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Abstract

Increasingly complex electronic devices are driving the chip circuit elements density

towards the limit of the physically possible. The Metal Oxide Semiconductor by it’s

conveniently low cost of manufacture is the best option for the implementation of

most electronic circuits. It is a very mature technology in terms of implementation.

However, modeling of such devices is very complex and with more complete models

comes increasing computation cost at simulation time. Model complexity increases

as technology nodes decrease the minimum dimension. Many detrimental factors

which were considered of second importance are now becoming even more notorious.

For instance, the Integrated Circuit designer now has to deal with low rail-to-rail

voltages which make the use of some topologies impossible or has to deal with the

fact that the behavior of a MOS transistor (MOST) deviates significantly from the

hand equations (ie. quadratic model, variable depletion layer model) and interactions

between MOST elements become even more complex due to the increased importance

of secondary effects which play for and against each other. With the scaling down

of supply voltages, signals in an IC are becoming of comparable magnitude to noise.

Then there is the economic aspect which has to do with the design for manufacturing

in order to increase the profit margin and/or decrease the cost to the final consumer.

The designer has to somehow get an insight of said interactions in order to cope
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with them. Symbolic analysis, an area which sparked interest in the 1970’s and

1980’s lost it’s momentum due to the difficulty in implementing true problem solving

environments (PSE) [11]. In recent times however, the need to explore new paradigms

along with the increased computing power lead to the integration of behavioral and

numerical simulation in order to get the best of both worlds [5] [21].

The main contribution of this Thesis is the introduction of a graph-based tech-

nique for the solution of a determinant where all or at least one of its elements is a

symbol. This technique is applied to compute symbolic transfer functions, symbolic

noise expressions and symbolic sensitivities of analog integrated circuits composed

of MOSFETs, whose behavior is modeled by using nullors. Several examples demon-

strate the usefulness of the proposed graph-based technique and it is compared with

the already known determinant decision diagram (DDD) method introduced one

decade ago.
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Resúmen

La creación the dispositivos electrónicos cada vez más complejos en tiempos recientes

ha hecho que la densidad de integración de elementos circuitales en un chip tienda

a alcanzar los ĺımites de lo que es f́ısicamente posible. Los dispositivos de Metal-

Óxido-Semiconductor (MOS) por la conveniencia de su bajo costo de manufactura es

la mejor opción para la implementación de la mayoŕıa de los circuitos electrónicos de

hoy en d́ıa. sta es una tecnoloǵıa bastante madura en términos de implementación.

Sin embargo, modelar dichos dispositivos es una tarea sumamente compleja y con

modelos mas completos viene un inherente aumento en el costo computacional al

momento de simular. La complejidad de los modelos aumenta conforme los nodos en

la tecnoloǵıa MOS disminuyen las dimensiones mı́nimas. Muchos efectos negativos

que eran considerados de segundo órden se han vuelto más notorios.

Por ejemplo, el diseñador de circuitos integrados (IC por sus siglas en inglés)

ahora tiene que lidiar con voltajes de riel-a-riel tan bajos que hacen imposible el uso

de algunas topoloǵıas, o tiene que lidiar con el hecho de que el comportamiento de los

transistores MOS (MOST) difieren significativamente de las ecuacionesde ”a mano”

(eg. modelo cuadrático, variable depletion layer) y las interacciones entre elementos

MOST se vuelven mas complejas debido a que los efectos de segundo orden que

juegan a favor y en contra son ahora más significativos. Con el escalamiento hacia
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abajo de los voltajes de alimentación, las señales de interés en un IC son ahora de

magnitud comparable al ruido en el mismo. Encima de todo esto está el aspecto

económico que tiene que ver con el diseño para la manufactura en que se busca

aumentar el márgen de ganancias y/o reducir el costo que el consumidor final tiene

que pagar.

El diseñador entonces tiene que comprender dichas interacciones de alguna man-

era con tal de tomarlas en cuenta al momento de diseñar. El análisis simbólico,

un área que ganó interés durante las décadas de 1970 y 1980, perdió el momento

que obtuvo debido a la dificultad de implementar verdaderos Ambientes de solución

de problemas (PSE, Problem Solving Environments, por sus siglas en inglés) [11].

En tiempos recientes, la necesidad de explorar nuevos paradigmas junto con el au-

mento y disponibilidad de poder de cómputo llevó a la integración de simuladores

comportamentales-numéricos con el objetivo de obtener lo mejor de ambos mundos

[5] [21].

La principal contribución de esta tesis es la introducción de una técnica basada

en grafo para la solución de determinantes donde uno o más de sus elementos es

un śımbolo. Esta técnica es aplicada para calcular las funciones de transferencia

simbólicas, expresiones de ruido simbólicas y sensitividades simbólicas en circuitos

integrados analógicos compuestos con MOSFETs, cuyo comportamiento es modelado

a través de nullores. Ejemplos para demostrar la utilidad de la técnica basada en

grafo propuesta son presentados, además es comparado con una técnica ya conocida:

determinant decision diagrams (DDD), que fué introducida hace una década.
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Chapter 1

Introduction

1.1 Motivation

Nowadays portable electronic devices are ubiquitous. Personal, wearable computing

and communication devices are incorporated into a single device. Such devices in-

corporate many functions which in the past were delegated to specialized separate

devices such as geolocation devices (GPS), telephony, digital video and pictures, dig-

ital personal assitant, etc. On the other hand this increased pervasive power leads

to the need for faster networks and higher amounts of storage, just to mention the

two factors. So the market demands and increase in computing speed (eg. higher

chip frequency), decrease in power consumption ( low voltage, low-power), increas-

ing integration of functions (eg. System on Chip, multi-core), etc. All this with a

smaller or at least not bigger price tag to the final consumer.

The market drive for faster, more portable, low power electronic devices pushes

the integrated circuit (IC) designer to move towards more complex designs increasing

the number of elements and their density leading to technological wonders like the
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CHAPTER 1. INTRODUCTION 2

now ubiquitous System on Chip (SoC). This is posible because of the ever changing

chip technology moving from dimensions in the order of the hundreds towards the

tens of nanometers and into new technologies like FinFET [37] [29] [23]. This comes

at a cost to the IC designer which is now compelled to explore new techniques in

order to get a better insight into the behavior of an integrated circuit. [12]. An

immediate consequence of Metal Oxide Semiconductor (MOS) device scalling down

is the increasing significance of second order effects (noise, channel lenght modula-

tion, etc) [24]. It is possible to workaround such complications with optimization

techniques and procedures. In the same manner, effects of high-order like mobility

degradation due to transversal and longitudinal electrical fields should be considered

in short-channel devices [18] [24].

A great deal of effort has been directed towards the analysis of these effects present

in semiconductor devices and the related noise issue in the design of integrated

circuits. The noise in semiconductors used to be considered of lower importance

in the past, however, it becomes very significant as technology nodes approach the

physical limit in deep submicron dimensions. As voltages are scaled down, the desired

signal in a chip becomes smaller in magnitude and a prevoisly considered small noise

perturbations is of comparable magnitude effectively increasing a circuit sensitivity

to the various sources of noise [18] [37] [16].

The design of digital circuits by means of automatic tools is a very mature field.

Existing tools are efficient, powerful and thus are widely used by designers. However,

the analog counterpart in circuit design is still carried out mostly by hand. There is a

lack of efficient and reliable analog computer aided design (CAD) tools which results

in lenghty design times and costly design errors which lead to increasing number
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of design iterations [32]. There is a real demand for industrial grade analog design

automation (ADA) tools.

In the field of ADA an important task is the extraction and representation of

the small-signal characteristics of interest in an exact (that is complete with no

simplification) and approximate analytic form. These analytic expresions are of use

in order to gain insight into the behaviour of the circuit. A huge research effort

has been carried out in order to aid the designer in this field. The importance of

this field is very well illustrated by the success of modem symbolic analyzers such as

SCAD3 [41], ISAAC [38] [14], ASAP [8] [9], SYNAP [39] [40], SAPEC [13], SSPICE

[47], SCYMBAL [22], SCAPP [17], and GASCAP [19] for analog integrated circuits,

as well as similar tools for symbolic Boolean analysis of digital circuits [3].

1.2 Symbolic Analysis

1.2.1 Definition of Symbolic analysis

Symbolic analysis is a formal technique quite useful to calculate the behavior or a

characteristic of a circuit with its variables (dependent and independent) and with

all or some of its circuit elements represented by symbols [13] [7]. This technique

had a growing interest between 1960’s and 1980’s because of the increasing comput-

ing power and that many computer analysis techniques were proposed. A growing

interest from the circuit design community started in late 1980’s and this interest is

seen in the success of modern symbolic analyzers introduced in [38] [14] [10] [9] [39]

[40] [26] [47] [22] [17].

Knowledge of the behavior of a circuit is very important in its design process for
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an analog integrated circuits (ICs) designer. For this reason, symbolic simulators

become a very useful tool as they give as the result the analytic expression in a

closed form of the circuit presenting the relationships between its parameters, this

being and advantage over repetitive numerical simulations. Additionally symbolic

analysis is useful when many numerical cancellations lead us to large roundoff error.

However we can verify accurately the behavior of a circuit in a numerical simulation,

this is specified only for a set of parameter values contrary to the symbolic simulation

where the returned expression is valid even if the parameter values change (as long

as the circuit topology remains the same).

Symbolic Analysis can be categorized in different approaches: Tree Enumeration

methods, Signal Flow Graph Methods and Determinant based methods.Three Enu-

meration methods were proposed by Maxwell and Kirchhoff and first used for analysis

of RCL networks represented as weighted undirected graphs. The advantage of this

method is that the expressions are irreducible, however, for RLC-gm networks the

tree enumeration cannot be applied directly and tradeoffs between sign calculation

and obtaining cancellation-free product terms are encountered [43]. Unlike Three

Enumeration methods, Signal Flow Graphs are weighted directed graphs but the

product terms obtained by this method are still not irreducible or cancellation-free.

Determinant Based Methods are also not cancellation-free but it has been proven

that topological methods (such as Tree Enumeration methods and Signal Flow Graph

methods) don’t offer any advantage over the later methods [43].

Any circuit transfer function can be obtained by applying Cramer’s rule to the

set of linear equations but solving the determinants in order to obtain the trans-

fer function makes this an exponential space complexity method, in spite of that,
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this drawback can be mitigated by applying recursivity and reusing data structure

elements in order to reduce the memory footprint.



Chapter 2

Symbolic Formulation by Directed

Graph

A very useful and studied tool for the formulation of symbolic expressions by solving a

system of equations via Cramer’s rule is the so called Determinant Decision Diagram

(DDD). Thus Determinant Decision Diagram (DDD) based methods are classified as

a determinant based method. DDDs are adapted from a data structure called Zero

Suppressed Binary Decision Diagram (ZBDD) created in order to manage sparse

subset systems. Two important observations on which determinant decision diagrams

are based are that the admittance matrix representing a circuit is sparse and that a

symbolic expression often shares many subexpressions [42]. In order to formulate the

DDD, the determinant has to be expressed as a sum of products (SOP) which then

are classified via a ZBDD in which every sum is a subset. Thus, DDD is an indirect

method as it involves extra processing and the formulation of the full determinant

beforehand.

In this chapter an approach for the solution of a system of equations based on
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CHAPTER 2. SYMBOLIC FORMULATION BY DIRECTED GRAPH 7

simple graph manipulations is introduced. The main difference stems from the fact

that the graph structure in use is directly formulated from the matrix with no in-

termediate steps. Important observations on which this graph representation was

developed are that the admittance matrix (in this case the nodal admittance matrix

described in [36]) representing a circuit is sparse and that a symbolic expression of-

ten shares many subexpressions, characteristics that the DDD representation shares

in principle. The determinant representation by applying our proposed graph-based

technique is compact, unique and the complexity to obtain the symbolic expression

depends on the size of the graph which in turn depends on the non-zero entries of

the admittance matrix.

The code for all the functions was implemented in C and compiled in a RedHat

Linux environment with the GNU C compiler gcc-4.2, Quad-Core Intel with 24GB

RAM. ANSI-C compliance was considered of importance for migration purposes and

universality, non-compliant functions were avoided.

2.1 Simple Case: Symbolic Determinant without

node reuse

The circuit size is a challenge in performing symbolic analysis because a large number

of symbolic terms are manipulated. Fortunately, this problem is mitigated when

applying a graph-based approach. Every determinant has a unique representation,

and is liable to symbolic manipulations. To understand how this approach works,

lets us consider the following determinant [43]:



CHAPTER 2. SYMBOLIC FORMULATION BY DIRECTED GRAPH 8

Figure 2.1: Graph representation of Equation (2.1)

det(M) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 0

c d e 0

0 f g h

0 0 i j

∣∣∣∣∣∣∣∣∣∣∣∣∣
= adgj − adhi− aefj − bcgj + cbih (2.1)

If the determinant’s size is n × n, we expect to have paths of n + 1 levels. So if

there is a path that is not complete, i.e. that does not have n + 1 levels or that has

a zero in any element of the path, it will be eliminated completely since this means

that this expression is multiplied by zero. This structure is built in a depth-first

fashion. Every element of the graph structure corresponds to a non-zero entry in

the admittance matrix. As a result, for this particular example we obtain the graph

shown in Fig. 2.1, where all multiplications by zero were already omitted.

Path eliminations are performed by sending a prune signal if a zero is found inside

the path. This prune signal is propagated all the way up until a summing point is
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reached so the whole branch does not form part of the final structure and the path is

terminated to zero instead. As one sees, this graph structure implemented is a tree

in which the arithmetic operations are encoded in the depth of the tree node, that

is, different depth implies multiplication while equal depth implies addition. This

leads us to get the expression:

det(M) = a [d (gj − hi) + e (−fj)] + b [c (−gj + hi)] (2.2)

A key point is related to the assignation of signs to each node in the expanded graph.

They are established by applying the rule of signs from Cramer’s rule. When applying

graph methods to evaluate a determinant, not only one can obtain a factorized exact

symbolic expression, but also derive all transfer relationships with respect to each

node, and in a post processing step to each branch circuit variable. The graph

representation shown on this section is compact for large class of analog circuits.

2.2 Advanced Case: Symbolic Determinant with

node reuse

If the determinant is expressed as a SOP in graph form with no reuse of information

the result is a graph with many repetitive terms (Fig. 2.1) corresponding to minors of

the matrix that are repeated as was shown in the previous section. The smallest the

matrix minor, the highest the repetition rate (if they are not zeroed out previously).

In Fig. 2.1 the terms (g · j) and (h · i) are repeated twice. The information in each

node is exactly the same, the only difference being the sign which in the end is trivial
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as it can be easily computed.

The main idea in the algorithm presented in this work is that it is possible to reuse

the information of those repeated nodes. For the previouse example it is possible to

consider the products (g ·j) and (h·i), and for correctness sake also the product (f ·j)

(which are the three non-zeroed product terms for the determinant of the 2x2 minors

of M in Equation (2.1)) as independent subgraphs. So now we have five two-nodded

subgraphs with vertex sets V1 = {g, j}, V2 = {h, i}, V3 = {f, j}, V4 = {g, j} and

V5 = {h, i}. An important observation is that even though it may seem that edges

E1 = {g, j} and E4 = {g, j} are equivalent as they convey the same operation which

is the product (g · j) so the subgraphs G1 = {V1, E1} and G4 = {V4, E4} carry the

same information and can be considered equivalent.

The reusing was possible because the information which made the graphs G1 and

G4 different is somehow stripped from the subgraphs and obtained from somewhere

else. It is possible to extend this idea even more in order to reuse the nodes in the

last row by identifying the information which make nodes with same terms different

from each other. The difference between the subgraphs G1 = G4 and G3 = {V3, E3}

is the ancestor of node j. That is, for G1 = G4 it’s node g so the subgraph represents

the operation g ·j whereas subgraph G3 represents f ·j. Remember that each node is

linked to a non-zero matrix entry1so there is a node for every Arow,col 6= 0, node f is in

turn a representation of A3,2 and node g is A3,3. When visiting node j the question is

”Was the previous node f or j?”. When selecting a pivot Arow,col while formulating

the determinant, row and column are removed, reformulating the previous question

into ”Have we already visited a node from the same column as f?” if the answer is

affirmative then the previous node was g.

1It’s sometimes useful to break a node representing Arow,col term into two or more parallel
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Extending this same procedure to the whole graph, the first obvious consequence

is that there are no repeated nodes, in other words, for a matrix A with nz non-

zero entries, there are nz nodes. So far information conveyed by relationships in the

graph from Fig. 2.1 concerning to the sign of the adjugate matrix and the already

visited columns has been stripped. The adjugate matrix sign can be computed as

given by Equation (2.3) requiring to know row and column. Row is given already

as the depth of a node making necessary to store the information pertaining to the

column into the node.

sign = (−1)row+col (2.3)

The symbolic manipulations performed are agnostic of the origin of the matrix,

that is, the only conditions are that the matrix is square. Each node in the graph

structure corresponds to a matrix non-zero entry, which in turn encapsulates the

summation of one or more circuit elements.

2.2.1 The Advanced Case in detail

Three different data structures are required. The first and most obvious is the node

structure which contains the following fields:

• Node Name: A unique name for the given node. It is assigned as an index

number.

• Terms: An array containing the index and sign of the element (mapping it to

the element table described in section 3.1.1).

nodes.
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• Column: The column of the non-zero entry in the matrix that this node belongs

to.

• Descendants: An array of node pointers linking to the descendants of the

current node in the graph structure.

The second data structure is a Graph type. It is useful to have a Graph structure

with the fields:

• Graph Name: A unique name for the current Graph. It is possible to have

many different Graphs. At least two Graphs are required at first: numerator

and denominator.

• Matrix size: The size of the matrix. Only one dimension is required as the

input is expected to be a square Matrix.

• Root node: The root of the Graph. In the simple AC analysis the root node

is a trivial node with term value equal to 1 and column and row equal to zero.

When multiple Graphs are constructed (ej. Factorization) the root node can

be any of the nz nodes.

• Visited Columns When traversing a Graph to formulate the determinant the

column of a visited node is appended to this array .

The third and final structure is a Matrix type. This structure stores not only the

input Matrix but also the independent vector.

First off, nz + 1 nodes are created (nz = non-zero entries) and their respective

structure fields filled in with the information read directly from the matrix. The
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Row and Column field are useful to compute the sign rule when formulating the

determinant as well as to determine which nodes are to be skipped.

The graph is built starting with a trivial node named 0 with term value of 1. Re-

member the multiplication is codified as depth in the graph. The different nodes are

linked accordingly. The algorithm to build the graph structure for the representation

of |A| is shown as Algorithm 1.

Algorithm 1 buildGraph(A(i, j), Ancestor)

m← number of Columns of A
n← number of Rows of A
D ← set of descendants of Ancestor

Ensure: m > 0 ∧ n = m
function buildgraph(A,Ancestor)

if m > 1 then
prune = 1
for i = 1 to m do

for all Columns j that Ai,j) 6= 0 do
if buildGraph(Cij, Ai,j) 6= 0 then

D = D ∪ Ai,j

prune = 0

else
if Ai,j 6= 0 then

prune = 0

return prune

With the graph already built, the expression for the determinant is then formu-

lated as in Algorithm 2.

The graph structure for the matrix in (2.4) is shown in Fig. 2.2.
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Algorithm 2 Symbolic Determinant from Graph

1. Read the graph in a modified DFS fashion:

(a) Keep track of which columns have been visited

(b) Skip nodes from columns already visited

2. Symbolic expression is the product of a node times the summation of its visited
descendants

a

b

c

e

f

d

g

h

i

j

1

w

w

Figure 2.2: Determinant Graph
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∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 0

c d e 0

0 f g h

0 0 i j

∣∣∣∣∣∣∣∣∣∣∣∣∣
= adgj − adhi− aefj − bcgj + cbih (2.4)

2.3 Symbol Factorization and Symbolic Deriva-

tive

2.3.1 Factorization of Symbol W

Symbol factorization is useful in order to ease numerical evaluation of the expres-

sion and in order to obtain the symbolic derivative with respect to a given symbol.

Factorization takes place by following a simple algorithm (Algorithm 3). The result

is the expression of the determinant as a polynomial represented by an array of sum

of products with one entry for each power of symbol W with non-zero coefficient.

Algorithm 3 Graph to Polynomial

1. Expand the nodes of the graph containing the symbol W

2. Read the graph in DFS fashion and preserve only those routes from root to
bottom with at least one occurrence of symbol W .

3. The number of occurrences of the symbol is the power of W for a given route.

4. Each route is then expressed as a sum of products replacing the symbol for a
one.

5. The summation of all appended routes for each power of W forms the coeffi-
cients.

Suppose we have a matrix (2.5) and we want the polynomial form as powers of
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a

b

c

e

f

d

g

h

i

j

1

w

w

Figure 2.3: Expanded Graph

w. The resulting graph is shown in Fig. 2.3 and the polynomial expression is in

(2.6).

M =



a + w b 0 0

c d e 0

0 f g h

0 0 i j


(2.5)

w0 = adgj − adhi− aefj − bcgj + bchi

w1 = adi + dgj − dhi− efj − bci

w2 = di

(2.6)
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2.3.2 Symbolic Derivative with respect to W

The derivative ∂|A|
∂W

is straightforward as symbol W in the expression |A| has already

been factorized. The graph expansion can be performed in the original structure

generated when obtaining the determinant thus reducing the memory footprint. Ex-

pansions for more than one symbol are possible.

2.3.3 Symbolic Mixed Derivative

It is possible to get a mixed derivative of the form ∂2f
∂W1∂W2

for symbols W1 and

W2. For this purpose we make use of the resulting symbolic expression obtained

previously in Section 2.3.2. Such expression is in the form of a sum of products,

which is further separated in n coefficients (powers of W1 with coefficient 0 are

omitted) of W1. Each coefficient is expressed as a graph, thus obtaining n graphs.

The derivative procedure in Section 2.3.2 is repeated for all n graphs individually

now for the symbol W2. This is useful for some optimization problems where the

Hessian matrix needs to be computed [2].



Chapter 3

Symbolic Analysis with MOSFET

elements

3.1 Implementation of the Graph-Based Approach

The proposed graph-based approach for the solution of a system of equations starts

off with a SPICE netlist as input. The elements implemented are R, C, L, V, I, E, G

and M, being resistor, capacitor, inductor, independent voltage source, independent

current source, voltage controlled voltage source, voltage controlled current source

and MOSFET. Both independent voltage and current sources can be DC, AC or

both.

The netlist is to be used as a way to input the circuit topology along with circuit

elements and values. If the numerical evaluation of the resulting symbolic transfer

functions generated is required, the small signal values for the parasitic elements

and the operating point conditions are read from the output listing in HSPICETM

format. This numeric values are of use when evaluating the transfer function to

18
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verify correctness as well a way to rank the sensitivity. The flow of the tool is shown

in Fig. 3.1

The derivative is computed in an alternative module which is bypassed when the

only output required is the actual transfer function. The algorithm to implement

this symbolic derivative accommodates for consecutive derivatives with respect to

different variables (symbols). The flow of this module is presented in Fig. 3.2.

3.1.1 Parsing the netlist

The first step is to parse the netlist and build suitable data structures for each group

of elements. The symbol given to every device from this point onwards is the same

as its name. To keep consistency, the symbol name is taken exactly as specified

in the netlist (ex. R name, C name, M name, etc) input is not case sensitive and

is parsed as lowercase. Elements are first grouped into one of four different tables:

conductances, independent sources, controlled sources and Mosfet Table 3.1.

Table 3.1: Elements Tables

Table Type Fields

Conductances Name, Node 1, Node 2, Value

Iindependent Sources Name, Node 1, Node 2, DC, AC

Controlled Sources Name, Node 1, Node 2, Node 3, Node 4, Gain

MOSFET Name, Drain, Gate, Source, Bulk, Width,

Length, ModelName

Values for elements and sources are considered strings of characters so the tool

is agnostic of whether they are actually numbers or functions until the numerical

evaluation of the output is performed. The symbol name is always the element

identifier and it’s name exactly as it appears in the netlist. The network relationships
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Figure 3.1: Symbolic Tool Flow
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Figure 3.2: Module for Symbolic Derivative
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of the different elements are codified in their node connections. Because it is a lot

easier to treat nodes as integer indexes, a mapping is created first by building an

array with all the nodes as they appear in the netlist and any duplicate occurrences

are removed.

The tool is intended to perform AC analysis so it is of no use to keep independent

sources with only DC value, as they are only valid in a DC or transient context. When

removing voltage DC sources their nodes are collapsed, while current DC sources

nodes are left floating. Collapsing two nodes in a circuit is equivalent to assigning to

both nodes the same mapping and so is done in this step. If the numerical evaluation

of the resulting transfer function is to be performed, the output listing (.lis file for

HSPICETM) is read and the values for the operating point are parsed and stored

in an array with the same index correspondence as the element symbol array so that

the mapping between the symbols and their numerical values is direct.

Up to this point the elements are separated in groups according to their type,

nodes are collected in a single array and are mapped to indexes to facilitate their

treatment, DC sources are removed.

3.1.2 Small Signal Models and NullOr Equivalents

In the present implementation, active elements are substituted by their controlled

source based small signal model. In turn, controlled sources are modeled with com-

binations of norator and nullator in order to make use of the extensive studies of

NullOr based circuits. The Nullator and Norator are abstract elements with ideal

characteristics [7]. The voltage across the nullator terminals is zero and does not

allow current to flow through it. Even though it has some properties of an open
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circuit it doesn’t have an immittance or a scattering representation.

V1 = V2 = arbitrary, Ix = 0 (3.1)

For the norator, the voltage between its terminals is arbitrary and an arbitrary

current can flow through it. The norator also shows some properties of an open

circuit. The circuit representations of the nullator and norator are shown in Fig.

3.3a.

V1 6= V2 = arbitrary, Ix = arbitrary (3.2)

V1 V2

Ix

(a) Nullator.

V1 V2

Ix

(b) Norator.

Figure 3.3: Pathological element symbol for a) Nullator and b) Norator.

One can combine these elements in order to obtain a new one called Nullor

where,when it is modeled as a two-port element, its first port is the Nullator and the

second is the Norator, that is why the Norator and Nullator receive the name of Nul-

Figure 3.4: Nullor representation of the MOSFET
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lor elements. The Nullator was first introduced by Carlin [4] . This simple element

has proven its usefulness in areas like symbolic analysis. One of the main advantages

of the Nullor elements is that nodal analysis (NA) of an active circuit is simple and

also they can model active circuits independently of the particular realization of the

active devices [7] [46]. For the MOSFET, the Nullor equivalent including the para-

sitic gate-source and gate-drain parasitic capacitances used in the sensitivity analysis

is shown in figure 3.4, therefore for an operational transconductance amplifier (OTA)

its Nullor equivalent would be as shown in Fig. 3.5
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The guidelines for obtaining the nodal admittance matrix by applying nodal

analysis is summarized below for convenience and is explained in detail in [36], [34].

Two sets of pairs of nodes are formed, one for ROWs and one for COLs. These

two sets are then used to form the admittance matrix by performing the Cartesian

product of every subset. In the ROW group a subset is formed for every node with

no Norator connected to it, and a different subset for every group of nodes connected

by floating Norators. In the COL group a subset is formed for every node with no

Nullator connected to it, and a different subset for every group of nodes connected

by floating Nullators. Two groups of admittances are formed, the first (group A)

containing a subset for every node listing all the admittances connected to it, the

other (group B) listing floating admittances with the corresponding pair of nodes. If

a node is present in a subset in ROWs and a subset in COLs then the corresponding

subset of admittances (from group A) is summed at the matrix position (ROW index,

COL index). If a pair of nodes is present, one in a subset of ROWs and the other

in a subset of COLs, the corresponding admittance (from group B) is summed with

negative sign at the matrix position (ROW index, COL index).

Since the method applied is symbolic NA, the independent voltage source is trans-

formed to a current source equivalent circuit. In order to simulate a differential input

in circuits like the differential pair and the three stages operational transconductance

amplifier (OTA) a voltage controlled voltage source which is converted also to a nullor

equivalent is used. The nullor representation of both elements traditionally non-NA

compatibles are shown in Fig. 3.6.

In a previous section it was explained why symbolic modeling is intended to give

an insight into certain behaviors and tendencies of the circuit in question. With this
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Nullor representat ion of non-NA compat ible elements

Independent Voltage Source 1
I=V

Voltage cont rolled voltage source G1 G2

G = G1
G2

Figure 3.6: Nullor representation of non-NA compatible elements

in mind, it is now evident that the more complex the small signal model of a device

the more accurate is the resulting simulation but at the cost of increasing machine

operation time. A compromise can be reached where the qualitative behavior is

roughly preserved at the expense of numerical accuracy. Implemented are three levels

of parasitic elements for the small signal model for the Mosfet:

• Level 0 has no parasitic elements and models only the voltage controlled current

source with gate-source as the controlling branch voltage and transconductance

gm.

• Level 1 accounts for level 0 plus Cgs, Cgd and Gds.

• Level 2 accounts for level 1 plus the voltage controlled current source whose

controlling branch voltage is bulk-source with transconductance gmb.

From this first stage the elements are classified as NA compatible or NA incompat-

ible according to their small signal models. Incompatible elements are then treated
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Figure 3.7: Nullor Equivalent of the MOSFET Differential Pair

as their respective Nullator/Norator (Nullor) equivalents as shown before in Fig. 3.6.

There are two reasons why elements can be incompatible. Firstly if the dependent

variable of the function for a given element is voltage, as is the case for voltage sources

and secondly if the independent variable for the element function is current. The

reason behind this, as the reader may already be aware, is that in nodal analysis

the unknown vector is composed of voltages (node voltages) while the independent

vector is formed by current sources. Then, the need arises to apply a manipulation

such that those conditions are preserved while maintaining a physical equivalence.

On the other hand, a fully differential OTA can be modeled as a single VCCS,

which in turn can be viewed as a pair of MOSFET transistors in differential input

configuration Fig. 3.7.

The ideal conditions for each of the two MOSFETs are kept: infinite input

impedance (zero branch current in input Nullator), zero output impedance (arbi-

trary voltage) and ideal gm. Parasitic elements can then be arranged around this

basic block.
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As explained before a set of Nullator-Norator equivalents are implemented to

account for the intrinsic voltage controlled current source of the Mosfet small signal

model Fig. 3.4, voltage sources and controlled sources Fig. 3.6.

The basic building blocks for the equivalents are the Voltage Follower 3.8a and

the Current Follower 3.8b

(a) Voltage Follower (b) Current Follower

Figure 3.8: Nullor based (a) Voltage Follower and (b) Current Follower

When replacing a certain element with it’s NullOr equivalent there are three basic

operations that have to be performed:

1. Add element to the proper array (nullator, norator, conductance or indepen-

dent source)

2. Add extra nodes if required (MOSFET, Voltage Source, etc.)

3. Assign unique name to element and the extra nodes (as required)

Adding a new element is as easy as appending the new entry to the corresponding

structure (conductance, independent source, nullator or norator) and updating the

number of elements for the given structure. As a list of the nodes originally read from

the netlist is kept, it is easier to keep track of the nodes added afterwards if any new

node is appended at the end of the structure containing the numerical mapping.

When adding an element it is useful if the name is a composition of the name of the
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Figure 3.9: Common Source Small Signal Equivalent

original element it is bound to. For instance, if CGS is included into the model for

the MOSFET named M1, the name of the new parasitic capacitor can be cgs 1. In

this way it becomes easier to tell to which netlist element a given symbol belongs to.

Now that there is a mapping of unique node elements, it is possible to begin

replacing elements for their corresponding NullOr equivalents. For the case of the

MOSFET the small signal model conformed with the selected parasitic elements and

the corresponding NullOr is replaced in the circuit netlist.

3.1.3 Matrix equations formulation

Now that we know the node mappings we can create an adjacency matrix for each

of the elements. From this adjacency matrix the NA formulation is performed by

following the method in [36] which is reproduced here in a short form for convenience

(Algorithm 4).

This procedure is shown for a simple common source circuit as the one shown in

Fig. 3.9.

The formulated groups are shown in Table 3.2. The resulting matrix is a 2 x 2
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Algorithm 4 NA Formulation with NullOr elements

1. Two groups of nodes are formulated, one named ROW and another named
COL. The admittance matrix is formulated by performing the Cartesian prod-
uct of these two groups.

2. Formulate ROW group of nodes:

− Add a subset for each node with no Norator connected to it.

− Add a subset for every chain of nodes connected by floating Norators.

3. Formulate COL group of nodes:

− Add a subset for each node with no Nullator connected to it.

− Add a subset for every chain of nodes connected by floating Nullators.

4. Group A: Admittances seen in a node.

− A set for each node containing all admittances conected to it.

5. Group B: Floating Admittances.

− A set for each floating admittance containing its pair of nodes.

6. Formulate Matrix

− If a node is present in a subset in ROWs and a subset in COLs then the
corresponding subset of admittances (from group A) is summed at the
matrix position (ROW index, COL index).

− If a pair of nodes is present, one in a subset of ROWs and the other in a
subset of COLs, the corresponding admittance (from group B) is summed
with negative sign at the matrix position (ROW index, COL index).
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Table 3.2: NA Formulation

ROWS COLS FLOATING SEEN BY NODE

(1) (1,2,3) (2,4) : sCgd 1 : 1Ohm

(3,4) (4) 2 : sCgs, sCgd

3 : gm

4 : sCgd, gds,
1
Rd
, sCL

system as shown in Equation 3.3.


(1, 2, 3) (4)

(1) 1 0

(3, 4) gm− sCgd −(sCgd + gds + 1
Rd

+ sCL)


 v(1,2,3)

v(4)

 =

 Iin

0

 (3.3)

The solution for this system of equations becomes an application for the symbolic

tool presented in this work. The system of equations is solved by using Cramer’s

rule by computing n + 1 determinants for [v1, v2, · · · , vn]T node voltages in order to

completely define the circuit. For the system of equations Ax = b where A is n x n

matrix, the solution by Cramer’s Rule is given as xi = |b→Ai|
|A| .

3.1.4 Experiments

For the experimental verification the symbolic transfer function of four CMOS and

one BJT (small signal model with Rpi, Cpi, Cmu and Gm VCCS) circuits was com-

puted and time metrics were taken for matrix equations formulation, denominator,
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numerator and transfer function computation. The test cases are the differential pair

and common source shown in Fig. 4.2, the three stages uncompensated OTA in Fig.

3.5 [15], recycling folded cascode OTA [31] and 741 OPAMP respectively as shown

in Table 3.3.

Table 3.3: Symbolic Formulation and Numerical Evaluation of D(s), N(s) and H(s)

Circuit Features Computer Time (seg)

Circuit Elements Nodes Equations D(s) N(s) H(s)

Differential Pair 35 26 1.1235 0.122 0.1464 1.4895

RFC OTA [15] 106 56 1.6603 0.201 0.1869 2.2633

LV Amp 33 18 2.35 0.058 0.0464 2.4544

Common Source 8 6 0.8581 0.041 0.0205 0.9811

741 112 77 0.5123 1.37 0.822 2.7043

The test circuit for the UA741 is a Small-Signal model with R, C and VCCS

elements. This same circuit was tested with the SCAD3 [43] which does not sup-

port reading MOST from netlist, in addition SCAD3 documentation states that the

evaluation has to be performed twice for some obscure reason. The running and

evaluation time reported by SCAD3 is of 2.97s while our tool takes 2.7043s.

Numerical evaluation of the resulting symbolic expression is performed in order

to provide a comparison between a well known and mature technology (HSpiceTM),

a previously developed symbolic tool [42] and our tool. The test circuit is the same

Differential Pair from Fig. 4.2b where the input to SCAD3 has been converted to

VCCS equivalents. The AC analysis output is shown in Fig. 3.10.

Numerical evaluation of the resulting expressions for the RFC OTA [15] are shown

in Fig. 3.11.
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Chapter 4

Symbolic Noise Analysis

Noise is an effect present in passive elements as well as in active ones. It can internal

or external, random or repetitive. Usually it is modeled by a current source which

can be valid only in a definite band of frequencies [48]. In a MOST there are three

main sources of noise: thermal, flicker and shot noise [24] [12] [45]. Importance of

noise in the drain current of a MOST is of great importance for analog and RF

circuits [33].

The traditional approach to noise analysis is with the use of numerical simulators

given the high speed of operation. However, a numerical simulator does not show

exactly which element in the circuit is noisier.

Noise is defined as any signal whose amplitude is random in function of the

time. The amplitude of such signal at a given instant of time cannot be predicted

although past values are known. Noise is characterized statistically rather than as a

deterministic quantity. Noise in electronic circuits is caused by tiny fluctuations in

current or voltage. The noise magnitude sets a lower limit on the signal that a given

system can detect and effectively react to. Noise can be reduced and shaped but not

36
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eliminated since it is due to fundamental mechanics in physical implementations of

electronic circuits.

Chapter 2 of [35] gives a very thorough treatment of noise in electronic circuits.

4.1 Noise Sources and equations

To perform noise analysis, a thermal noise current source is attached in parallel to

every resistance (Fig. 4.1a) (capacitors and inductors are considered noiseless) and a

noise current source accounting for both thermal and flicker noise connected between

drain and source for every MOSFET (Fig. 4.1b). Each of these noise sources has a

value represented by a symbol which is substituted by the corresponding symbolic

noise equation [1] shown on Table 4.1 just after the transfer function is formulated.

(a) (b)

Figure 4.1: Noise Sources in (a) Resistor and (b) MOSFET

In order to solve the system for a given node as output, at least two determi-

nants are calculated: one for the original admittance matrix in order to obtain the

denominator and the other for the admittance matrix with the independent sources

vector substituting the column of the desired output node to obtain the numerator.

Additional determinants for the denominator must be computed if superposition of

independent sources has to be performed. Symbolic determinants are formulated



CHAPTER 4. SYMBOLIC NOISE ANALYSIS 38

Table 4.1: Noise Equations

NOISE THERMAL NOISE FLICKER NOISE

MODEL CURRENT SOURCE CURRENT SOURCE

Resistor 4
3
kT 1

R
–

NLEV 0 8
3
kTgm

KF ·IDAF

(COX ·Leff2f)

NLEV 1 8
3
kTgm

KF ·IDAF

(COX ·Leff2·Weff2f)

NLEV 2 8
3
kTgm

KF ·g2m
(COX ·Leff2·Weff2·fAF )

by using graph structures as described in Section 2 where a symbol is generated

for every element of the Nullor equivalent circuit which conveniently contains only

Norators, Nullators, impedances and current sources.

4.2 Numerical evaluation and validation

A final step consists of evaluating both s = wj and f (frequency in flicker noise

Equations 4.1) symbols in order to plot the output noise versus frequency, the output

noise table reported in the output listing of the HSpiceTM simulation is read and

stored in vectors and then a superimposition of both plots is shown in order to

compare results.

Three amplifier circuits are [28] [6] evaluated: common source, differential pair

and an uncompensated three stages amplifier.

Noise sources are added as explained before: one current noise source accounting

for both thermal and flicker noise for each transistor and a current noise source for

every resistance.

The symbolic voltage noise output expression for the amplifier in Fig. 4.2a is

formulated ( 4.1) for NLEV=0. It is evident that the automatic results provided
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by the tool coincide with hand calculation for the output noise. Remember that for

NLEV 0 the term gm2 is not present and instead ID
AF is used.

V 2
n,out =

8
3
kt(gds + gm + gmb) + 4kt

rd
+ ID

AF ·KF ·TOX
Leff2·EOX·f

(gds + s · cgd + 1/rD)2
(4.1)

The symbolic expression for the common source amplifier is then evaluated and

plotted against the HSpiceTM results in Fig.4.3 for NLEV 0 and in Fig.4.4 and

Fig.4.5 for NLEV 1 and 2 respectively. In Figs.4.6, 4.7, 4.8 the responses for the

differential pair and Figs.4.9, 4.10, 4.11 the responses for the three stage amplifier

are plotted for NLEV 0, 1 and 2.
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(a) Common Source. (b) Differential Pair.

(c) Three stages uncompensated amplifier.

Figure 4.2: Nullor equivalents of the amplifier circuits.
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Figure 4.3: Common Source Output response with Nlev 0 Noise Equations.
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Figure 4.4: Common Source Output response with Nlev 1 Noise Equations.
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Figure 4.5: Common Source Output response with Nlev 2 Noise Equations.
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Figure 4.6: Differential Pair output response with Nlev 0 Noise Equations.



CHAPTER 4. SYMBOLIC NOISE ANALYSIS 43

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Frequency (Hz)

N
o
is

e
 (

V
/s

q
rt

(H
z
)

Differential Pair − NLEV 1

 

 

HSpice

Symbolic

Figure 4.7: Differential Pair output response with Nlev 1 Noise Equations.
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Figure 4.8: Differential Pair output response with Nlev 2 Noise Equations.
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Figure 4.9: Three stage amplifier output response with Nlev 0 Noise Equations.
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Figure 4.10: Three stage amplifier output response with Nlev 1 Noise Equations.
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Figure 4.11: Three stage amplifier output response with Nlev 2 Noise Equations.



Chapter 5

Simbolic Sensitivity Analysis

Sensitivity analysis is very important in IC design since it helps us to optimize the

behavior of a given circuit, by showing us which components of the entire system are

more sensitive [30]. Also it can help us to reduce costs of production given that we can

replace the less sensitive components with cheaper ones and critical components with

high quality components. Moreover, it is worthy mentioning that the advantage of

our proposed graph-based technique is extended for the symbolic sensitivity analysis

of analog ICs. We highlight that it is easier to compute sensitivities of any analytical

expression with respect to one or many parameters, provided that a symbolic transfer

function exist.

5.1 Sensitivity Analysis

Circuit sensitivity can be defined as the influence of a change in the character-

istics how much a particular circuit characteristic changes as a particular circuit-

component value varies. This gives us an insight how creation parameters influence
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in the response of a specific circuit. Here, AC sensitivities will be treated. For

instances, one of the more popular notions used in circuit design is the andjoint

network analysis [20], also implemented in the circuit simulator SPICE. The draw-

back of using SPICE to obtain the sensitivity of an analog IC with respect to a

given circuit element, is that one has to execute AC sensitivity, then calculate the

finite difference and apply normalization to get the numerical sensitivity. Subse-

quently, one need to plot the real and imaginary parts versus the frequency ω to

generate the sensitivity curves. This is the main reason why we propose to apply

our proposed graph-based tool to compute symbolic sensitivities of analog ICs. In

fact, graph-based approaches can also be applied to compute symbolic sensitivities

of large analog ICs in a hierarchical fashion as shown in [25] for the DDD-approach.

Given the transfer function H(s) seen as:

H(s) =
N(s)

D(s)
(5.1)

where both N(s) and D(s) can be represented by a graph. The ac-sensitivity is given

by the following normalized equation:

Sens(H(s),W ) =
W

H(s)

∂H(s)

∂W
(5.2)

Substituting (5.1) in (5.2) and applying the chain rule we have:

Sens (H(s),W ) =

(
WD(s)

N(s)

)( ∂N(s)
∂W

D(s)−N(s)∂D(s)
∂W

D2(s)

)
(5.3)
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Figure 5.1: Resulting graph by applying the derivative

Regrouping similar terms in (5.3) we get to the expression shown in (5.4).

Sens(H(s),W ) = W

(
1

N(s)

∂N(s)

∂W
− 1

D(s)

∂D(s)

∂W

)
(5.4)

Equation (5.4) is quite suitable to perform symbolic sensitivity computation of ana-

log ICs. For instance, one advantage in applying DDDs, is that in the resulting sum

of symbolic product-terms, one can derive each product with respect to the desired

variable, directly. Moreover, that desired symbolic variable in the tree can be re-

placed by 1 in the paths it is contained, while eliminating those paths that does not

contain the symbolic variable [30].

If we want to get the derivative expression with respect to h in equation (2.2) for

example, the resultant expanded graph would be as shown in Fig. 5.1
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Symbol Symbolic Numerical
W Sens(H(s), W) Sens(H(s), W)

gm1
gm1 r1

gm1 r1− cgd1 r1 s
s=0, 1.00001

RD r1((gm1 − cgd1s)/(gds1r1 + s(cgd1r1 + c1r1) + 1)− s=0, 0.804
((gm1r1 − cgd1r1s)(gds1 + s(cgd1 + c1))/(gds1r1+

s(cgd1r1 + c1r1) + 1)2)(gds1r1 + s(cgd1r1 + c1r1) + 1))/
(gm1r1 − cgd1r1s)

Table 5.1: Sensitivity with respect to gm1 and RD

Hence, the symbolic derivative expression for equation (2.2) becomes:

h = g + a (5.5)

Symbolic sensitivity expression for a Common Source is shown. Sensitivity is

formulated for gm1 and RD and the numerical evaluation is performed as shown in

Table 5.1.



Chapter 6

Conclusions

In this work a new approach to the representation of symbolic determinants is pro-

posed. This new technique extends over the previously known SOP graph represen-

tation with the aim to avoid redundant information.

Experiments were performed to test for correctness when performing the different

analysis where good agreement between the numerical evaluation of the symbolic

expressions and the results provided by an industry trusted numerical simulator

(HSpiceTM) are presented.

Besides, the developed tool can run with the same netlist for input that HSpiceTM

handles avoiding the need for intermediary processing steps. With this approach it

is possible to fully define the circuit variables in terms of node voltages or current

branches. As well, noise figures can be computed in any node or branch.

Symbolic evaluation of output noise figures have already been reported in [44]

and in [27]. The application of a new graph based technique as an efficient way to

represent and solve for the determinant is joined and noise analysis is presented a a

case study.
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An additional advantage is the highly parallel nature of the resulting structure

which comes handy when evaluating big matrices with todays multi-core computing

systems. The formulated fully symbolic expressions represent the system to the

highest accuracy bringing the possibility to perform with more detail analysis which

benefit greatly by using symbolic expressions.



Chapter 7

Future Work

Several areas for implementation of the present tool are viable. Some of them which

are of interest to the author are presented.

For instance, it is possible to implement new analysis to the resulting symbolic

determinants like Model Order Reduction techniques previous to formulation, during

formulation and post formulation.

The use of a symbolic processor as the sole tool for circuit analysis is impractical

due to the size of current circuits. It is easier for the designer to throw more CPU

cores into a problem and use the current numerical simulators. However, it’s be-

coming of great interest the development of problem solving environments in which

symbolic tools are used to abstract information about who are the trouble mak-

ers in a system along with the traditional approach of using numeric simulators.

In this tenor, the present work is provided as a step towards the integration of a

symbolic-numeric co-simulator.

A new area worth of exploring is the use of this simbolic tool in order to select

the proper approach to the numeric solution, that is, tweak the numeric solution
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algorithm implementation according to the circuit characteristic of interest in order

to improve accuracy, reduce computer time or both.
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Appendix A

Symbolic Expressions

Symbolic expressions for amplifiers in Fig. 4.2

A.1 Common Source

For the differential pair shown in Fig. 4.2a.

A.1.1 Denominator D(s)

(−1/r1− s ∗ cgd1 − gds1 − s ∗ cdtot1) ∗ 1

A.1.2 Numerator N(s)

((−s ∗ cgd1 + gm1) ∗ 1)

A.1.3 Transfer Function H(s) = N(s) / D(s)

−(gm1 − cgd1 ∗ s)/(gds1 + cdtot1 ∗ s + cgd1 ∗ s + 1/r1)
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A.1.4 Sensitivity Sens(H(s), gm1)

gm1/(gm1 − cgd1 ∗ s)

A.2 Differential Pair

For the differential pair shown in Fig. 4.2b.

A.2.1 Denominator D(s)

((−s∗cgd4+gm4)∗((−s∗cgs1−gm1−gds1−s∗cdtot1−gmb1−s∗cgs2−gm2−gds2−

s∗cdtot2−gmb2−s∗cgd5−gds5−s∗cdtot5)∗(−s∗cgd4)∗1∗gev21∗gev22+(−gds2−

s∗ cdtot2)∗ (−gds1−s∗ cdtot1−gm1−gmb1)∗1∗gev21 ∗gev22)+(gds2 +s∗ cdtot2 +

gm2+gmb2)∗((gds1+s∗cdtot1)∗(−s∗cgd4)∗1∗gev21∗gev22+(−gds2−s∗cdtot2)∗(s∗

cgd1+gds1+s∗cdtot1+s∗cgs3+gds3+s∗cdtot3+s∗cgs4+s∗cgd4+gm3)∗1∗gev21∗

gev22)+(s∗cgd2 +gds2 +s∗cdtot2 +s∗cgd4 +gds4 +s∗cdtot4)∗ ((gds1 +s∗cdtot1)∗

(−gds1−s∗cdtot1−gm1−gmb1)∗1∗gev21∗gev22+(s∗cgs1+gm1+gds1+s∗cdtot1+

gmb1+s∗cgs2+gm2+gds2+s∗cdtot2+gmb2+s∗cgd5+gds5+s∗cdtot5)∗(s∗cgd1+

gds1+s∗cdtot1+s∗cgs3+gds3+s∗cdtot3+s∗cgs4+s∗cgd4+gm3)∗1∗gev21∗gev22))

A.2.2 Numerator N(s)

(((−s ∗ cgd4 + gm4) ∗ ((−s ∗ cgs1 − gm1) ∗ (gds1 + s ∗ cdtot1 + gm1 + gmb1) ∗ 1 ∗

(−gev21) ∗ (−gev12) + (−s ∗ cgs1− gm1− gds1− s ∗ cdtot1− gmb1− s ∗ cgs2− gm2−

gds2−s∗cdtot2−gmb2−s∗cgd5−gds5−s∗cdtot5)∗ (s∗cgd1−gm1)∗1∗ (−gev21)∗

(−gev12) + (−s ∗ cgs2 − gm2) ∗ (−gds1 − s ∗ cdtot1 − gm1 − gmb1) ∗ 1 ∗ (−gev11) ∗

gev22) + (gds2 +s∗ cdtot2 +gm2 +gmb2)∗ ((−s∗ cgs1−gm1)∗ (−s∗ cgd1−gds1−s∗
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cdtot1−s∗cgs3−gds3−s∗cdtot3−s∗cgs4−s∗cgd4−gm3)∗1∗(−gev21)∗(−gev12)+

(gds1 + s ∗ cdtot1) ∗ (s ∗ cgd1 − gm1) ∗ 1 ∗ (−gev21) ∗ (−gev12) + (−s ∗ cgs2 − gm2) ∗

(s ∗ cgd1 + gds1 + s ∗ cdtot1 + s ∗ cgs3 + gds3 + s ∗ cdtot3 + s ∗ cgs4 + s ∗ cgd4 + gm3) ∗

1 ∗ (−gev11) ∗ gev22) + (−s ∗ cgd2 + gm2) ∗ ((gds1 + s ∗ cdtot1) ∗ (−gds1− s ∗ cdtot1−

gm1− gmb1) ∗ 1 ∗ (−gev11) ∗ gev22 + (s ∗ cgs1 + gm1 + gds1 + s ∗ cdtot1 + gmb1 + s ∗

cgs2+gm2+gds2+s∗cdtot2+gmb2+s∗cgd5+gds5+s∗cdtot5)∗(s∗cgd1+gds1+s∗

cdtot1 +s∗ cgs3 +gds3 +s∗ cdtot3 +s∗ cgs4 +s∗ cgd4 +gm3)∗1∗ (−gev11)∗gev22)))

A.2.3 Transfer Function H(s) = N(s) / D(s)

−((gev11∗gev22∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗

s+cgs4 ∗s)∗ (gds1 +gds2 +gds5 +gm1 +gm2 +gmb1 +gmb2 +cdtot1 ∗s+cdtot2 ∗s+

cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)−gev11∗gev22∗(gds1+cdtot1∗s)∗(gds1+gm1+

gmb1+cdtot1∗s))∗(gm2−cgd2∗s)+(gm4−cgd4∗s)∗(gev12∗gev21∗(gm1+cgs1∗s)∗

(gds1+gm1+gmb1+cdtot1∗s)−gev12∗gev21∗(gm1−cgd1∗s)∗(gds1+gds2+gds5+

gm1+gm2+gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗

s)+gev11∗gev22∗(gm2+cgs2∗s)∗(gds1+gm1+gmb1+cdtot1∗s))−(gev12∗gev21∗

(gm1+cgs1∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+

cgs4 ∗s)+gev11 ∗gev22 ∗(gm2 +cgs2 ∗s)∗(gds1 +gds3 +gm3 +cdtot1 ∗s+cdtot3 ∗s+

cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−gev12∗gev21∗(gds1+cdtot1∗s)∗(gm1−cgd1∗

s))∗(gds2+gm2+gmb2+cdtot2∗s))/((gev21∗gev22∗(gds2+cdtot2∗s)∗(gds1+gm1+

gmb1 +cdtot1 ∗s)+cgd4 ∗gev21 ∗gev22 ∗s∗ (gds1 +gds2 +gds5 +gm1 +gm2 +gmb1 +

gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s))∗(gm4−cgd4∗s)+

(gev21∗gev22∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+

cgs4∗s)∗(gds1+gds2+gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗
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s+cgd5∗s+cgs1∗s+cgs2∗s)−gev21∗gev22∗(gds1+cdtot1∗s)∗(gds1+gm1+gmb1+

cdtot1 ∗s))∗ (gds2 +gds4 +cdtot2 ∗s+cdtot4 ∗s+cgd2 ∗s+cgd4 ∗s)− (gev21 ∗gev22 ∗

(gds2+cdtot2∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗

s+cgs4∗s)+cgd4∗gev21∗gev22∗s∗(gds1+cdtot1∗s))∗(gds2+gm2+gmb2+cdtot2∗s))

A.2.4 Sensitivity Sens(H(s), gm1)

(gm1∗(((gm4−cgd4∗s)∗(gev12∗gev21∗(gm1+cgs1∗s)−gev12∗gev21∗(gm1−cgd1∗

s)+gev11∗gev22∗(gm2+cgs2∗s)−gev12∗gev21∗(gds1+gds2+gds5+gm1+gm2+

gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)+gev12∗gev21∗

(gds1+gm1+gmb1+cdtot1∗s))−(gev12∗gev21∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗

s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−gev12∗gev21∗(gds1+cdtot1∗s))∗(gds2+gm2+

gmb2+cdtot2∗s)+(gev11∗gev22∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+

cgd4∗s+cgs3∗s+cgs4∗s)−gev11∗gev22∗(gds1+cdtot1∗s))∗(gm2−cgd2∗s))/((gev21∗

gev22∗(gds2+cdtot2∗s)∗(gds1+gm1+gmb1+cdtot1∗s)+cgd4∗gev21∗gev22∗s∗(gds1+

gds2+gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗

s+cgs2∗s))∗(gm4−cgd4∗s)+(gev21∗gev22∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗

s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)∗(gds1+gds2+gds5+gm1+gm2+gmb1+gmb2+

cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)−gev21∗gev22∗(gds1+cdtot1∗

s)∗(gds1+gm1+gmb1+cdtot1∗s))∗(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗

s)−(gev21∗gev22∗(gds2+cdtot2∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗

s+cgd4∗s+cgs3∗s+cgs4∗s)+cgd4∗gev21∗gev22∗s∗(gds1+cdtot1∗s))∗(gds2+gm2+

gmb2+cdtot2∗s))−(((gev21∗gev22∗(gds2+cdtot2∗s)+cgd4∗gev21∗gev22∗s)∗(gm4−

cgd4∗s)+(gev21∗gev22∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+

cgs3∗s+cgs4∗s)−gev21∗gev22∗(gds1+cdtot1∗s))∗(gds2+gds4+cdtot2∗s+cdtot4∗s+
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cgd2∗s+cgd4∗s))∗((gev11∗gev22∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+

cgd4∗s+cgs3∗s+cgs4∗s)∗(gds1+gds2+gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+

cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)−gev11∗gev22∗(gds1+cdtot1∗s)∗(gds1+

gm1+gmb1+cdtot1∗s))∗(gm2−cgd2∗s)+(gm4−cgd4∗s)∗(gev12∗gev21∗(gm1+cgs1∗

s)∗(gds1+gm1+gmb1+cdtot1∗s)−gev12∗gev21∗(gm1−cgd1∗s)∗(gds1+gds2+gds5+

gm1+gm2+gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)+

gev11∗gev22∗(gm2+cgs2∗s)∗(gds1+gm1+gmb1+cdtot1∗s))−(gev12∗gev21∗(gm1+

cgs1∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)+

gev11∗gev22∗(gm2+cgs2∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗

s+cgs3∗s+cgs4∗s)−gev12∗gev21∗(gds1+cdtot1∗s)∗(gm1−cgd1∗s))∗(gds2+gm2+

gmb2+cdtot2∗s)))/((gev21∗gev22∗(gds2+cdtot2∗s)∗(gds1+gm1+gmb1+cdtot1∗s)+

cgd4∗gev21∗gev22∗s∗(gds1+gds2+gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+cdtot2∗

s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s))∗(gm4−cgd4∗s)+(gev21∗gev22∗(gds1+gds3+

gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)∗(gds1+gds2+gds5+

gm1+gm2+gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)−

gev21∗gev22∗(gds1+cdtot1∗s)∗(gds1+gm1+gmb1+cdtot1∗s))∗(gds2+gds4+cdtot2∗

s+cdtot4∗s+cgd2∗s+cgd4∗s)−(gev21∗gev22∗(gds2+cdtot2∗s)∗(gds1+gds3+gm3+

cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)+cgd4∗gev21∗gev22∗s∗(gds1+

cdtot1∗s))∗(gds2+gm2+gmb2+cdtot2∗s))2)∗((gev21∗gev22∗(gds2+cdtot2∗s)∗(gds1+

gm1+gmb1+cdtot1∗s)+cgd4∗gev21∗gev22∗s∗(gds1+gds2+gds5+gm1+gm2+gmb1+

gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s))∗(gm4−cgd4∗s)+

(gev21∗gev22∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗

s)∗(gds1+gds2+gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗

s+cgs1∗s+cgs2∗s)−gev21∗gev22∗(gds1+cdtot1∗s)∗(gds1+gm1+gmb1+cdtot1∗s))∗
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(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗s)−(gev21∗gev22∗(gds2+cdtot2∗

s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)+cgd4∗

gev21∗gev22∗s∗(gds1+cdtot1∗s))∗(gds2+gm2+gmb2+cdtot2∗s)))/((gev11∗gev22∗

(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)∗(gds1+

gds2+gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗

s+cgs2∗s)−gev11∗gev22∗(gds1+cdtot1∗s)∗(gds1+gm1+gmb1+cdtot1∗s))∗(gm2−

cgd2∗s)+(gm4−cgd4∗s)∗(gev12∗gev21∗(gm1+cgs1∗s)∗(gds1+gm1+gmb1+cdtot1∗

s)−gev12∗gev21∗(gm1−cgd1∗s)∗(gds1+gds2+gds5+gm1+gm2+gmb1+gmb2+

cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)+gev11∗gev22∗(gm2+cgs2∗

s)∗(gds1+gm1+gmb1+cdtot1 ∗s))−(gev12∗gev21 ∗(gm1+cgs1 ∗s)∗(gds1+gds3+

gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)+gev11∗gev22∗(gm2+

cgs2∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗

s)−gev12∗gev21∗(gds1+cdtot1∗s)∗(gm1−cgd1∗s))∗(gds2+gm2+gmb2+cdtot2∗s))

A.3 Three Stages Uncompensated OTA

For the differential pair shown in Fig. 4.2c

A.3.1 Denominator D(s)

((s∗cgs8+gm8)∗((−gds2−s∗cdtot2)∗((−s∗cgd1−gds1−s∗cdtot1−s∗cgs3−gds3−

s∗cdtot3−s∗cgs4−s∗cgd4−gm3)∗(−gds2−s∗cdtot2−gm2−gmb2)∗(−s∗cgs8)∗1∗

gev21 ∗gev22 +(−gds1−s∗cdtot1−gm1−gmb1)∗ (−s∗cgd4 +gm4)∗ (−s∗cgs8)∗1∗

gev21∗gev22)+(gds1+s∗cdtot1)∗(s∗cgd4∗(−gds2−s∗cdtot2−gm2−gmb2)∗(−s∗

cgs8)∗1∗gev21∗gev22+(−gds1−s∗cdtot1−gm1−gmb1)∗(s∗cgd2+gds2+s∗cdtot2+

s∗cgd4+gds4+s∗cdtot4+s∗cgs6+s∗cgd6)∗(−s∗cgs8)∗1∗gev21∗gev22)+(s∗cgs1+
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gm1+gds1+s∗cdtot1+gmb1+s∗cgs2+gm2+gds2+s∗cdtot2+gmb2+s∗cgd5+gds5+

s∗cdtot5)∗(s∗cgd4∗(−s∗cgd4+gm4)∗(−s∗cgs8)∗1∗gev21∗gev22+(s∗cgd1+gds1+s∗

cdtot1+s∗cgs3+gds3+s∗cdtot3+s∗cgs4+s∗cgd4+gm3)∗(s∗cgd2+gds2+s∗cdtot2+

s∗cgd4+gds4+s∗cdtot4+s∗cgs6+s∗cgd6)∗(−s∗cgs8)∗1∗gev21∗gev22))+(s∗cl+s∗

cgs8+gm8+gds8+s∗cdtot8+gmb8+s∗cgd9+gds9+s∗cdtot9)∗((gds2+s∗cdtot2)∗

((s∗cgd1+gds1+s∗cdtot1+s∗cgs3+gds3+s∗cdtot3+s∗cgs4+s∗cgd4+gm3)∗(gds2+

s∗cdtot2+gm2+gmb2)∗(−s∗cgd6−gds6−s∗cdtot6−s∗cgd7−gds7−s∗cdtot7−s∗

cgs8−s∗cgd8)∗1∗gev21 ∗gev22 +(gds1 +s∗cdtot1 +gm1 +gmb1)∗ (s∗cgd4−gm4)∗

(−s∗cgd6−gds6−s∗cdtot6−s∗cgd7−gds7−s∗cdtot7−s∗cgs8−s∗cgd8)∗1∗gev21∗

gev22)+(−gds1−s∗cdtot1)∗((−s∗cgd4)∗(gds2+s∗cdtot2+gm2+gmb2)∗(−s∗cgd6−

gds6−s∗cdtot6−s∗cgd7−gds7−s∗cdtot7−s∗cgs8−s∗cgd8)∗1∗gev21∗gev22+(gds1+

s∗cdtot1+gm1+gmb1)∗((−s∗cgd6)∗(s∗cgd6−gm6)∗1∗gev21∗gev22+(−s∗cgd2−

gds2−s∗cdtot2−s∗cgd4−gds4−s∗cdtot4−s∗cgs6−s∗cgd6)∗(−s∗cgd6−gds6−s∗

cdtot6−s∗cgd7−gds7−s∗cdtot7−s∗cgs8−s∗cgd8)∗1∗gev21∗gev22))+(−s∗cgs1−

gm1−gds1−s∗cdtot1−gmb1−s∗cgs2−gm2−gds2−s∗cdtot2−gmb2−s∗cgd5−gds5−

s∗cdtot5)∗((−s∗cgd4)∗(s∗cgd4−gm4)∗(−s∗cgd6−gds6−s∗cdtot6−s∗cgd7−gds7−

s∗cdtot7−s∗cgs8−s∗cgd8)∗1∗gev21∗gev22+(−s∗cgd1−gds1−s∗cdtot1−s∗cgs3−

gds3−s∗cdtot3−s∗cgs4−s∗cgd4−gm3)∗ ((−s∗cgd6)∗ (s∗cgd6−gm6)∗1∗gev21 ∗

gev22+(−s∗cgd2−gds2−s∗cdtot2−s∗cgd4−gds4−s∗cdtot4−s∗cgs6−s∗cgd6)∗(−s∗

cgd6−gds6−s∗cdtot6−s∗cgd7−gds7−s∗cdtot7−s∗cgs8−s∗cgd8)∗1∗gev21∗gev22))))

A.3.2 Numerator N(s)

((s∗ cgs8 +gm8)∗ ((gds1 +s∗ cdtot1)∗ ((−gds1−s∗ cdtot1−gm1−gmb1)∗ (s∗ cgd2−

gm2)∗(s∗cgd6−gm6)∗1∗(−gev21)∗(−gev12)+(−s∗cgd1+gm1)∗(gds2+s∗cdtot2+
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gm2 + gmb2) ∗ (s ∗ cgd6− gm6) ∗ 1 ∗ (−gev11) ∗ gev22) + (s ∗ cgs1 + gm1 + gds1 + s ∗

cdtot1 +gmb1 +s∗cgs2 +gm2 +gds2 +s∗cdtot2 +gmb2 +s∗cgd5 +gds5 +s∗cdtot5)∗

((s∗cgd1+gds1+s∗cdtot1+s∗cgs3+gds3+s∗cdtot3+s∗cgs4+s∗cgd4+gm3)∗(s∗

cgd2−gm2)∗(s∗cgd6−gm6)∗1∗(−gev21)∗(−gev12)+(−s∗cgd1+gm1)∗(s∗cgd4−

gm4) ∗ (s ∗ cgd6− gm6) ∗ 1 ∗ (−gev11) ∗ gev22) + (s ∗ cgs2 + gm2) ∗ ((s ∗ cgd1 + gds1 +

s∗ cdtot1 + s∗ cgs3 + gds3 + s∗ cdtot3 + s∗ cgs4 + s∗ cgd4 + gm3)∗ (gds2 + s∗ cdtot2 +

gm2 + gmb2) ∗ (s ∗ cgd6− gm6) ∗ 1 ∗ (−gev21) ∗ (−gev12) + (gds1 + s ∗ cdtot1 + gm1 +

gmb1) ∗ (s ∗ cgd4 − gm4) ∗ (s ∗ cgd6 − gm6) ∗ 1 ∗ (−gev21) ∗ (−gev12)) + (−s ∗ cgs1 −

gm1) ∗ ((s ∗ cgd1 + gds1 + s ∗ cdtot1 + s ∗ cgs3 + gds3 + s ∗ cdtot3 + s ∗ cgs4 + s ∗ cgd4 +

gm3)∗(gds2+s∗cdtot2+gm2+gmb2)∗(s∗cgd6−gm6)∗1∗(−gev11)∗gev22+(gds1+

s ∗ cdtot1 + gm1 + gmb1) ∗ (s ∗ cgd4− gm4) ∗ (s ∗ cgd6− gm6) ∗ 1 ∗ (−gev11) ∗ gev22)))

A.3.3 Transfer Function H(s) = N(s) / D(s)

((gm8 +cgs8 ∗s)∗ ((gev11 ∗gev22 ∗ (gm6−cgd6 ∗s)∗ (gds2 +gm2 +gmb2 +cdtot2 ∗s)∗

(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−gev11∗

gev22∗(gm4−cgd4∗s)∗(gm6−cgd6∗s)∗(gds1+gm1+gmb1+cdtot1∗s))∗(gm1+cgs1∗

s)−(gev12∗gev21∗(gm2−cgd2∗s)∗(gm6−cgd6∗s)∗(gds1+gds3+gm3+cdtot1∗s+

cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−gev11∗gev22∗(gm1−cgd1∗s)∗(gm4−

cgd4∗s)∗(gm6−cgd6∗s))∗(gds1+gds2+gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+

cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)+(gev12∗gev21∗(gm6−cgd6∗s)∗(gds2+

gm2+gmb2+cdtot2∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+

cgs3∗s+cgs4∗s)−gev12∗gev21∗(gm4−cgd4∗s)∗(gm6−cgd6∗s)∗(gds1+gm1+gmb1+

cdtot1∗s))∗(gm2+cgs2∗s)+(gev12∗gev21∗(gm2−cgd2∗s)∗(gm6−cgd6∗s)∗(gds1+

gm1+gmb1+cdtot1∗s)−gev11∗gev22∗(gm1−cgd1∗s)∗(gm6−cgd6∗s)∗(gds2+gm2+
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gmb2+cdtot2∗s))∗(gds1+cdtot1∗s)))/(((gev21∗gev22∗(gds2+gm2+gmb2+cdtot2∗

s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s)∗(gds1+

gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−gev21∗gev22∗

(gm4−cgd4∗s)∗(gds1+gm1+gmb1+cdtot1∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+

cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s))∗(gds2+cdtot2∗s)−((gev21∗gev22∗(gds2+gds4+

cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗s+cgd6∗s+cgs6∗s)∗(gds6+gds7+cdtot6∗s+

cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s)+cgd6∗gev21∗gev22∗s∗(gm6−cgd6∗

s))∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)+

cgd4∗gev21∗gev22∗s∗(gm4−cgd4∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+

cgd7∗s+cgd8∗s+cgs8∗s))∗(gds1+gds2+gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+

cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)+((gev21∗gev22∗(gds2+gds4+cdtot2∗

s+cdtot4∗s+cgd2∗s+cgd4∗s+cgd6∗s+cgs6∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+

cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s)+cgd6∗gev21∗gev22∗s∗(gm6−cgd6∗s))∗(gds1+

gm1+gmb1+cdtot1∗s)+cgd4∗gev21∗gev22∗s∗(gds2+gm2+gmb2+cdtot2∗s)∗(gds6+

gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s))∗(gds1+cdtot1∗s))∗

(gds8 +gds9 +gm8 +gmb8 +cdtot8 ∗s+cdtot9 ∗s+cgd9 ∗s+cgs8 ∗s+cl∗s)− (gm8 +

cgs8∗s)∗((cgs8∗gev21∗gev22∗s∗(gds2+gm2+gmb2+cdtot2∗s)∗(gds1+gds3+gm3+

cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−cgs8∗gev21∗gev22∗s∗(gm4−

cgd4∗s)∗(gds1+gm1+gmb1+cdtot1∗s))∗(gds2+cdtot2∗s)−(cgs8∗gev21∗gev22∗s∗

(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗s+cgd6∗s+cgs6∗s)∗(gds1+gds3+

gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)+cgd4∗cgs8∗gev21∗

gev22∗s2∗(gm4−cgd4∗s))∗(gds1+gds2+gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+

cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)+(cgs8∗gev21∗gev22∗s∗(gds1+gm1+

gmb1+cdtot1∗s)∗(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗s+cgd6∗s+cgs6∗
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s)+cgd4∗cgs8∗gev21∗gev22∗s2∗(gds2+gm2+gmb2+cdtot2∗s))∗(gds1+cdtot1∗s)))

A.3.4 Sensitivity Sens(H(s), gm1)

(gm1 ∗ (((gev21 ∗ gev22 ∗ (gds2 + gm2 + gmb2 + cdtot2 ∗ s) ∗ (gds6 + gds7 + cdtot6 ∗ s+

cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗

s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−gev21∗gev22∗(gm4−cgd4∗s)∗(gds1+gm1+

gmb1+cdtot1∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗

s))∗(gds2+cdtot2∗s)−((gev21∗gev22∗(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+

cgd4∗s+cgd6∗s+cgs6∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗

s+cgs8∗s)+cgd6∗gev21∗gev22∗s∗(gm6−cgd6∗s))∗(gds1+gds3+gm3+cdtot1∗s+

cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)+cgd4∗gev21∗gev22∗s∗(gm4−cgd4∗s)∗

(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s))∗(gds1+gds2+

gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+

cgs2∗s)+((gev21∗gev22∗(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗s+cgd6∗s+

cgs6∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s)+cgd6∗

gev21∗gev22∗s∗(gm6−cgd6∗s))∗(gds1+gm1+gmb1+cdtot1∗s)+cgd4∗gev21∗gev22∗

s∗(gds2+gm2+gmb2+cdtot2∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+

cgd8∗s+cgs8∗s))∗(gds1+cdtot1∗s))∗(gds8+gds9+gm8+gmb8+cdtot8∗s+cdtot9∗s+

cgd9∗s+cgs8∗s+cl∗s)−(gm8+cgs8∗s)∗((cgs8∗gev21∗gev22∗s∗(gds2+gm2+gmb2+

cdtot2∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−

cgs8∗gev21∗gev22∗s∗(gm4−cgd4∗s)∗(gds1+gm1+gmb1+cdtot1∗s))∗(gds2+cdtot2∗

s)−(cgs8∗gev21∗gev22∗s∗(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗s+cgd6∗

s+cgs6∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗

s)+cgd4∗cgs8∗gev21∗gev22∗s2∗(gm4−cgd4∗s))∗(gds1+gds2+gds5+gm1+gm2+
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gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)+(cgs8∗gev21∗

gev22∗s∗(gds1+gm1+gmb1+cdtot1∗s)∗(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+

cgd4∗s+cgd6∗s+cgs6∗s)+cgd4∗cgs8∗gev21∗gev22∗s2∗(gds2+gm2+gmb2+cdtot2∗

s))∗(gds1+cdtot1∗s)))∗(((gm8+cgs8∗s)∗((gev12∗gev21∗(gm2−cgd2∗s)∗(gm6−cgd6∗

s)−gev11∗gev22∗(gm6−cgd6∗s)∗(gds2+gm2+gmb2+cdtot2∗s))∗(gds1+cdtot1∗s)−

gev12∗gev21∗(gm2−cgd2∗s)∗(gm6−cgd6∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗

s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)+gev11∗gev22∗(gm1−cgd1∗s)∗(gm4−cgd4∗

s)∗(gm6−cgd6∗s)−gev11∗gev22∗(gm4−cgd4∗s)∗(gm6−cgd6∗s)∗(gm1+cgs1∗s)−

gev12∗gev21∗(gm4−cgd4∗s)∗(gm6−cgd6∗s)∗(gm2+cgs2∗s)+gev11∗gev22∗(gm4−

cgd4∗s)∗(gm6−cgd6∗s)∗(gds1+gds2+gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+

cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)+gev11∗gev22∗(gm6−cgd6∗s)∗(gds2+

gm2+gmb2+cdtot2∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+

cgs3∗s+cgs4∗s)−gev11∗gev22∗(gm4−cgd4∗s)∗(gm6−cgd6∗s)∗(gds1+gm1+gmb1+

cdtot1∗s)))/(((gev21∗gev22∗(gds2+gm2+gmb2+cdtot2∗s)∗(gds6+gds7+cdtot6∗s+

cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗

s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−gev21∗gev22∗(gm4−cgd4∗s)∗(gds1+gm1+

gmb1+cdtot1∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗

s))∗(gds2+cdtot2∗s)−((gev21∗gev22∗(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+

cgd4∗s+cgd6∗s+cgs6∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗

s+cgs8∗s)+cgd6∗gev21∗gev22∗s∗(gm6−cgd6∗s))∗(gds1+gds3+gm3+cdtot1∗s+

cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)+cgd4∗gev21∗gev22∗s∗(gm4−cgd4∗s)∗

(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s))∗(gds1+gds2+

gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+

cgs2∗s)+((gev21∗gev22∗(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗s+cgd6∗s+
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cgs6∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s)+cgd6∗

gev21∗gev22∗s∗(gm6−cgd6∗s))∗(gds1+gm1+gmb1+cdtot1∗s)+cgd4∗gev21∗gev22∗

s∗(gds2+gm2+gmb2+cdtot2∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+

cgd8∗s+cgs8∗s))∗(gds1+cdtot1∗s))∗(gds8+gds9+gm8+gmb8+cdtot8∗s+cdtot9∗s+

cgd9∗s+cgs8∗s+cl∗s)−(gm8+cgs8∗s)∗((cgs8∗gev21∗gev22∗s∗(gds2+gm2+gmb2+

cdtot2∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−

cgs8∗gev21∗gev22∗s∗(gm4−cgd4∗s)∗(gds1+gm1+gmb1+cdtot1∗s))∗(gds2+cdtot2∗

s)−(cgs8∗gev21∗gev22∗s∗(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗s+cgd6∗s+

cgs6∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)+

cgd4∗cgs8∗gev21∗gev22∗s2∗(gm4−cgd4∗s))∗(gds1+gds2+gds5+gm1+gm2+gmb1+

gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)+(cgs8∗gev21∗gev22∗

s∗(gds1+gm1+gmb1+cdtot1∗s)∗(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗s+

cgd6∗s+cgs6∗s)+cgd4∗cgs8∗gev21∗gev22∗s2∗(gds2+gm2+gmb2+cdtot2∗s))∗(gds1+

cdtot1∗s)))−(((gm8+cgs8∗s)∗(cgs8∗gev21∗gev22∗s∗(gds2+gds4+cdtot2∗s+cdtot4∗

s+cgd2∗s+cgd4∗s+cgd6∗s+cgs6∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗

s+cgd4∗s+cgs3∗s+cgs4∗s)−cgs8∗gev21∗gev22∗s∗(gds1+cdtot1∗s)∗(gds2+gds4+

cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗s+cgd6∗s+cgs6∗s)+cgd4∗cgs8∗gev21∗gev22∗s2∗

(gm4−cgd4∗s)+cgs8∗gev21∗gev22∗s∗(gds2+cdtot2∗s)∗(gm4−cgd4∗s))−((gev21∗

gev22∗(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗s+cgd6∗s+cgs6∗s)∗(gds6+

gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s)+cgd6∗gev21∗gev22∗s∗

(gm6−cgd6∗s))∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+

cgs4∗s)−(gev21∗gev22∗(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗s+cgd6∗s+

cgs6∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s)+cgd6∗

gev21∗gev22∗s∗(gm6−cgd6∗s))∗(gds1+cdtot1∗s)+gev21∗gev22∗(gds2+cdtot2∗s)∗
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(gm4−cgd4∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗

s)+cgd4∗gev21∗gev22∗s∗(gm4−cgd4∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+

cgd7∗s+cgd8∗s+cgs8∗s))∗(gds8+gds9+gm8+gmb8+cdtot8∗s+cdtot9∗s+cgd9∗s+

cgs8∗s+cl∗s))∗(gm8+cgs8∗s)∗((gev11∗gev22∗(gm6−cgd6∗s)∗(gds2+gm2+gmb2+

cdtot2∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−

gev11∗gev22∗(gm4−cgd4∗s)∗(gm6−cgd6∗s)∗(gds1+gm1+gmb1+cdtot1∗s))∗(gm1+

cgs1∗s)−(gev12∗gev21∗(gm2−cgd2∗s)∗(gm6−cgd6∗s)∗(gds1+gds3+gm3+cdtot1∗

s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−gev11∗gev22∗(gm1−cgd1∗s)∗(gm4−

cgd4∗s)∗(gm6−cgd6∗s))∗(gds1+gds2+gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+

cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+cgs2∗s)+(gev12∗gev21∗(gm6−cgd6∗s)∗(gds2+

gm2+gmb2+cdtot2∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+

cgs3∗s+cgs4∗s)−gev12∗gev21∗(gm4−cgd4∗s)∗(gm6−cgd6∗s)∗(gds1+gm1+gmb1+

cdtot1∗s))∗(gm2+cgs2∗s)+(gev12∗gev21∗(gm2−cgd2∗s)∗(gm6−cgd6∗s)∗(gds1+

gm1+gmb1+cdtot1∗s)−gev11∗gev22∗(gm1−cgd1∗s)∗(gm6−cgd6∗s)∗(gds2+gm2+

gmb2+cdtot2∗s))∗(gds1+cdtot1∗s)))/(((gev21∗gev22∗(gds2+gm2+gmb2+cdtot2∗

s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s)∗(gds1+gds3+

gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−gev21∗gev22∗(gm4−

cgd4∗s)∗(gds1+gm1+gmb1+cdtot1∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+

cgd7∗s+cgd8∗s+cgs8∗s))∗(gds2+cdtot2∗s)−((gev21∗gev22∗(gds2+gds4+cdtot2∗s+

cdtot4∗s+cgd2∗s+cgd4∗s+cgd6∗s+cgs6∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗

s+cgd7∗s+cgd8∗s+cgs8∗s)+cgd6∗gev21∗gev22∗s∗(gm6−cgd6∗s))∗(gds1+gds3+

gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)+cgd4∗gev21∗gev22∗s∗

(gm4−cgd4∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗

s))∗(gds1+gds2+gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+
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cgd5∗s+cgs1∗s+cgs2∗s)+((gev21∗gev22∗(gds2+gds4+cdtot2∗s+cdtot4∗s+cgd2∗s+

cgd4∗s+cgd6∗s+cgs6∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗s+cgd6∗s+cgd7∗s+cgd8∗

s+cgs8∗s)+cgd6∗gev21∗gev22∗s∗(gm6−cgd6∗s))∗(gds1+gm1+gmb1+cdtot1∗s)+

cgd4∗gev21∗gev22∗s∗(gds2+gm2+gmb2+cdtot2∗s)∗(gds6+gds7+cdtot6∗s+cdtot7∗

s+cgd6∗s+cgd7∗s+cgd8∗s+cgs8∗s))∗(gds1+cdtot1∗s))∗(gds8+gds9+gm8+gmb8+

cdtot8∗s+cdtot9∗s+cgd9∗s+cgs8∗s+cl∗s)−(gm8+cgs8∗s)∗((cgs8∗gev21∗gev22∗

s∗(gds2+gm2+gmb2+cdtot2∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+

cgd4∗s+cgs3∗s+cgs4∗s)−cgs8∗gev21∗gev22∗s∗(gm4−cgd4∗s)∗(gds1+gm1+gmb1+

cdtot1∗s))∗(gds2+cdtot2∗s)−(cgs8∗gev21∗gev22∗s∗(gds2+gds4+cdtot2∗s+cdtot4∗

s+cgd2∗s+cgd4∗s+cgd6∗s+cgs6∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗

s+cgd4∗s+cgs3∗s+cgs4∗s)+cgd4∗cgs8∗gev21∗gev22∗s2∗(gm4−cgd4∗s))∗(gds1+

gds2+gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗

s+cgs2∗s)+(cgs8∗gev21∗gev22∗s∗(gds1+gm1+gmb1+cdtot1∗s)∗(gds2+gds4+

cdtot2∗s+cdtot4∗s+cgd2∗s+cgd4∗s+cgd6∗s+cgs6∗s)+cgd4∗cgs8∗gev21∗gev22∗

s2∗(gds2+gm2+gmb2+cdtot2∗s))∗(gds1+cdtot1∗s)))2))/((gm8+cgs8∗s)∗((gev11∗

gev22∗(gm6−cgd6∗s)∗(gds2+gm2+gmb2+cdtot2∗s)∗(gds1+gds3+gm3+cdtot1∗s+

cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−gev11∗gev22∗(gm4−cgd4∗s)∗(gm6−

cgd6∗s)∗(gds1+gm1+gmb1+cdtot1∗s))∗(gm1+cgs1∗s)−(gev12∗gev21∗(gm2−cgd2∗

s)∗(gm6−cgd6∗s)∗(gds1+gds3+gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+

cgs4∗s)−gev11∗gev22∗(gm1−cgd1∗s)∗(gm4−cgd4∗s)∗(gm6−cgd6∗s))∗(gds1+gds2+

gds5+gm1+gm2+gmb1+gmb2+cdtot1∗s+cdtot2∗s+cdtot5∗s+cgd5∗s+cgs1∗s+

cgs2∗s)+(gev12∗gev21∗(gm6−cgd6∗s)∗(gds2+gm2+gmb2+cdtot2∗s)∗(gds1+gds3+

gm3+cdtot1∗s+cdtot3∗s+cgd1∗s+cgd4∗s+cgs3∗s+cgs4∗s)−gev12∗gev21∗(gm4−

cgd4∗s)∗(gm6−cgd6∗s)∗(gds1+gm1+gmb1+cdtot1∗s))∗(gm2+cgs2∗s)+(gev12∗



APPENDIX A. SYMBOLIC EXPRESSIONS 72

gev21∗(gm2−cgd2∗s)∗(gm6−cgd6∗s)∗(gds1+gm1+gmb1+cdtot1∗s)−gev11∗gev22∗

(gm1−cgd1∗s)∗(gm6−cgd6∗s)∗(gds2+gm2+gmb2+cdtot2∗s))∗(gds1+cdtot1∗s)))
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