optimization, to bound constrained problems. The



50 CHAPTER 4. CONSTRAINED OPTIMIZATION

method is iterative as the Active-Set method explained before in Section 4.1 . This

method is presented in [41]. The line search method applied here is backtracking line

search explained in section 4.2. Given a current iterate xc the new iterate is

x+ = P (xc − λ∇f (xc)) (4.12)

where the gradient ∇f(x) is defined by

∇f (x) =

(
∂f (x)

∂x1
, · · · , ∂f (x)

∂xn

)
for x = (x1, . . . , xn)

(4.13)

where λ is a steplength parameter given by the Armijo rule, where the Armijo rule is a

line search in which one searches on a ray from xc in a direction in which f is locally

decreasing [54]. In order to implement any line search scheme, we must specify what we

mean by sufficient decrease. For bound constrained problems the sufficient decrease

condition for line searches will be defined as

f (x (λ))− f (x) ≤ −α
λ
‖x− x (λ) ‖2 (4.14)

where

x (λ) = P (x− λ∇f (x)) for λ ≥ 0 (4.15)

It is important to choose the steplength λ. One way to do this is to let λ = βm,

where β ∈ (0, 1) and m ≥ 0 which is the smallest nonnegative integer such that there is

sufficient decrease in f . For the termination condition first is necessary to define what



4.4. SPECTRAL PROJECTED GRADIENT METHOD 51

is an active set and an inactive set. The set of constraints is called the feasible set (Ω)

and a point in this set is called feasible point. Because the feasible set is compact there

is always a solution for this minimization problem. The ith constraint is active at x ∈ Ω

if either xi = Li or xi = Ui. If the ith constraint is not active it will be called inactive.

One can write A(x) and I(x) the active and inactive set respectively, where an active

set is the set of indexes i such that the ith constraint is active and the inactive set is

the set of indexes i such that the ith constraint is inactive.

Therefore,

r0 = ‖x0 − x0 (1) ‖ (4.16)

and the relative and absolute tolerances τr and τa then the termination criterion is give

by

‖x− x (1) ‖ ≤ τa + τrr0 (4.17)

The algorithm for this optimization method is shown in the Algorithm 6. It starts

with x0 ∈ Ω, and uses a sufficient decrease parameter γ ∈ (0, 1) and safeguarding

parameters 0 ≤ σ1 ≤ σ2 ≤ 1. Initially, α0 = 1/‖f(x0)‖2. Given xc and αc ≥ 0 the

algorithm shows how to obtain xc+1 and αk+1, and when to finish the optimization.

4.4 Spectral Projected Gradient Method

This method has improved the choosing of the steplength. In this methods the choice of

the septlength requires little computational work and greatly speeds up the convergence
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Algorithm 6 Projected Gradient Method

1: if ‖P (xc −∇f (xc))− xc‖ = 0, i,e,. xc is stationary then
2: Stop

3: Compute dc = P (xc − αc∇f (xc))− xc.
4: Set λ← 1
5: Set x+ = x+ + λxc
6: if f(x+) ≤ f(xc) + γ 〈x+ − xc,∇f(xc)〉 then
7: λc = λ, xc+1 = x+, sk = xc+1 − xc, yk = ∇f(xc+1)
8: Go to step 12
9: else

10: Define λnew ∈ [σ1λ, σ2λ] and λ← λnew
11: Go to Step 5

12: Compute the trial step length αc+1 = αc‖f(xc)‖2/‖f(xc+1)‖2.

of gradient methods [56]. Unlike the projected gradient method explained in section

4.3, Spectral Projected Gradient Method [38, 39] is more related to the quasi-Newton

family of methods [53] through an approximated secant equation.The main idea behind

the spectral choice of steplength is that the steepest descent method is very slow but it

can be accelerated taking, instead of the stepsize that comes from the minimization of

the function along the gradient of the current iteration, the one that comes from the

one-dimensional minimization at the previous step.

The point in the first iteration of this method should be a feasible point, i.e. the algo-

rithm starts with x0 ∈ Ω and uses an integer M ≥ 1, a small parameter αmin ≥ 0; a large

parameter αmax ≥ αmin; a sufficient decrease parameter γ ∈ (0, 1), and safeguarding

parameters 0 ≤ σ1 ≤ σ2 ≤ 1. ‖P (xc −∇f (xc))− xc‖ = 0. The algorithm is shown in

Algorithm 7. In this algorithm λnew uses one-dimensional quadratic interpolation and

it is safeguarded taking λ← λ/2 when the minimum of the one-dimensional quadratic
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Algorithm 7 Spectral Projected Gradient Method

1: if ‖P (xc −∇f (xc))− xc‖ = 0, i,e,. xc is stationary then
2: Stop

3: Compute dc = P (xc − αcg (xc))− xc.
4: Set λ← 1
5: Set x+ = xc + λ∆f(xc)
6: if f (x+) ≤ max

0≤j≤min{c,M−1}
f (xc−j) + γλ 〈dc,∇f (xc)〉 then

7: Define λc = λ, xc+1 = x+, sc = xc+1 − xc, yc = ∇f (xc+1)−∇f (xc)
8: Got to Step 11
9: else

10: Set λnew ∈ [σ1λ, σ2λ], λ← λnew and go to Step 5

11: Compute bc = 〈sc, yc〉.
12: if bk ≤ 0 then
13: αc+1 = αmax.
14: else
15: αc = 〈sc, sc〉 and αc+1 = min {αmax,max {αmin, αc/bc}}

lies outside [0.1, 0.9λ]. Notice that the line search condition in step 6 of Algorithm 7

guarantee that the sequence {xc} remains in Ω0 = {x ∈ Ω : f (x) ≤ f (x0)}.

4.5 Remarks

Both of the algorithms, projected gradient method and spectral projected gradient

method, start at x0 ∈ Ω and use as search direction the internal projected gradient

direction. In case of rejection of the first trial point, the next ones are computed along

the same line. Also for both algorithms, the calculation of λnew uses a one dimensional

quadratic interpolation. The computational work, for both algorithms, involves a

projection on the convex set Ω, a function evaluation (f(x)) and a gradient evaluation

per iteration (∇f(x))



Chapter 5

Experimental Results

The circuits used to prove the usefulness of the proposed approach results are shown

in Fig. 5.1, a Differential Pair and two and three stages operational transconductance

amplifiers. As already said in Chapter 4 in Fig. 4.2 and in Algorithm 5 for the

bound analysis approach one first parse the circuit netlist given, later the bound on

process variations of the affected parameter are set and the symbolic expression like

the transfer function presented in (4.1) is generated. Given the transfer function for

all desired frequencies (this is set by the user) constrained optimization is used to find

magnitude bounds. Projected gradient method and Spectral Projected Gradient Method

are programmed in C compiled in an Ubuntu Linux Environment with the GNU C

compiler gcc-4.6.1 with 4GB RAM. Active-Set method is part of the matlab optimization

tool. The experiments presented in this chapter were run in a Intel Core i3
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The results of the optimization problem are shown in this chapter. Results for the

differential pair are shown in Figures 5.2a and 5.2b. Results for the 3 stages OTA are

shown in Figures 5.3a and 5.3b. In Table 5.1 a time comparative table is shown between

the methods.

Name PGRAD SPG ACTIVE SET1 HSPICETM

Differential Pair 15.312ms 16.363ms 4.524s 1.716s

2 Stages OTA 44.559ms 91.936ms 4.833s 81.65ms

3 Stages OTA 38.315ms 39.233ms 5.2855s 2.163s

Table 5.1: Time comparison between the methods used

It is important to note that the circuits used in order to compare the computed

results were small signal representations of the mentioned circuits since the model used

in the graph-based tool to perform symbolic analysis is not accurate enough. Making the

MOSFET model more accurate would increase the computational cost of a symbolic tool.

Another drawback of using symbolic analysis for variational analysis in MOSFET based

circuits is that as they are expressed by a small signal representation in the symbolic

analysis, it is very hard to choose which element(elements) in the expression given by

the symbolic tool is(are) the one(s) which one has to choose as the variational element

for any bound analysis method, in this case constrained optimization, i.e, gm, Cgd, Cgs,

go, etc., in the MOSFET in order to do the same variation to the MOSFET variational

1Matlab optimization tool.
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analysis needed in HSPICETM, i.e., L, W , VT , etc. Nevertheless this last issue, the

approach showed good time results, eventhough one can’t see any determined behavior

in the time comparison between the differente methods used in this Thesis, since they

are small despite symbolic analysis is used. And observation is that variational analysis

based on symbolic analysis would be better for linearized networks.
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Figure 5.1: Circuits used for the simulations
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Chapter 6

Conclusions

In this work a new approach to obtain the bounds of a circuit was presented based on

constrained optimization using line search methods such as projected gradient method,

spectral projected gradient method and active set method. A new graph-based method

was used in order to perform symbolic analysis that can run with the same netlist for

input that HSPICETM handles avoiding the need for intermediary processing steps.

With this approach it is possible to fully define the circuit variables in terms of node

voltages or current branches. It was proved that the bound analysis presented here

was successful for the examples in spite of the small signal models that aren’t accurate.

Increase in accuracy would be an increase in computational work.

The running time of the bound analysis was comparable with HSPICETM nonetheless

a symbolic approach is used. It is important to note that symbolic analysis can be used
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as a tool in order to understand a circuit qualitatively more than quantitatively. This

important caracteristic make symbolic analysis not the best tool for exact variational

analysis but it helps to understand the behavior of the circuit of interest.

As future work, other variational analysis approaches should be studied to include

nonlinear circuits like CMOS analog ICs, and more analysis should be done to associate

parameter design variables as width/length of the MOSFETs, to their circuit equivalents.
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