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Abstract

Chaotic oscillators have been intensively studied since a few decades and constitute a

field for some potential applications in electronics, which are still in development. For

instance, the efforts in designing continuous time chaotic oscillators and their design

using integrated circuit technology have been considered only in a very few works. In this

manner, this Thesis pretends to stretch the gap between theoretical chaotic dynamical

systems, particularly the multi-scroll oscillators and their integrated realizations in order

to establish the basis for future chaos-based applications.

Moreover, multi-scroll chaotic attractors are a particularly intriguing topology of

chaotic continuous dynamical systems, which are seen in many piecewise-linear (PWL)

based nonlinear function cases of chaotic oscillators. The main advantages in the use of

these PWL functions are the obtention of partial analytical solutions and the relatively

simple design as well as the modularity required for the change of attractors, i.e. by

growing the number of scrolls.

In this manner, this Thesis starts by describing the theoretic concepts related to

the generation of chaotic behavior by homoclinic and heteroclinic orbits. Then, the

diverse architectures of continuous chaotic motion in the literature are briefly reviewed

and compared. An analysis in the complexity based on the global Lyapunov exponents

is surveyed and a particular dynamical system is selected. A new multi-scroll attractor

is obtained by applying saw-tooth-like nonlinear functions.

The system design requirements are obtained and then the need of a new nonlinear

cell becomes evident. At this point, this voltage-to-current cell is being proposed by

using comparators implemented with floating gate MOS (FGMOS) transistors, which
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are analyzed in depth and adapted to a whole third order dynamical system to generate

multi-scroll chaotic behavior.

Design simulations are presented before and after the layout, and the results are

confirmed by the experimental observations made over the fabricated multi-scroll chaotic

oscillator prototype. Additionally, a process-voltage-temperature (PVT) analysis is

performed to show the robustness of the integrated chaotic oscillator with respect to

variations in temperature and process corners.

Some of the most original contributions of this work are the analysis of the Lyapunov

exponents for multi-scroll PWL-based chaotic systems, the system description of a new

multi-scroll oscillator, the design requirements for this type of nonlinear circuits, the

proposed V-I FGMOS based nonlinear comparator with capacitive internal references

and the integrated circuit design of the first 5-scroll chaotic oscillator.



Resumen

Los osciladores caóticos han sido estudiados desde hace unas pocas décadas y se han

encontrado aplicaciones potenciales que aun estan en desarrollo. A pesar de esto, la

realización integrada de osciladores caóticos en tiempo continuo ha sido considerada

escasamente. La investigación reportada en esta Tesis espera estrechar la distancia entre

los sistemas dinámicos caóticos, particularmente los osciladores caóticos de múltiples

enrollamientos y las realizaciones a nivel de circuito integrado en tecnoloǵıas CMOS.

Entre los sistemas caóticos continuos, los atractores caóticos de multiples enrol-

lamientos (multi-scroll attractors) describen comportamientos particularmente intere-

santes generados en muchos de los casos de osciladores basados en funciones lineales a

tramos (PWL por sus siglas en inglés). Entre las principales ventajas de la aplicación de

estas funciones, se encuentra la obtención de soluciones anaĺıticas parciales, la relativa

simplificación del diseño y la modularidad obtenida, que permite hacer cambios al tipo

de atractor; por ejemplo al acrecentar el número de enrollamientos.

De esta forma, esta Tesis comienza describiendo algunos conceptos teóricos rela-

cionados con la generación de comportamiento caótico basado en órbitas homocĺınicas

y heterocĺınicas. Se realiza una breve revisión y comparación de los diversos diseños

propuestos para la realización de osciladores caóticos de múltiples enrollamientos. Se

analiza la complejidad en términos de los exponentes globales de Lyapunov. Se selec-

ciona un sistema dinámico particular y se propone la generación de un nuevo attractor

de múltiples enrollamientos por medio de funciones no lineales tipo diente de sierra.

Posteriormente los requerimientos de diseño son analizados, con lo que se evidenćıa

la necesidad de una celda no lineal. Dicha celda es propuesta utilizando comparadores

iii



iv

basados en transistores MOS de compuerta flotante (FGMOS ). Se realiza un análisis a

fondo y se describe la aplicación del comparador para generar múltiples enrollamientos

en sistemas dinámicos de tercer orden.

Posteriormente, se realizan simulaciones sobre el diseño antes y después de layout.

Los resultados son confirmados por las observaciones experimentales realizadas sobre el

prototipo fabricado. Además, se presentan análisis en simulación sobre las variaciones

en proceso, voltaje y temperatura (PVT ) para mostrar la robustez del diseño integrado

al respecto.

Algunas de las contribuciones originales de este trabajo de investigación son el

análisis de los sistemas caóticos basados en funciones PWL en términos de los expo-

nentes de Lyapunov, la descripción a nivel sistema de un nuevo oscilador generador de

múltiples enrollamientos, el análisis de los requerimientos de diseño para este tipo de

circuitos, el comparador FGMOS que utiliza referencias internas y el diseño y obtención

del primer oscilador caótico implementado con tecnoloǵıa de circuitos integrados de 5

enrollamientos.
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Chapter 1

Introduction

Chaotic motion is characterized by random like, high spectra behavior which exhibits

high dependence on initial conditions. In the generation of chaotic oscillators, some

proposed approaches uses polynomial forms [1], sinusoidal functions [2], delay based

functions [3], hysteretic functions [4–8] or piece-wise linear (PWL) functions [9]. This

last approach offers the advantages of been relatively simpler to analyze and produce.

Some of the PWL-based systems exhibit multi-scroll attractors, a characteristic observed

in the state space which is possible due to the creation of several equilibrium points.

In the application side, most of the potential applications in engineering, exploit the

deterministic nature of chaotic signals [10, 11], while others are related to the random

behavior. For example, the synchronization and transmission of encrypted information

[12–18], the use of chaotic radars [19–21], the signal reconstruction [22]; and the noise

and random bit generators [23, 24].

While the majority of the proposed implementations are done by using traditional

Opamps, the use of the operational transconductance amplifier (OTA) [25], the tanh()

function based transconductor [26], the current mirror [27], the multiplier cells [28], the

floating gate CMOS (FGMOS) [29], the unitary gain cell (UGC) [32, 33], or the current

feedback operational amplifier (CFOA) has also been proposed [34–37]. In particular,

there has been little concern in the realization of such continuous chaotic oscillators

using integrated circuit technology.
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2 CHAPTER 1. INTRODUCTION

In this Thesis, the integrated realization of such systems using a conventional CMOS

technology and taking into consideration the circuit non-idealities, is explored. Some

relevant issues are the number of scrolls, the central operation frequency, the use of

internal references, the CMOS design criteria and the experimental results.

1.1 Introduction to chaos

Chaotic oscillators have their origin in nonlinear dynamical systems, its main charac-

teristic is the apparently random behavior while bounded. The chaotic system signals

(which are also called states, solutions or trajectories) does not settle in any particular

value, nor show periodicity. This produces a wide spectra in most of the cases. However,

since the solutions are provided from differential (or differences) equations, the system

is deterministic, this means that ideally, every point in the trajectory may be predicted

by an initial state (initial condition).

A consequence of the diversity on spectra and the deterministic nature, is the fact

that chaotic behavior is well characterized by its sensitivity to initial conditions. This

means that a couple of near points in the solution space will evolve in a very differ-

ent manner. This was discovered by the meteorologist Edward Lorenz, a pioneer in

chaos theory because of his research on weather prediction [38]. Back in the sixties, he

developed a mathematical model of the air convection which took him to a simplified

nonlinear dynamical system that showed to be highly sensitive to initial conditions.

The conclusion of that work was the long term unpredictability of the weather, which

is also a characteristic of chaotic phenomena, since any state can only be represented

by a finite precision value.

It was since nineties, that many research is been done on this field, due to the growing

capacities of computing. A remarkable design of a continuous chaotic oscillator is the

case of the two-scroll Chua’s circuit [39, 40], which has shown to generate a rich variety

of chaotic dynamics in a relatively simple implementation. The long term trajectories of

such systems are observed by a geometric perspective in the state space which is known

as strange attractor or chaotic attractor. In some cases such as the Chua’s circuit, the
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attractor is composed by scrolls.

Recently, many new chaotic oscillatory systems have been proposed. In all cases a

nonlinear part is required to obtain more equilibriums than the origin and eventually

obtain attraction regions. Some approaches uses polynomial forms [1], sinusoidal func-

tions [2], delay based functions [3], hysteretic based functions [4–8] or piece-wise linear

(PWL) functions [9]. This last case has been specially chosen by numerous research

works because of the capacity to obtain at least partial analytical solutions [41] (for

the linear segments), while the obtention of such solutions for other nonlinearities are

very hard to reach [42]. This motivates the development of new PWL-based generaliza-

tions for the Chua’s dynamical system, some of them showing more amount of scrolls

(multi-scroll attractors).

In this way, another realization of multi-scroll chaotic oscillators has been obtained

with the use of a canonical third order form which has proved to produce scrolls in

reticular fashion in the three directions of the phase plane [34] by the use of different

nonlinearities.

By introducing experimental realizations, the sustained chaotic behavior proved to

be much more than an artificial effect in the limited arithmetics of computer programs.

In fact, many of the proposed chaotic systems are accompanied by experimental results

and circuit realizations that also probe the functionality of the required nonlinear func-

tions. Thus, sometimes the reference has been made informally to the circuit instead

of the system, in minor cases, the point of discussion is the circuit implementation.

Regardless the circuit realizations have additional considerations to be made such as

the bias conditioned signal excursion, the tolerances and variations of the discrete used

components, frequency and other limitations of the active devices (mainly Opamps).

A first multi-scroll generalization of the Chua’s circuit [43] proves some of these

limitations because of the increasing reduction of the linear function segments and

the consequently loos of scrolls. In order to preserve the attractor, the use of more

uniform PWL functions is observed in later literature [44–46]. However, there are many

drawbacks to survey in the design of continuous chaotic oscillators. The generated
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attractors of the electronic realizations will be always limited by the biasing, the circuit

parasitics and the number of scrolls. Thus, new proposals are exploring the frequency

spectrum and the amount of sensitivity that these systems can show, with the aim of

growing the system complexity without changing the attractor shape (i. e. the number

of scrolls).

Other open field is centered in the frequency limitations of the generated spectra.

Since most of the proposed designs are based in Opamps, the use of other active cells

may be advantageous. Such is the case of the operational transconductance amplifier

(OTA) based design [25], the tanh() function based transconductor [26], the current

mirror based design [27], the multiplier cells [28], the floating gate CMOS (FGMOS)

design [29], or the unitary gain cell (UGC) [32, 33]. Another remarkable active cell is the

current feedback operational amplifier (CFOA) [34–37], because of its higher frequency

performance than conventional Opamps and its mixed mode operation which gives it

the capacity to operate signals both in voltage and current mode, this can even lead to

a reduction on the oscillator topology.

Integrated realizations are scarce in literature (see [25, 29, 47–49]), most of the works

focuses on mathematical descriptions. In general, one can conclude the need of analog

design applied to these realizations. These reasons have motivated this investigation

towards the achievement of multi-scroll behavior in an integrated CMOS compatible

design.

The Thesis is organized as follows: the state of the art is reviewed in this Chapter.

Some interesting characteristics of multi-scroll dynamical systems related to the au-

tomation of nonlinear functions as well as the Lyapunov exponent analysis are exposed

in Chapter 2. The CMOS design considerations for the proposed nonlinear system is

explained in Chapter 3; whereas Chapter 4 details the proposed design and simulations,

treating separately the linear design from the nonlinear one. Chapter 5 concludes Chap-

ter 3 by showing the simulations, analyzing the manufactured prototype and observing

the robustness in terms of corner analysis. Conclusions and future work are given in

Chapter 6.
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1.2 Chaotic Oscillators

The relevance of the Chua’s circuit has recently made possible the born of a big family

of multi-scroll oscillators and techniques to control chaos. The work of Suykens had

firstly presented a generalization to obtain multiple scrolls [43] in one direction (1D).

Later, numerous research have shown that other chaotic systems can be generalized to

exhibit multi-scroll behavior. Some of the most remarkable are the work of Yalçin [34],

with a canonical third order model; Lü, with the saturated slope circuit [41], the fourth

order Jerk circuit, and jointly with Han, with the third order hysteresis-based system

[4], and by Han [5], who firstly proposed the second order hysteresis-based system.

The above cited authors have proposed circuit schemes using Opamps [9], whereas

other designs based in active devices such as commercial CFOA (i. e. the Analog Devices

AD844) have improved the frequency performance [34, 35]. Relevant chaotic continuous

oscillator designs are summarized in Table 1.1. Here some issues are observable:

• Many new designs have been obtained by generalizing previous others, the most

preferred dynamic system is the Chua’s system.

• PWL-based oscillators are preferred because of the relatively simple mathematical

description, dynamical analysis and circuit synthesis.

• Integrated designs are few in all cases and multi-scroll designs are scarce.

• Integrated circuit designs are done mostly by OTAs and discrete implementations

use Opamps.
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Table 1.1: Principal design techniques used in chaotic oscillators.

System Name Nonlinear function based on Reference

Name Attractor type Function Proposed circuit Integrated de-

sign

Author Year

Chua’s circuit double-scroll PWL Opamp, OTA, CFOA, UGC,

CCII+

OTA Chua [25], Delgado [49] 1993

1D PWL Opamp Suykens [50] 2000

1D Sinusoidal Trigonometric function gen-

erator

Tang [2] 2001

1D PWL Opamp Zhong [44] 2002

1D PWL FGMOS FGMOS Fujiwara [29] 2003

1D, 2D PWL (saw-

tooth)

Opamp Yu [45] 2007

Lorenz double-scroll Product Multiplier OTA, Multi-

plier

González [51] 2000

multi-scroll Complex DSP Yu [52] 2006

Third order canoni-

cal system

double scroll PWL CFOA, Opamp OTA, Opamp Elwakil [47] 2000

1D-3D PWL CFOA, Opamp Yalcin [34] 2002

1D-3D PWL Opamp Lü [41] 2004

1D-3D Hysteresis Opamp, diode Lü [53] 2006

Second order hyst. 1D, 2D Hysteresis Opamp, diode Han [5] 2004

NA 1D, 2D tanh() Differential pair, OTA Ozoguz [26] 2002

NA double-scroll tanh() LC Ozoguz [23] 2005

NA 1D PWL, tanh(), t CFOA, TX line Yalcin [3] 2007

NA double-scroll PWL current mirror, C Ozoguz [24] 2008
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1.3 Applications of Chaotic Oscillators

In the side of applications, chaotic systems are relatively new and in some cases there

is still mathematical research to be done. Most of the potential applications exploit the

deterministic nature of chaotic signals [10, 11], while others are related to the random

behavior. For example the synchronization and transmission of encrypted information

[12–18], the use of chaotic radars [19–21] and the signal reconstruction [22] in the first

case; and the noise and random bit generators [23, 24] in the second one.

For example in the case of secure communications, some of the advantages [17] are

based in the complexity of the chaotic signals, which turns them suitable for message

encryption, the wide spectra makes them useful as wide bandwidth communications

systems and robust to narrow band disturbances. Also as the autocorrelation levels are

generally low for these signals, these can be considered as orthogonal with each other

and then implemented in multi-user communication schemes.

The most of chaotic communications works by first synchronizing several at least a

couple of systems. Some techniques are: Master-slave synchronization, Non-autonomous

synchronization, Inverse system synchronization, Adaptive control synchronization or

Coupled synchronization.

A second example is in the use of chaotic radars [21], some of the main advantages

are [11]: In military applications, the use of noise like signals to scan an enemy tar-

get without prevent it; the relative immunity to interference due to the natural wide

bandwidth of signals; the multiple radar compatibility since the return signals can be

distinguished from the other radars; and the achievement of better range ambiguity

properties than by using noise signals.

Other potential applications are the chaotic power controllers [54–57], micro electro

mechanical systems (MEMS) [58], and motion control [59, 60].
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1.4 Traditional Multi-Scroll Chaotic Oscillators

Chaotic systems equations will be presented for uniformity as a set of the linear part in

A and a nonlinear counterpart with gain B, where Φ(x) carries the nonlinear functions

f(x). In this sense, the nonlinear system

ẋ = f(x), (1.1)

is described directly by

f(x) = Ax+BΦ(x) (1.2)

.

Recall that in the normalized third order system, ẋ is the derivative of x with respect

to a normalized time τ .

x =











x1

x2

x3











Moreover, many of the actual chaotic oscillators have started from the proposed

Chua’s oscillator [39, 40]. This circuit has been implemented by an RLC circuit (Fig.

1.1), and differs by the traditional Chua’s circuit in the presence of the parasitic inductor

resistance RL which produces the term γ (1.3). The nonlinear part of the circuit is

a negative three-segment PWL resistor which produces function (1.4). The system

normalization has been done by defining all its parameters and variables (1.5). Here, E

is used as the excursion scaling factor.

A =











−α α 0

1 −1 1

0 −β −γ











B =











−α 0 0

0 0 0

0 0 0











Φ =











f(x1)

0

0











(1.3)

f(x1) = bx1 +
1

2
(a− b) (|x1 + 1| − |x1 − 1|) (1.4)
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Figure 1.1: Chua’s oscillator, (a) circuit direct implementation, (b) double-scroll attrac-

tor observed in the (x1, x2)-plane.

The used rescaling variables are:

x1 ,
V1

E
, x2 ,

V2

E
, x1 ,

iLR

E
,

α =
C2

C1
, β =

R2C2

L
, γ =

RRLC2

L
,

a = RGa, b = RGb, τ =
t

RC2
(1.5)

System (1.3) describes a double-scroll attractor by using parameters and initial

conditions in the neighbor of the equilibrium at the origin x = [0.001, 0, 0]. As earlier

mentioned, the Chua’s system has been generalized principally by introducing more

slopes in the nonlinear function to generate more equilibrium points, and eventually,

multi-scroll behavior. Some of the most important systems derived in this sense are

described below.

1.4.1 Suykens generalization

Equation (1.2) is rewritten as [43]:

A =











0 α 0

1 −1 1

0 −β 0











,B =











−α 0 0

0 0 0

0 0 0











,Φ =











h(x1)

0

0











, (1.6)
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h(x1) = m2q−1x1 +
1

2

2q−1
∑

i=1

(mi−1 −mi) (|x1 + ci| − |x1 − ci|) (1.7)

The nonlinear function is composed by a set of progressively small slopes, Table 1.2

summarizes the used coefficients.

1.4.2 Zhong generalization

As reported in [44], the system parameters are q = 1 for 2N even scrolls, and q = 2 for

2N−1 scrolls. Vector [m0...m9] = [−4.416,−0.276,−3.036,−0.276,−3.036,−0.276,−3.036,

−0.276,−3.036,−0.276] represents the slopes, and vector b shows the breakpoints. See

Table 1.3 and:

A =











−α α 0

1 −1 1

0 −β 0











, B =











−α 0 0

0 0 0

0 0 0











, Φ =











g(x1)

0

0











, (1.8)

g(x1) = m2n−1x1 +
1

2

2N−1
∑

i=q

(mi−1 −mi)(|x1 + bi| − |x1 − bi|). (1.9)

1.4.3 Yu generalization

In a first work [46], Simin Yu showed the possibility to make uniform scrolls on the

original Chua’s system by choosing the breakpoint bi of the PWL function and the

system parameters α ≈ 9.5, β ≈ 14, a ≈ −0.528, and b ≈ −1.406. The use of a recursive

expression was proposed to find the breakpoints on the n-scroll function conformed by

alternating slopes a and b:

f(x1) = mn−1x1 +
1

2

n−1
∑

i=1

(mi−1 −mi) (|x1 + bi| − |x1 − bi|) . (1.10)

For classical circuit implementations, the gain of slopes is always ma = a/R or

mb = b/R. If an odd-scroll attractor has to be generated, the function starts with slope

ma; otherwise, the slope at the origin was mb. The method to compute the breakpoints
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of the function starts with these slopes been defined as well as the first break point b1,

and applying expression:

bi+j =
2
∑i

j=1(mj −mj−1)bj

1 +mi
− bi. (1.11)

In a latter work [45] a simpler multi-scroll system was designed by using a saw-tooth

like nonlinear function, see Table 1.4. There, the system parameters are α = 10, β = 16,

ξ = 0.25, A1 = 0.5, and the rest of the system is described by Table 1.5 and:

A =











0 α 0

1 −1 1

0 −β 0











, Φ =











f1(x1)

f2(x2)

0











(1.12)

1.4.4 A canonical model

Other non-PWL approaches have also been introduced to generalize multi-scroll sys-

tems, such as the introduction of the cubic function based Chua’s system in [1] and

the sinusoidal function based oscillator in [2]. Unless useful, these approaches can in-

crease considerably, the complexity of the design. Thus, a canonical third order model
...
x= −ax− bẋ− c

..
x +df1(x) has also been proposed in [34]. Its matrix representation is:

A =











0 1 0

0 0 1

−a −a −a











, B =











0 0 0

0 0 0

0 0 a











, Φ =











0

0

f1(x1)











(1.13)

Where the model was first used with step functions such as f1(x) given by
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f1(x) =

Mx
∑

i=1

g (−2i+1)
2

(x) +

Nx
∑

i=1

g (2i−1)
2

(x) (1.14)

gθ(ς) =































1, ς ≥ θ θ > 0

0, ς < θ θ > 0

0, ς ≥ θ θ < 0

−1, ς < θ θ < 0

A similar generalization process has been made possible the generation of multiple

scroll attractors in several directions in the phase plane. These are called the 1D multi-

scroll for n × 1 scrolls, 2D for n ×m, and 3D for n ×m × p scrolls. Then, for the last

two cases, one has:

Φ =











f1(x2)

f1(x3)

f1(x1)











, B2D =











−1 0 0

0 0 0

0 0 a











, B3D =











−1 0 0

0 −1 0

0 0 a











(1.15)

respectively, and f3(x) as described in [34]. Some other relevant designs in this context

are presented in the following.

1.4.5 Lü saturated function series

Based on the canonical system, a saturated function approach was proposed in [41], as

this may be obtained by any linear amplifier on slewing mode:

A =











0 1 0

0 0 1

−a −b −c











, Φ =











f(x1; k1, h1, p1, q1)

f(x2; k2, h2, p2, q2)

f(x3; k3, h3, p3, q3)











, (1.16)

f(x; k, h, p, q) =































(2q + 1)k, x > qh+ 1

k(x− ih) + 2ik, |x− ih| ≤ 1,−p ≤ i ≤ q

(2i+ 1)k, ih+ 1 < x < (i+ 1)h− 1,−p ≤ i ≤ q − 1

−(2p+ 1)k, x < −ph− 1

(1.17)
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where parameters k = 10 is the slope of the saturated function, and h = 4 is the

saturated time-delay, a = b = c = d1 = d2 = d3 = 0.7; p and q are positive integers;

matrix B is chosen to produce 1D, 2D and 3D grid scroll attractors, as follows

B1D =











0 0 0

0 0 0

d1 0 0











, B2D =











0 −d2/b 0

0 0 0

d1 d2 0











, B3D =











0 −d2/b 0

0 0 −d3/c

d1 d2 d3











.

(1.18)

1.4.6 A third order hysteresis model

Hysteresis based functions have been used to produce chaos as well. Some of the pioneer

works belong to Saito [6], R. Newcomb and N. El-Leithy [7]. However their implementa-

tion on scroll-based attractors have been proposed later by different approaches [3, 4, 8],

in fact this behavior was exploited in all the cases of step functions [34], suppose matrix

A as described before with constants a ≈0.8 and

Φ =











h(x1)

h(x2)

h(x3)











, (1.19)

h(x, p1, q1) =



















−p1, x < −p1 + 1

i, i− 1 < x < i+ 1, i = {−p1 + 1, ..., q1 − 1}

q1, x > q1 − 1

,

with matrix B simply growing like identity matrix to generate p1 + q1 + 1, (p1 + q1 +

1)× (p1 + q1 + 1), or (p1 + q1 + 1)× (p1 + q1 + 1)× (p1 + q1 + 1) scrolls, respectively:

B1D =











1 0 0

0 0 0

0 0 0











, B2D =











1 0 0

0 1 0

0 0 0











, B3D =











1 0 0

0 1 0

0 0 1











. (1.20)
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1.4.7 Transconductor based multi-scroll attractors

Another interesting nonlinear function was proposed by Özoguz [26] and is based on

the trasconductance function of the tanh() natural response of the differential pair:

A =











0 1 0

0 0 1

0 −a −a











, Φ =











f(x1)

0

f1(x2)











, (1.21)

f(x) =
M
∑

j=−N

(−1)j−1tanhk(x− 2j), (1.22)

with a=0.25, M and N positive integers related to the number of scrolls, and matrix B

chosen to generate 1D or 2D scroll attractors, as follows:

B1D =











0 0 0

0 0 0

−a 0 0











, B2D =











0 0 −a

0 0 0

−a 0 0











. (1.23)

Nowadays, the topics related to multi-scroll oscillators and the circuits to synthesize

them constitutes an important field for research, due to the high amount of works; and

the existence of new material such as the multi-scroll Lorenz oscillator [61], which is

too complex that requires a digital signal processor, the contrasting first order n-scroll

system in [3]. Or the circuits reported in [62, 63], which only show simulation based

results.

1.5 Integrated Implementations of Chaotic Oscillators

The afore-mentioned designs have been principally implemented by discrete (off-the-

shelf) circuit in voltage mode and generally use Opamps for all the required operations

(an exception is the classical implementation of the Chua’s oscillator [39]). Moreover,

the use of more recent mixed mode active devices such as the CCII [16, 64–66], CFOA

[34–37] or UGC [32, 33, 67] is letting the implementation to be smaller since the variables

are identified directly from the currents or voltages in the circuit indistinctly.
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Figure 1.2: Proposed Chua’s oscillator using OTAs and different supply levels [25].

Figure 1.3: Proposed Chua’s oscillator in [49].

Many is to be made in the CMOS implementation, since Opamps and OTAs are the

only used active devices [9]. A brief description of the existent designs will be made

below.

Cruz and Chua Design

One of the first monolithic implementation was the Chua’s oscillator by Chua itself

as shown in Fig. 1.2, [25]. The circuit is an adaptation of that in Fig. 1.1 using

external resistor connected to points 1 and 2 (to adjust the nonlinear function gain).

The nonlinear function was generated by two OTAs with different transconductance

gains (A and B) as well as bias current capability. The inductor was obtained from the

gyrator (C, D and capacitor C3). Finally, an internal reference ground is used to avoid

supply variations (Opamp). See Table 1.6 for more details.

Rodŕıguez and Delgado Design

A similar Chua’s implementation was realized based on the state variable perspective

[49] (the normalized system). Gm-C integrators have been used by arranging identical

OTAs in parallel. The nonlinear function was realized by two parallel OTAs with

independent bias control. A simplified version is shown in Fig. 1.3, see also Table 1.6.

Elwakil et al. Design
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Figure 1.4: Proposed two-scroll oscillator in [47].

The two-scroll version of the originally proposed canonical system was also been

realized by selecting the capacitance or resistances of the loads Z1, Z2 in Fig. 1.4 [47].

Thus allowing to have positive and negative integrals. All the system parameters were

available since all the loads were externally connected. The nonlinear function has been

made by the use of as simple inverter as a comparator, see Table 1.6.

Fujiwara et al. Design

The proposed circuit [29] was built as the Cruz and Chua’s design, a simulated

inductor was used as well as transistors in linear mode as the circuit resistor. A partic-

ular change is noted in the design of the nonlinear function, since FGMOS have been

exploited as switches in the current path. In this way, the PWL design can grown by

connecting several parallel cells each of them using several external controls to adjust

the slope and breakpointos of the V-to-I characteristic as shows Fig. 1.5. By report-

ing a 3-scroll experimental attractor, a first multi-scroll oscillator was obtained by a

fully integrated design, however the poor CMRR did not allow it to prove more scroll

generation. Table 1.6 enumerates some technical details.

1.6 Thesis Objectives

The importance of continuous chaotic oscillators is principally lying in the potential

applications been still on research. The need of a CMOS integrated multi-scroll design

arises with the appearance of multi-scroll oscillators, and the very limited amount of

integrated realizations.

A key point is that since these realizations are few, there is not enough criteria for

selecting the design requirements for nonlinear systems. Also, the performance of such
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Figure 1.5: First proposed three-scroll integrated oscillator based in the use of FGMOS

transistors [29].

designs based on non-traditional active devices is unknown at integrated level.

In this way, the motivation of this thesis is to stretch the gap between multi-scroll

systems and the integrated circuit realization by analyzing the dynamical system, ob-

taining the circuit requirements, proposing innovative design based on an FGMOS-based

voltage-to-current cell for realizing PWL functions, and showing the experimental re-

sults as well as parameter variation analysis.

The main goal is to design a CMOS chaotic oscillator capable to generate multi-scroll

oscillators. The most relevant aspects and particular objectives are cited below.

1. Analyze the different alternatives in the selection of the chaotic system. Generate

behavioral models.

2. Analyze the impact on the number of scrolls and the system chaotic regime.

3. Obtain design criteria for the synthesis of multi-scroll chaotic oscillators.

4. Design of CMOS compatible multi-scroll oscillator and analyzing the frequency

limitations due to circuit parasitic effects.

5. Realization of circuit layout and simulations.

6. Validation of the design methodology by obtaining the desired behavior experi-

mentally and with process variations.
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7. Identification of further design enhancements.
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Table 1.2: Suykens parameters and functions.

Scroll type Parameters

Even α=9; β=14.286; m=[-1/7, 2/7, -4/7, 2/7, -4/7, 2/7,...]; c=[1,

2.15, 3.6, 8.2, 13,...]

Odd α=9; β=14.286; m=[0.9/7, -3/7, 3.5/7, -2.4/7, 2.52/7, -

1.68/7, 2.52/7, -1.68/7,...]; c=[1, 2.15, 3.6, 6.2, 9, 14, 25,...]

Table 1.3: Zhong parameters.

Scroll number Parameters

2N [b1...b9] = [0.1, 1.1, 1.55, 3.2, 3.85, 5.84, 6.6, 8.7, 9.45]

2N − 1 [b2...b9] = [0.8, 1.4, 3.2, 3.9, 5.8, 6.4, 8.3, 9.2]

Table 1.4: Simin Yu scroll type nonlinear functions.

Scroll number f1(x) f2(x)

2N ξ{x − A1[−sgn(x) +
∑N−1

i=0 (sgn(x + 2iA1) +

sgn(x− 2iA1))]}

A2[−sgn(x) +
∑N−1

j=0 (sgn(x+

2jA2) + sgn(x− 2jA2))]

2N + 1 ξ{x−A1[
∑N−1

i=0 (sgn(x+(2i+

1)A1)+sgn(x− (2i+1)A1))]}

A2[
∑N−1

j=0 {sgn(x + (2j +

1)A2) + sgn(y− (2j +1)A2)}]
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Table 1.5: Simin Yu scroll type linear functions.

Scroll type Matrix B

1D B =











−α 0 0

0 0 0

0 0 0











2D B =











−α −α 0

0 β 0

0 0 0











Table 1.6: CMOS oscillators: technical data.

Parameters Cruz and Chua

[25]

Rodŕıguez

and Delgado

[48, 49]

Elwakil et al.

[47]

Fujiwara et al.

[29]

Technology (µm) 2 2.4 1.2 0.35

Biasing (V) - ±2.5 ±2.5 ±1.65

Center frequency

(KHz)

160 - 118 7000

Nonlinear func-

tion strategy

Distinct bias

currents and

saturation

Distinct bias

currents and

saturation

Simple in-

verter

Switching cur-

rents by FG-

MOS



Chapter 2

Multi-Scroll Chaotic Oscillators

In this Chapter some important concepts on chaos are reviewed. Also, two ways for

proving chaotic behavior, the analytic basis by the Shil’nikov Homoclinic and Hetero-

clinic Theorems and the numerical method based in the computation of the Lyapunov

exponents (LE), are introduced.

A LE analysis is performed over some of the already known multi-scroll systems using

forward Euler, fourth order Runge-Kutta and Matlab ODE 45 integration routines. The

relation between the number of scrolls and the corresponding exponents reveal fewer

interaction than with the system parameters.

The main conclusion [68] is that the number of scrolls has low relevance for the

system long term complexity. Besides, it is observed that the Lyapunov exponents are

independent on the number of scrolls for saw-tooth based systems, since they only have

a single Jacobian. This is in agreement with entropy computations given in [69].

A new multi-scroll saw-tooth based system is presented in [67, 70], and prior analysis

of the double-scroll version of this system is given in [48]. This system will be chosen

to perform integrated circuit design due to the integer relation on coefficients and the

modularity of the nonlinear function, while LE is considered of less relevance. However

it is shown that by modulating the state space, the LE exhibit proportional scaling.

21
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2.1 Continuous Chaos Definitions

Although mentioned in Chapter 1.1, some concepts of chaos have not been explicitly

defined. This section is dedicated to the explanation of the main concepts which are

related to continuous chaotic behavior and the appearing of such phenomena under the

Shil’nikov condition.

Chaotic system: There is no universal definition for chaos, however, the scientific

community agrees that there are some relevant characteristics of chaotic behavior [71, 72]

• Is generated from a deterministic dynamical system [73].

• No periodicity [71].

• Ergodicity [11].

• Sensitivity to initial conditions (has at least one positive Lyapunov exponent)

[74, 75].

In general, many chaotic systems are represented (as seen in Section 1.4, by a n-order

continuous nonlinear dynamical equation of the form

ẋ = f(x) (2.1)

where x ∈ ℜn; moreover, chaos cannot be obtained in continuous systems of effective

order less than three, since solutions must be unique (no intersection is allowed)[71, 75].

The effectiveness is used here to avoid confusion with non-autonomous or delay-based

systems, in which the required order is apparently less [3, 8, 72].

Dynamical systems. A system that evolves in time according to some rule or process

[71].

Deterministic system. Dynamical system that can be described by differential equa-

tions for continuous systems; or differences equations for discrete ones. These may be

linear or non-linear. In all cases, the future states (sometimes predicted and other not)

will always be the same for the same initial conditions.
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Non periodicity. It is well known that any random process will have no period. How-

ever, chaos and quasi-periodic systems can be expressed in equations and still present

no period. Quasi-periodic systems, can be decomposed by a finite set of harmonics sep-

arated by frequencies with irrational relation. In contrast, chaos presents a continuous

spectra, thus proving the existence of uncountable harmonic components.

Ergodicity. A system is considered to be ergodic if the trajectory visits all the

points in the attractor (t → ∞). For convenience sometimes the concept of quasi-

ergodic system is used indistinctly, which implies that in a long time, the trajectory will

pass arbitrarily close to any point in the attraction region.

Sensitivity to initial conditions. This property implies that two near initial condi-

tions will separate as the system evolves in time and eventually generate uncorrelated

trajectories no matter how short is the distance between them. In fact any set of neigh-

boring initial conditions will spread along the attractor in a exponential way. This is

the reason for the existence of positive Lyapunov exponents.

This implies that in the practice, such a system will be really unpredictable, since no

initial condition can be given without an uncertainty margin (say ‖ δ0 ‖). In such case,

the prediction of the system response with some tolerance margin (a) may be pointless

if the rate of grow (λ) is exponential, according to [71] the time of prediction will be

minimal:

thorizon ∝
1

λ
ln

a

‖ δ0 ‖
(2.2)

Lyapunov exponents. These are used to determine the stability of periodic and non

periodic solutions as well as equilibrium points and are considered to be the indicator

of initial condition dependence. Furthermore, they represent the rate of expansion or

contraction of the flow (the neighboring trajectories) which varies somehow along the

attractor, but has an exponential feature in chaotic systems.

In linear systems, these exponents are related to the real part of the system eigenval-

ues. But for n-order chaotic systems, they correspond to the n-directions of growing of

an n-ellipsoid of neighboring initial conditions. In order to characterize the system long
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therm dynamics and considering the ergodicity, the Lyapunov exponents are obtained

by averaging over many points in the trajectory.

A detailed description for their obtention is found in Appendix B.

Autonomous system. Those that have no explicit dependence with time. The depen-

dence on time of each state variable is implicit since the system is dynamical. However,

any future state can be obtained by only the value of the present ones. In fact, any n-

order non-autonomous dynamical system can be rewritten as a n+1-order autonomous

counterpart by simply taking time as a new state with unity grow rate (time derivative).

System equilibriums (Steady states). In opposition to linear autonomous systems in

which there is only one equilibrium point (the origin), the nonlinear counterpart can

present a variety of equilibriums xe. Some of them are attractors, since all are constant

solutions for the differential equation and can be calculated by solving

f(xe) = 0. (2.3)

From the theory of linear systems, some equilibriums can be cited such as [74,

75]: stable nodes and stable spirals (attractive), unstable nodes or unstable spirals

(repulsive), centers (in energy conservative systems) or saddle points (which have stable

eigenvectors as well as unstable ones).

In this context, a dynamical system may have stable behavior whenever trajectories

are associated with negative eigenvalues and eigenvectors, and unstable behavior if

trajectories are governed by positive eigenvalues.

Attractor. Sometimes called limit set, is a set of points to which near trajectories

are attracted and fulfill the following: (a) for any initial conditions on them, the solu-

tions remain on them forever; (b) there exist an open set of initial conditions (basin of

attraction for the complete set) which is attracted to them; (c) these points form the

minimal set with these properties.

Chaotic attractor. Also called strange attractor is an attractor that also has depen-

dence to initial conditions as well as fractional dimension. These attractors appear in

the phase space (the region in which the states or solutions are plotted one against the
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others) and resembles complex non intersected geometries.

Bifurcation. Is the process of creation and destruction of equilibriums in nonlinear

systems. A bifurcation diagram is sometimes the graphical representation of the place

of stable and unstable equilibriums.

Orbit diagram. Called sloppily bifurcation diagram by a huge amount of books and

articles [76], these are used to represent the stable points in the bifurcation process after

the transient behavior. Along with the Lyapunov exponents, these diagrams can give

an insight into the system behavior over a sweep on some parameter. See details in

Appendix A.

Homoclinic orbit. A trajectory that connects one equilibrium point with itself. In

most cases these equilibriums need to have stable and unstable trajectories (there are

saddle points).

Heteroclinic orbit. A trajectory that connects one equilibrium point with other.

Heteroclinic loop. A trajectory loop made by two or more heteroclinic orbits.

Orbital period. This is a measure respecting to the frequency of chaotic (non-

periodic) systems. It quantifies the typical time required for a trajectory to traverse the

hole attractor; i.e. to visit all the equilibrium points.

2.1.1 Lur’e Representation

A recently proposed representation for chaotic systems is named the Lur’e representa-

tion: a linear system interconnected by feedback to a static nonlinearity that satisfies a

sector condition [34]. Which is supposed to describe the circuit as a linear system with

nonlinear feedback as

ẋ = Ax+Bσ(Cx). (2.4)

In this way, the saturated function based system is described by A, B and f() in

(1.16), (1.17) and (1.18) is, for 1D to 3D:
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C = I3×3, σ1D =











f1()

0

0











, σ2D =











f1()

f2()

0











, σ3D =











f1()

f2()

f3()











. (2.5)

2.2 Homoclinic and Heteroclinic chaos

There are many process that gives birth to chaos, most of them still unknown. In this

section the chaos generation is reviewed by the Shil’nikov criteria [77, 78].

First, a saddle focus equilibrium point xe is taken from (2.1) by first obtaining the

Jacobian derivative of f at xe and having a real and a complex conjugate of eigenvalues:

γ, σ ± jω, γσ < 0, ω 6= 0 (2.6)

with γ, σ, and ω real numbers.

These eigenvalues are used to find a closed loop between the 2-D eigenplane corre-

sponding to the complex conjugate and the 1-D eigenline of the real eigenvalue. Such a

trajectory may be part of one or two similar equilibriums xe (homoclinic or heteoclinic

trajectory, respectively).

The Shil’nikov homoclinic method states that in a third order autonomous system

(2.1) if:

1. The corresponding eigenvalues of the saddle focus equilibrium point satisfy the

Shil’nikov inequality:

|γ| > |σ| > 0. (2.7)

2. There exist a homoclinic orbit based at xe.

Then the system shows homoclinic chaos.

The Shil’nikov heteroclinic method probes heteroclinic chaos by using two equilib-

rium points xe1 and xe2. The conditions are:
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1. The corresponding eigenvalues of both equilibrium points are saddle foci that

satisfy the Shil’nikov inequality:

|γ1| > |σ1| > 0, |γ2| > |σ2| > 0, σ1σ2 > 0 or γ1γ2 > 0. (2.8)

2. There exist a heteroclinic orbit trough xe1 and xe2.

For further reading, a nice analysis on the Chua’s oscillator homoclinic chaos is

found in [78].

2.3 Notes on Lyapunov Exponents

Since the design of chaotic systems is highly qualified to the Lyapunov exponents of the

system, some of the concerning products of this work are explained below.

2.3.1 Lyapunov exponents and the number of scrolls

The appearance of the attractor is greatly changed by the number of equilibrium points

of the system and consequently on the number of scrolls. Previous work on the char-

acteristics related to the number of scrolls is found in [69]. There, the chaotic signal of

the canonical system with step-based PWL function [34] was sampled to obtain 1× 106

bits and the theoretic entropy of the random stream was computed by algorithm in [79]

and was observed to grow about 5%, among the 3 to 10-scroll attractors; for the rest of

them, the change was about 0.5%.

Thus an analysis with respect to the Lyapunov exponents was performed to observe

the sensitivity changes of other multi-scroll chaotic systems [68]. The selected systems

where:

(a) the Zhong generalization of the Chua’s system (Section 1.4.3),

(b) the Yu modified Chua’s circuit (Section 1.4.2),

(c) the saturated function series based system (Section 1.4.4), and
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(d) the saw-tooth based generalized Chua’s system (Section 1.4.3).

The Lyapunov exponents of the four systems were computed using algorithm in

Appendix B on around 500000 steps with initial conditions x0 = [0.1, 0, 0] (observe that

the ergodicity maintains a unique long term exponent). The integration was carried out

by Forward-Euler (FE), fourth order Runge-Kutta (RK4), both fixed step algorithms;

and the Matlab ODE45 routine with variable step. The computed positive exponent

is summarized in Tables 2.1, 2.2 and 2.3. The results were in agreement for all the

integration algorithms.

The results show similar conclusion than [69], the positive exponents grow less than

10% for more than 4 scrolls in (a), 3 scrolls in (b) and (c) and remain constant in (d).

In all the cases the influence on the system parameters to the characteristic exponent

was greater than the number of scrolls in the attractor.

Also, it was observed that the negative exponent tends to decrease in magnitude

in (a) and (b), as the positive one increases. In (c) the relation goes backwards since

the sum of all the system exponents keeps constant (this sum is associated with the

system dissipativity [71]). Moreover, in the case of (d), there are no variations with the

number of scrolls since the system is based in a single slope saw-tooth PWL function

which makes the Jacobian constant and unique.

Thus, from the electronic design point of view, it could be comparable to generate

few scrolls since the generation of large number of scrolls leads one to large circuits

while the Lyapunov exponents are quite similar.

The exploration on these exponents is still an open field, since there is no single

direction of complexity; if the local exponents [80, 81] are considered, perhaps for mixing

applications, there are still many issues to be investigated.

2.4 On the design of a multi-scroll system

Amulti-scroll system can be designed by taking the Chua’s system reported by Rodriguez-

Vazquez and Delgado-Restituto [48] which is expressed in (2.9). Equilibrium points may
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be created by breaking the nonlinear function. Chaotic behavior will arise with the ap-

propriate selection of the system coefficients to accomplish the inequality and generate

bond orbits as in [46]. This process may be performed in several forms, however, the

application of saw-tooth functions has shown quick results. An example is in a variation

of the Chua’s system proposed by Simin Yu [45]. Other works in which this function

appears are found in [62, 82].

ẋ1 = αx2 + f(x1)

ẋ2 = αx1 − γx2 − αx3

ẋ3 = βx2 (2.9)

Thus, it was proposed [70] to use a saw-tooth function such as (2.10) for 2n + 1

scrolls or (2.11) for 2n scrolls, k = 1...n:

f(x) =



















−ξx |x| ≤ Bp

ξ(2ksgn(x)− x)
|x| ≤ Bp(2k + 1)

|x| > Bp(2k − 1)

(2.10)

f(x) = ξ((2k − 1)sgn(x)− x)
|x| ≤ 2kBp

|x| > 2Bp(k − 1)
(2.11)

For the system’s particular nonlinear function, the Jacobian can be considered con-

stant, this maintains mathematical simplicity while the system complexity is the same

for any number of scrolls in terms of the Lyapunov exponents [68].

Thus, the dynamical system given by (2.9), with parameters α = 3, β = 4, and

γ = 1 and a saw-tooth function (based on a parallel array of comparators and a negative

amplifier) will generate a multi-scroll attractor. A Lyapunov analysis reveals λ1 = 0.222,

λ2 = 0, λ3 = −1.913 for the selection of the slope parameter ξ = 0.8. Figure 2.1 reveals

the chaotic behavior along with the bifurcation in variable x2, the other bifurcation

diagrams (most affected by the number of scrolls) are shown in Fig. 2.2 for a double-

scroll attractor (n = 1).
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Figure 2.3: The system 5-scroll attractor in (a) phase space, and (b) time.

The above description corresponds to a typical dissipative system ẋ = f(x) with

∇V = δf1
δx1

+ δf2
δx2

+ δf3
δx3

= −ξ − γ < 0. It has the equilibrium points [±(2kBp −

1), 0,±(2kBp−1)] for even scroll-number, and [±2kBp, 0,±2kBp] for odd scroll-number.

The eigenvalues (at the origin) are given by −2.1309 and 0.1655 ± j2.1161, which cor-

responds to saddle-foci equilibriums with 1-D stable manifold and a 2-D unstable man-

ifolds.

A typical 5-scroll attractor (n = 2) may be seen in Fig. 2.3. The frequency spectra

is shown in Fig. 2.4.

2.4.1 Increasing Lyapunov exponents

In spite of the analysis discussed above, a proposal for increasing the Lyapunov expo-

nent independently on the number of scrolls is now examined. Considering that these

exponents provide from a generalization of the system eigenvalues. Suppose a linear

n-order system in the form:

ẋ = Ax (2.12)

with A a real full-range n × n matrix. Since this matrix is linearly independent, its
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Figure 2.4: System FFT (a) x2, (b) x1, and (c) x3.
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eigenvalues may be obtained by turning it into a diagonal matrix; thus for a constant

k, the product kA will scale all the eigenvalues by k. This constant may be regarded

as the rate of change of the dynamical system. This suggests that in a chaotic system,

the Lyapunov exponents can be varied if the system dynamics rate is increased.

This is in fact incorrect because the Lyapunov exponent is used to give a perspective

on the rate of grow for autonomous systems [75]. The independence on time can be

observed in term 1
T

(with T the total time used in the computation, see Appendix B

and Eq. B.1) for details. However, if the term k is made variable (say kv), this no longer

holds.

The Lyapunov exponent of an arbitrary autonomous chaotic system can be increased

if the integrator gain is made variable; say, with dependence of some combination of the

system states only to keep the system order. Suppose the nonlinear system ẋ = f(x)

as given by (2.9) in two scrolls, and a variable gain kv in the form

ẋ = kv(x1, x2)f(x)

kv(x1, x2) = p(x1 +mx2 + q). (2.13)

If the selection of coefficients p = w/10, q = 6 and m = 5 is made to allow the

integration gain to vary in a positive range, say roughly kv ∈ [ǫ...w) for some ǫ > 0, then

one have an approximate linear relation of the Lyapunov exponents to the maximum

integration gain w, as suggests Fig. 2.5. Here, by using w = 1, the computed exponents

were λ1 = 0.107 and λ3 = −0.851; by scaling w to 10, a similar change was found

λ1 = 0.954 and λ3 = −8.077. The zero exponent remained unchanged.

The system phase and time response is shown in Fig. 2.6. Note that the attractor

remains unchanged since it is independent on time. Besides, it can be seen that the

integration rate follows the values of signal p(x1+5x2+ q). This behavior has been also

observed with non-PWL chaotic systems such as the Lorenz system.

On the other hand, the FFT analysis performed in Fig. 2.7 shows that as the

nonlinear signal is in fact being modulated by a linear combination of itself. Wider

signal spectra can be readily achieved respecting the original system (Fig. 2.4).
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Figure 2.5: Lyapunov exponents for the proposed system as a function of the integration

gain w.

As a conclusion, while the Lyapunov exponents prove to be hard to improve (in-

crease) with the number of scrolls and the system chaotic behavior is restricted to a

finite parametric region. The solution for higher Lyapunov exponent may be based in

the use of non-constant integration rates.
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Table 2.1: Positive Lyapunov exponent for the Zhong generalization (a).

Scrolls FE RK4 ODE45

2 0.40884 0.23720 0.24144

3 0.49882 0.36999 0.37958

4 0.50620 0.41298 0.41808

5 0.52163 0.41002 0.41051

6 0.55911 0.44154 0.43760

7 0.57303 0.44652 0.45613

8 0.63320 0.49336 0.51609

9 0.64162 0.53176 0.51772

10 0.68270 0.52967 0.54934

Table 2.2: Positive Lyapunov exponent for the Yu generalization (b).

Scrolls FE RK4 ODE45

2 0.43009 0.41390 0.41119

3 0.46237 0.40714 0.41378

4 0.47426 0.42061 0.40292

5 0.48414 0.39354 0.40152

6 0.41400 0.38767 0.40267

7 0.45197 0.39254 0.38952

8 0.48472 0.41582 0.42209

9 0.47069 0.39259 0.40155

10 0.48958 0.65408 0.66798

11 0.70011 0.66261 0.66900

12 0.68698 0.65842 0.68653

13 0.69638 0.66850 0.66162

14 0.68121 0.66582 0.67615

15 0.70895 0.67435 0.68519
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Table 2.3: Positive Lyapunov exponent for the Lü saturated approach (c).

Scrolls FE RK4 ODE45

2 0.11586 0.10082 0.10260

3 0.14503 0.12807 0.12819

4 0.15998 0.14171 0.13683

5 0.16647 0.14427 0.14657

6 0.16811 0.14790 0.14572

7 0.17278 0.14928 0.15382

8 0.17344 0.15335 0.15396

9 0.17319 0.15613 0.15130

10 0.17470 0.15507 0.16303

11 0.17523 0.15011 0.15540

12 0.17641 0.15614 0.16508

13 0.17373 0.15251 0.16284

14 0.18470 0.15570 0.16517

15 0.18132 0.15917 0.15232



Chapter 3

Design of Integrated Chaotic

Oscillators

In PWL-based chaotic oscillators, the designs are governed by a set of slopes. This

Chapter proposes a procedure to systematically obtain circuit parameters (given a cir-

cuit topology) from a nonlinear PWL function. It is based on the saturation of linear

amplifiers. Some examples and experiments are given for the circuit synthesis of a

CFOA-based multi-scroll oscillator [34, 35, 37, 66, 84].

Whereas this method proves to work, the importance of a high speed switching

component is highlighted in the generation of PWL functions. Analysis on the electrical

requirements of integrated chaotic oscillator is also presented both for the linear part

(integrators, amplifiers), and the nonlinear part (PWL function).

In this way a CMOS design is sketched based on a floating gate (FGMOS) inverter,

which has the ability to change the threshold by the biasing and capacitor sizes con-

nected to the floating node. This generates an internal-referenced shift of the switching

behavior, useful for multi-scroll PWL functions.

It is worth to mention that the state of the art diversity of multi-scroll designs

are based on external DC references, an issue that seriously limits the reliability of

integrated realizations.

39
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(a)

(b)

Figure 3.1: CFOA-based PWL cell (a) ideal, and (b) circuit with parasitic resistances.

3.1 Matching the nonlinear behavior

The circuit design of system synthesis of some nonlinear functions is critical to obtain

the expected equilibriums. Suppose the required nonlinear function is described by a

set of slopes as in Section 1.4.2, equation (1.9) is repeated here for convenience

g(x1) = m2n−1x1 +
1

2

2n−1
∑

i=q

(mi−1 −mi)(|x1 + bi| − |x1 − bi|) . (3.1)

Now consider a CFOA-based topology to approach for a saturated slope [66] as shown

in Fig. 3.1. A parallel array will be used for higher number of scrolls, consider the case

of q = 1, n = 1 for a double-scroll. The CFOA has the following port relationships:

Vy = 0, Vx = AvVy, Iz = AiIx and Vw = AvVz. Where Av and Ai are the voltage and

current gains, respectively and the most dominant parasitic is the resistance at X-port

(RX).

Basically, we assume that the saturated response of a CFOA amplifier can be lin-

earized for all the range of the output signal which is beyond the last breakpoint of the

respective PWL function. The circuit response is controlled by saturating the current

follower of terminal Z; besides, a parallel connection results in a direct addition of sig-
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nals. This makes the CFOA, a suitable circuit for the generation of PWL functions.

The linearizing approximation will depend on the circuit topology and technology [83].

In real applications, parasitic elements will degrade the nonlinear function. Resis-

tance Rx for example, is around 50Ω for the commercial CFOA AD844. Routine analysis

of Fig. 3.1a leads to (3.2). Where RX = Rin + Rx according with parasitics shown in

Fig. 3.1b, the non-ideal gains will be taken into account later. First, it is shown how

the saturated circuit works to produce PWL functions

Vout = Rout(Vin − E)/RX . (3.2)

By assuming that the signal in terminal Z is saturated when it reaches some threshold

bias-dependent voltage VZsat, and if the output current remains constant (ideal case),

then (3.2) is locally valid between boundaries

V + =
RX

Rout
VZsat + E,

V − = −
RX

Rout
VZsat + E. (3.3)

The response of the proposed CFOA-based PWL cell shown in Fig. 3.1a, is described

by

Vout(Vin) =



















Rout(V −−E)
RX

if Vin < V −,

Rout(Vin−E)
RX

if V − < Vin < V +,

Rout(V +−E)
RX

if Vin > V +.

(3.4)

If nonideal gains (Av, Ai) and parasitics from Fig. 3.1b are taken into account, one

can consider aW = A2
iAv the total gain at port W, and the ratios Rz

Rx+Rz
and Rz ||Rout

Rout
at

Z terminal of CFOA(a) and CFOA(b), respectively. However, for the saturated output

Z, which is not able to follow the current signal, a linearized saturated output can be

considered by the experimental value aoff ≈ 25× 10−3 [84].

The nonlinear behavior of the proposed CFOA-based PWL cell can be described by
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Figure 3.2: Comparison between (3.5) and the Spice macro-model with parameters

E = 1, RX = 5KΩ and Rout = 50KΩ.

Vout(Vin) =























































aWRout

RX
(V − −AvE) + aWaoff (Vin − V −)

if Vin < V −,

aWRout

RX
(Vin −AvE)

if V − < Vin < V +,

aWRout

RX
(V + −AvE) + aWaoff (Vin − V +)

if Vin > V +,

;

V − =
−VZsatRX

A2
iRout

+AvE,

V + =
VZsatRX

A2
iRout

+AvE. (3.5)

A comparison between (3.5) and the proposed cell using the Spice macro-model of

the CFOA AD844 is shown in Fig. 3.2, where VZsat = 5.3V for Vbias = ±10V (different

supply dependent values can be expected in the experiment).

To accurately approach the described nonlinear function. A technique can be applied

to produce in general, even or odd PWL functions from the saturated function modeled

before. These are composed by a set of contiguous arbitrary slopesm, each one delimited

by a set of breakpoints bp < bq, where E is the middle point E = bp + Sat = bq − Sat

and Sat = 1
2(bq − bp).

To generate the nonlinearities required in multiscroll circuits one starts from the
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Figure 3.3: v − i characteristic of Chua’s diode to generate 3-scroll attractors showing

each component.

current mode nonlinear response of the PWL cell shown in Fig. 3.1a, which output

current is seen in the resistance Rout, considering a latter gain of AV Rout for the voltage

response. Notice that the slopes described by (3.5) can be expressed as

∂

∂Vin

Vout

AV Rout
=







A2
i

RX
if V − < Vin < V +,

aoff
Rout

otherwise.
(3.6)

A PWL function can be generated by adding several bounded slopes as shown in

Fig. 3.3. The technique for parameterizing these cells is based on shifting the Vin axe by

E starting from left to right for each block and using an extra block to adjust the slope

of all the used range. For generating PWL functions, a system is formulated with the

local slopes, which are function of either RX or Rout, once E and Sat are known (taken

as Sat = 1
2(V

+
in − V −

in )). Depending on the region of each K-cell (active or saturated)

one has:
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m1 = f1(RK1, .., RKg+1) for {K1,Kg+1} active
...

...
...

...

mg = fg(RK1, .., RKg+1) for {Kg,Kg+1} active

mg+1 = fg+1(RK1, .., RKg+1) for {Kg+1} active

(3.7)

where g = n for odd scrolls, and g = n − 1 for even scrolls. To solve (3.7) coefficients

are chosen according to (3.6), depending on the operation region and the relation for

the parameters given by

RX

Rout
=

A2
iSat

VZsat
. (3.8)

The following normalization variables are proposed:

Ki =
Sati
RXi

, ji =
A2

i

Sati
, c =

aoffA
2
i

VZsat
.

Thus, (3.7) is normalized as

















m1

m2

...

mg+1

















=

















−j1 c . . . −jg+1

c −j2 . . . −jg+1

...
...

. . .
...

c c . . . −jg+1

































K1

K2

...

Kg+1

















. (3.9)

3.1.1 Example: 3-Scroll, PWL Function

Consider again Fig. 3.3 with PWL cells 1 to 3 described by the values in Table 3.3, and

the set of slopes











ma

ma

mb











=











−j1 c −j3

c −j2 −j3

c c −j3





















K1

K2

K3











. (3.10)

Valuesma,ma, andmb correspond to the slopes presented among the limits [−b3,−b2],

[b2, b3], and [−b4, b4], respectively. By solving (3.10) one reaches
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Figure 3.4: Parallel connection of CFOA-based nonlinear cells for a v − v PWL-

characteristic (Fig. 3.3) to generate 3-scroll attractor.

K1 =
mb −ma

c+ j1
,

K2 =
mb −ma

c+ j2
,

K3 =
c2(2ma −mb) + cma(j2 + j1) +mbj1j2

(c+ j2)j3(c+ j1)
. (3.11)

As a result, the circuit of Fig. 3.4 is obtained with the parameters given in Table

3.2 for VZsat = 5.3V and a reduction of 14300 times for practical current levels. This is

applied to a CFOA-based Chua’s circuit to obtain a 3-scroll attractor.

By applying similar approach, the required PWL function (3.1) was observed to be

identical to the proposed behavioral function (3.5) in the attractor region, thus allowing
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the generation of up to 6-scroll attractors by Spice simulation as shows Fig. 3.5. For

experimental observations the chaotic oscillator was built directly by interconnecting

integrator stages using CFOAs, see Fig. 3.6. An important issue for physical imple-

mentation is the characterization of the bias dependent parameter VZsat in spite of the

different values shown by the simulation model and the real device.

3.2 Integrated design approach

As seen in Table 1.1 in Section 1.2, the generation of PWL functions allows to obtain

several multi-scroll oscillator schemes. To design many of these functions a switching

component may be used, direct applications will achieve stair-like or saw-tooth func-

tions; also, by controlling the biasing of some linear active cell, other PWL functions

can be generated. From the previous discussion it can be established that the genera-

tion of the nonlinear function is a critical issue [70, 85, 86], because the behavior must

be accurate enough to keep the relations of the dynamical system equilibrium points

simultaneously.

This means that the design of nonlinear functions has several dimensions of difficulty

compared to a simple linear one. It has several input and output offset points on each

segment, the slew rate affects the bandwidth capacity in different manners (according to

the specific PWL function), the hysteresis effects may produce more than two different

signal paths.

In this Chapter, the most relevant aspects are discussed to settle design requirements

and propose a circuit topology, for example.

Impedance coupling. Coupling is essential for signal transmission and the good

integrator performances. For simplicity in the actual design, one can use gate input

for voltage signals and source input for current signals. The cascode configuration was

also used to achieve good output coupling. The design of the active devices has been in

this way calculated to contribute by 1% of the system coefficient.

The other effects are analyzed by the linear and nonlinear parts separately. Let us

consider the n-order nonlinear system of the Lur’e form described by (3.12), it can be
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Figure 3.5: Spice simulations for 3, 4, 5, and 6-Scroll attractor. Nonlinearities compar-

isons are shown in: (a), (c), (e), and (g). Phase diagrams of the n-scroll attractor are

shown in: (b), (d), (f), and (h).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.6: Experimental results for 3, 4, 5, and 6-Scroll attractor. Nonlinearities are

shown in: (a), (c), (e), and (g). Phase diagrams of the n-scroll attractor are shown in:

(b), (d), (f), and (h). Horizontal axis is variable x1 and vertical axis is x2.
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simply implemented as shown in the conceptual diagram in Fig. 3.7. Note the matrix

A stands for the system linear part and the rest is used for the nonlinear feedback,

ẋ = Ax+Bσ(Cx) x,σ ∈ R
n. (3.12)

3.3 Linear design requirements

Swing. Since the IC design is focused to generate multi-scroll attractors, the increase

on the number of scrolls on the same dynamic range will eventually cause the loss of the

chaotic behavior due to the noise and circuit fault tolerances. The topology selection

must be made in order to maximize swing, as well as to provide a suitable circuit biasing.

Bandwidth. Since the linear part is in charge of the signal integration and other

linear operations, the linear circuit bandwidth can be much lower than the nonlinear

counterpart.

Chaotic oscillators have a wide frequency spectra, which can be scaled by the in-

tegrator gain (Aint, generally the RC constant). If the spectrum is known a priory,

the active devices bandwidth are set in accordance to this gain. In our proposed first

integrated design, the capacitor will be externally chosen allowing the spectrum to be

scaled.

In the proposed system (2.9), a dominant frequency is observed in state x2, see Fig.

2.4a. This follows the empirical relation (see Fig. 2.4) given below

fx2 ≈
3Aint

10
(3.13)

Gain. Evidently, different gains will affect the final system parameters letting it

to loose the chaotic behavior. However, by decomposing the signal path into several

matched trajectories such as in [48], the overall effect will be a little modification on the

value of Aint. In our design we propose that if unity gain cells have a fixed gain near

the unity (< 2% of difference), the system parameters are given mainly by the matched

resistors.
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Parameter relation. This part is a big issue on the design of integrated chaos gener-

ators because of the high parameter sensitivity that most autonomous chaotic systems

exhibit. A parameter space analysis can be used as a first glance to locate the appropri-

ate values. Recently, several software programs have been built to calculate and analyze

chaotic regions 1. If a chaotic region is known over some tolerances, the parameter re-

lations may be kept by using circuit matching techniques adequately.

Offset. The influence of offset on autonomous systems is a complex issue that has

not been addressed. The use of low offset linear cells is imperative knowing that further

effects can be compensated by the adjustable output of the nonlinear part. However,

the use of non-autonomous systems has surmount this effect.

Linearity. Very high linearity of any system term will not be required in an essen-

tially nonlinear system.

3.4 Nonlinear design requirements

Swing. The saturated behavior that is typically designed, implies that an active cell

may use different biasing than the rest of the circuit which has to process the signal

beyond saturation. In fact, some approaches have suggested this [35, 41]; however, the

circuit construction becomes very impractical as the number of desired scrolls grows. A

typical solution is the use of V-I nonlinear cells, due to the natural gain of the signal

from voltage to current. In this mode, lower currents can be easily handled while the

associated voltages remain low and in the same dynamic ranges for all the oscillator.

Bandwidth. Among the numerous research on experimental designs, it is well know

that autonomous chaotic behavior is severely limited in frequency. The diverse active

cells, generally have a very high bandwidth than the observed in the oscillation spectra.

in fact, the delay response exhibited by the active devices is directly degrading the PWL

function [86], thus changing critically the dynamical system properties.

1Sprott JC, Rowlands G. Chaos Data Analyzer (http://sprott.physics.wisc.edu/cda.htm) and

Hegger R, Kantz H, Schreiber T. Nonlinear Time Series Analysis TISEAN (http://www.mpipks-

dresden.mpg.de/∼tisean).
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Consider, the time response for the circuit saturations that the PWL function re-

quires. Several nonlinear cells has to surmount large signal changes and also change

on/off states continuously as the system solutions change the region of the function

behavior. Roughly, if the signal highest dominant frequency is fmax, and the PWL

function has a continuous transition which is a k < 1 portion of the entire input swing,

then the nonlinear cell saturation delay must be k/fmax. However, the cell bandwidth

is higher than the inverse of this delay, since this last also accounts for the time for

turning it on and off. The dependence on the PWL function delay is then obvious.

Gain. If the PWL saw-tooth function is considered, the gain is actually scaling

parameter ξ, which may allow to control the system behavior. At this point, it is found

convenient to work with adjustable design to control the chaotic bahavior.

Offset. This is well known to be one of the main drawbacks in comparator designs;

thus, the comparator output offset is proposed to be adjustable. Furthermore, the

nonlinear function may suffer from input offset.

Modularity. Since the change on the number of scrolls is desirable on multi-scroll

oscillator circuits and this effect depends directly on the applied nonlinear function; a

desirable nonlinear function may be built to grow in a systematic mode. A voltage-to-

current nonlinear function grows by simply connecting cells in parallel.

Transition. Since this is a system bandwidth conditional issue, a good and simple

approach has been found to be the selection of an inverter circuit as the heart of the

proposed nonlinear cell.

DC references. Most of the multi-scroll designs base their nonlinear function on

external voltage references. This means that the number of external components grow

inadmissibly by extending the number of scrolls. The use of voltage dividers as suggest

[41] is not an alternative for integrated design. Instead, capacitor values are known

to be implemented with relatively high accuracy and good matching properties. FG-

MOS technology uses capacitive gates of MOS transistor to combine signals. In this

Thesis, this CMOS compatible technology is proposed to eliminate the need of external

references as will be detailed in Chapter 4.
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Adjustability. By using the FGMOS technology, some parameters of the nonlinear

cell can be adjusted to match correctly to its counterpart. for example, the output offset

and the stair gain are adjusted by a parallel FGMOS transistor which gate is mainly

biased by the capacitor sizes and a fine tuning is allowed by the compression effect.

Low hysteretic. While there exist some hysteresis and delay-based multi-scroll

chaotic systems [3, 4, 8]; hysteretic control is an important issue to generate accu-

rate nonlinear functions. The proposed voltage-to-current cell has low hysteresis due to

the intrinsic low hysteresis of the properly biased inverter.

However, the nonlinear parasitic capacitances in the inverter may cause input offsets

that will produce hysteretic behavior. These variations are tolerated by the oscillator,

since the total desired capacitance is 10pF and the highest parasitic capacitor is 200

times lower.

3.5 Final description

For a first prototype of the chaotic oscillator, the considerations on area have been

relaxed; the oscillator bandwidth is been work in two modes: the low-frequency design

(for the integrated circuit detailed in Chapter 4) and the high frequency design (observed

in simulations). Recall from Table 1.6 that the highest frequency reported by a multi-

scroll design is about 7MHz.

The proposed design is based in the use of FGMOS to change the threshold of

an inverter in accordance with the biasing and capacitor sizes. This implies that the

response is flat all over the dynamic range and shows a fast transition at an internally

fixed voltage reference. A slewing transconductance structure is later used for the

nonlinear comparator as will be shown in the next Chapter.

As a summary, the circuit realization of (3.12), requires that each active device

fulfills the performances shown in Table 3.3 and classified according to their relevance,

regarding our proposed design procedure. In the next Chapter, the design of the linear

and nonlinear part is explained in detail and adapted to the Saw-tooth based multi-scroll

approach proposed in Chapter 2.
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Table 3.1: Values required.

Cell Sat E

1 1
2(b3 − b2) −b2 −

1
2(b3 − b2)

2 1
2(b3 − b2) b2 +

1
2(b3 − b2)

3 b4 0

Table 3.2: Circuit parameters.

E(V) RX(Ω) Rout(Ω)

-1.1 4586 88458

1.1 4586 88458

0 44534 80536

Figure 3.7: Conceptual diagram of the electronic implementation of (3.12).
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Table 3.3: Design requirements.

Linear circuit PWL circuit

Modularity

Fast transition

Swing DC references

Required Parameter relation Adjustability

Low offset Low hysteresis

High Zin

High Zout

Area

Not High Bandwidth

necessary Exact gain

High linearity



Chapter 4

FGMOS Based Multi-Scroll

Oscillators

A chaotic oscillator is designed in this Thesis from the state space equations using unity

gain cells (UGCs) for linear amplification and integration and a particular switching

block for the nonlinearity required by a multi-scroll constant-Jacobian system 2.9. The

design for linear and nonlinear parts is in accordance with the requirements reviewed

in the previous Chapter.

First, the macro-model generates an extended state space system. For adequate

circuit coupling, the maximum output resistance of the cells is examined as well as the

transfer V-to-I gain; thus, a bias current is selected and the design of the voltage follower

(VF), the current follower (CF), and the current mirror (CM) cells is presented.

On the other hand the nonlinear function is given by the FGMOS circuit as pro-

posed. First, a discussion over the failure effects such as the trapped charges from the

manufacture process, the tunneling effect and the hot electron injection is given to clar-

ify the design tolerance. An overview of the floating gate (FG) voltage calculation is

given. Also the gate voltage is generated by the capacitance of poly 1 to poly 2 and the

substrate. The capacitance ranges are obtained in accordance to the parasitics an the

coupling constraints. In this way a shifted inverter is designed.

Then, a FGMOS V-I comparator topology is proposed and the transient response

55
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is examined in detail to calculate the time transition in both cases. The cell maximum

transient time is found to be around 2ns. However, it is also suggested an optimization

to reach the same time of a simple inverter (about 0.25ns in its technology).

The computation of the nonlinear function breakpoints (threshold shifts) is now

introduced from the point of view of the layout capacitors. Both stair and saw-tooth

functions are designed taking into account the circuit V-to-I gain, the dynamic range,

the breakpoints and the slope system parameter.

❑

Given the circuit considerations, in the two different domains (linear and non-linear).

The system synthesis is now carried out by integrating the signal in current mode trough

user defined capacitors. This allows for the selection of the operating spectrum and the

system coupling whenever such capacitors are external.

Moreover, capacitive loads are widely preferred to integrate signals on this kind of

oscillators due to the fact that inductive loads are not this simple to have on chip and

the system is highly sensitive to the low Q.

As observed in Chapter 1, the selected active devices are diverse and the state of

the art is still young to define the dominance of one particular cell over the others. This

is due to the fact that the differences on the cells are also used as design advantages.

For example typical integrated designs make use of the OTA [25, 48, 49] as a block of

construction, thus synthesizing gm-C integrators, others use the versatility of the CFOA

to synthesize compact designs.

Whereas the design and application of OTAs is very popular and specially needed

on compensated schemes, the selection of unity gain cells (UGCs) for chaotic oscillators

is also possible as shown in [30–33]. The motivation in the use of these cells, is the

simplicity of the realization procedure.

4.1 Linear Design: UGCs

The set of UGCs is conformed by a voltage follower [87–91] (VF), a voltage mirror

[91, 92] (VM), a current follower [90, 93] (CF) and a current mirror [93, 94] (CM). The
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Figure 4.1: UGC’s representation, (a) ideal behavior, (b) with parasitics.

behavior of each cell consists in copying the voltage or current as shown in Fig. 4.1a.

The main parasitics that are considered in the model are also shown in Fig 4.1b. Here

av and ai represent the cell voltage and current gain respectively. More specifically

there will be called aV F , aVM , aCF and aCM for the corresponding UGC. By similar

reasoning, there are input resistances RinV F , RinVM , RinCF , RinCM ; output resistances

RoutV F , RoutV M , RoutCF , RoutCM ; and pole capacitors CV F , CVM , CCF , CCM . These

last are represented as Cp along with the unitary resistances. Thus, the cell dominant

pole will be f−3dB = 1
2πCp

.

Having the circuit considerations in mind, the developed UGCs use cascode configu-

rations. The linear transfer is made by the connection of a VF in series with a resistance

and a summing node at the input of a CF or CM (depending on the parameter sign) as

shows Fig. 4.2.

Since all these cells have a single gain, a resistance bank is proposed. Thus for a

parameter a, a signal will be transmitted by a R
a
resistance. Where R is the current-to-

voltage scaling and it also conforms the integration gain 1
RC

at the end of the current-

mode cell (CF or CM). Thus, the proposed system (2.9) is realized by connecting the
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V
1


V
2


R/a


R/b


(
aV
1
+
bV
2
)/R


(a) (b)

Figure 4.2: Signal transfers with UGCs, (a) scaling and summing, (b) integrating.

Figure 4.3: Circuit realization of the proposed multi-scroll chaotic oscillator.

cells as shown in Fig. 4.3.

The real values of integrated resistances may vary over the fabrication process, thus a

pseudo common centroid is used to keep the relative values and consequently the system

coefficients. The absolute variations can be seen as a constant term on the dynamical

system (2.9) which is a deviation on the system spectra. This may be undesirable in

some applications, but it may not show any remarkable effect in chaotic signals because

of their wide spectrum.

Considering the parasitics described in Fig. 4.1b, and the circuit block realization

of (2.9) the system macro-model is derived as:
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C
d

dt
Vx1 = Vx11 −

Vx1

RF
,

C
d

dt
Vx2 = Vx6 −

Vx2

RE
,

C
d

dt
Vx3 = Vx4 −

Vx3

RD
,

CCM
d

dt
Vx4 = aCM

Vx10

RA
− Vx4,

CV F
d

dt
Vx5 = aV FVx3 − Vx5,

CCF
d

dt
Vx6 = aCF

Vx17

RinCF
− Vx6,

CV F
d

dt
Vx7 = aV FVx2 − Vx7,

CCM
d

dt
Vx8 = aCM

Vx9

RB
− Vx8,

CV F
d

dt
Vx9 = aV FVx2 − Vx9,

CV F
d

dt
Vx10 = aV FVx2 − Vx10,

CCF
d

dt
Vx11 = aCF

Vx16

RinCF
− Vx11,

CV F
d

dt
Vx12 = aV FVx1 − Vx12,

CV F
d

dt
Vx13 = aV FVx1 − Vx13,

CinNLF
d

dt
Vx14 =

Cx13 − Vx14

RoutV F
,

CNLF
d

dt
Vx15 = NLF − Vx15, (4.1)

with
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RA = R/β +RinCM +RoutV F ,

RB = R/γ +RinCM +RoutV F ,

RC = R/α+RoutV F ,

RD = RoutCM ||RinV F ,

RE = RoutCF ||RinV F ||RinV F ||RinV F ,

RF = RoutCF ||RinV F ||RinV F ,

Vx17

RinCF
=

RoutCM

RoutCM +RinCF

(

Vx8 +
Vx5 + Vx12 − 2Vx17

RC

)

,

Vx16

RinCF
=

RoutFNL

RoutFNL +RinCF

(

Vx15 +
Vx7 − Vx16

RC

)

. (4.2)

Where the V-I nonlinear function is NLF , with dominant electrical parameters

CinNLF , RoutNLF , and CNLF . The transistor design is explained as follows.

4.1.1 Voltage follower

Consider the current trough active cells given by the system parameters and the voltage-

to-current scaling given by the nominal circuit resistance R. If we choose R = 120kΩ

and the system described in (2.9). The highest gain is given by parameter β = 4.

Naturally the circuit dynamic range (DR) is to be known, in this case we choose ±1

which is easily achievable in a 5V-bias technology.

Then the current handling capacities are calculated for active devices controlling

one signal transmission path from the required maximum current

Imax =
DRβ

R
= 33µA. (4.3)

A possible choice for the bias current is ID = 60µA. The circuit schematic has been

derived from a translinear VF [89]; however, nodes 13 and 12 have diode connected

transistors which improves the cell offset as shown in Fig. 4.4. Here terminals 10 and

11 are input and output, respectively; terminals 1 to 4 are generated by the cascode
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Figure 4.4: Voltage follower.

bias circuit in Fig. 4.12. The bulk terminals are all connected to the bias in all the

schematics unless specifically pointed.

As it is planed to work with symmetrical biasing, both PMOS and NMOS transistors

must be matched, thus the transconductance gmN = gmP = gm, and the circuit output

resistance is approached by

RoutV F ≈
2

gmN
||

2

gmP
≈

1

gm
. (4.4)

In this way, the system gains will be affected by the series resistance. A low conser-

vative choice is to set RoutV F = 1%R. Thus having a maximum variation of 8% in the

gain given by β and 6% for the gain of α for both sides considered. Thus the transistor

sizes are obtained by considering KN = coxNµ0 and KP = coxPµ0 (For the particular

technology parameters are KN = 57.6µA/V and KP = 18.6µA/V ), this gives

gm =
1

120KΩ
× 1% = 83.3µA/V, (4.5)

W

L N
=

gm2

4KNID
= 50.2, (4.6)

W

L P
=

gm2

4KP ID
= 155.6. (4.7)

Thus, the saturation voltage is Vsat ≈ 0.15. The final adjusted sizes are summarized
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Figure 4.5: Current follower.

in Table 4.1 and the cell electrical parameters are found in Table 4.2.

4.1.2 Current follower

Following the translinear topology and the same biasing, the CF circuit schematic is

shown in Fig. 4.5. Transistor dimensions are also summarized in Table 4.1 and the cell

electrical performance is described in Table 4.2.

4.1.3 Current mirror

The CM circuit schematic is shown in Fig. 4.6. This particular topology uses matched

transistors to copy the ground voltage to both terminals, obtaining low offset. Transistor

dimensions are summarized in Table 4.1 and the cell electrical performance is described

in Table 4.2.

4.2 Nonlinear: FGMOS Comparator Based Design

It may found every where in literature that chaotic multi-scroll PWL-based oscillators

are all dependent on voltage DC references to generate the used nonlinear functions.
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Figure 4.6: Current mirror.

The central idea on the design of a multi-scroll oscillator is to reduce such explicit

dependence. A first approach is to use resistors as voltage dividers [41]. However, a

multi-scroll design would not be reliable if the actual variance of the integrated resis-

tances were taken into account.

Floating gate MOSFETs (FGMOS) attract the attention for their novel applications

on fully CMOS compatible design based in the capacitive structure of the transistor

gates. Recall that integrated capacitors have minor variations than resistors. A principal

drawback in their use are the charges that can appear for different causes:

• The most dominant effect is the charging during the manufacture process. A

typical cause is the antenna effect that occurs due to the high electrical fields used

in dry etching, in which large geometries are vulnerable to the collected ionized

particles [95]. If these structures are not connected to any diffusion, the trapped

charges can damage the circuit.

A common layout solution for these structures such as the transistor gates, is to

temporally isolate the biggest geometries form the sensible areas by using inter-

connections of higher levels such as metal 2 or 3, which are know to be connected
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to a diffusion somewhere in the die.

• Charge injection during the device operation is related to the Fowler-Nordheim

tunneling effect, which allows electrons to flow trough a barrier by a high elec-

tric field. This process has shown to occur only if the floating gate potential is

biased at programming voltages [96]. In fact, for 10nm of oxide thickness the

required potential is about 15V [97]. Typical thickness in the 0.5µm technology

are tox=13.9nm.

• Hot electron injection is an effect of carriers displacement into a saturated transis-

tor due to increase in their instantaneous velocities. This effect can lead the gate

to collect some of the carriers that are passing trough. Two conditions that allow

and increase this effect are the high drain voltages as well as the high channel

current.

This is not the case of the current design since the current in the inverter is

only used to charge the capacitance of the switching MOS gate, which is lower

than some of the parasitic capacitances of the inverter itself. In addition, the

switching transistors are usually operating in linear or cutoff regions. In the case

of the saturated current adjustable sources, the drain voltage is always near the

minimum Vdsat.

The trapped charge of the manufacturing process can be canceled by a simple layout

technique which has shown experimentally good performance for 0.5µm technology [98].

It consist in adding vias contacts to the floating gate to connect it directly to the upper

metal of the current technology. In this way the possible charges generated during

manufacturing process of all the lower layers will flow to the vias contacts and discharge

trough the last metal layer. Finally, this layer is etched and the gate is isolated [98].

4.2.1 FGMOS and tresholding

The gate voltage VDC of the FGMOS can be simply set by choosing adequate capacitors

and biasing. The total capacitance connected to this node is considered CT = C1 +
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Figure 4.7: The used FGMOS transistor, (a) electrical diagram, (b) physical device.

C2 + ... + Cn, as well as each of the used bias voltages (V2 to Vn). Here, C1 is the

input capacitor, thus V1 = Vin will not contribute to the DC reference. The bias set of

capacitors will be called Cb = {C2, C3, ..., Cn}, their existence will produce the overall

input signal to be compressed by the ratio k = C1
CT

(see Fig. 4.7),

VDC = V2
C2

CT
+ V3

C3

CT
+ ...+ Vn

Cn

CT
. (4.8)

As the bulk capacitance Cn in this large structure is taken into account. The bulk

contribution given by (4.9) has been calculated by the technology dependent param-

eter fcpcb
1 which is the ratio of the Poly1 to bulk capacitance to the Poly2 to Poly1

capacitance [98],

Cn = fcpcb(C1 + C2 + ...+ Cn−1). (4.9)

According to Fig. 4.7, if the total capacitance CT and the compression factor k,

(1 > k > 0) are chosen, the other capacitors may be calculated using (4.9) and (4.10),

this last expression is derived form (4.8):

1The parameter was reported as fcpcb = 0.14 [98] for the 0.5µm ON semiconductor process; however,

the authors agreed that a more accurate value for this constant is fcpcb=0.1333, as used in this Thesis.
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C1 = kCT ,

C2 =

(

CT

V3 + Vbfcpcb
fcpcb + 1

− C1 (V3 − V1)− CTVDC

)

1

V3 − V2
,

C3 = (CT − C1 − C2 − fcpcb (C1 + C2))
1

fcpcb + 1
. (4.10)

FGMOS technologies can be used in low voltage design for the ability to set the

transistor threshold voltage. In this work, other remarkable characteristics have been

exploited. The signal compression inherent to these transistors is used for external

adjusting; and the variation on the threshold makes possible the generation of PWL

functions.

Consider the inverter in Fig. 4.8. Since NMOS and PMOS are matched transistors

with symmetrical biasing, the gate threshold voltage is around zero in the conventional

inverter. By using FGMOS, the circuit threshold can be accurately changed to VDC .

See Fig. 4.9 for an example of equidistant spaced inverter responses Vinv given with an

input signal in the interval of -2.5V to 2.5V.

Here, it is desired to have a large factor k to have low compression. However, for

the selection of the total capacitance CT , two bounds must be considered. First, the

capacitance Cb (and therefore CT ) must be sufficiently high to avoid the effects of the

nonlinear parasitic capacitances of gate to source (M1, M2). As a rule of thumb, this

means about ten times the value of the higher parasitic capacitance Cmax. Roughly,

M1 and M2 saturated:

Cmax ≈
2

3
Cox(WM1LM1 +WM2LM2) + Cov PWM1 + Cov NWM2 = 88.4fF (4.11)
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Figure 4.9: Transient response of several shifted inverters. Input signal varies from rail

to rail in the time interval.

Second, if h FGMOS inverters are to be connected in parallel (for generating each

break point of the nonlinear function) Cb must be low enough to prevent the effect

given by the parasitic low frequency pole formed by the equivalent input capacitance,

say Cin(h,C1, CT ), and the output resistance of the preceding buffer Rout.

fp =
1

2πRoutCin
. (4.12)

4.2.2 FGMOS comparator design

A fixed threshold V-I comparator using the input FGMOS inverter is used for the

construction of stair-like nonlinear functions. A first approach is shown in Fig. 4.10.

Here, a source follower (M7) was used to handle the switching transistor M3. The

whole oscillator was prove to work as expected generating up to 6-scroll attractors [70].

However, the transient behavior of the function may lead to instabilities because of the

feedback in the source of M3 and the nonlinear behaviors of M4 and M5 when turning

from saturation to triode operation.
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Figure 4.10: A first FGMOS V-I comparator.

Thus, an improved V-I comparator has been developed, see Fig. 4.11b. The first

stage is the inverter designed with FGMOS (i.e. M1 and M2 transistors), which drives

the gate of M3, allowing the bias current (branch M5 to M7) to be switched between

M3 and M4. The output branch is conformed by transistors MS0-MS4. FGMOS tran-

sistors M6 and MS0 are used to control the amplitude and offset of the output signal,

respectively. VA and VB are playing the role of Vbias to preset adequate control voltages

at the gates of M6 and MS0.

All bulk connections are made to the corresponding bias voltages Vdd or Vss, where

Vdd = −Vss = 2.5V. Voltages Vb1 to Vb4 are obtained by using the cascode biasing

circuit shown in Fig. 4.12 which was developed exclusively for this design. The transistor

sizing of the voltage-to-current cell is shown in Table 4.3.

The transient behavior can be analyzed by means of the simplified stages shown in

Fig. 4.11c, 4.11d and 4.11e. The approximations used herein for roughly describing the

circuit behavior are supported by the simulations. The transition time is divided into

t1 (Fig. 4.11c), t2 (Fig. 4.11d) and t3 (Fig. 4.11e) for each stage. First, the value of

equivalent capacitors is calculated.

The inverter load capacitance CL1 is mainly given by the capacitance Cgd of both

PMOS and NMOS transistors, which is calculated considering the Miller effect and
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using the overlap capacitances Cov; and the capacitance at the gate of M3 connected

to ground Cgs M3, which considers the overlap and gate capacitance in a single term

coxMM3LM3, thus,
2

CL1 ≈ Cgd M1+Cgd M2+Cg M3 = 2Cov PWM1+2Cov NWM2+ coxMM3LM3 ≈ 14.4fF.

(4.13)

For time t2, it will be seen that the value of CL2 only matters when both transistors

of the differential pair are in cutoff region, thus ignoring capacitance from the cascode

current source, one have,

CL2 ≈ 2Cov NWM3 = 1.56fF. (4.14)

For the time t3, the capacitors connected to the cell output are all in saturation

and all the gates are fixed. Thus, the total capacitance is given by CL3 ≈ Cgd MS2 +

Cgd M4 + Cgd MS3 as

CL3 ≈ Cov PWMS2 + Cov N (WM4 +WMS3) ≈ 6fF. (4.15)

Call tHL the total time required for the output current signal to fall from Ioff to

−Ibias (similar to a digital circuit) and tLH the total time required to raise the output

current from −Ibias to Ioff . Both cases are analyzed separately.

Transition tHL

Figure 4.11c corresponds to the FGMOS inverter, its decreasing output controls transis-

tor M3 (second stage) by turning it to cutoff when its value is below VtN +2Vdsat−V ss.

For simplicity, a basic approximation is used for the inverter excursion time as t1 since

this transition is relatively fast [99]

t1 = tpHL =
CL1(V dd− V ss)

KN (V dd− V ss− VthN )2
, (4.16)

2Using the values of ON 0.5µm technology: Cov N = 0.2fF/µm, Cov P = 0.29fF/µm, Cox =

2.548fF/(µm)2.
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Thus one have t1 ≈0.071ns.

In the second stage described by Fig. 4.11d, M3 and M4 are both in cutoff, since node

Vx has been initially set by voltage VGS of M3 to the cascode fixed current Ibias = 2µA

when only M3 is conducting; and now, this current is simply discharging the node Vx

until transistor M4 starts conducting this same current. The overall voltage change on

the node is

∆Vx = Vx(t = t2)− Vx(t = 0) = V dd− VGS(Ibias)− (0− VGS(Ibias)) = V dd. (4.17)

Thus, if both transistors are in cutoff, the time is found by integrating the constant

current through CL2, then

t2 ≈ CL2
∆Vx

Ibias
= 1.95nF. (4.18)

According to the third stage described by Fig. 4.11e, a current Ibias will suddenly

discharge the output node from Vout(t = 0) = 0.5IbiasRload to Vout(t = t3) = 0 (50% of

excursion) through the parallel RC circuit given by the output load Rload << Rcascode

and CL3. Thus

t3 ≈ −RloadCL3ln

(

Vout(t3)− IbiasRload

Vout(0)− IbiasRload

)

= 0.005ns (4.19)

This generates tHL =2.026ns, which is in close accordance with the simulation shown

in Fig. 4.13. It can be noticed that (4.18) points to the highest delay. As a comment

on optimization, the drain terminal of transistor M3 can be biased to a voltage as low

as ground in order to reduce (4.17) and make t2 negligible with respect to t1. In this

way, the comparator delay can be similar to a single inverter delay (most influenced by

CL and technology). See Fig. 4.14.

Transition tLH

Following Fig. 4.13, it can be observed the close relation on this transition time to the

inverter transition time which is t1 ≈0.242ns [99],
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t1 = tpLH =
CL(V dd− V ss)

kP (V dd− V ss− |VthP |)2
. (4.20)

This is due to the second stage described by Fig. 4.11d. As node Vx has a low

voltage fixed by the saturated transistor M4. When M3 leaves the cutoff region, the

current flows from M3 to M4 and the transfer is direct, the fast adjustment of Vx is due

to the instant high transconductance of M3 (roughly t2 = 0).

At the third stage described by Fig. 4.11e, the calculation reaches the same value of

transition tHL. Thus, the total time is tLH =0.250ns, which is in accordance with the

simulation.

4.2.3 Sign()–based PWL functions

The generation of stair-type PWL functions with the V-I comparator is now shown from

the point of view of integrated circuit. Later, the design is extended to saw-tooth-type

functions.

Stair-type functions

A symmetric function respecting to the origin Vin = 0 in the form of (4.21) for odd

number of steps or (4.22) for even number of steps is to be built,

g(x) =



















0 |x| ≤ Bp

2ksgn(x)
|x| ≤ Bp(2k + 1)

|x| > Bp(2k − 1)

, (4.21)

here k = 1, 2... accounts for n = 1 + 2k number of steps and spaced by Bp or

g(x) = (2k − 1)sgn(x)
|x| ≤ 2kBp

|x| > 2Bp(k − 1)
, (4.22)

for n = 2k even number of steps.

Thus, there will be two parallel V-I comparators with opposed capacitive biasing.

For each of the V-I comparators assume only two capacitors connected to the floating
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node (C1 and C2). Since the approximate break point Bp is known the capacitor values

are computed by (4.23) to (4.25)

Cq
2 = CT

(

Bq
p

Vbias

)

, (4.23)

Cq
1 = CT − Cq

2 , (4.24)

Bq+1
p =

Cq
1

CT
Bq

p. (4.25)

Observe that it is actually iterated since the signal compression changes the break-

point, this process is followed for a few q steps until the value of Bp converges (it is

sightly changed from the original).

For symmetry, the bias capacitor C2 is connected to Vdd or Vss in each case. Now,

other stairs can be added to the designed 3-stair function by choosing other values for

the original Bp and iterate it again. If the new breakpoint is a multiple of the first one,

a convenient selection of the original parameter must produce bias capacitors multiples

of the ones firstly computed.

Besides, since the value of Bp will determine the attractor excursion (the size of

scrolls), it must be chosen in accordance with the available dynamic range DR and the

desired number of steps n,

Bp <
DR

n
. (4.26)

For n = 5 steps, one have the values for the inner stairs (see Fig. 4.15b). The

additional two outer stairs are computed by replacing the value of Bp by 3Bp as can be

inferred by Fig. 4.15a in (4.23). By choosing Bp = 147mV, one have the set {C2, 3C2}

as the corresponding bias capacitors.

Note that having different values of the bias capacitor means a different compres-

sion of the received signal. To avoid these non-uniformities, ground capacitors Cg are

connected to the floating nodes of the cells in charge of the inner stairs (see Fig. 4.15b).

This reduces the size of the input capacitor for breakpoint Bp to the size of the same

capacitor for 3Bp.
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In this way, with the selection of CT = 10pF, k = 0.92, Equations (4.10) lead to

C1 = 8.236pF, C2 = 0.588pF for 3-segment. Capacitor C3 = 2C2 will be used grounded.

Besides, since the bulk capacitance is for this selection also equals 2C2, the layout design

may be realized as a set of uniform capacitors as shown in Fig. 4.16 for 3 and 5-segment

functions. This will also avoid mismatch effects since the perimeter to area relation is

kept.

Observe that in practice, each step is set according to the circuit bias current which

is to be switched Ibias (adjustable amplitude through M7); thus, expression (4.21) and

(4.22) are in fact scaled by the circuit factor Ibias. Figure 4.17a shows it with an extra

scaling of ξ = 0.8.

Note also that for an even number of stairs, a non-biased V-I comparator is added

(Bp = 0) to change the behavior at the origin. This will also need grounded capacitive

bias to have the same signal compression factor as the others.

Saw-tooth-type functions

A saw-tooth-type nonlinear function with slope ξ can be generated by using a stair-

type function with gain ξ connected in parallel (summing) with function h(x) = −ξx

as describes (4.27) for odd functions or (4.28) for even functions.

f(x) =



















−ξx |x| ≤ Bp

ξ(2ksgn(x)− x)
|x| ≤ Bp(2k + 1)

|x| > Bp(2k − 1)

(4.27)

f(x) = ξ((2k − 1)sgn(x)− x)
|x| ≤ 2kBp

|x| > 2Bp(k − 1)
(4.28)

For the circuit implementation, the gain of h(x) may be given by − ξ
R
, in this case

it is required to fulfill the relation

ξ

R
=

Ibias
Bp

, (4.29)
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where Ibias is the amplitude of the step current given by the voltage-to-current cell and

1/R stands for the linear circuit gains. To properly couple these values, the amplitude

is tuned by M6. The circuit response is shown in Fig. 4.17b.
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Table 4.1: UGC transistor sizes.

Cell Type Transistor W (µm) L (µm)

VF NMOS M3, M4 50.4 1.2

M8 50.4 2.4

M6, M9 100.8 3.9

PMOS M1, M2, M5 148.8 1.2

M7 148.8 2.4

CF NMOS M3, M4 50.4 1.2

M7, M8 50.4 2.4

PMOS M1, M2 170.4 2.4

M5, M6 148.8 2.4

CM NMOS M5-M8 50.4 1.2

M13-M16 50.4 2.4

PMOS M1-M4 170.4 2.4

M9-M12 148.8 2.4

Table 4.2: UGCs electrical parameters.

Parameter VF CF CM Units

DR > ±1 > ±100 > ±100 V, µA

Gain 0.985 1.00 0.989 -

f−3dB (CL=1pF) 100 70 55 MHz

Rin (1MHz) ∞ 1.4 1.4 kΩ

Rout (1MHz) 1.2 2470 290 kΩ

Offset 25 -90 <1 µV, pA
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Figure 4.11: FGMOS based voltage-to-current cell, (a) simplified schematic, (b) CMOS

design, and simplified stages: (c) inverter stage, (d) comparator stage, (e) output stage.
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Figure 4.12: Cascode biasing of the proposed nonlinear cell.

Table 4.3: Nonlinear cell transistor dimensions.

Transistor Width (µm) Length (µm)

M1 12.6 3.9

M2 3.9 3.9

M3, M4 1.8 1.2

M5, M6, Ms3, Ms4 5.4 3.6

M7 3 4.2

Ms0 15 1.5

Ms1, Ms2 15 3.6

Mb1 to Mb5 15 1.2

Mb6 to Mb8 5.4 1.2

Mb9 5.4 6
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inverter input (Fig. 4.11c), the second stage input (4.11d), and the voltage-to-current

cell output (4.11e), respectively.
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Figure 4.14: Hspice transient simulation for the voltage-to-current cell output optimized

high to low transition tHL (near 10ns), and the low to high transition tLH (near 20ns).
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Chapter 5

Design performance and

experimental results

A 3- and 5-scroll chaotic oscillator is designed for user control of the integrator gain.

In this way a central x2 dominant frequency of 100KHz is achieved in simulation with

external capacitors of 22pF. The design frequency limitations is examined in terms of the

linear buffers gain, the nonlinear cell delay (by a LE analysis), the parasitic capacitance

of the external feedback (the attractor select), and the accumulated capacitance at the

FGMOS comparator.

This last gives a very accurate description of the trade-off between the number of

scrolls and the circuit frequency limit. In this way, simulations with the used 0.5µm

technology reach up to 3.5MHz dominant frequency attractor, which is comparable with

the maximum reported frequency for these systems, 7MHz in a 0.18µm technology.

The whole circuit layout shown in Fig. 5.1 allows comparing pre- and post-layout

simulations of the design. These are in good agreement with the registered experimental

behavior of the integrated prototype. It is worth to remark that the 5-scroll behavior

is observed in integrated mode for the first time.

Additionally, the circuit robust behavior is discussed in terms of PVT analysis. This

reveals the good performance of the designed UGCs, and the usefulness of the adjusting

controls on the V-I comparator. These common controls change the PWL function

81
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Figure 5.1: Layout of the multi-scroll chaotic oscillator as proposed in 4.3.
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Figure 5.2: Hspice simulation of the ≈100KHz chaotic oscillator in (a) phase space, and

(b) time.

amplitude and offset. The nonlinear function is then presented and re-adjusted. The 5-

scroll attractor is observed in each case for a 100x the period of the dominant frequency,

in some cases the system orbital period has grown greater than this and a scroll seems

as been lost. However, in the great majority of the cases, the attractor integrity is

conserved over all the variations.

5.1 Simulation Results

The complete oscillator designed following the scheme shown in Fig. 4.3 and the nonlin-

ear saw-tooth function design generating 3- and 5-scroll attractors. External integration

capacitances are used to control the spectra scaling of the system. A 10pF parasitic

capacitance has been supposed in the buffered output of variable x1 which is feedback

to the desired PWL function input. Hspice simulations before layout are shown in Fig

5.2 for integrator capacitance of C = 22pF, this correspond to a 100KHz dominant

frequency fx2.

In order to know the frequency limits of this design, the dominant parasitics effects
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Figure 5.3: The positive Lyapunov exponent as a function of slope ξ and the relative

delay (tdelay/T ) of the comparator response.

are now revisited:

Linear cells dominant pole

Considering the system spectra and the electric parameters given in Table 4.2, it is

reasonably to assume that with the selection of the integrator capacitors, the dominant

frequency fx2 can raise up to 25MHz approximately due to the CM pole.

Nonlinear cell delay

The nonlinear function delay can be represented as a fraction of the dominant period

T of the system. In this way, as the period decreases, the relation is changed. Call this

relation (tdelay/T ), a Lyapunov analysis of the system is made to found the limits on

the system stability and chaotic behavior. Figure 5.3 suggest that for the selection of

coefficient ξ = 0.8, the maximum delay to period relation tolerated is 5%. Now, as

explained in Chapter 4, if the 2ns delay time is used, this gives a frequency limit of

25MHz.

External attractor selection

If external connection is used to choose the attractor, a typical experimental setup

may have a 5pF parasitic capacitance which will combine to the output VF resistance

to limit the dominant frequency to less than 13MHz. This is surmounted by the high
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frequency design which has no external inputs except for the biasing.

The amount of scrolls

Another dominant pole occurs on the input of the nonlinear function since the FG-

MOS structure grows in capacitance with the number of scrolls (i.e. parallel connected

comparators). Recall form the design of the nonlinear comparator that the used ca-

pacitors are notably higher than the parasitics and consider these only. The input

capacitance of a single comparator is then Ccomp = C1||(CT − C1) = 1.455pF , thus a

low frequency pole is formed with the output resistance of the precedent buffer RoutV F .

Call ns the number of scrolls, then eq. (4.12) is rewritten as

fp =
1

2πRoutV F (ns − 1)(C1||(CT − C1))
. (5.1)

Thus for a 2-scroll oscillator, this leads to 91MHz, this will divide by (ns − 1)

according to the scroll number, for 3-scroll one the dominant frequency will be limited

to about 22MHz.

However, the signal transmission by the clustering of such high capacitance at the

input of the nonlinear function is also limited by the slew rate (SR) of the VF. Consider

the highest SR function given by the delivered current and the load capacitance CL =

(ns − 1)Ccomp as

Vout

∆t
=

Imax

CL
. (5.2)

To this point the shape of the chaotic input signal x1 is approximated by a sinusoidal

with peak amplitude Vp = 2nsBp, in dependence with the number of scrolls, and fre-

quency f . Thus, by using its derivative, maximum slope 2πfVp is obtained. Therefore,

(5.2) can rewritten to show the dominant frequency limit for the x2 variable as

fx2 ≈
Imax

2πksnsBp(ns − 1)Ccomp
. (5.3)

Factor ks > 1 is used to approach the relation between the whole significative spectra

and frequency fx2. Also, Bp = 0.147, and the maximum bias current of the active

devices is Imax = 30µA. Thus Fig. 2.4a suggests that the maximum dominant frequency
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Figure 5.4: Possible limits for the highest dominant frequency fx2 according to the

limited slew rate and the equivalent capacitance of the nonlinear function showing the

dependence on the number of scrolls. Coefficient ks accounts for the relation between

the system spectra and the dominant frequency fx2.

may be located around the curve ks = 2 in Fig. 5.4 and certainly above the curve

ks = 10.

Note that the dominant frequency in x2 has been taken in the place of x1, this is

valid for the cases in which the PWL function region is being switched by the farthest

region, i.e. signal x1 is changing from one of the extreme scroll to the other extreme

scroll, thus both frequencies will be similar.

In accordance to this derived limit, a fully integrated version of the oscillator in

3-scroll was observed in simulations to achieve up to 2.6MHz dominant frequency fx2,

as depicted Fig. 5.5 and Fig. 5.6. By changing system coefficient ξ = 1, the dominant

frequency was observed to achieve 3.5MHz. This is a similar result to the reported by

Fujiwara [29] for a design on 0.18µm technology, recall that the actual technology is

0.5µm.

The oscillator layout was made by using Tanner suite version 13. Postlayout simula-

tions resemble the attractor characteristics for 3- and 5-scrolls, as show Figs. 5.7 and 5.8

respectively. Similar results are observed in the frequency analysis for both attractors

as show Fig. 5.9.
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Figure 5.5: Hspice simulation of the ≈2.6MHz chaotic oscillator in (a) phase space, and

(b) time.
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Figure 5.6: FFT analysis of the signals, (a) x2, (b) x1, and (c) x3.
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Figure 5.7: Hspice postlayout simulation of the prototype chaotic oscillator showing

3-scrolls in (a) phase space, and (b) time.
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Figure 5.8: Hspice postlayout simulation of the prototype chaotic oscillator showing

5-scrolls in (a) phase space, and (b) time.
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Figure 5.9: FFT analysis of the extracted signals for, (a,c,e) the 3-scroll attractor, and

(b,d,f) the 5-scroll attractor.
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Figure 5.10: Chip microphotography.

5.2 Experimental Results

The proposed design was fabricated using 0.5µm ON semiconductor technology, the chip

microphotography is shown in Fig. 5.10. Technical details and pin connection sheet are

found in Appendix C. The system output signals x1 and x2 are shown in time in Fig.

5.11 for a 3 and 5-scroll behavior. The attractor is observed in Fig. 5.12 for 3- and

5-scrolls respectively.

The maximum dominant frequency fx2 was performed within parasitic capacitances

over 10% of the used integration capacitors. In the experimental setup, these were

approximately 5pF, then the lowest capacitor used was C=47pF, thus a dominant fre-

quency of about fx2=50kHz was obtained. Figure 5.13 shows the spectrum of x1 and

x2 for 3 and 5-scroll attractors.
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(a) (b)

Figure 5.11: Observed signals x1 and x2 in time for (a) 3-scroll attractor (X-axis

500µs/div, Y-axis 500mV/div for x1, and 200mV/div for x2), and (b) 5-scroll attractor

(X-axis 1ms/div, Y-axis 500mV/div for x1, and 200mV/div for x2).

(a) (b)

Figure 5.12: Observed signals x1 and x2 in phase showing (a) the 3-scroll attractor (X-

axis 100mV/div, Y-axis 50mV/div) and (b) the 5-scroll attractor (X-axis 200mV/div,

Y-axis 50mV/div).
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(a) (b)

(c) (d)

Figure 5.13: Spectrum of experimental signals for a 3-scroll attractor (a) x1, (b) x2;

and for a 5-scroll attractor (c) x1, (d) x2. X-axis 50kHz/div, Y-axis 10dB/div, center

250kHz, offset -40dB in subfigures a,c,d; and X-axis 10kHz/div, Y-axis 10dB/div, center

50kHz, offset -40dB in subfigure b.
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Table 5.1: PVT maximum variations of the UGCs electrical parameters.

Cell Absolute offset (mV/µA) Relative -3dB frequency (%) Relative gain (%)

VF 5.993 16.6 0.3

CF 2.489 20.2 0.6

CM 0.020 12.6 0.07

5.3 Design for Robust Behavior

The whole oscillator design is now analyzed from the perspective of process variations.

First the linear active cells are observed. Hspice simulations over the BSIM3v3 model

have been made by using the typical process and the four corners: (NMOS-PMOS)

typical-typical, fast-fast, fast-slow, slow-fast, slow-slow (TT, FF, FS, SF, SS, respec-

tively) of the actual technology. The temperature has been sweep between −20 ◦C and

100 ◦C. For the case of the linear cells, the supply voltages has been also changed in

±10% of its nominal value. Electrical parameter variations of the PVT analysis are

summarized in Table 5.1.

Despite the topology and functionality differences of the linear and the nonlinear

part of the oscillator, another not less important is the independent biasing which is

carried out in scaled designs of the same circuit topology shown in Fig. 4.12. This

makes imperative the use of adjusting controls for achieving good matching between

these two parts.

To further prove the nonlinear design robust behavior, the usefulness of the controls

V amp and V off in the generation of accurate nonlinear functions is now observed.

Recall from the previous Chapter that these controls are used to change the amplitude

and the output offset respectively. The maximum absolute deviations for the com-

parator output offset and amplitude were observed in the temperature limits, these are

summarized in Table 5.2.

Recall that the exponential behavior allows the adjusting of such variations by ad-



94 CHAPTER 5. DESIGN PERFORMANCE AND EXPERIMENTAL RESULTS

Table 5.2: Maximum deviations of the adjusted signals.

Process Amplitude (µA) Offset (µA)

TT 0.34 -1.89

FF 1.08 -6

FS 0.95 9.93

SF -0.94 -6.65

SS -0.92 -1.41

justing the control input. Thus, All the corners showed that the desired offset can be

reached by tuning it except for the offset in the fast-fast case at −20 ◦C. The analysis

is shown in Fig. 5.14.

The amplitude variations are controlled in a similar manner by M7, thus they grows

with the increase of V amp. The corner analysis was also performed and is shown in

Fig. 5.15. In all cases, the desired amplitude is easily reached.

Although, the saw-tooth function for a 5-scroll attractor is shown in Fig. 5.16

in the process corners TT, FF, FS, SF and SS. The effect of the common adjusting

inputs V amp and V off is noted by comparing Fig. 5.16a with the rest. Another

important effect is the observed excessive hysteresis for the cases fast-slow and slow-fast

(Figs. 5.16d and 5.16e, respectively). This is clearly the most remarkable failure in the

inverter operation. Despite this effect, the whole oscillator simulations show the ability

to perform multi-scroll behavior over the process variations with proper adjust of the

offset and amplitude of the proposed nonlinear function.

A 5-scroll attractor was then obtained in a 1ms simulation using a 110KHz x2-

dominant frequency in all the cases except for FF 60 ◦C, SF 60 ◦C and 100 ◦C, and SS

20 ◦C (see Fig. 5.17), where the nonlinear function has loose its original form. The

figure shows the consequently loose of some scroll whenever the orbital period grows

over the simulation time. This does not imply the completely loss of a scroll, but points
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Figure 5.14: Total output offset variations of the comparator in process (a) TT, (b) FF,

(c) FS, (d) SF and (e) SS.
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Figure 5.15: Peak-to-peak output amplitude variations of the comparator in process (a)

TT, (b) FF, (c) FS, (d) SF and (e) SS.
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Figure 5.16: The 5-scroll function variations over the process corners: (a) without

adjustment, at 20 ◦C; and with adjustment for each process: (b) typical-typical, (c)

fast-fast, (d) fast-slow, (e) slow-fast and (f) slow-slow cases.
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the weakness on the generation of the corresponding equilibriums.

The variations over the supply voltages have not been considered in the simula-

tion analysis, since the actual circuit has no external input signals (the system is au-

tonomous) and thus internal offset can be compensated by the tuning of V off . The

experimental results confirm this issue since the zero reference seems to be slightly

different than the external ground.

The analysis made on this section suggest that to improve the efficiency of the

inverters on nonlinear functions generation, process compensation techniques should be

used. In addition, the use of non-autonomous systems for chaotic signal generation may

be more advantageous.
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Chapter 6

Conclusions

The main products of this Thesis are described in brief:

The introduction of macro-models allows one to observe the effectiveness of the

diverse approaches for synthesizing chaotic oscillators. However, the integrated realiza-

tions requires a set of considerations which are devoted mainly to:

• Keep the value of the system parameters by observing carefully the signal coupling.

• Choose and differentiate the required bandwidth of the active devices in the circuit,

since it has different demanding.

• Allow the offset control (for the case of the comparator), which is essential in these

autonomous systems.

• The generation of nonlinear functions is a complex problem that has several de-

grees of freedom (such as the amplitude, offset, spacing, delay), and thus the need

of several adjustment controls is mandatory. Nowadays, external adjustments are

numerous in all the known cases as [9, 29, 63] just to mention the most relevant. In

this Thesis, the realization of the nonlinear functions allows a simplified obtention

and verification of the circuit behavior.

FGMOS-based adjustments were introduced in two modes:

101
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• Internal, since the function breakpoints were efficiently keep by the relative sizes

of the integrated FGMOS capacitors.

• External, in which the compression effect was used to adjust the switched current

amplitudes and then to match it to the integrated resistor values. Besides, it

makes possible the adjust of the function offset.

A new strategy was developed to generate PWL-sign-based functions (largely used

in chaotic systems) in systematic way, this showed its usefulness in the simplified circuit

settling, and also, establish a new potential approach in the design of integrated self-

adjusting controls for the generation of these functions.

FGMOS based chaotic oscillators were proposed earlier [29], but experimental 2-

and 3-scroll attractors were the only results. In this Thesis, an organized an systematic

approach allows the generation of multiple scrolls plus the advantage of having a minimal

set of external controls, and a well estimation of the frequency limits.

Corner-based analysis was performed to confirm the robustness of the approach in

that sense. This kind of analysis has been reported here for the first time. Also, this

test has revealed some of the design weak points which come principally from the simple

inverter. This points to future enhancements in the design of these kind of oscillators.

In summary, this investigation has surveyed the development of multiple scroll

chaotic oscillators from the point of view of dynamical systems, the circuit design and

modeling, and the CMOS compatible integrated level. The prototype behavior has been

observed accordingly and with the corner analysis, the effectiveness of the proposed de-

sign approach is proven. Although there are still some issues to enhance, this Thesis

has been organized also to be a guide in the integrated realization of multi-scroll chaotic

systems.

6.1 Future Work

In order to use fully integrated solutions for the generation of chaotic signals, the issue

of self-adjustment of the amplitude and offset can be treated in future work. At this
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point it is suggested to change the effective width of some of the transistors conforming

the inverter to automatically match its counterpart. This change must be sensible

to temperature and process variations and can also be applied for other non-chaotic

circuits.

The principle in the generation of nonlinear functions by step responses was de-

veloped; however, the functionality of the proposed V-I comparator can be proved in

the design of other nonlinear functions by controlling the bias switching of a CF for

example. In this case the final offset would be determined entirely by the linear cell.

In the generation of integrated chaotic oscillators in general, autonomous systems

have proven to work at large frequencies [11], however, some issue is found in the

complexity. Some approaches uses intrinsic states just as those found in discrete systems,

thus the physical implementations are reduced. For example, if the hysteresis-based

nonlinear functions are considered, chaotic dynamical systems close to order one shows

to be possible. In this way, to generate complex behavior by means of an area and

frequency-optimized oscillator systems may not be strictly continuous, while they will

never be completely discrete.

If the need is in the increase of exponential divergence (positive Lyapunov expo-

nents), all the system coefficients must be analyzed in order to attempt for the scale

control of each in uniform manner, and then to be able to increase Lyapunov exponents

and the frequency spectrum as described in this work.

Also, the analysis on Lyapunov exponents in an unfinish task, since no analytical

expression may be always obtained. But a more detailed analysis in the relation of these

exponents with the Jacobian eigenvalues can be used to search for empirical expressions

at least in some chaotic systems.

Respecting the frequency, expressions for the lowest poles and the number of scrolls

have been given for the proposed approach, however, the is not yet any clear relation

between the circuits offset (which affects the output resistance), and the frequencies.

The chaotic synchronization is made by multiple approaches and one of the most

attractive applications is in the encryption and decryption of information. Solutions to
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enhance the transmission rate of these approaches to make it comparable to the discrete

counterpart have not yet been given. However, real parasitics and channel effects must

be studied in order to concrete ideas and guide the integrated design in this field.

Synchronization may also be used in order to give insight in the differences between

ideal and real system signals by statistical analysis. In this way, a tool for measuring

the quality of a system synthesis (or the nonlinear distortion) may be achieved.

Further interesting contributions may be made in the field of fractionary chaotic

systems, since the introduction of fractional calculus and fractional passive elements

may lead to compact integrated realizations of chaotic oscillators [100, 101], due to the

high order approximations that these fractional devices simulate.

After all, one must agree that nowadays, continuous chaotic oscillators have not

been fully exploited and practical potential applications remain still hidden. Humanity

is barely understanding the complexity that takes to the explanation of dynamics in

life, and there are many process suitable for partnering with chaos.



Appendix A

Bifurcation diagram

One way of analyzing chaotic long term motion in discrete systems, is by recording

every point on the trajectory respecting to a particular parameter which is been sweep.

This technique has been generalized for continuous systems by changing the term ”every

point” by ”local maxima”.

Thus, long term dynamics are been observed as a line for periodic behavior. This line

will divide into several branches as the harmonic peaks grows in number and changes

amplitude (period-doubling); and eventually the field for a particular parameter value is

being spread of many different signal amplitudes which are indicating chaotic behavior.

It is important to remark that following this procedure, quasi-linear dynamics would

present finite amount of amplitudes (while there are infinite number of frequency peaks)

and then would be distinguished easily from chaotic dynamics by the bifurcation dia-

grams. However, system dependent variations must be considered for avoiding register

extra local peaks for the same cycle [75].

The general procedure to obtain such diagrams is based on the integration of the

system (by some user defined method such as the Rouge-Kutta based Matlab ODE45)

and to register every local peaks of the time function after a initial condition transient

is been passed. In our study, the second half of the time series required to reach a

Lyapunov exponent within the 0.1% of uncertainty has been used to this record.

The procedure is repeated for each value of the sweep parameter and is plotted as set
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of points which disengages as the system enters in chaotic region. Some times, islands of

stability may appear for some values which will be followed by the corresponding down-

hill of the Lyapunov exponent. This reason motivates the application and presentation

of both analysis in tiled plots.

A.1 Matlab code

The following Matlab code picos(a) was used to find local peaks in a solved dynamical

system which is parsed by string a.

The solving process may have time as a separate vector, thus to effectively locate the

corresponding points in time, one may use the call: timeloc=usertimevector(picoloc);.

function [picoloc,picoval] = picos(a)

% Fuction to find local peaks on a string Nx1

% This simple function is not available in some existing versions of Matlab

% Copyright Rodolfo Trejo G. and Esteban Tlelo C. INAOE 2011

%

%Example of usage:

%a=rand(50,1);

%a=[1 1 2 3 2 3 3 4 3 3 2 4 4 4 4 3 3 2 3 2 2 1];

%[picoloc,picoval] = picos(a);

%plot(a);

%hold on

%plot(picoloc,picoval,’ro’);

%

%To change location reference use

%timeloc=usertimevector(picoloc);
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%--------inicializaciones

min=0; loc=0; picoloc=[]; picoval=[];

dejasubir=diff(diff(a)>0)<0;

dejasubir=[dejasubir;0];

comienzabajar=diff(a)<0;

n=length(a);

%---------localizacion de maximos

for i=1:n-1

if dejasubir(i)

min=i+1;

end;

if comienzabajar(i) && min

loc=floor((i+1+min)/2);

picoloc=[picoloc,loc];

picoval=[picoval,a(loc)];

min=0;

end

end % i
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Appendix B

Lyapunov Exponents

Computation

The Lyapunov exponents can be computed by applying the methods given in [9]-[12].

They provide information on the average exponential rate of divergence or convergence

of trajectories which are very close in phase space. The number of Lyapunov exponents

equals the number of state variables, and if at least one is positive, this is an indication

of chaos. Furthermore, by having more positive Lyapunov exponents, a system is called

to be hyperchaotic.

A method independent of integration process is been designed in Matlab, allowing

the computation by several integration algorithms. The default which is written here in

the code calls Matlab routine ODE45 (a variable step fourth order Runge-Kutta based

integration method). The method is summarized as follows [23]:

(a) Initial conditions of the system and the variational system are set to X0 and Inxn

respectively.

(b) The systems are integrated by several steps until the orthonormalization period

TO is reached. The integration of the variational system Y = [y1, y2, y3] depends

on the specific Jacobian that the original system X is using in the current step.

(c) The variational system is orthonormalized by using the standard Gram-Schmidt
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method [24], the logarithm of the norm of each Lyapunov vector contained in Y

is obtained and accumulated in time.

(d) The next integration is carried out by using the new orthonormalized vectors as

initial conditions. This process is repeated until the full integration period T is

reached.

(e) The Lyapunov exponents are obtained by using

λi ≈
1

T

T
∑

j=T0

ln‖yj
i ‖. (B.1)

Time step selection was made by using the minimum absolute value of all the

eigenvalues of the system λmin [25], and Ψ was chosen well above the sample

theorem as 50.

tstep =
1

λminΨ
(B.2)

We choose to give an orthogonalization period TO of about 95 tstep, which is a

third of the period corresponding to the maximum central frequency of the chaotic

system. The integration time can be varied by parameter T. Initial conditions were

x0 = [0.1, 0, 0] in all cases, where the ergodicity property implies that λi is unique as

T → ∞.

B.1 Matlab code

Below is shown the routine to compute Lyapunov exponents restitsaw() which is based

in the integration algorithm of function fresaw().

function [EL] = restitsaw(xi, conti)

%COMPUTE LYAPUNOV EXPONENTS (LE), SPECIFY t_total=tt

%

limax=10; h2=0.70; n=3; alfa=3; beta=4; BP1=1;
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% xi=0.8;

% conti=0.05;

%

%INITIALIZING

x=[0.1,0,0]; Y=[1,0,0, 0,1,0, 0,0,1]; CI=[x,Y]; xgraf=[x,0];

rgsm=zeros(n,n); normas=[0,0,0]; exlya=[0;0;0];

%

% TOTAL TIME IN SECONDS

tt=400; itera=floor(tt/h2);

%iNTEGRATION STEP PSI=25

ch=[-alfa*xi, alfa, 0; 1, -1, 1; 0, -beta, 0]; u=min(abs(eig(ch)));

ch=[-alfa*xi*(conti-BP1)/conti, alfa, 0; 1, -1, 1; 0, -beta, 0];

u=min(u,min(abs(eig(ch)))); h1=1/(2*u*25);

%

%INTEGRATION OF THE 12 EQUATIONS

for i=1 : itera

%

[Xver,XY]=fresaw(alfa,beta,xi,BP1, conti, CI, h2, h1);

if abs(XY(1:3))>limax

EL=[NaN;NaN;NaN];

return;

end;

Xver=Xver(2:length(Xver),:);

Xver(:,4)=Xver(:,4)+(i-1)*h2;

xgraf=[xgraf;Xver];

%

%RENORMALIZATION

Vgsm(:,1)=transpose(XY(4:6));

Vgsm(:,2)=transpose(XY(7:9));

Vgsm(:,3)=transpose(XY(10:12));

for v=1:n

rgsm(v,v)=norm(Vgsm(:,v),2);

Qgsm(:,v)=Vgsm(:,v)/rgsm(v,v);
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for vv=v+1:n

rgsm(v,vv)=transpose(Qgsm(:,v))*Vgsm(:,vv);

Vgsm(:,vv)=Vgsm(:,vv)-rgsm(v,vv)*Qgsm(:,v);

end

normas(v)=log(rgsm(v,v));

end

CI=[XY(1:3),transpose(Qgsm(:,1)),transpose(Qgsm(:,2)),transpose(Qgsm(:,3))];

%EXPONENT ACCUMULATION

for j=1:n

exlya(j,i+1)=exlya(j,i)+normas(j);

end

%RETURNING FOR ALL EXPONENTS NEGATIVE AT ITERATION 71

if (i==71) & (exlya(1,i+1)<0.0)

EL=[NaN;NaN;NaN];

return;

end;

end % LOOP i

%

%TIME NORMALIZATION

for i = 2:length(exlya)

exlya(:,i)=exlya(:,i)/(h2*(i-1));

end EL=exlya(:,i);

%

% LYAPUNOV EXPONENTS PLOT

tiempo=(0:h2:tt); figure hold on; plot(tiempo,exlya(1,:),’-r’)

plot(tiempo,exlya(2,:),’-g’) plot(tiempo,exlya(3,:),’-b’) hold off;

grid; ylabel(’Lyapunov Exponents’); xlabel(’time (s)’);

%

end %FUNCTION

The integration algorithm is shown below, however, this function may be rewritten to use

any custom integration routine. The algorithm has been written to compute the trajectories of

a third order PWL-function-based n-scroll attractor system.

function [Xver,XY]=fresaw(alfa, beta, xi, BP1, conti, x0,tmax,step1)
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%Chaotic saw-tooth system integration routine based in ODE45

%

%Slope infinity is conti=0.01;

m0=-(0.5*BP1-conti)*xi/conti;

m1=xi*(conti-BP1)/conti;

%

options=odeset(’RelTol’,1e-3,’AbsTol’,1e-6,’MaxStep’,step1,’InitialStep’,step1);

[T,X] = ode45(@rigid,[0 tmax],x0,options); XY=X(length(X),:);

Xver=[X(:,1:3),T];

%

%ODE SYSTEM

function dx = rigid(t,x) dx = zeros(12,1);

[f1,f2,f3,f4]=fpwl(x(1),x(4),x(7),x(10));

dx(1) = alfa*x(2)-f1;

dx(2) = alfa*x(1)-x(2)-alfa*x(3);

dx(3) = beta*x(2);

% x(1) CONTROLLED VARIATIONAL SYSTEM Y

dx(4) = alfa*x(5)-f2; dx(5) = alfa*x(4)-x(5)-alfa*x(6);

dx(6)=beta*x(5); dx(7) = alfa*x(8)-f3;

dx(8)=alfa*x(7)-x(8)-alfa*x(9); dx(9) = beta*x(8); dx(10) =

alfa*x(11)-f4; dx(11) = alfa*x(10)-x(11)-alfa*x(12); dx(12) =

beta*x(11);

%

% function PWL (2 scroll)

function [o1 o2 o3 o4] = fpwl(x1,x4,x7,x10)

if x1 < -conti

o1=xi*(x1+BP1); o2=xi*x4; o3=xi*x7; o4=xi*x10;

elseif x1 < conti

o1=m1*x1; o2=m1*x4;

o3=m1*x7; o4=m1*x10;

else

o1=xi*(x1-BP1); o2=xi*x4; o3=xi*x7; o4=xi*x10;

end



114 APPENDIX B. LYAPUNOV EXPONENTS COMPUTATION

end %fpwl

%

end %rigid

%

end %fsaw

}
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Device Technical Details

The device was manufactured by MOSIS 0.5µm process under the name 84284, and the following

parameters 1:

• Design name: bicentenario

• Technology: SCN3ME SUBM, lambda = .3

• Fill to be added: No

• Fabricated on run V09M (AMI C5F) as ¡TBD¿

• Bonding pads: 40

• Layout size: 1498 x 1498 microns; area: 2.244 sq millimeters

• Layers found (and densities): ACTIVE, CONTACT, GLASS, HI RES IMPLANT,

METAL1 (41.6%), METAL2 (36.2%), METAL3, N PLUS SELECT, N WELL, PADS,

POLY (28.3%), POLY2, P PLUS SELECT, VIA, VIA2

• Requested packaging: DIP40 (40 parts)

• Maximum die size: 7620 x 7620

• Die Size: 2004 (+0 / -72) x 2477 (+0 / -72) µm

• Die Rotation in Cavity: None

• Cavity Size: 7874 µm x 7874 µm

1MOSIS Reply Id 00370537-001-003 / 30-SEP-2010 13:33:54
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Figure C.1: Bounding diagram for MOSIS 84284 circuit.

Figure C.2: Device pin diagram.

• A total of 40 parts are ordered with 40 to be packaged in DIP40

The final bounding diagram provided by the manufacturer is shown in Fig. C.1

C.1 Device Pin Connections

According to the previous association, the device pin connections are shown in Fig. C.2. The

description for each of the pins related to the project design is given in Table C.1.

Note: The connected integration capacitance Cintegration will vary the peak frequency of x2

as explained in Section 3.3.
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Table C.1: Device pin description.

Pin Description Connecting

1 Vdd 2.5V

8 The 5µA bias used for the nonlinear function. This pin is

connected to ground trough a precision resistor

R5µ = 68795Ω

9 The 60µA bias used for the linear circuitry. This pin is

connected to ground trough a precision resistor

R60µ = 5582Ω

10 Ground connection 0V

12 Comparator response amplitude adjust, its value affects

transistor M7 (Fig. 4.11b)

Adjust

13 Comparator response offset adjust, its value affects transis-

tor MS0 (Fig. 4.11b)

Adjust

14 Buffered x1 output

15 External integration capacitance connection C1 Cintegration

16 External integration capacitance connection C2 Cintegration

17 External integration capacitance connection C3 Cintegration

18 Nonlinear 3-scroll function input for x1 pin 14 or gnd

19 Nonlinear 5-scroll function input for x1 gnd or pin 14

20 Buffered x2 output

21 Vss -2.5V
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Multiscroll Floating Gate Based Integrated Chaotic Oscillator. International Journal of Circuit

Theory and Applications (2011), doi: 10.1002/cta.821.
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