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Abstract

In the last years, emerging pattern-based classifiers have become an important family

of supervised classifiers. However, in those problems where the objects are not equally

distributed into the classes (class imbalance problems), emerging pattern mining al-

gorithms, not designed for this kind of problems, extract several emerging patterns

with high support for the majority class and only a few (or none) emerging patterns

with low support for the minority class. As a consequence, emerging pattern-based

classifiers tend to bias their classification results toward the majority class; obtaining

poor classification results for the minority class. Hence, in this PhD research, we first

present a study about the effect of class imbalance on quality measures for patterns;

from this study, we select the best measure for ranking emerging patterns in class imbal-

ance problems. Additionally, we propose three new algorithms for extracting emerging

patterns from imbalanced databases. Our emerging pattern mining algorithms extract

a collection of emerging patterns which allows attaining higher accuracies for supervised

classification in class imbalance problems than those emerging patterns extracted by

other emerging pattern miners developed for this kind of problems. Finally, we pro-

pose a new emerging pattern-based classifier specifically designed for class imbalance

problems, which obtains significantly better classification results than other classifiers

for class imbalance problems reported in the literature.
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Resumen

Los clasificadores basados en patrones emergentes son una familia importante de clasi-

ficadores dentro de la clasificación supervisada. Sin embargo, en aquellos problemas

dónde los objetos no están distribuidos equitativamente entre las clases (problemas con

desbalance de clases), los algoritmos para la extracción de patrones emergentes, que

no toman en cuenta este tipo de problemas, extraen muchos patrones emergentes con

alto soporte para la clase mayoritaria y sólo unos pocos (a veces ninguno) patrones

emergentes con bajo soporte para la clase minoritaria. Como consecuencia, los clasific-

adores basados en patrones emergentes tienden a sesgar sus resultados de clasificación

hacia la clase mayoritaria; obteniendo aśı, bajos resultados de clasificación para la clase

minoritaria. Por ello, en esta investigación doctoral, primero presentamos un estudio

acerca del efecto del desbalance de clases en las medidas de calidad para patrones.

Adicionalmente, propusimos tres nuevos algoritmos para extraer patrones emergentes

en bases de datos con desbalance de clases. Estos algoritmos extraen una colección de

patrones emergentes que permiten obtener mayor eficacia, en problemas con desbalance

de clases, que la que puede obtenerse al utilizar la colección de patrones emergentes

extráıdos mediante otros extractores de patrones emergentes reportados en la liter-

atura. Finalmente, propusimos un nuevo clasificador basado en patrones emergentes,

espećıficamente diseñado para problemas con desbalance de clases, que obtiene signi-

ficativamente mejores resultados de clasificación que aquellos clasificadores reportados

en la literatura para problemas con desbalance de clases.
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Chapter 1
Introduction

Supervised classification is one of the most popular pattern recognition techniques

[Chen, 2016], which has been widely studied and applied in many areas, such as bioin-

formatics [Hassanien et al., 2013; Zhao et al., 2014], human activity recognition [Onofri

et al., 2016; Khemchandani and Sharma, 2016; Wu et al., 2016], rare event forecasting

[Chen and Lee, 2015; GhasemiGol et al., 2016], information retrieval [Wu, 2015; Bouad-

jenek et al., 2016; Song et al., 2014], masquerader detection [Medina-Pérez et al., 2017;

Camia et al., 2016; Rodŕıguez et al., 2016], and personal risk detection [Barrera-Animas

et al., 2017; Rodrguez et al., 2016]; among others.

Several classifiers have been proposed for supervised classification. In this thesis, we

focused on the emerging pattern-based classifiers [Garćıa-Borroto et al., 2010b, 2014,

2015]. A supervised classifier based on emerging patterns uses a collection of emerging

patterns to create a classifier that predicts the class of a query object [Zhang and Dong,

2012].

A pattern is an expression defined in a certain language that describes a collec-

tion of objects [Michalski and Stepp, 1982; Garćıa-Borroto et al., 2014]. Usually, it

is represented by a conjunction of relational statements, each of the form: [fi # vj],

where vj is a value in the domain of feature fi and # is a relational operator from

the set {=, ̸=,≤, >}. For example, [body temperature > 37] ∧ [body temperature ≤

38] ∧ [Rash = “Y es”] ∧ [muscle pain = “Severe”] ∧ [Conjunctivitis ̸= “No”] is a

pattern that describes a collection of patients suffering from Zika virus [Hamel et al.,

2016]. An emerging pattern (EP) is a pattern whose fraction of objects covered by the

pattern in the training set (support) is higher in a class with respect to its support in

1
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the other classes [Dong and Li, 1999; Garćıa-Borroto et al., 2010b; Dong, 2012b].

Emerging pattern-based classifiers can explain their results in a language close to a

human expert through the patterns. On the other hand, in some domains, emerging

pattern-based classifiers have shown more accurate predictions than other popular clas-

sification models like decision trees, naive bayes, nearest neighbor, bagging, boosting,

and support vector machine (SVM) [Garćıa-Borroto et al., 2010b,a; Zhang and Dong,

2012].

Emerging pattern-based classifiers are used in several real-world applications, such

as gene expression profiles [Dong et al., 2004], structural alerts for computational tox-

icology [Bertrand Cuissart Guillaume Poezevara and Bureau, 2012], gene transfer and

microarray concordance analysis [Mao and Dong, 2012], characterization for subtypes

of leukemia [Li and Wong, 2012], classification of spatial and image data [Kobyliński

and Walczak, 2012], and prediction of heart diseases [Keun Ho Ryu Dong Gyu Lee and

Piao, 2012].

Mining emerging patterns is a challenging problem (proven to be NP-hard by Wang

et al. [2004]) because of the high computational cost due to the exponential number

of candidate patterns [Han et al., 2007; Szathmary et al., 2007; Feng and Dong, 2012;

Hong Cheng Jiawei Han and Yu, 2012; Yu et al., 2012]. Also, some algorithms for

mining emerging patterns need an a priori global discretization of the features in the

training dataset, which might cause information loss [Garćıa-Borroto et al., 2014, 2015].

For this reason, those emerging pattern miners based on decision trees deserve special

attention because this paradigm does not include a global discretization step, has a low

computational cost, and allows obtaining a small collection of high-quality patterns

[Novak et al., 2009; Garćıa-Borroto et al., 2014, 2015].

On the other hand, there are many real-world applications where the objects are

not equally distributed into the classes, such as detection of microcalcifications in mam-
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mogram images [M.N and Sheshadri, 2012], online banking fraud detection [Wei et al.,

2013], liver and pancreas disorders [Li et al., 2010], forecasting of ozone levels [Tsai

et al., 2009], surveillance of nosocomial infection [Cohen et al., 2006], prediction of

protein sequences [Al-shahib et al., 2005], and face recognition [Yang et al., 2004]. In

these applications, there exist significantly fewer objects belonging to a class (commonly

labeled as minority class) regarding the remaining classes. This problem is known as

class imbalance problem [Weiss, 2004, 2010a; Chen and Dong, 2012; Zhang and Dong,

2012; López et al., 2013; Wei et al., 2013; López et al., 2014a].

Some classifiers, showing good classification results in problems with balanced classes,

do not achieve good performance in class imbalance problems. The main reason is that

they produce a bias of classification results toward the majority class (the class with

more objects). Accordingly, the accuracy of these classifiers for the minority class could

be poor, sometimes close to zero [He, 2013; López et al., 2013; Loyola-González et al.,

2013, 2016b].

In the literature, three approaches have been proposed to deal with the class imbal-

ance problem:

Data level: The goal in this approach is to create a balanced dataset from the im-

balanced training dataset by generating objects into the minority class (Over-

sampling), removing objects from the majority class (Undersampling), or both

(hybrid sampling) [Weiss et al., 2007; Chawla, 2010; Luengo et al., 2011; Soda,

2011; Albisua et al., 2013; Charte et al., 2013; López et al., 2014a,b; Menardi and

Torelli, 2014; Charte et al., 2015].

Algorithm level: Here, the aim is to modify the classifiers to be more accurate on

class imbalance problems. Some proposals include classifier ensembles or the

combination of resampling methods jointly with boosting or bagging algorithms.
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This approach is not as versatile as the data level approach because it heavily

relies on a specific classifier and thereby the modifications are intended to solve

the class imbalance problem for a specific classifier [Lenca et al., 2008; Liu et al.,

2010; Liu and Chawla, 2011a; Li and Zhang, 2011a; Rodda, 2011; Yijing et al.,

2016].

Cost-sensitive: The idea behind this approach is to assign different misclassification

costs through a cost matrix. Usually, misclassifying objects belonging to the

minority class have higher misclassification cost than misclassifying objects be-

longing to the majority class. In this way, the aim is to minimize the total cost

[Domingos, 1999; Sun et al., 2007; Freitas, 2011; Jackowski et al., 2012; Min and

Zhu, 2012; Lomax and Vadera, 2013; Palacios et al., 2014; Konijn et al., 2014;

Krawczyk et al., 2014; Fan et al., 2015; Gomes et al., 2015].

Based on these approaches, in the literature, there are only three emerging pattern

miners for class imbalance problems that follow the data level approach [Alhammady

and Ramamohanarao, 2004a; Alhammady, 2007; Chen and Liu, 2016]. On the other

hand, following the algorithm level approach, there is an emerging pattern-based classi-

fier (iCAEP) [Zhang et al., 2000b], which was not designed for class imbalance problems,

but has shown good results in this kind of problems [Zhang and Dong, 2012]. How-

ever, these emerging pattern miners do not allow obtaining a set of emerging patterns

which produce better classification results in class imbalance problems than other solu-

tions reported in the literature for class imbalance problems, which are not based on

patterns. Also, iCAEP does not outperform other classifiers designed for class imbal-

ance problems, which are not based on emerging patterns [Loyola-González et al., 2017].

Therefore, introducing both emerging pattern miners as well as emerging pattern-based

classifiers to obtain accurate classification results for class imbalance problem is needed.
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1.1 Motivation and justification of the problem

In data mining, there are some problems where the most important class has fewer

objects than the other classes, i.e., these problems are class imbalance problems [Weiss,

2004; Weiss and Tian, 2008; Weiss, 2010a; Fernández et al., 2011; Loyola-González

et al., 2016b]. The main reasons to obtain imbalanced databases are:

i) Data acquisition for some kind of objects is highly expensive.

ii) Some objects are associated to rare cases, which are very difficult to collect.

These reasons lead to obtain imbalanced databases, and consequently, the classifiers

tend to bias their classification results toward the majority class. Therefore, a classifier

that provides good classification results for class imbalance problems is needed [He,

2013; López et al., 2013; Loyola-González et al., 2013; López et al., 2014b; Loyola-

González et al., 2016b].

Despite the fact that several pattern-based classifiers have been proposed, most of

them do not achieve good classification results in class imbalance problems. Several

reasons about these results have been discussed [Weiss, 2004, 2010a,b; López et al.,

2013; Loyola-González et al., 2016b], but the main ones are the following:

a) Several pattern mining algorithms based on a divide-and-conquer approach tend to

fragment the training dataset into small partitions, commonly producing, even more,

imbalance among the classes. Hence, the extraction of patterns from the minority

class is more difficult.

b) Commonly, patterns from the minority class have low support regarding those pat-

terns from the majority class. Then, some classification strategies, based only on

the support of the patterns, tend to be biased toward the majority class.
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c) Some objects belonging to the minority class could be identified as noise, and then,

the classifier would discard them. Conversely, some true noisy objects from the

minority class can lead to degrade the classification results.

d) The use of global performance measures for guiding the learning process, such as

the standard accuracy rate, may bias the classification results towards the majority

class.

We can observe that some emerging pattern-based classifiers, like LCMine [Garćıa-

Borroto et al., 2010b], when applied on class imbalance problems, attain high accuracy

for the majority class but low accuracy for the minority class [Loyola-González et al.,

2016b]. Moreover, the emerging pattern-based classifier iCAEP [Zhang et al., 2000b],

which is not designed for imbalance problems but has shown good results in this kind

of problems, does not obtain significantly better classification results than other ap-

proaches not based on emerging patterns [Loyola-González et al., 2017]. Therefore,

better emerging pattern-based classifiers for class imbalance problems are needed.

1.2 Objectives

The general objective of this research is to develop an algorithm for mining emerging

patterns from imbalanced databases, such that the extracted emerging patterns allow

building a classifier more accurate than the best emerging pattern-based classifiers re-

ported in the literature for class imbalance problems.

Our specific objectives are:

1. Propose an algorithm for mining emerging patterns from imbalanced databases.
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2. Propose a quality measure to evaluate the quality of the emerging patterns extracted

from imbalanced databases.

3. Propose a strategy for filtering emerging patterns extracted from imbalanced data-

bases.

4. Propose a classifier based on emerging patterns extracted from imbalanced data-

bases, which outperforms other emerging pattern-based classifiers reported in the

literature for class imbalance problems.

1.3 Contributions

In this PhD dissertation, we first present a study of several quality measures for pat-

terns, with the aim of determining the effect of class imbalance on quality measures

for patterns. Based on this study, we provide a guide for determining which quality

measures would have better behavior for filtering emerging patterns regarding the class

imbalance level of a dataset.

Additionally, we introduce three algorithms for mining emerging patterns in class

imbalance problems. The first one is an emerging pattern miner based on a hybrid

resampling method. The second one is a modification of the random forest miner (RFm)

[Garćıa-Borroto et al., 2015] but using a skew-insensitive measure as node splitting

criterion. The last one is a cost-sensitive algorithm for mining emerging patterns based

on a cost matrix. Each introduced algorithm extracts a set of emerging patterns,

which allows attaining better classification results than other solutions reported in the

literature for class imbalance problems.

Finally, we introduce a new emerging pattern-based classifier for class imbalance

problems in which, to solve the class imbalance problem, the support of the patterns

is combined with the class imbalance level of the training sample for weighting the
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patterns at the classification stage. This classifier significantly outperforms other state-

of-the-art classifiers designed for class imbalance problems.

1.4 Thesis organization

The content of this thesis is organized as follows. Chapter 2 presents a review of

state-of-the-art about emerging pattern mining on class imbalance problems, as well

as, emerging pattern-based classifiers for class imbalance problems. Also, this chapter

includes a review of some classifiers for class imbalance problems, which are not based

on emerging patterns. Chapter 3 provides a review of the state-of-the-art of quality

measures for patterns and a study of these quality measure in class imbalance problems.

As part of this study, two filtering algorithms for emerging patterns are introduced.

Chapter 4 introduces three algorithms for mining emerging patterns in class imbalance

problems. Chapter 5 introduces a new classifier based on emerging patterns for class

imbalance problems. Finally, Chapter 6 shows the conclusions of this thesis and presents

our contributions, future work, as well as the publications derived from this thesis.



Chapter 2
Related work

This chapter presents a review of the state-of-the-art on emerging pattern miners and

supervised classifiers based on emerging patterns for class imbalance problems, as well

as other related classifiers not based on emerging patterns, which also are designed

for class imbalance problems. For a better understanding, we split the content of this

chapter as follows: Section 2.1 presents the works reported in the literature for mining

emerging patterns in class imbalance problems. Section 2.2 describes the only emerging

pattern-based classifier reported in the literature that, although it was not designed for

class imbalance problems, has reported good results in this kind of problems. Since

this PhD research is related to the problem of supervised classification with imbalanced

classes, in Section 2.3 we also review some of the most successful supervised classifiers,

not based on emerging patterns, for class imbalance problems. Finally, in Section 2.4,

we present a brief discussion about the related work.

2.1 Emerging pattern mining in class imbalance prob-

lems

A key requirement for emerging pattern-based classifiers is to have a good collection

of patterns. Therefore, several pattern mining algorithms have been proposed with the

aim of extracting a collection of quality patterns. Nevertheless, most of the emerging

pattern mining algorithms were introduced assuming balanced classes, and hence they

do not attain good classification results in class imbalance problems [Alhammady and

Ramamohanarao, 2004a,b; Alhammady, 2007; Chen and Liu, 2016]. To the best of our

knowledge, there only exist three algorithms designed for mining emerging patterns in

9
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class imbalance problems.

In 2004, Alhammady and Ramamohanarao proposed the EPRC miner, which cre-

ates new emerging patterns for the minority class with the aim that they do not become

overwhelmed by the emerging patterns from the majority class. This is achieved as fol-

lows. First, from the training dataset, all the emerging patterns are extracted. The

authors do not comment which algorithm is used for mining these patterns. After that,

from each pattern of the minority class, new emerging patterns for the minority class

are built as follows. For each item in the pattern, a new emerging pattern is built by

replacing the item value by the feature value, of the corresponding feature, having the

highest ratio between its support in the majority class and its support in the minority

class (Growth Rate [Dong and Li, 1999]); keeping all other items as they are in the

original pattern. After, duplicate emerging patterns are removed. In a second stage, all

the emerging patterns whose Growth Rate is less than a given threshold are eliminated.

Finally, at the last stage, the support value for all the emerging patterns of the minority

class is multiplied by a weight greater than one. In this way, the support value for all

the emerging patterns from the minority class is artificially increased. Consequently,

the support value for these emerging patterns will not be overwhelmed by the support

value of the emerging patterns from the majority class at the classification stage.

The authors comment that the thresholds for removing emerging patterns and the

weight for multiplying the support of the emerging patterns in the minority class were

tuned using 30% of the training dataset. In order to evaluate the quality of the emerging

patterns extracted using EPRC, the authors used the emerging pattern-based classifier

CEP [Bailey et al., 2003], which was proposed for problems with balanced classes. The

strategy provided by EPRC tries to overcome the class imbalance problem by creating

new emerging patterns for the minority class. It is important to highlight that these new

emerging patterns do not necessarily cover objects of the minority class in the training
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dataset, because their combination of item values may not appear in the objects of the

minority class.

In 2007, Alhammady proposed the DEP miner, which creates balanced subsamples

(based on a resampling approach) for mining emerging patterns in class imbalance

problems. To do this, first, DEP extracts the emerging patterns for the majority class

from the original training dataset. The authors do not mention which algorithm is used

for mining these emerging patterns. Then, DEP creates balanced subsamples containing

all the objects from the minority class and a subset of objects from the majority class.

DEP creates as many subsamples as it can by using the objects from the majority

class without replacement. Then, from each subsample, the emerging patterns for the

minority class are extracted. In this way, several emerging patterns for the minority

class are extracted, and consequently, they are not overwhelmed by the number of

emerging patterns from the majority class. Later, all the emerging patterns from the

minority class are ranked taking into account the value obtained by multiplying the

Support and the Growth Rate of each pattern (Strength [Tan et al., 2004]).

These ranked emerging patterns are divided into two subsets: the first one contains

the first patterns in the ranking, as many as the number of emerging patterns previously

computed for the majority class. The second subset contains the remaining emerging

patterns of the minority class. Finally, the emerging patterns of the majority class are

compared with the emerging patterns in the first subset. If an emerging pattern from

the majority class appears in the first subset, then it is removed from the first subset

and the best emerging pattern from the second subset, according to the ranking, is

added to the first subset. This procedure is repeated as many times as necessary to

ensure all duplicates are eliminated. For evaluating the quality of the emerging patterns

extracted by DEP, the authors in their experiments used the emerging pattern-based

classifier BCEP [Fan and Ramamohanarao, 2003], which was not specifically designed
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for class imbalance problems. The experimental results show that the emerging pat-

terns extracted by DEP attain better classification results than the emerging patterns

extracted by EPRC.

In 2016, Chen and Liu proposed the WBEPM miner, an algorithm for mining

emerging patterns from imbalanced data streams. Similar to DEP, WBEMP creates

several balanced subsamples but using a sliding window mechanism. Each subsample

contains all the objects from the minority class and a subset of objects, without re-

placement, from the majority class. After that, emerging patterns are extracted from

each subsample by using a variant of the algorithm for mining emerging patterns, in

balanced datasets, proposed by Fan and Kotagiri [2002] (eJEPs). For evaluating the

quality of all the emerging patterns extracted by WBEPM, the authors in their ex-

periments used the emerging pattern-based classifier CAEP [Dong et al., 1999]. The

experimental results show that the emerging patterns extracted by WBEPM attain

better classification results than the emerging patterns extracted by eJEPs from the

original imbalanced dataset.

2.2 Supervised classifiers based on emerging pat-

terns for class imbalance problems

Emerging pattern-based classifiers have not been thoroughly studied for class imbalance

problems [Zhang and Dong, 2012]. Actually, to the best of our knowledge, there are

not emerging pattern-based classifiers specifically designed for class imbalance prob-

lems. Nevertheless, in a study conducted by Zhang and Dong [2012], authors showed

that the iCAEP (Information-Based Classification by Aggregating Emerging Patterns)

classifier obtains good classification results in class imbalance problems. Nevertheless,

this finding/result has not been completely validated, requiring further experimenta-
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tion, since the authors use only three imbalanced databases, and the results were not

validated using any statistical test.

Originally, iCAEP was introduced in [Zhang et al., 2000b] to deal with large-volume

high-dimensional datasets, but it was neither tested nor designed to deal with class im-

balance problems. iCAEP relies on two quality measures for emerging patterns with the

aim to classify a query object using a collection of high-quality patterns. To do this, first,

the authors propose to extract a set of emerging patterns using ConsEPMiner [Zhang

et al., 2000a], which is designed for mining emerging patterns on high-dimensional data-

sets. After, the emerging patterns are ranked in descending order according to their

number of items (Length [Bailey, 2012a]). For patterns with the same number of items,

the Growth Rate [Dong and Li, 1999] is used as second ordering criterion. Then, for

each class, iCAEP iteratively selects (according to the ranking) patterns, until all the

features of the dataset appear in at least one item of the selected patterns. Finally,

according to each subset of emerging patterns, the query object is classified into the

class with the highest sum of supports.

2.3 Supervised classifiers not based on emerging pat-

terns for class imbalance problems

This section reviews the most successful supervised classifiers for class imbalance prob-

lems, which are not based on emerging patterns. As shall be shown, most of these

classifiers are based on decision trees or association rules.

In 2001, Schölkopf et al. proposed OCSVM, which is a variation of the SVM [Cor-

tes and Vapnik, 1995] for one-class classification. OCSVM creates two groups of objects

from the training dataset, one group contains the target objects and the second group

contains the remaining objects. Then, both groups are mapped into a high-dimensional
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feature space applying a Gaussian kernel function. After, OCSVM prioritizes those ob-

jects belonging to the minority class, in the boundary between both classes, because

these are more susceptible to be considered as noisy objects and consequently be misclas-

sified. In 2014, Wu et al. [2014] applied this approach on imbalanced text categorization

obtaining good classification results.

In 2007, Verhein and Chawla developed SPARCCC (Significant, Positively Asso-

ciated and Relatively Class Correlated Classification), a rule-based classifier, which is

based on statistical techniques. SPARCCC uses a variation of GLIMIT [Verhein and

Chawla, 2006] to extract the rules. After that, these rules are tested using the Fisher’s

exact test [Upton, 1992] and the quality measure CCR (Class Correlation Ratio) with

the aim of selecting those rules whose antecedent is more correlated with the class that

it predicts than with the other classes. Finally, SPARCCC creates a class association

rule model to deal with class imbalance problems.

In 2007, Pérez et al. developed CTC (Consolidate Tree Construction), a decision

tree-based algorithm. CTC creates 100 subsamples from the training dataset to build

a decision tree from each one. Based on the most used split criteria in all the decision

trees, a new decision tree is created, which according to the authors can address class

imbalance problems. The authors show that CTC outperforms the bagged C4.5 decision

trees [Quinlan, 1993].

In 2008, Hempstalk et al. introduced OCC, a one-class classifier based on density

and class probability to deal with class imbalance problems. OCC uses a density estim-

ator based on the Bayes rule [Bayes and Price, 1763] to generate artificial data as close

as possible to the minority class; this enables the construction of a class probability

model able to classify new objects in a two-class problem. The authors showed how

this approach obtains similar classification results than SVM [Cortes and Vapnik, 1995]

when OCC uses bagged unpruned C4.5 decision trees jointly with Laplace smoothing
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[Manning et al., 2008], as the probability estimator.

In 2010, Liu et al. developed CCPDT, a classifier that builds decision trees using

a new skew-insensitive measure for evaluating splitting criteria, Class Confidence Pro-

portion (CCP). After, those branches in the decision tree are pruned using the Fisher’s

exact test [Upton, 1992]. The authors show that CCPDT outperforms SPARCCC and

how CCP complements the Hellinger distance [Cieslak and Chawla, 2008] in some de-

cision tree splitting criteria.

In 2010, Seiffert et al. proposed RUSBoost, a classifier that builds decision tree

ensembles based on a resampling method and a boosting algorithm. RUSBoost cre-

ates balanced datasets through the use of the Random Undersampling method (RUS)

[Batista et al., 2004] and after, by using the AdaBoost.M2 algorithm [Freund et al.,

1996], it creates several decision trees to be used through a classifier ensemble to deal

with class imbalance problems.

In 2011, Li and Zhang introduced kENN, a modification of the well-known k Nearest

Neighbor (kNN) classifier [Aha et al., 1991]. kENN identifies groups of objects from

the minority and majority classes. The aim is to mitigate the errors in the decision

boundaries through the generalization of the objects of the minority class. Finally,

query objects are classified taking into account their distance with the groups of objects

belonging to the minority class, and the objects belonging to the majority class. The

authors show that kENN outperforms SMOTE [Chawla et al., 2002] and MetaCost

[Domingos, 1999].

In 2012, Cieslak et al. developed HDDT, which builds a decision tree ensemble us-

ing the Hellinger distance [Cieslak and Chawla, 2008] as measure for evaluating splitting

criteria. HDDT uses Bagging [Breiman, 1996] jointly with the decision tree classifier

proposed by Cieslak and Chawla [2008] with the aim of creating a classification model

able to deal with class imbalance problems. The authors show that HDDT outperforms
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C4.5 [Quinlan, 1993] in class imbalance problems and it is not significantly worse than

C4.5 for balanced datasets.

In 2014, Kang and Ramamohanarao proposedHeDex, which builds several decision

trees using the Hellinger distance [Cieslak and Chawla, 2008] as measure for evaluating

splitting criteria. HeDex is based on randomized decision tree ensembles using the

randomization on both feature selection and split-point selection. This random strategy

yields a high level of diversity among decision trees, which helps to find a collection of

diverse classifiers to be used into a classifier ensemble. The authors show that HeDex

outperforms HDDT.

In 2015, Dı́ez-Pastor et al. developed RB-Boost (Random Balance Boost), a com-

bination of the Random Balance algorithm and AdaBoost.M2 [Freund et al., 1996].

RB-Boost uses (like RUSBoost [Seiffert et al., 2010] and SMOTEBoost [Chawla et al.,

2003]) a resampling approach, to create several balanced datasets from the training

dataset, and the boosting approach for creating a classifier ensemble for class imbal-

ance problems.

In 2015, Ibarguren et al. proposed Coverage, which creates several subsamples

from the training dataset without oversampling the minority class. The goal is to build

subsamples which have all the objects belonging to the minority class and a certain

percentage of the objects belonging to the majority class. The percentage value depends

on the number of subsamples to be created and the number of objects belonging to the

minority class. Finally, these generated subsamples are used to train the CTC classifier.

The authors show that Coverage outperforms others 22 classifiers, over 96 imbalanced

databases

In 2015, Su et al. introduced KLPART, which improves the PART classifier [Frank

and Witten, 1998]. PART extracts a set of rules from several C4.5 decision trees with

the aim of building an accurate classifier based on class association rules (CARs).
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KLPART uses PART jointly with the K-L divergence function [S. Kullback, 1951], as a

skew-insensitive split criterion to build decision trees from imbalanced databases. Also,

KLPART uses Laplace smoothing [Manning et al., 2008] in the split criterion, with

the goal of avoiding errors with zero probability. KLPART uses the same classification

strategy proposed for the PART classifier, but it can deal with class imbalance problems.

In 2017, Zhang et al. proposed KRNN (k Rare-class Nearest Neighbour) [Zhang

et al., 2017], which is a modification of the k Nearest Neighbor (kNN) classifier [Aha

et al., 1991]. KRNN, similar to kENN, dynamically creates groups of objects belonging

to the minority class. The goal is to directly adjust the induction bias of kNN according

to the size and distribution of these groups. KRNN, unlike to kENN, directly adjusts

the posterior probability estimation for query objects by using the Laplace estimate and

after that, it uses a classification strategy similar to the kNN classifier. The authors

show that KRNN outperforms CCW-KNN [Liu and Chawla, 2011b], a modification of

kNN for class imbalance problems.

2.4 Discussion

From the algorithms for mining emerging patterns reviewed in this chapter, we can

note that most of them use a resampling approach with the aim to create balanced

subsamples, or a balanced training dataset, from which the emerging patterns are ex-

tracted. This approach has shown good classification results in class imbalance problems

[Alhammady and Ramamohanarao, 2004a,b; Alhammady, 2007]. Nevertheless, as far

as we know, there is not a comparative study among resampling methods with the aim

of selecting the best one for mining emerging patterns in class imbalance problems.

To the best of our knowledge, the modification of algorithms for mining emerging

patterns in class imbalance problems using the original training dataset (without res-
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ampling) has not been explored enough. There is only one algorithm for mining emer-

ging patterns (EPRC [Alhammady and Ramamohanarao, 2004a]), which creates new

emerging patterns for the minority class by using the most frequent feature values from

the majority class. However, these patterns are not suitable for describing the minority

class, since they have item values which may not appear in the feature values of the

objects of the minority class. In addition, from the related work, emerging patterns

extracted from balanced datasets allowed obtaining better classification results than

emerging patterns extracted using this approach of modification of algorithms. Also,

it is important to highlight that most of the reviewed papers about emerging pattern

mining are unclear and their authors did not provide a free implementation of their

proposals.

On the other hand, as far as we know, in the literature, there are not cost-sensitive

algorithms for mining emerging patterns in class imbalance problems. These two ap-

proaches (modification of algorithms and cost-sensitive) have reported good classifica-

tion results for classifiers not based on emerging patterns [Domingos, 1999; Su et al.,

2015a]. Therefore, developing emerging pattern miners for class imbalance problems

based on these two approaches could attain good classification results.

From the related work, we can note that although iCAEP has shown good classific-

ation results in class imbalance problems, it was not created for this type of problems.

Moreover, to the best of our knowledge, there are not emerging pattern-based classifiers

specifically designed to deal with class imbalance problems. Therefore, developing new

emerging pattern-based classifiers for class imbalance problems is an open problem.

Finally, it is important to highlight that the emerging pattern miners and the emer-

ging pattern-based classifiers for class imbalance problems reported in the literature are

scarce and they have not been studied enough. Therefore, more and better algorithms

for mining emerging patterns in class imbalance problems, as well as new emerging
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pattern-based classifiers, are still required.





Chapter 3
Quality measures for patterns in
class imbalance problems

In this chapter, we present a study about the effect of class imbalance on quality

measures for patterns. We split the content of this chapter as follows: Section 3.1

provides a brief introduction to quality measures for patterns and some basic concepts

which are used throughout this chapter. Section 3.2 introduces our study about the

effect of class imbalance on quality measures for patterns. Finally, Section 3.3 presents

our concluding remarks about this study.

3.1 Quality measures for patterns

Commonly, algorithms for mining emerging patterns extract a large set of patterns from

a training dataset. Therefore, an important task is to distinguish among patterns with

low and high discriminative ability for supervised classification. To carry out this task,

several quality measures for patterns have been proposed on in the literature.

In supervised classification, a quality measure (QM) assigns a higher value to a pat-

tern when it better discriminates objects of a class from objects of other classes [Bailey,

2012a; Garćıa-Borroto et al., 2013; Loyola-González et al., 2014, 2016a]. Consequently,

a quality measure allows generating a pattern ranking based on the discriminative power

of the patterns, which can be used for selecting the best patterns for a pattern-based

classifier [Huynh et al., 2007; Novak et al., 2009; Garćıa-Borroto et al., 2013; Loyola-

González et al., 2014, 2016a]. Thus, in this PhD research, we will say that a quality

measure Q1 has better behavior than another quality measure Q2 if, at the classification

21
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stage, the patterns selected from the ranking induced by Q1 provide better classification

result than those coming from the ranking induced by Q2.

Based on previous studies [Geng and Hamilton, 2006, 2007; McGarry, 2005], quality

measures for patterns can be categorized into two groups:

• Objective, which are based on probabilities or statistics. The aim is to evaluate

the ability of a pattern for discriminating objects in a class from objects in other

classes [McGarry and Malone, 2004; McGarry, 2005].

• Subjective, which are based on a subjective criterion issued by an expert in the

application domain [Padmanabhan and Tuzhilin, 2002; Liu et al., 2003].

Objective measures are the most used for experimental studies because they do

not take into account neither the context of the application domain nor the goals and

background knowledge of experts [Geng and Hamilton, 2006]. Then, since subjective

measures are based on a specific criterion issued by an expert in the application domain,

which is not available in any repository, we do not include these measures in our study.

An objective quality measure can be defined as a function q(I,Dp, Dn)→ R, which

assigns a higher value to a pattern I when it better discriminates objects in a class

Dp from objects in the remaining problem classes Dn (The classes form a partition of

the universe D = Dp ∪Dn, Dp ∩Dn = ∅) [Garćıa-Borroto et al., 2013; Loyola-González

et al., 2014, 2016a].

In the literature, quality measures are usually defined using different notations.

Therefore, in this chapter, we will use the notation proposed by Bailey [2012a] for

representing all quality measures. Then, the number of objects covered by a pattern I

is denoted as count(I,D). While the support of a pattern I, denoted as Sup(I,D), is

computed as the ratio between count(I,D) and the number of objects in the dataset

D.
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A contingency table (CT) is a useful structure to show the distribution of the objects

covered by a pattern [Bailey, 2012a]. Then, given I, Dp, and Dn, one may construct a

CT for representing the distribution of objects covered by the pattern I in Dp and Dn

as shown in Table 3.1.

Table 3.1: Contingency table

Dp Dn Sums

I n11 n12 a1

¬I n21 n22 a2

Sums |Dp| = b1 |Dn| = b2
∑

ij nij = N

Note that n11 = count(I,Dp), n12 = count(I,Dn), n21 = b1 - n11 and n22 = b2

- n12. Consequently, Sup(I,Dp) = count(I,Dp)/b1, Sup(I,Dn) = count(I,Dn)/b2,

Sup(I,Dp ∪Dn) = Sup(I,D) = count(I,D)/N , and N represents the total number of

objects.

There are many studies on quality measures for patterns reported in the literature

[Piatetsky-Shapiro, 1991; Bay and Pazzani, 1999; An and Cercone, 2001; Tan et al.,

2002; Lavrač et al., 2004; Lenca et al., 2004; McGarry, 2005; Geng and Hamilton, 2006,

2007; Huynh et al., 2007; Lenca et al., 2007; Novak et al., 2009; Bailey, 2012b; Garćıa-

Borroto et al., 2013; Loyola-González et al., 2014]. Nevertheless, all these studies do not

take into account the impact of the class imbalance problem over the quality measure

results, when the measures are used to select patterns for supervised classification.

Therefore, in the next section, we present a study of quality measures for emerging

patterns taking into account the effect of the class imbalance over the quality measure

results.
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3.2 A study of quality measures for patterns in class

imbalance problems

The aim of this study is to investigate the effect of class imbalance on quality measures

for patterns. For our study, first, we propose extracting emerging patterns from several

imbalanced databases. Then, we will create a ranking of emerging patterns based on

a quality measure. Finally, the best patterns from this ranking will be selected, and

they will be used in an emerging pattern-based classifier. By doing this, we can detect

which quality measures attain good or bad classification results. As the classification

algorithm is the same and the only change is the quality measure used for producing the

ranking, then a good or bad performance in the classification results can be attributed

to the quality measure.

In our study, we propose to evaluate two methods for selecting emerging patterns

extracted from imbalanced databases. The main reason to select these methods is that

they showed good classification results on databases with balanced classes [Loyola-

González et al., 2014]. Consequently, they do not take into account the class imbalance

problem. Therefore, we will modify them to address the class imbalance problem in the

selection of emerging patterns.

The first method selects the k best emerging patterns by class from the ranking

produced by applying a given quality measure. The second one selects a subset of the

best patterns that covers all the objects of the training sample. In this second method,

for each object of the training sample, the best emerging pattern covering the object

is selected (only if this emerging pattern is associated with the same class that the

object has, and this pattern has not been previously selected). The pseudocodes for

both emerging pattern selection methods are shown in Algorithm 1 and Algorithm 2

respectively.
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Algorithm 1: Method for selecting the k best emerging patterns
input : EP- Set of emerging patterns, q- Quality measure, s- Selection by class, k- Number of emerging patterns
output: R- Selected emerging patterns

R ← ∅
if s == true then

foreach c ∈ Classes do
EPS ← Emerging patterns of c sorted using q
R ← Selecting the k best emerging patterns from EPS

end

end
else

EPS ← EP sorted using q
R ← Selecting the k best emerging patterns from EPS

end
return R

Algorithm 2: Method for selecting patterns considering their covering
input : EP- Set of emerging patterns, q- Quality measure, T - Training sample
output: R- Selected emerging patterns

EPS ← EP sorted using q
R ← ∅
foreach o ∈ T do

Search S = the first pattern in EPS that covers o and it is associated to the same class as o
if S /∈ R then

R ← R ∪ {S}
end

end
return R

3.2.1 Experimental setup

In order to test the first alternative for selecting emerging patterns, in our study, we

selected different amounts of emerging patterns for supervised classification. First, we

selected 10% of the patterns as suggested by Garćıa-Borroto et al. [2013]. However,

selecting only 10% of the emerging patterns could lead to low accuracy at the clas-

sification stage, specially in class imbalance problems. The main reasons are: (i) all

emerging patterns with high-quality could be from a single class (commonly from the

majority class), and (ii) 10% of emerging patterns could be very few patterns. Thus,

with the goal of testing the selection of different amounts of patterns, we also selected

10%, 50%, and 80% of emerging patterns by class.

For our study, we used 32 quality measures, which are detailed in Table 3.2. This
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table shows, for each quality measure, the abbreviation used in the rest of this chapter,

its name and reference, as well as its expression using probabilistic notation.

For mining emerging patterns, we selected LCMine (Logical Complex Miner) [Garćıa-

Borroto et al., 2010b], because it has shown mining emerging patterns which allow ob-

taining higher accuracies than the patterns extracted by other emerging pattern miners

(like SJEP [Fan and Ramamohanarao, 2006]) [Garćıa-Borroto et al., 2010b].

As emerging pattern-based classifier, we selected CAEP (Classification by Aggregat-

ing Emerging Patterns) [Dong et al., 1999], since, it uses a simple classification strategy

whereby the accuracy results will depend more on the quality of the emerging patterns

used for classification than on the classification strategy. Also, CAEP has been used

in several real-world problems such as music melody classification [Tang, 2001], failure

detection [Lo et al., 2009], DNA sequence classification [Chen and Chen, 2011], and

classification of polyadenylation sites [Tzanis et al., 2008, 2011]; where it has obtained

good accuracy results [Dong, 2012a].

It is important to highlight that the emerging pattern-based classifier (CAEP) used

in this study is not available in any free Data-Mining Tool. Therefore, we implemented

it based on the paper where CAEP was introduced [Dong and Li, 1999]. Additionally,

we used an implementation of the emerging pattern miner (LCMine) which was provided

by their authors [Garćıa-Borroto et al., 2010b]. Both algorithms (CAEP and LCMine)

were executed using the parameter values recommended by their authors.

For our study, we also selected 95 imbalanced databases (see Table 3.3) from the

KEEL dataset repository [Alcalá-Fdez et al., 2011]. These databases contain two-class

problems with a class imbalance ratio higher than 1.5, as suggested by López et al.

[2014a]. The class imbalance ratio (IR) is computed as the ratio between the number

of objects belonging to the majority class and the number of objects belonging to the

minority class (IR = |majority class| / |minority class|) [Orriols-Puig and Bernadó-
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Table 3.2: Summary of the quality measures used in our study

Abbrev. Name and Reference Equation

Acc Accuracy [Kodratoff, 2001] Sup(I,Dp) + Sup(¬I,Dn)

Brins Brins [Brin et al., 1997]
Sup(I,D)×(b1/N)

Sup(I,Dn)

Conf Confidence [Agrawal et al., 1993]
Sup(I,Dp)

Sup(I,D)

CConf Centered Confidence [Lenca et al., 2007] Conf(I,Dp)− b1
N

Cole Coleman [Bruha and Kockova, 1993]
CConf(I,Dp)

1−b1/N

ColStr Colective Strength [Tan et al., 2004]
Sup(I,Dp)+Sup(¬I,Dn)

Sup(I,D)(b1/N)+Sup(¬I,D)(b2/N)
×

1−Sup(I,D)(b1/N)−Sup(¬I,D)(b2/N)
1−Sup(I,Dp)−Sup(¬I,Dn)

Cos Consine [Tan et al., 2004]
√

Conf(I,Dp)× Sup(I,Dp)

DConf Descriptive confirm [Kodratoff, 2001] Sup(I,D)− 2Sup(I,Dn)

Dep Dependency [Kodratoff, 2001] |Sup(¬I,D)− Conf(I,Dn|

ExCex Example and Counterexample Rate [Gras, 1996] 1− Sup(I,Dn)
Sup(I,Dp)

Gain Gain [Yin and Han, 2003] Sup(I,Dp)× (log
Sup(I,Dp)

Sup(I,D)
− log b1

N
)

GR Growth rate [Dong and Li, 1999] Sup(I,Dp)/Sup(I,Dn)

InfGain Information Gain [Church and Hanks, 1990] − log (b1/N) + log (Conf(I,Dp))

Jacc Jaccard Index [Tan et al., 2004]
Sup(I,Dp)

Sup(I,D)+(b1/N)−Sup(I,Dp)

Klos Klosgen [Klösgen, 1996]
√

Sup(I,Dp)× (Conf(I,Dp)− Sup(I,D)))

Lap Lapplace [Good, 1965]
Sup(I,Dp)+1/N

Sup(I,D)+2/N

Lever Leverage [Webb and Zhang, 2005] Conf(I,Dp)− Sup(I,D)× b1
N

Lift Lift [Piatetsky-Shapiro and Steingold, 2000]
Sup(I,Dp)

Sup(I,D)×(b1/N)

MDisc Measure Discrimination [An and Cercone, 1998] log (
Sup(I,Dp)Sup(¬I,Dn)

Sup(I,Dn)Sup(¬I,Dp)
)

MultInf Mutual Information [Bailey, 2012b]
∑i=2

i=1

∑j=2
j=1

nij

N
× log

nij/N

aibj/N

NetConf NetConf [Ahn and Kim, 2004]
Conf(I,Dp)−(b1/N)

1−Sup(I,D)

OddsR Odds Ratio [Tan et al., 2004]
Sup(I,Dp)/(1−Sup(I,Dp))

Sup(I,Dn)/(1−Sup(I,Dn))

Pearson Pearson Correlation Coefficient [Pearson, 1896]
Sup(I,Dp)−Sup(I,D)×(b1/N)√

Sup(I,D)(b1/N)+Sup(¬I,D)(b2/N)

RelRisk Relative Risk [Ali et al., 1997] Conf(I,Dp)/Conf(¬I,Dp)

Sebag Sebag-Shoenauer [Sebag and Schoenauer, 1988]
Sup(I,Dp)

Sup(I,Dn)

Spec Specificity [Lavrač et al., 1999] Conf(¬I,Dn)

Streng Strength [Ramamohanarao and Fan, 2007]
GR(Dp)

GR(Dp)+1
× Sup(I,Dp)

Sup
Support [Agrawal et al., 1993] or Coverage [An and
Cercone, 2001]

Sup(I,Dp)

SupDif Support Difference [Bay and Pazzani, 1999] Sup(I,Dp)− Sup(I,Dn)

WRACC Weighted Relative Accuracy [Lavrač et al., 2004] Sup(I,D)(Conf(I,Dp)− (b1/N))

X2 X2 [Bay and Pazzani, 1999]
∑i=2

i=1

∑j=2
j=1

(nij−Eij)
2

Eij
, Eij =

(
∑k=2

k=1 nik)×(
∑k=2

k=1 njk)

N

Zhang Zhang [Zhang, 2000]
Sup(I,Dp)−Sup(I,D)×(b1/N)

max{Sup(I,Dp)×(b2/N),Sup(I,Dn)×(b1/N)}
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Mansilla, 2009]. In this way, the larger the IR value, the larger the imbalance of the

database. The IR is the most used index to measure the imbalance level in a database

[Batista et al., 2004; López et al., 2014b; Dı́ez-Pastor et al., 2015].

All databases were partitioned using 5-fold Distribution Optimally Balanced Strat-

ified Cross-Validation (DOB-SCV) procedure, as suggested by Moreno-Torres et al.

[2012], for class imbalance problems. DOB-SCV selects a random object from the

training dataset, and then finds its k − 1 nearest neighbors of the same class (com-

monly k = 5). After that, it includes each of k objects to a different fold. This process

is repeated until all objects from the training dataset belong to a fold. All dataset par-

titions used in this experimentation are available for downloading at the KEEL dataset

repository1 [Alcalá-Fdez et al., 2011].

In Table 3.3, different characteristics for each database used in our experiments

such as the name used in the KEEL dataset repository (Name), the number of objects

(#Objects), the number of features (#Feat.), and the IR are shown. This table is sorted

in ascending order according to the IR.

For assessing the classification performance, we used the AUC (Area Under the

ROC Curve) measure [Huang and Ling, 2005] because it is the most used for class

imbalance problems [Bradley, 1997; López et al., 2013, 2014a,b; Sáez et al., 2015].

AUC is computed as:

AUC =
1 + TPrate − FPrate

2
(3.1)

where TPrate is the ratio of objects belonging to the minority class that are well-classified

and FPrate is the ratio of misclassified objects belonging to the majority class.

In order to know if the classification results produced by different classifiers are

statistically different in our study, we applied the Friedman’s test (a nonparametric test)

1http://sci2s.ugr.es/keel/imbalanced.php

http://sci2s.ugr.es/keel/imbalanced.php
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Table 3.3: Summary of the imbalanced databases used in our study
Name #Objects #Feat. IR Name #Objects #Feat. IR

glass1 214 9 1.82 ecoli0146vs5 280 6 13.00
ecoli0vs1 220 7 1.86 shuttlec0vsc4 1829 9 13.87
wisconsin 683 9 1.86 yeast1vs7 459 7 14.30
pima 768 8 1.87 glass4 214 9 15.46
iris0 150 4 2.00 ecoli4 336 7 15.80
glass0 214 9 2.06 pageblocks13vs4 472 10 15.86
yeast1 1484 8 2.46 abalone9vs18 731 8 16.40
haberman 306 3 2.78 dermatology6 358 34 16.90
vehicle2 846 18 2.88 zoo3 101 16 19.20
vehicle1 846 18 2.90 glass016vs5 184 9 19.44
vehicle3 846 18 2.99 shuttlec2vsc4 129 9 20.50
glass0123vs456 214 9 3.20 shuttle6vs23 230 9 22.00
vehicle0 846 18 3.25 yeast1458vs7 693 8 22.10
ecoli1 336 7 3.36 glass5 214 9 22.78
newthyroid1 215 5 5.14 yeast2vs8 482 8 23.10
newthyroid2 215 5 5.14 lymphography normalfibrosis 148 18 23.67
ecoli2 336 7 5.46 flareF 1066 11 23.79
segment0 2308 19 6.02 cargood 1728 6 24.04
glass6 214 9 6.38 carvgood 1728 6 25.58
yeast3 1484 8 8.10 krvskzeroonevsdraw 2901 6 26.63
ecoli3 336 7 8.60 krvskonevsfifteen 2244 6 27.77
pageblocks0 5472 10 8.79 yeast4 1484 8 28.10
ecoli034vs5 200 7 9.00 winequalityred4 1599 11 29.17
yeast2vs4 514 8 9.08 poker9vs7 244 10 29.50
ecoli067vs35 222 7 9.09 yeast1289vs7 947 8 30.57
ecoli0234vs5 202 7 9.10 abalone3vs11 502 8 32.47
glass015vs2 172 9 9.12 winequalitywhite9vs4 168 11 32.60
yeast0359vs78 506 8 9.12 yeast5 1484 8 32.73
yeast0256vs3789 1004 8 9.14 krvskthreevseleven 2935 6 35.23
yeast02579vs368 1004 8 9.14 winequalityred8vs6 656 11 35.44
ecoli046vs5 203 6 9.15 ecoli0137vs26 281 7 39.14
ecoli01vs235 244 7 9.17 abalone17vs78910 2338 8 39.31
ecoli0267vs35 224 7 9.18 abalone21vs8 581 8 40.50
glass04vs5 92 9 9.22 yeast6 1484 8 41.40
ecoli0346vs5 205 7 9.25 winequalitywhite3vs7 900 11 44.00
ecoli0347vs56 257 7 9.28 winequalityred8vs67 855 11 46.50
yeast05679vs4 528 8 9.35 abalone19vs10111213 1622 8 49.69
vowel0 988 13 9.98 krvskzerovseight 1460 6 53.07
ecoli067vs5 220 6 10.00 winequalitywhite39vs5 1482 11 58.28
glass016vs2 192 9 10.29 poker89vs6 1485 10 58.40
ecoli0147vs2356 336 7 10.59 shuttle2vs5 3316 9 66.67
led7digit02456789vs1 443 7 10.97 winequalityred3vs5 691 11 68.10
ecoli01vs5 240 6 11.00 abalone20vs8910 1916 8 72.69
glass06vs5 108 9 11.00 krvskzerovsfifteen 2193 6 80.22
glass0146vs2 205 9 11.06 poker89vs5 2075 10 82.00
glass2 214 9 11.59 poker8vs6 1477 10 85.88
ecoli0147vs56 332 6 12.28 abalone19 4174 8 129.44
cleveland0vs4 177 13 12.62

and after, we performed the Bergmann-Hommel’s procedure (a post-hoc procedure), as

suggested in [Demšar, 2006; Garćıa and Herrera, 2008; Garćıa et al., 2010; Derrac et al.,

2011]. A detailed explanation of these statistical tests is given in Appendix A.

A common way to show statistical results is through CD (critical difference)) dia-
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grams. These diagrams present the order of the classifiers based on the Friedman’s

ranking, the magnitude of the differences among them, and the significance of the ob-

served differences, all in a compact form. In a CD diagram, the rightmost classifier

is the best classifier, the position of a classifier within the segment represents its rank

value, and if two or more classifiers share a thick line, it means that they have statist-

ically similar behavior [Demšar, 2006]. CD diagrams are used to show the statistical

results of this study.

For studying the effect of class imbalance on quality measures regarding different

imbalance levels, we also divided the databases into equal-frequency groups depending

on the IR of the databases by using the Discretize2 method. This is an unsupervised

discretization method for numeric attributes, taken from the WEKA3 Data Mining

Software [Hall et al., 2009], which has been widely used to obtain equal-frequency

groups [Jacques et al., 2013; Feng et al., 2014; Guo et al., 2014; Hogo, 2014; Mulay and

Puri, 2016]. Using this division, we will identify those quality measures with the best

behavior for each specific class imbalance level. After applying the Discretize method,

six equal-frequency groups depending on the IR of the databases were output. Table 3.3

shows these groups, divided by thin lines, which have the following IR ranges: Bin1

(1.820, 5.300], Bin2 (5.300, 9.175], Bin3 (9.175, 12.810], Bin4 (12.810, 23.730], Bin5

(23.730, 39.905], and Bin6 (39.905, 129.440].

3.2.2 Experimental results

This section shows our experimental results that aim to identify the effect of class

imbalance on quality measures for patterns. First, we show the results considering all

the imbalanced databases used in our study and after, we show the results dividing the

2Path in WEKA 3.7: weka.filters.unsupervised.attribute.Discretize
3http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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Figure 3.1: A CD diagram with a statistical comparison of the classification results
over all tested databases.

databases into different class imbalance levels.

From our results shown in Figure 3.1, the top accurate measures are Jacc, Sup,

Streng, Cos, SupDif, WRACC, OddsR, Sebag, GR, ExCex, Conf, Cole, Brins, Zhang,

and MDisc, in this order. The statistical tests prove that these 15 quality measures

(see the right-hand side of Figure 3.1) are significantly different from the remaining

ones, but there is not any statistical difference among each other. According to our

classification results, the best quality measure for ranking emerging patterns in class

imbalance problems is Jacc.

Analyzing our results into each one of the six equal-frequency groups (bins) shown

in Table 3.3, we can see the following:

• For the less imbalanced databases (Bin1), the top accurate measures are Streng,

SupDif, WRACC, MultInf, Cos, Jacc, Sup, and X2, in this order. Statistical tests

prove that the differences among these eight measures and the remaining ones are

significant, but there is not any statistical difference among each other.

• For Bin2, the top accurate measures are Sup, Streng, Jacc, Cos, SupDif, and
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WRACC, in this order, having statistically significant differences regarding the

remaining ones but not among these six measures. For this bin, a subset of the top

accurate quality measures for Bin1 is obtained; only MultInf and X2 are among

the best quality measures for Bin1 but not for Bin2.

• For Bin3, the top accurate measures are Jacc, Sup, Cos, Streng, SupDif, WRACC,

Sebag, GR, ExCex, OddsR, Conf, Cole, Brins, and Zhang, in this order. These 14

quality measures have statistical similar results but they have statistical significant

differences with the remaining ones. Notice that Jacc, Sup, Cos, Streng, SupDif,

and WRACC are among the top accurate quality measures for Bin1, Bin2, and

Bin3.

• The top accurate measures for Bin4 are OddsR, Sebag, GR, ExCex, Conf, Cole,

Brins, and Zhang, in this order; having statistical differences against the remaining

ones, but not among these eight measures. Notice that the top accurate quality

measures for Bin4 are a subset of the top accurate quality measures for Bin3.

• For Bin5, the top accurate measures are Sup, Streng, Jacc, SupDif, and WRACC,

in this order. Statistical tests prove that the differences among these five measures

are not significant, but the differences against all other measures are significant.

In this bin, the top accurate quality measures are a subset of the top accurate

quality measures for Bin2; only Cos is excluded.

• For the last bin (Bin6), which contains the most imbalanced databases, the top

accurate measures are OddsR, Sebag, GR, ExCex, Conf, Cole, Brins and Zhang,

in this order; which were the same top accurate measures for Bin4. These eight

measures are not statistically different among each other, but they have statistical

significant differences with the remaining ones.



Chapter 3. Quality measures for patterns 33

Based on the results regarding different imbalance levels, we can observe that the

quality measures Jacc, SupDif, and WRACC are among the top accurate quality meas-

ures for most of the bins (Bin1, Bin2, Bin3, and Bin5).

Summarizing, Table 3.4 shows the bins (Name), the range of IR for each bin (Bin

interval), the amount of databases used to assess the quality measures into each bin

(#Databases), and the best quality measure, according to the Friedman’s ranking, for

each bin (Best quality measure).

Table 3.4: Results of the best quality measures for each Bin

Name Bin interval #Databases Best quality measure

Bin1 ( 1.820, 5.300] 16 Streng
Bin2 ( 5.300, 9.175] 16 Sup
Bin3 ( 9.175, 12.810] 16 Jacc
Bin4 (12.810, 23.730] 16 OddsR
Bin5 (23.730, 39.905] 16 Sup
Bin6 (39.905, 129.440] 15 OddsR

It is important to highlight that the results obtained by each quality measure re-

garding different imbalance levels could be influenced by other intrinsic characteristics

of the tested databases. However, in this PhD research, we focused only on the class

imbalance level because the analysis of the influence of intrinsic characteristics of im-

balanced databases is another open research line [López et al., 2013].

3.3 Concluding remarks

In this chapter, we presented a study of the effect of class imbalance on several quality

measures for patterns when used for ranking emerging patterns for classification.

From our study, considering all the imbalanced databases, we can conclude that Jacc

is the best quality measure for ranking emerging patterns for supervised classification in

class imbalance problems. On the other hand, regarding different class imbalance levels,
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we show which quality measures would have the best results, in each class imbalance

level, for ranking emerging patterns for supervised classification (see Table 3.4). These

results would help us to simplify future researches since we could consider one quality

measure among those with similar behavior depending on the class imbalance level of

a database.



Chapter 4
Emerging pattern miners for class
imbalance problems

In the literature, there are three main approaches (data level, algorithm level, and

cost-sensitive) to deal with the class imbalance problem [López et al., 2013, 2014a].

As far as we know, only the data level approach has been little studied for emerging

pattern mining [Alhammady and Ramamohanarao, 2004a; Alhammady, 2007]. Hence,

following these approaches, this chapter introduces three novel solutions for mining

emerging patterns in class imbalance problems. First, Section 4.1 researches the use of

resampling methods for balancing the classes before mining emerging patterns. After,

Section 4.2 introduces a decision tree-based algorithm for mining emerging patterns

in class imbalance problems. Next, Section 4.3 introduces an emerging pattern mining

algorithm based on cost matrices. Finally, Section 4.4 presents some concluding remarks

about the emerging pattern mining algorithms introduced in this chapter.

4.1 Data level

This section introduces a new emerging pattern mining algorithm, at the data level, for

class imbalance problems.

Solutions, at the data level, for class imbalance problems apply a resampling method

in order to balance a database in a supervised classification context. By doing this, the

resampled database will contain a more balanced distribution of the objects into the

classes and consequently, classifiers can deal with class imbalance problems [López et al.,

2013, 2014a,b; Loyola-González et al., 2016b].

35
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Emerging pattern-based classifiers use a set of emerging patterns extracted from a

database by applying an emerging pattern miner. In class imbalance problems, con-

ventional algorithms for mining emerging patterns (i.e., those do not designed for class

imbalance problems) extract several emerging patterns with high support for the major-

ity class, and only a few (or none) emerging patterns with low support for the minority

class. Then, conventional emerging pattern-based classifiers are biased toward the ma-

jority class and, consequently, they obtain poor classification results for the minority

class [López et al., 2013, 2014a,b; Loyola-González et al., 2016b, 2017]. Therefore,

we first investigate if using resampling methods, on imbalanced databases, allow ex-

tracting better-emerging patterns for classification than directly using the imbalanced

dataset. Our hypothesis is that, in class imbalance problems, conventional emerging

pattern miners can extract more useful emerging patterns for the minority class from

a resampled database than from an imbalanced database.

To corroborate our hypothesis, we will apply a set of resampling methods over several

imbalanced databases. After, we will extract emerging patterns from the resampled and

non-resampled databases using a conventional emerging pattern miner, which does not

take into account the class imbalance. Then, we will compare the classification results

obtained by an emerging pattern-based classifier using emerging patterns extracted

from a non-resampled database against the classification results obtained by the same

classifier but using emerging patterns extracted from a resampled database. This will

allows us corroborating or refuting our hypothesis and, by the way, we will determine

the best resampling method to be applied before mining emerging patterns in class

imbalance problems. Finally, using the best resampling method, we will propose a

solution at the data level for mining emerging patterns in class imbalance problems,

which will consist in applying the best resampling method, found in this research, over

an imbalanced database and extracting a collection of emerging patterns by using a
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conventional emerging pattern miner.

Based on several papers [Yoon and Kwek, 2005; Yen and Lee, 2006; He et al.,

2008; Tang and Chen, 2008; Ramentol et al., 2011; He, 2013; López et al., 2014b], the

resampling methods can be grouped in three approaches:

Oversampling. Methods in this approach create new objects in the minority

class to produce a new dataset with a balanced class distribution. There are many

oversampling methods reported in the literature, such as: Synthetic Minority Over-

sampling TEchnique (SMOTE) [Batista et al., 2004], Random oversampling (ROS)

[Batista et al., 2004], Aglomerative Hierarchical Clustering (AHC) [Cohen et al., 2006],

ADAptive SYNthetic Sampling (ADASYN) [He et al., 2008], Adjusting the Direction

Of the synthetic Minority clasS examples (ADOMS) [Tang and Chen, 2008], Selective

Preprocessing of Imbalanced Data (SPIDER) [Napierala et al., 2010], Selective Prepro-

cessing of Imbalanced Data 2 (SPIDER2) [Napierala et al., 2010], Borderline Synthetic

Minority Oversampling TEchnique (Borderline-SMOTE) [López et al., 2014b], and Safe

Level Synthetic Minority Oversampling TEchnique (Safe Level SMOTE) [López et al.,

2014b].

Undersampling. Methods in this approach, contrary to those in the oversampling

approach, remove objects from the majority class with the goal of creating a balanced

dataset. Currently, there are several undersampling methods reported in the literature,

such as: Tomek’s modification of Condensed Nearest Neighbor (TL) [Batista et al.,

2004], Neighborhood Cleaning Rule (NCL) [Batista et al., 2004], One Sided Selection

(OSS) [Batista et al., 2004], Condensed Nearest Neighbor (CNN) [Batista et al., 2004],

CNN + Tomek’s modification of Condensed Nearest Neighbor (CNNTL) [Batista et al.,

2004], Random undersampling (RUS) [Batista et al., 2004], Class Purity Maximization

(CPM) [Yoon and Kwek, 2005], and Undersampling Based on Clustering (SBC) [Yen

and Lee, 2006].
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Hybrid-sampling. The main idea of this approach consists in balancing the class

distribution by combining oversampling and undersampling approaches; creating ob-

jects in the minority class and removing objects from the majority. Although this

approach has been less studied than the others previously mentioned, some hybrid-

sampling methods have been proposed, such as: SMOTE + Edited Nearest Neighbor

(SMOTE-ENN) [Batista et al., 2004], SMOTE + Tomek’s modification of Condensed

Nearest Neighbor (SMOTE-TL) [Batista et al., 2004], and Hybrid Preprocessing using

SMOTE and Rough Sets Theory (SMOTE-RSB) [Ramentol et al., 2011].

The resampling methods mentioned above are the most used, at the data level, for

dealing with class imbalance problems [He, 2013; López et al., 2014b; Loyola-González

et al., 2016b]. Therefore, we will use them in this research to determine whether or not

they allow improving a conventional emerging pattern miner to extract useful emerging

patterns for class imbalance problems.

4.1.1 Experimental results

As part of our study, we performed two experiments: the first one aims to find out the

best resampling method for preprocessing a training dataset with the goal of extracting

useful emerging patterns for class imbalance problems (Section 4.1.1.1). The second

experiment aims to corroborate previous findings by comparing the results obtained in

the first experiment against the results achieved by the best emerging pattern miner

for class imbalance problems reported in the state-of-the-art (Section 4.1.1.2).

For both experiments, we use the same 95 databases described in Table 3.3 and Dis-

tribution Optimally Balanced Stratified Cross Validation (DOB-SCV) [Moreno-Torres

et al., 2012] as validation procedure. CAEP as emerging pattern-based classifier [Dong

et al., 1999] because it uses a simple classification strategy and it has shown bet-

ter classification results than other emerging pattern-based classifiers [Dong, 2012a].
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For assessing the classification results, we use the Area Under the Receiver Operating

Characteristic curve (AUC) measure [Huang and Ling, 2005] because this measure is

the most used for class imbalance problems [Bradley, 1997; López et al., 2013, 2014a,b;

Sáez et al., 2015].

4.1.1.1 Selecting the best resampling method

In order to carry out the first experiment, we apply several resampling methods over

many imbalanced databases before mining emerging patterns. After that, we apply an

emerging pattern miner, which does not take into account the class imbalance problem,

for extracting the emerging patterns from the resampled databases. Finally, in order to

find out what resampling method gets the best results, we will assess the classification

result obtained by an emerging pattern-based classifier using the extracted patterns

from the resampled database. As the pattern miner and the classification algorithm

are the same, and the only change is the resampling method applied to the training

database, then a good or bad performance in the classification results can be attrib-

uted to the resampling method. Additionally, we evaluate these results regarding the

imbalance ratio (IR) measure [Orriols-Puig and Bernadó-Mansilla, 2009] in order to

find out if some resampling methods have specially good performance when dealing

with different levels of class imbalance. This measure computes the ratio between the

number of objects belonging to the majority class and the number of objects belonging

to the minority class. Then, the larger the IR value is, the more class imbalance the

database has.

For the first experiment, we use LCMine [Garćıa-Borroto et al., 2010b] as emer-

ging pattern miner because, as we have already mentioned, LCMine finds out better-

emerging patterns for classification than other emerging pattern miners. For validating

our results, we applied the Friedman’s test and the Bergmann-Hommel’s procedure, as
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suggested by Derrac et al. [2011]. Our results are shown using CD (critical distance)

diagrams [Demšar, 2006]. We evaluate the 20 resampling methods listed in Section 4.1,

which were executed using the KEEL data mining tool [Alcalá-Fdez et al., 2009].

It is important to highlight that all algorithms used in this experiment (LCMine,

CAEP, the statistical tests, and the resampling methods) were executed using the

parameter values recommended by their authors.

Figure 4.1: CD diagram with a statistical comparison of the results for the Baseline
classifier (LCMine+CAEP) with and without applying resampling methods over all the
tested databases.

Figure 4.1 shows a CD diagram with a statistical comparison of the AUC results

obtained by the emerging pattern-based classifier CAEP, using the patterns mined by

LCMine, after applying the resampling methods, mentioned in Section 4.1, over the

imbalanced databases. Also, we include the AUC results of CAEP using the patterns

extracted by LCMine over the original databases without applying any resampling

method, labeled as Baseline. This figure shows that SMOTE-TL (a hybrid method)

has the best position into the Friedman’s ranking. Statistical tests prove that there are

statistical differences among SMOTE-TL and the remaining tested resampling methods,

excepting SMOTE, TL, NCL, and SMOTE-ENN. Notice that the second and third

resampling methods into the Friedman ranking are SMOTE (oversampling) and TL

(undersampling), respectively, which are just the components of SMOTE-TL.

On the other hand, notice that the results of ADOMS, RUS, SPIDER, AHC, ADA-
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SYN, ROS, Safe Level SMOTE, SPIDER2, OSS, Borderline-SMOTE, and CNNTL do

not have statistical differences with the Baseline (without applying resampling meth-

ods). Consequently, these resampling methods are not able to significantly improve this

Baseline in class imbalance problems. From all this, we can conclude that SMOTE-TL

is the best resampling method to apply, before mining the emerging patterns, for im-

proving the accuracy of emerging pattern based-classifiers in class imbalance problems.

In order to analyze the above-stated experiment but using different imbalance levels,

we propose to arrange the databases into six equal-frequency groups depending on the

IR, as in Section 3.2.

Table 4.1: The best resampling method for each bin created by discretizing the IR on
the tested databases

Name Bin interval
Number of
databases

Resampling method (Approach)

Bin1 ( 1.820, 5.300] 16 TL (Undersampling)
Bin2 ( 5.300, 9.175] 16 SMOTE-TL (Hybrid Sampling)
Bin3 ( 9.175, 12.810] 16 SMOTE-TL (Hybrid Sampling)
Bin4 (12.810, 23.730] 16 AHC (Oversampling)
Bin5 (23.730, 39.905] 16 TL (Undersampling)
Bin6 (39.905, 129.440] 15 SMOTE-TL (Hybrid Sampling)

Table 4.1 shows the bins (Name), the range of IR for each bin (Bin interval), the

amount of databases contained into each bin (#Databases), and the best resampling

method to apply, before mining the emerging patterns, in each bin (Resampling method

(Approach)).

From Table 4.1 we can conclude that the best resampling methods to apply, before

mining the emerging patterns, for improving the classification results are: TL (under-

sampling) for those databases with IR ≤ 5.3 (Bin1) and those with an IR ranging in

(23.73, 39.905] (Bin5). SMOTE-TL (Hybrid sampling) for the databases with an IR

ranging in (5.3, 12.81] (Bin2 and Bin3) and an IR > 39.905 (Bin6). AHC (oversampling)
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for those databases with an IR ranging in (12.81, 23.73] (Bin4). These results provide

a guide, in terms of the IR, for choosing the best resampling method to apply over an

imbalanced database in order to obtain a set of emerging patterns, which improve the

classification results of an emerging pattern-based classifier.

4.1.1.2 Comparing the best resampling method

For the second experiment, we apply an emerging pattern miner, which takes into ac-

count the class imbalance problem, for mining the emerging patterns from each original

imbalanced database. After that, we assess the classification results obtained by an

emerging pattern-based classifier by using the extracted emerging patterns. Finally,

these classification results are compared against the classification results obtained by

the same emerging pattern-based classifier but using the emerging patterns extracted

from balanced databases by applying the best resampling method according to the first

experiment (SMOTE-TL).

For this experiment, we use DEP [Alhammady, 2007] because, as we mentioned

in Section 2.1, DEP is the best emerging pattern miner for class imbalance problems

reported in the literature. Also, we use the Wilcoxon signed-rank test as a statistical

test for pairwise comparisons, as suggested in [Demšar, 2006; Derrac et al., 2011].

Table 4.2 shows a comparison of the classification results obtained by the CAEP

classifier by using the emerging patterns extracted by LCMine, from the training data-

bases resampled by applying SMOTE-TL (SMOTE-TL+LCMine), against the classific-

ation results obtained by the CAEP classifier by using the emerging patterns extracted

by DEP. The comparison was made by applying the Wilcoxon signed-rank test over

the AUC results, considering all the tested databases, as suggested by Demšar [2006];

Derrac et al. [2011]. This table shows the compared methods (Comparison), the sum

of ranks for the problems where SMOTE-TL+LCMine outperformed DEP (R+), the
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sum of ranks for the opposite (R−), the result of the null hypothesis (Hypothesis), and

the p-value computed by the Wilcoxon signed-rank test.

Table 4.2: Wilcoxon signed-rank test comparing SMOTE-TL+LCMine against DEP,
using all the tested databases.

Comparison R+ R− Hypothesis (α = 0.05) p-value

SMOTE-TL+LCMine vs DEP 3323.0 1142.0 Rejected 0.000039

From Table 4.2, we can see that SMOTE-TL+LCMine significantly outperforms

DEP. Thus, from Figure 4.1 and Table 4.2, we can conclude that SMOTE-TL+LCMine

is the best solution, at the data level, for mining emerging patterns in class imbalance

problems.

4.2 Algorithm level

This section introduces a new emerging pattern mining algorithm for class imbalance

problems. This algorithm uses a skew-insensitive quality measure for measuring split-

ting criteria in order to build a set of decision trees, from which a set of useful emerging

patterns for classification in class imbalance problems are extracted.

Mining emerging patterns from several decision trees deserves special attention be-

cause this approach has shown better performance than other traditional emerging

pattern mining algorithms [Garćıa-Borroto et al., 2014, 2015]. The main reasons are

that emerging pattern miners based on decision trees do not include a global discretiz-

ation step, they obtain a small collection of patterns, and they have low computational

cost [Novak et al., 2009; Garćıa-Borroto et al., 2014, 2015]. In this approach, emerging

patterns are extracted from several decision trees by collecting conjunctions of prop-

erties in all the paths from the root node to the leaves [Garćıa-Borroto et al., 2010b,

2014, 2015].
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Several emerging pattern miners based on decision trees have been proposed in the

literature but Random Forest Miner (RFm) [Garćıa-Borroto et al., 2015] has shown

significantly better performance than other emerging pattern miners based on decision

trees, such as DBP (Delete Best Property), DBPL (Delete Best Property by Level), DBF

(Delete Best Feature), LCMine, Random Split and Random Subset [Garćıa-Borroto

et al., 2015]. RFm creates diversity by randomly choosing a set of features for determ-

ining, from them, the feature that produces the best split according to the Inform-

ation Gain measure [Quinlan, 1993]. However, Information Gain is a skew-sensitive

measure having a bias toward the majority class [Cieslak and Chawla, 2008; Kang

and Ramamohanarao, 2014]. Hence, as RFm uses the Information Gain measure, like

LCMine [Garćıa-Borroto et al., 2010b], then it extracts more emerging patterns for the

majority class than for the minority class in class imbalance problems.

On the other hand, the Hellinger distance [Cieslak and Chawla, 2008] is a skew-

insensitive measure, which has been widely used for building decision trees in class

imbalance problems [Cieslak et al., 2012; Kang and Ramamohanarao, 2014]. Decision

trees based on Bagging and Random Forest approaches have reported good classification

results when the Hellinger distance is used as a quality criterion for evaluating splitting

criteria [Cieslak et al., 2012; Su et al., 2015b]. Nevertheless, to the best of our knowledge,

this distance has not been used for mining emerging patterns.

Into the algorithm level approach for dealing with class imbalance problems, we

propose to extract emerging patterns by following the same idea of the RFm but using

the Hellinger distance as a quality criterion for building a diverse collection of decision

trees. Our goal is to extract more emerging patterns with high support for the minority

class since, at classification stage, these emerging patterns are overwhelmed by the

emerging patterns of the majority class, which usually are more and with higher support

[Alhammady and Ramamohanarao, 2004b; Alhammady, 2007; Loyola-González et al.,
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2017]. We follow the idea behind RFm instead of the Bagging miner because this

last miner could generate many highly specific patterns for each subsample, leaving

uncovered some objects of the original dataset [Loyola-González et al., 2017]. We also

propose to use the RFm with unpruned decision trees because according to Batista

et al. [2004], pruned decision trees rarely improve the AUC results in class imbalance

problems. Moreover, pruning is focused on the generalization of decision trees rather

than on mining emerging patterns [Rokach and Maimon, 2014]. At the decision tree

induction procedure, we use binary splits as suggested by [Cieslak and Chawla, 2008;

Cieslak et al., 2012; Gra̧bczewski, 2014].

Our proposal (HRFm) for mining emerging patterns, into the algorithm level ap-

proach, consists of three steps: (i) inducing several diverse decision trees by using the

Hellinger distance as a quality measure for evaluating splits; (ii) extracting emerging

patterns, from each induced decision tree; and (iii) merging the patterns extracted

from all induced decision trees and apply a filtering method for removing duplicate

and specific patterns, and removing redundant items. These three steps are explained

below.

For inducing a decision tree, our proposal starts building a root node with all objects

of the training dataset D. Then, it splits the root node into two disjoint subsets (left

child Dl and right child Dr) and repeats this process recursively over the children nodes

until certain stopping criterion is met. In order to split each node, we randomly select

a subset of features F and, by using the selected features, generating as many binary

splitting criteria as possible as follows (depending on the type of the feature):

• For each non-numerical feature fi and each value vj of fi, appearing in the training

objects, generating a binary candidate split using the properties fi = vj and

fi ̸= vj.
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• For each numerical feature fi, generating as many binary candidate splits as

possible with properties fi ≤ cj and fi > cj, according to a collection of cut

points which is generated by computing the midpoint between every two values

appearing in training objects from different classes. Despite there are many ways

to find a good cut point, we use the midpoint between every two values appearing

in training objects from different classes because, according to Quinlan [1993], it

has shown better results than other proposed cut points for numerical features.

HRFm evaluates each binary candidate splits, at each level of the decision tree, by

means of the Hellinger distance because, as we have aforementioned, this distance is a

skew-insensitive measure, which has shown good results for inducing decision trees in

class imbalance problems. The Hellinger distance is defined by the following expression:

H(fi # vj) =

√√√√√
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(4.1)

where Dl and Dr are the left and right child nodes, respectively, produced by the

candidate split (fi # vj); vj is a value in the domain of feature fi and # is a relational

operator according to the above-mentioned splitting criteria; Dp and Dn are the sets

of objects in D belonging to the minority and majority class respectively; Dl
p and Dr

p

are the sets of objects of the minority class belonging to the left and right child nodes

respectively; and, Dl
n and Dr

n are the sets of objects of the majority class belonging to

the left and right child nodes respectively.

The Hellinger distance reaches the highest value (
√
2) when a candidate split pro-

duces nodes with all objects belonging to the same class (i.e., pure nodes) while it

reaches its lowest value (zero) when a candidate split produces child nodes having the

same distribution of objects by class as the parent node has. When we split one node

into two child nodes, we want the distribution of objects by class to be as different as
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possible between both child nodes and the parent node, because if they differ a lot in

their distribution at least one child node tends to be purer.

The Hellinger distance is unaffected by the class imbalance problem because it

rewards those candidate splits that maximize the TPR (True Positive Rate) while

minimizing the FPR (False Positive Rate). The higher the TPR value, the more objects

of the minority class are well classified. Hence, the Hellinger distance is skew-insensitive

to class imbalance [Cieslak and Chawla, 2008; Liu et al., 2010; Cieslak et al., 2012; Su

et al., 2015b].

HRFm stops splitting a node (stopping criterion) if the node is pure or the Hellinger

distance takes the lowest value for all candidate splits.

The above-explained procedure allows inducing just one random decision tree. How-

ever, extracting patterns from just one random decision tree generates very few emer-

ging patterns that, when they are used by an emerging pattern-based classifier, attain

worse classification results than using emerging patterns extracted from several decision

trees [Garćıa-Borroto et al., 2010b]. On the other hand, extracting patterns from sev-

eral equal decision trees generates several duplicate patterns, which leads to the same

problem as using only one decision tree. Extracting emerging patterns from a collec-

tion of diverse decision trees mitigates these problems [Garćıa-Borroto et al., 2010b].

Therefore, we induce K decision trees by following our proposed decision tree induc-

tion process, which, due to the above-explained random feature subset selection, allows

obtaining a collection of K diverse decision trees.

Once K diverse decision trees have been induced, HRFm extracts all emerging pat-

terns from each induced decision tree. Each pattern is the conjunction of the properties

fi # vj in a path from the root node to a leaf node; i.e., any path from the root to a

leaf determines a conjunction of properties, which form a pattern. Finally, only those

patterns fulfilling the emerging pattern condition (see definition in Chapter 1) are pre-
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served. For example, from the decision tree shown in Figure 4.2, HRFm extracts the

following five emerging patterns:

P1 = [Age ≤ 25] ∧ [V elocity = V ery slow]

P2 = [Age ≤ 25] ∧ [V elocity ̸= V ery slow] ∧ [High reaction capacity = False]

P3 = [Age > 25] ∧ [Height ≤ 1.75]

P4 = [Age ≤ 25] ∧ [V elocity ̸= V ery slow] ∧ [High reaction capacity = True]

P5 = [Age > 25] ∧ [Height > 1.75]

from which P1, P2, and P3 correspond to the Bad Player class and the remaining

patterns (P4 and P5) correspond to the Good Player class.

≤

≠ ≤

Figure 4.2: Example of a decision tree with four features and two classes: Good Player
and Bad Player.

As in [Fan and Kotagiri, 2002; Fan and Ramamohanarao, 2003; Wang et al., 2004;

Garćıa-Borroto et al., 2014], the last step in HRFm eliminates duplicate and specific

emerging patterns, and redundant items are also removed from emerging patterns.

a) Removing duplicated emerging patterns. Since emerging patterns are extracted from

several decision trees by using the same training dataset, many emerging patterns
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containing the same items and covering the same objects (duplicate patterns) can

be extracted. In order to reduce the size of the outcome, only one emerging pattern

is selected from those containing the same items and covering the same objects.

b) Removing specific emerging patterns. Let P1 and P2 two emerging patterns from the

same class, P1 is more specific than P2 if P1 contains all the items in P2 and at least

one more. For example, let P1 = [Age ≤ 35] ∧ [Color = White] ∧ [Cuban = True]

and P2 = [Age ≤ 35]∧ [Color = White] be two patterns from the same class. Since

all the items belonging to P2 also belong to P1 but P1 has one more item, then P1

is more specific. Therefore, as P1 is more specific than P2 and both are emerging

patterns from the same class then P1 should be removed.

c) Removing redundant items from an emerging pattern. An item I1 is more general

than another item I2 if all objects fulfilling I1 also fulfill I2, but not all objects

fulfilling I2 fulfill I1. We also say that I2 is redundant with I1. If two items in a

pattern are redundant, the most general item is eliminated. An example of a pattern

with redundant items is: [Age ≤ 35]∧ [Age ≤ 40], which is simplified to [Age ≤ 35];

since persons older than 40 are also older than 35.

Algorithms 3-5 show the pseudocodes of our proposal (HRFm) for mining emerging

patterns, at algorithm level, in class imbalance problems.

4.2.1 Experimental results

In order to evaluate the performance of HRFm, we compared it against other state-

of-the-art emerging pattern miners for class imbalance problems. First, we extracted

emerging patterns by using HRFm and the other emerging pattern miners reported in

the literature. After, we computed the AUC obtained by an emerging pattern-based

classifier using these emerging patterns in order to identify the best miner. As the
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Algorithm 3: HRFm pseudocode
input : D- a database, K- number of decision trees to be induced.
output: PS- a set of patterns.

PS ← ∅;
while Number of induced decision trees ≤ K do

DT ← BuildTree(D);
PS ← PS ∪ ExtractPatterns(DT.RootNode);

end

foreach P ∈ PS do
if P duplicate or specific then

PS ← PS \ P
end

end

return PS

Algorithm 4: BuildTree - Recursive pseudocode for inducing decision trees
input : D- a dataset.
output: DT- a random decision tree.

DT ← the root node, containing all the objects in the dataset D;
if stop criterion == true then

DT.leaf=true;
return DT;

end
foreach featurei ∈ {1 · · · log2 |feature|} do

Generate all binary split candidates S for the featurei;
end

Compute the quality of all binary split candidates S by using Equation 4.1
H ← Select the split candidate, from S, with the highest quality value;
DS ← Partitions of the dataset D based on the split candidate H;

DT.ChildLeft = BuildTree(DS0);
DT.ChildRight = BuildTree(DS1);

return DT

Algorithm 5: ExtractPatterns - Recursive pattern extraction
input : N- a decision tree node (Initially, the root node).
output: PS- a set of emerging patterns.

PS ← ∅;
foreach child ∈ N.children do

if child.leaf==true then
Creating a pattern P;
P.properties← collecting the properties from the root node to the child node;
P.class← assigning the class with more objects into the child node;
if pattern is emerging pattern then

PS ∪ P;
end

end
else

ExtractPatterns(child);
end

end

return PS
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emerging pattern-based classifier is the same and the only change is the set of emerging

patterns produced by each miner, then a good or bad performance in the classification

results can be attributed to the emerging pattern miner. Additionally, we evaluated the

performance of the miners regarding the IR in order to find out which of the evaluated

miners has good performance for certain levels of IR, in a similar way as in Section 4.1.1.

To the best of our knowledge, there are not algorithms into the algorithm level for

mining emerging patterns in class imbalance problems then, an alternative for compar-

ing HRFm against other emerging pattern miners designed for class imbalance prob-

lems is to use emerging pattern miners proposed into the data level. Therefore, for

our comparison, we use DEP [Alhammady, 2007], SMOTE-TL+LCMine (proposed in

Section 4.1), and HRFm (proposed in this section) as emerging pattern miners. HRFm

induces 100 unpruned decision trees because after testing other values, 100 provided

the best results for HRFm. Also, in [Garćıa-Borroto et al., 2015] the authors claim that

it is the best setup for RFm. In addition, we selected a subset of features F with size

equal to log2 |features| as suggested by Breiman [1996], for generating candidate splits

at each node because after testing other sizes, log2 |features| provided the best results

for HRFm.

In order to compare the results reported in Section 4.1.1.2 against the results of this

section, we use the 95 imbalanced databases, described in Table 3.3, by applying Dis-

tribution Optimally Balanced Stratified Cross Validation (DOB-SCV) [Moreno-Torres

et al., 2012]; as emerging pattern-based classifier, we use CAEP [Dong et al., 1999],

and the AUC measure [Huang and Ling, 2005] for assessing the classification results as

shown in Section 4.1.1.2. Additionally, we will apply the Friedman’s test, the Finner’s

procedure, and the Wilcoxon signed-rank test in order to statistically validate the clas-

sification results, as suggested in [Demšar, 2006; Derrac et al., 2011] for this kind of

experiments.



Chapter 4. Emerging pattern miners for class imbalance problems 52

In this experimentation, all algorithms were executed using the parameter values

recommended by their authors.

Table 4.3 shows the average AUC, the standard deviation (SD), the average ranking

according to the Friedman’s test, and the adjusted p-value of the Finner’s procedure

for each classification results of CAEP by using the patterns extracted by each tested

emerging pattern miner. This table is ordered according to the Friedman’s ranking, and

the thin horizontal line marks the point after which there is a statistically significant

difference with the best classifier (p-value ≤ 0.05).

Table 4.3: Average AUC, standard deviation (SD), average rankings (based on the
Friedman’s test), and p-values (based on the Finner’s procedure) for each classification
results of CAEP by using the patterns extracted by each tested emerging pattern miner
(Miner).

Miner Average AUC SD Ranking Adjusted p-value

SMOTE-TL+LCMine 0.8499 0.1224 1.7421 -
HRFm 0.8384 0.1383 1.9158 0.231293
DEP 0.8114 0.1250 2.3421 0.000035

Table 4.3 shows that SMOTE-TL+LCMine obtained the best position into the

Friedman’s ranking and it is more accurate than HRFm. Nevertheless, there is not a

statistical difference between SMOTETL+LCMine and HRFm results; however, there

is a significant statistical difference between these results and the results obtained by

DEP. Therefore, we performed a pairwise comparison between HRFm and SMOTE-

TL+LCMine; using the Wilcoxon signed-rank test, as suggested in [Demšar, 2006;

Derrac et al., 2011].

Table 4.4 shows the compared algorithms (Comparison), the sum of ranks for the

problems where SMOTE-TL+LCMine outperformed HRFm (R+), the sum of ranks

for the opposite (R−), the result for the null hypothesis (Hypothesis), and the p-value

computed by the Wilcoxon signed-rank test. This table shows that the results of HRFm

and SMOTE-TL+LCMine are not statistically different.
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Table 4.4: Wilcoxon signed-rank test comparing the results of SMOTE-TL+LCMine
against the results of HRFm, using all the tested databases.

Comparison R+ R− Hypothesis (α = 0.05) p-value

SMOTE-TL+LCMine vs HRFm 2718.5 1746.5 Not Rejected 0.066187

We also perform a comparison of HRFm and SMOTE-TL+LCMine but in different

class imbalance levels, as in Section 4.1.1

Table 4.5: The best emerging pattern miner for each bin created by discretizing the IR
on the tested databases

Name Bin interval
Number of
databases

Best miner

Bin1 ( 1.820, 5.300] 16 Both miners (SMOTE-TL+LCMine and HRFm)
Bin2 ( 5.300, 9.175] 16 HRFm
Bin3 ( 9.175, 12.810] 16 HRFm
Bin4 (12.810, 23.730] 16 HRFm
Bin5 (23.730, 39.905] 16 SMOTE-TL+LCMine
Bin6 (39.905, 129.440] 15 HRFm

From Table 4.5, we can conclude that both SMOTE-TL+LCMine and HRFm ob-

tained the best results for those databases with IR ≤ 5.3 (Bin1). Nevertheless, we did

not find a statistical difference in their results; however, HRFm was slightly better in

terms of AUC. For the databases with an IR ≤ 23.73 (Bin2, Bin3, and Bin4) and IR >

39.905 (Bin6), HRFm obtained the best results. Finally, for the databases with an IR

ranging in (23.73, 39.905] (Bin5) the best solution was SMOTE-TL+LCMine.

From tables 4.3-4.5, we can see that both SMOTE-TL+LCMine and HRFm signi-

ficantly outperform the best emerging pattern miner reported in the literature. Also,

regarding the class imbalance level of the training sample, we can conclude that HRFm

is the best emerging pattern miner, at algorithm level, for those databases with an IR

≤ 23.73 and IR > 39.905. On the other hand, SMOTE-TL+LCMine is the best miner

for those databases with an IR ranging in (23.73, 39.905].

Comparing our proposals, we can remark that both SMOTE-TL+LCMine and

HRFm are based on decision trees, but HRFm requires lower computational cost be-
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cause it does not use a resampling method before mining emerging patterns. On the

other hand, SMOTE-TL+LCMine extracts less emerging patterns than HRFm, which

makes faster the filtering stage. Finally, based on our experimental results, we suggest

using HRFm for class imbalance problems with low or very high imbalance ratio (IR),

while SMOTE-TL+LCMine for those problems with medium IR

4.3 Cost-sensitive

This section introduces a new algorithm for mining cost-sensitive emerging patterns in

class imbalance problems.

Cost-sensitive algorithms compute the misclassification cost for a query object re-

garding the problem classes. This misclassification cost is computed by using a cost

matrix (see Table 4.6), which comes from domain experts or is acquired by other ap-

proaches, like using the distribution of objects into the classes of the training data-

base. Usually, the misclassification cost for objects belonging to the minority class

C(1, 0) is higher than the misclassification cost for those objects belonging to the ma-

jority class C(0, 1); while true classifications have a misclassification cost equal to zero

C(0, 0) = C(1, 1) = 0 [Domingos, 1999; López et al., 2012; Kim et al., 2012; López

et al., 2013; Bahnsen et al., 2015].

Table 4.6: Example of a cost matrix for a two-class problem.

Actual Minority Actual Majority

Predict Minority C(0, 0) = 0 C(0, 1) = 1

Predict Majority C(1, 0) = 9 C(1, 1) = 0

Given a cost matrix, a query object is classified into the class having the lowest ex-

pected cost; this criterion is known as the minimum expected cost principle [Domingos,

1999; Kim et al., 2012; López et al., 2013]. The expected cost R(i|o) of classifying a
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query object o into the class i is commonly expressed as:

R(i|o) =
∑
j

P (j|o) · C(i, j) (4.2)

where P (j|o) is the estimated probability of classifying the query object o into the class

j and C(i, j) is the cost of predicting the class i for the query object o when j is the

correct class [Domingos, 1999; López et al., 2012; Kim et al., 2012; López et al., 2013;

Bahnsen et al., 2015].

One of the first cost-sensitive algorithms using Equation 4.2 is Metacost: a gen-

eral method for making cost-sensitive classifiers [Domingos, 1999]. Metacost changes a

traditional cost-insensitive classifier into a cost-sensitive one. The main idea is to use

Equation 4.2, a cost matrix, and a cost-insensitive classifier for relabeling each object

into the training dataset in order to obtain a classification model for class imbalance

problems [Domingos, 1999].

Other supervised classification algorithms based on cost matrices, which have re-

ported good classification results in class imbalance problems, are the so called cost-

sensitive decision trees [Sheng et al., 2005; Krȩtowski and Grześ, 2006; Zhang et al.,

2007; Freitas, 2011; Jackowski et al., 2012; Min and Zhu, 2012; Lomax and Vadera,

2013; Krawczyk et al., 2014]. These algorithms can be grouped into two approaches:

those using only misclassification costs and those which also include test costs [Lomax

and Vadera, 2013]. The misclassification cost approach computes the expected cost by

multiplying a confusion matrix and a cost matrix. The test cost approach computes

the expected cost by adding the cost associated to each feature used in the decision

nodes traversed from the root to the leaves for classifying a query object. The main

idea, in both approaches, is to include the expected cost into the splitting criterion at

the decision tree induction process. Then, following the approach for mining emerging



Chapter 4. Emerging pattern miners for class imbalance problems 56

patterns from decision trees, we propose to build a collection of cost-sensitive decision

trees from which emerging patterns will be extracted.

In this PhD research, we will focus on cost-sensitive decision tree algorithms that

only use misclassification costs, since this is the kind of cost that is relevant for class

imbalance problems [Yang et al., 2004; Sheng et al., 2005; Esmeir and Markovitch, 2008;

Ling and Sheng, 2010; Freitas, 2011; Lomax and Vadera, 2013].

A way to reduce the number of high-cost errors and the total misclassification cost

is to induce cost-sensitive trees. Following this idea, we propose to induce cost-sensitive

decision trees by using the Information Gain measure proposed by Quinlan [1993] for

building decision trees, but we include the misclassification cost into this measure in

order to build cost-sensitive decision trees. Some authors, like Sheng et al. [2005], have

proposed similar modifications for the Information Gain measure but they also included

the test cost into their proposals.

Our proposal for cost-sensitive emerging pattern mining (CSEPm) consists of the

following three main steps: (i) inducing diverse cost-sensitive decision trees by using

our cost-sensitive measure as split evaluation criterion; (ii) extracting emerging pat-

terns, from each induced decision tree; and (iii) joining the patterns extracted from

all induced decision trees and applying a filtering method for removing duplicate and

specific patterns, and removing redundant items.

We propose to induce diverse several decision trees, in a similar way as we proposed

in Section 4.2, for mining emerging patterns at algorithm level, but changing the split

evaluation criterion by the following:

CInfG(fi # vi) = CImp({CDp, CDn})−
∑

j ∈ {l,r}

CDj
p

T
· CImp(

{
CDj

p, CDj
n

}
) (4.3)

where Dl and Dr are the left and right child nodes, respectively, produced by the
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candidate split fi # vi; Dp and Dn are the sets of objects that belong to the minority

and majority class respectively; Dl
p and Dr

p are the sets of objects of the minority class

that belong to the left and right child nodes respectively; Dl
n and Dr

n are the sets of

objects of the majority class that belong to the left and right child nodes respectively;

and CDj
p =

∣∣Dj
p

∣∣ · C(1, 0) and CDj
n = |Dj

n| · C(0, 1) are the maximum misclassification

costs for the sets Dj
p and Dj

n respectively, j ∈ {l, r}; CDp and CDn are defined in a

similar way. Finally, CImp is defined as:

CImp({CDp, CDn}) = −
CDp

T
· log2

CDp

T
− CDn

T
· log2

CDn

T
(4.4)

where T = CDp + CDn.

Our proposed split evaluation criterion, Equation 4.3, takes a value equal to 1 (its

highest value) when the candidate split produces pure nodes, while it takes a value

equal to 0 (its lowest value) when the candidate split produces child nodes which have

the same distribution of objects by class as the parent node. Equation 4.3 deals with

class imbalance problems by weighting the objects through a cost matrix, which assigns

higher weights to objects belonging to the minority class than to objects belonging to

the majority class.

After inducing a collection of cost-sensitive decision trees by using Equation 4.3 as

the split evaluation criterion, the emerging patterns are extracted from each tree, in a

similar way as we stated in Section 4.2. Finally, the same filtering strategy for emerging

patterns presented in Section 4.2 is applied over the set of extracted emerging patterns.

It is important to highlight that as far as we know, our proposal is the first one for

extracting emerging patterns from a collection of cost-sensitive decision trees.

Algorithms 6-8 show the pseudocodes of our proposal (CSEPm) for mining cost-

sensitive emerging patterns in class imbalance problems.
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Algorithm 6: CSEPm pseudocode
input : D- a database, C- a cost matrix, K- number of cost-sensitive decision trees to be induced.
output: PS- a set of patterns.

PS ← ∅;
while Number of cost-sensitive decision trees ≤ K do

DT ← BuildCSTree(D);
PS ← PS ∪ ExtractCSPatterns(DT.RootNode);

end

foreach P ∈ PS do
if P duplicate or specific then

PS ← PS \ P
end

end

return PS

Algorithm 7: BuildCSTree - Recursive pseudocode for inducing cost-sensitive
decision trees

input : D- a dataset, C- a cost matrix.
output: DT- a cost-sensitive decision tree.

DT ← the root node, containing all the objects in the dataset D;
if stop criterion == true then

DT.leaf=true;
return DT;

end
foreach featurei ∈ {1 · · · log2 |feature|} do

Generate all binary split candidates S for the featurei;
end

Compute the quality of all binary split candidates S by using Equation 4.3 and the cost matrix C;
H ← Select the split candidate, from S, with the highest quality value;
DS ← Partitions of the dataset D based on the split candidate H;

DT.ChildLeft = BuildCSTree(DS0);
DT.ChildRight = BuildCSTree(DS1);

return DT

Algorithm 8: ExtractCSPatterns - Pattern extraction from cost-senstitive de-
cision trees

input : N- a cost-sensitive decision tree node (Initially, the root node).
output: PS- a set of cost-sensitive patterns.

PS ← ∅;
foreach child ∈ N.children do

if child.leaf==true then
Creating a pattern P;
P.properties← collecting the properties from the root node to the child node;
P.class← assigning the class that minimize the misclassification cost into the child node;
PS ∪ P;

end
else

ExtractPatterns(child);
end

end

return PS
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4.3.1 Experimental results

To the best of our knowledge, there are not cost-sensitive algorithms for mining emer-

ging patterns; then, an alternative for comparing CSEPm against other cost-insensitive

emerging pattern miners, is to use cost-insensitive emerging pattern miners as base into

the Metacost algorithm. In order to evaluate the performance of CSEPm, in terms of

misclassification cost, first, we will extract emerging patterns by using CSEPm and

after we apply the CAEP classifier [Dong et al., 1999] to compute the total misclas-

sification cost. Additionally, we will select two well-known emerging pattern miners,

DEP [Alhammady, 2007] and LCMine [Garćıa-Borroto et al., 2010b], which jointly with

the CAEP [Dong et al., 1999] classifier are used as the base classifier for the Metacost

algorithm. By doing this, we can compare the misclassification cost of CAEP using

CSEPm against the misclassification cost of CAEP using the other two cost-insensitive

algorithms for mining emerging patterns, combined with Metacost. As the classification

algorithm and the cost matrix are the same, and the only change is the approach for

extracting the patterns from the training database, then a good or bad performance

in the classification results can be attributed to the cost-sensitive approach for mining

emerging patterns.

For our experiments the main diagonal of the cost matrices is fixed as C(0, 0) =

C(1, 1) = 0, the misclassification cost for each object of the majority class is C(0, 1) = 1,

while for the misclassification cost for objects of the minority we use C(0, 1) = 2, 5, 10,

and 20, these costs are the most used in the literature [Krȩtowski and Grześ, 2006;

Du et al., 2007; Kretowski and Grześ, 2007; Zhang et al., 2007; Min and Zhu, 2012;

Krawczyk et al., 2014]. Additionally, we also propose to use the class imbalance ratio

(IR) of the training database as cost for C(0, 1).

In these experiments, we use the 95 imbalanced databases, detailed in Table 3.3,

by applying Distribution Optimally Balanced Stratified Cross Validation (DOB-SCV)
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[Moreno-Torres et al., 2012], and CAEP [Dong et al., 1999] as emerging pattern-based

classifier by the same reasons described in Section 4.1.1 and Section 4.2.1. For assessing

the classification results, we use the normalized expected cost (also known as: normal-

ized misclassification cost, see Equation 4.5) proposed by Drummond and Holte [2006]

because it is the most used measure for cost-sensitive problems [Garćıa et al., 2009; He

and Garcia, 2009; Menardi and Torelli, 2014].

NEC =
TP ∗ C(0, 0) + FP ∗ C(0, 1) + FN ∗ C(1, 0) + TN ∗ C(1, 1)

|Dp| ∗ C(0, 0) + |Dp| ∗ C(0, 1) + |Dn| ∗ C(1, 0) + |Dn| ∗ C(1, 1)
(4.5)

where TP and FP are the number of objects belonging to the minority class that are

well-classified and misclassified respectively; TN and FN are the number of objects be-

longing to the majority class that are well-classified and misclassified respectively; |Dp|

and |Dn| are the number of objects belonging to the minority class and majority class

respectively; and C(0, 0), C(0, 1), C(1, 0), and C(1, 1) are the different cost according

to the cost matrix (see Table 4.6).

Additionally, we apply the Friedman’s test, the Finner’s procedure and the Wilcoxon

signed-rank test, in a similar way as in Section 4.2.1, in order to statistically validate

the classification results, as suggested in [Demšar, 2006; Derrac et al., 2011] for this

kind of experiments.

Tables 4.7-4.11 show the average of the normalized misclassification cost (Average

Cost), the standard deviation (SD), the average ranking according to the Friedman’s

test, and the adjusted p-value of the Finner’s procedure for the CAEP classifier by

using each evaluated emerging pattern miner, considering all the tested databases.

These tables are ordered according to the average of the Friedman’s ranking value and

the thin horizontal line indicates the point after which there is a statistically significant
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difference with the best result in the Friedman ranking (p-value ≤ 0.05).

Table 4.7: Statistical results for the CAEP classifier by using the evaluated emerging
pattern miners, considering all the tested databases and a cost of 2 for each misclassified
object of the minority class.

Cost-sensitive methods Average Cost SD Ranking Adjusted p-value

MetaCost+(LCMine+CAEP) 0.0140 0.0143 1.4789 -
CSEPm+CAEP 0.0152 0.0146 1.6368 0.2765
Metacost+(DEPMiner+CAEP) 0.0669 0.0488 2.8842 0

Table 4.8: Statistical results for the CAEP classifier by using the evaluated emerging
pattern miners, considering all the tested databases and a cost of 5 for each misclassified
object of the minority class.

Cost-sensitive methods Average Cost SD Ranking Adjusted p-value

MetaCost+(LCMine+CAEP) 0.0199 0.0171 1.5632 -
CSEPm+CAEP 0.0206 0.0158 1.6316 0.637241
Metacost+(DEPMiner+CAEP) 0.0698 0.0515 1.6316 0

Tables 4.7-4.8 show the results of the evaluated emerging pattern miners by us-

ing a cost of 2 and 5, respectively, for each misclassified object of the minority class.

From these tables, we can conclude that the results of MetaCost+(LCMine+CAEP)

against CSEPm+CAEP is not statistically different, but these results are statistically

better than the results obtained by Metacost+(DEPMiner+CAEP). Also, it can be no-

ticed that MetaCost+(LCMine+CAEP) obtained a lower misclassification cost regard-

ing CSEPm+CAEP, however, CSEPm+CAEP obtained the lowest standard deviation

among all the tested emerging pattern miners.

Table 4.9: Statistical results for the CAEP classifier by using the evaluated emerging
pattern miners, considering all the tested databases and a cost of 10 for each misclas-
sified object of the minority class.

Cost-sensitive methods Average Cost SD Ranking Adjusted p-value

CSEPm+CAEP 0.0231 0.0168 1.4737 -
MetaCost+(LCMine+CAEP) 0.0264 0.0211 1.7895 0.029523
Metacost+(DEPMiner+CAEP) 0.0651 0.0510 2.7368 0

Tables 4.9-4.11 show the results of the evaluated emerging pattern miners by using

a cost of 10, 20, and the IR value, respectively, for each misclassified object of the
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Table 4.10: Statistical results for the CAEP classifier by using the evaluated emerging
pattern miners, considering all the tested databases and a cost of 20 for each misclas-
sified object of the minority class.

Cost-sensitive methods Average Cost SD Ranking Adjusted p-value

CSEPm+CAEP 0.0233 0.0186 1.4526 -
MetaCost+(LCMine+CAEP) 0.0321 0.0255 2.0158 0.000104
Metacost+(DEPMiner+CAEP) 0.0543 0.0449 2.5316 0

Table 4.11: Statistical results for the CAEP classifier by using the evaluated emerging
pattern miners, considering all the tested databases and a cost equal to the IR of the
tested database for each misclassified objects of the minority class.

Cost-sensitive methods Average Cost SD Ranking Adjusted p-value

CSEPm+CAEP 0.0286 0.0236 1.4053 -
MetaCost+(LCMine+CAEP) 0.0339 0.0272 1.8474 0.002311
Metacost+(DEPMiner+CAEP) 0.0566 0.0348 2.7474 0

minority class. From these tables, we can conclude that CSEPm+CAEP obtained the

best position into the Friedman’s ranking. Also, it can be noticed that for each cost

matrix, CSEPm+CAEP obtained the lowest total misclassification cost with the lowest

standard deviation. Also, the p-values (≤ 0.05) show that the differences of the results

of CSEPm+CAEP against the other options are statistically significant.

Metacost creates several bootstrap subsamples of the training dataset and con-

sequently, many highly specific patterns can be generated for each subsample; leaving

uncovered some objects of the original dataset [Loyola-González et al., 2017]. This

procedure affects the results of Metacost impacting in the standard deviation of the

average cost, as it can be seen in tables 4.7-4.11.

On the other hand, CSEPm+CAEP shows significantly lower total misclassification

costs than the other options that use Metacost. It is important to highlight that

CSEPm+CAEP does not change the class of the objects into the training dataset as

Metacost does and consequently, the extracted emerging patterns can be associated to

each class. Furthermore, as far as we know, CSEPm is the first cost-sensitive emerging

pattern miner for class imbalance problems.
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4.4 Concluding remarks

In this chapter, three emerging pattern mining algorithms for class imbalance problems

have been proposed. In the data level approach, we explored the use of resampling

methods combined with emerging pattern miners. From our experiments, we propose

to use SMOTE-TL jointly with LCMine miner, which has proven to be the best option

at data level approach. Additionally, we grouped the imbalanced datasets into different

class imbalance ratio (IR) levels and performed the same study into each IR level to

provide a guide for selecting the best resampling method for a specific database.

At the algorithm level approach, we introduced an emerging pattern mining al-

gorithm for class imbalance problems (HRFm), which is based on extracting emerging

patterns from a collection of decision trees. HRFm modifies the Random Forest miner

by applying a skew-insensitive measure for evaluating candidate splits and uses a filter-

ing method for removing duplicate and specific patterns. Based on our experiments, we

can conclude that HRFm is the best one regarding other emerging pattern miners for

class imbalance problems reported in the literature into the data level. Additionally,

we grouped the imbalanced datasets into different IR levels and we performed the same

experiment with HRFm into each IR level, we found out that for databases with an IR

≤ 23.73 and an IR > 39.905, HRFm is the best option; while SMOTE-TL+LCMine is

the best option for the other IR ranges.

Finally, into the cost-sensitive approach, we propose a cost-sensitive emerging pat-

tern mining algorithm for class imbalance problems (CSEPm). CSEPm introduces a

cost-sensitive measure for evaluating candidate splits in order to induce decision trees

from which a set of emerging patterns are extracted. These patterns allow creating an

emerging pattern-based classifier that reduces the total misclassification cost. From our

experiments, we can conclude that CSEPm+CAEP obtains lower misclassification cost
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than other well-known emerging pattern miners combined with CAEP and Metacost.

Also, as far as we know, CSEPm is the first cost-sensitive emerging pattern miner for

class imbalance problems.



Chapter 5
Emerging pattern-based classifier
for class imbalance problems

In this chapter, we propose an emerging pattern-based classifier for class imbalance

problems. We split the content of this chapter as follows: Section 5.1 introduces the

proposed classifier. Section 5.2 shows our experimental results. Finally, Section 5.3

presents some concluding remarks.

5.1 PBC4cip: A novel emerging pattern-based clas-

sifier for class imbalance problems

As we have discussed in Chapter 1 and Chapter 4, algorithms for mining emerging

patterns in class imbalance problems commonly extract several emerging patterns with

high support for the majority class and only a few emerging patterns, with low support,

for the minority class [López et al., 2013, 2014a,b; Loyola-González et al., 2016b, 2017].

This makes that some emerging pattern-based classifiers, which are based only on the

sum of supports, become biased toward the majority class [Loyola-González et al., 2017].

For solving this problem, we propose that at classification stage, for all emerging

patterns covering a query object, the classifier weights the sum of supports in each

class taking into account the class imbalance level of the training sample. The main

idea is that, at the classification stage, those emerging patterns with low support for

the minority class do not become overwhelmed by those emerging patterns with high

support for the majority class. For this, we propose weighing the sum of support for

those patterns covering an object to be classified, by a value wc that takes into account

65
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the patterns in the class, their support, and the class imbalance, according to the

following expression:

wc =

(
1− |c|
|D|

)
/
∑
p∈Pc

support(p, c) (5.1)

where |c| represents the number of objects belonging to the class c, |D| is the number

of objects in the training dataset, Pc is the set of emerging patterns mined for the class

c, and support(p, c) is the support of the pattern p into the class c.

The term (1 − |c|/|D|), in Equation 5.1, allows rewarding the sum of supports

computed for the minority class, which usually is low, since the smaller the value of

|c|, the higher the value of this term. On the contrary, this term punishes the sum of

supports computed for the majority class, which usually is high, since the higher the

value of |c|, the lower the value of this term. Additionally, the term
∑

p∈Pc
support(p, c)

is used for normalizing the sum of supports in each class regarding the support of all

patterns of the same class. In this way, the weight, defined in Equation 5.1, aims to

overcome the bias of the classifier to the majority class, by assigning a higher weight

for the minority class.

Our proposal, called PBC4cip, in the training phase, computes the emerging pat-

terns for each class c as well as the weight wc (See Equation 5.1). In the classification

phase, given a query object to be classified, PBC4cip computes for each class c the sum

of supports of all patterns covering this query object. After, this sum of supports is

multiplied by the corresponding weight wc, see Equation 5.2.

wSum Supp(o, c) = wc ∗
∑
p∈P,

p covers o

support(p, c) (5.2)

In Equation 5.2, wc represents the weight of the class c, which was previously com-

puted using Equation 5.1, support(p, c) is the support in the class c of the pattern p
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covering the query object o, and P contains the set of patterns for both minority and

majority class. Finally, the query object is classified in the class where Equation 5.2

reaches the highest value.

The pseudocode of the training and classification phases of PBC4cip is shown in

algorithms 9 and 10, respectively.

Algorithm 9: Training phase of PBC4cip

input : D- a training dataset and C- a set of classes.
output: W- a weight for each class according to the class imbalance level.

Compute the emerging patterns by using the training dataset D.
PS← the set of all extracted patterns.

foreach c ∈ C do

W[c] =
(
1− |c|

|D|

)
/
∑
p∈PS

support(p, c);

end

return W

Algorithm 10: Classification phase of PBC4cip

input : o- a query object, C- a set of classes, PS- a set of extracted patterns for
both majority and minority class, and W- the weight for each class.

output: c - a class belonging to C.

foreach c ∈ C do

CV[c] = W[c] ∗
∑
p∈PS,

p covers o

support(p, c);

end

c = argmax
i

(CV[i]);

return c

5.2 Experimental results

In order to evaluate the performance of our proposed classifier (PBC4cip), first, we

perform a comparison against iCAEP [Zhang et al., 2000b], which according to Chen
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and Dong [2012] reports good classification results on class imbalance problems. For this

comparison, we use LCMine [Garćıa-Borroto et al., 2010b] as emerging pattern miner

for both iCAEP and PBC4cip. The aim is to show the best emerging pattern-based

classifier for dealing with class imbalance problems but using a conventional emerging

pattern miner, which was not designed for class imbalance problems. In this way, we can

determine which of the evaluated classifiers deals better with class imbalance problems.

Additionally, we perform another comparison between PBC4cip and iCAEP but

using our emerging pattern miners designed for class imbalance problems. We used our

miners introduced in Chapter 4 because they have shown to extract better-emerging

patterns for class imbalance problems than the best previously reported emerging pat-

tern miner designed for this kind of problems. The goal of this comparison is to show

if by using emerging pattern miners specifically designed for class imbalance problems

can improve even more the results of these two classifiers.

Finally, we compare PBC4cip against several popular state-of-the-art classifiers for

class imbalance problems which are not based on emerging patterns. The goal of this

comparison is to show if PBC4cip obtains better classification results, in class imbal-

ance problems, than other classifiers not based on emerging patterns, which have been

designed for dealing with class imbalance problems.

For this experimentation, we use the 95 imbalanced databases, described in Table 3.3,

by applying Distribution Optimally Balanced Stratified Cross Validation (DOB-SCV)

[Moreno-Torres et al., 2012], and using the AUC measure [Huang and Ling, 2005] for

assessing the classification results, as shown in Section 4.1.1 and Section 4.2.1. Finally,

we apply the Friedman’s test, the Finner’s procedure, and the Wilcoxon signed-rank

test in order to statistically validate the classification results, as suggested by [Demšar,

2006; Derrac et al., 2011] for this kind of experimental setup.

For our experiments, we use OCC [Hempstalk et al., 2008] and OCSVM [Schölkopf
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et al., 2001] taken from the Weka Data Mining software tool [Hall et al., 2009]. Also,

we use RUSBoost [Seiffert et al., 2010] and SMOTE-TL [Batista et al., 2004] from the

KEEL Data-Mining software tool [Alcalá-Fdez et al., 2009]. The algorithms CCPDT1

[Liu et al., 2010], Coverage2 [Ibarguren et al., 2015], CTC3 [Pérez et al., 2007], HeDex4

[Kang and Ramamohanarao, 2014], kENN5 [Li and Zhang, 2011b], KLPART [Su et al.,

2015a], KRNN6 [Zhang et al., 2017], LCMine [Garćıa-Borroto et al., 2010b], and RB-

Boost [Dı́ez-Pastor et al., 2015] were provided by their authors. Finally, we used our

own implementation for iCAEP.

It is important to highlight that all the algorithms used in this experimentation

were executed using the parameter values recommended by their authors.

5.2.1 Comparison between PBC4cip and iCAEP

This section, first, shows the experimental results of comparing PBC4cip against iCAEP

using LCMine as emerging patterns miner.

Table 5.1 shows a comparison of the classification results of PBC4cip and iCAEP,

when they use emerging patterns extracted by LCMine. This table includes the average

AUC (AUC) and standard deviation (SD) for both compared classifiers (Comparison),

the sum of ranks for the problems where PBC4cip outperformed iCAEP (R+), the sum

of ranks for the opposite (R−), the result of the null hypothesis (Hypothesis), and the

p-value (p) computed by the Wilcoxon signed-rank test.

From Table 5.1, we can see that PBC4cip significantly outperforms iCAEP when

both use emerging patterns extracted by LCMine which is a conventional emerging

1https://sites.google.com/site/weiliusite/
2http://www.aldapa.eus/res/weka-ctc/weka-ctc-v2.html
3http://www.aldapa.eus/res/weka-ctc/weka-ctc-v1.html
4http://www3.nd.edu/~dial/hddt/
5http://goanna.cs.rmit.edu.au/~zhang/ENN/
6http://www.xiuzhenzhang.org/downloads/

https://sites.google.com/site/weiliusite/
http://www.aldapa.eus/res/weka-ctc/weka-ctc-v2.html
http://www.aldapa.eus/res/weka-ctc/weka-ctc-v1.html
http://www3.nd.edu/~dial/hddt/
http://goanna.cs.rmit.edu.au/~zhang/ENN/
http://www.xiuzhenzhang.org/downloads/
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pattern miner (i.e., not designed for class imbalance problems).

Table 5.1: Wilcoxon signed-rank test (α = 0.05) comparing the AUC results of PBC4cip
against the AUC results of iCAEP but using LCMine as emerging patterns miner and
considering all the tested databases.

Comparison
PBC4cip iCAEP

R+ R− Hypothesis p
AUC SD AUC SD

LCMine+PBC4cip vs LCMine+iCAEP 0.8559 0.1111 0.8097 0.1410 3961.5 598.5 Rejected 0

In Table 5.2, we show the results obtained by PBC4cip and iCAEP, when they

use patterns mined by an emerging pattern miner designed for class imbalance prob-

lems, specifically we used the miners HRFm and SMOTE-TL+LCMine introduced in

Chapter 4.

Table 5.2 shows the average AUC, standard deviation (SD), the average ranking

according to the Friedman’s test, and adjusted p-value of the Finner’s procedure for

each tested classifiers. This table is ordered according to the Friedman’s ranking and

the thin horizontal line marks the point after which there is a statistically significant

difference with the best classifier (p-value ≤ 0.05).

From Table 5.2 we can see that HRFm+PBC4cip obtained the best position into

the Friedman’s ranking. Also, it can be noticed that HRFm+PBC4cip obtained the

best average AUC (0.8715) with the lowest standard deviation (0.1027). These val-

ues show that our proposal almost always obtains good AUC results. On the other

hand, adjusted p-values show that the difference of the results of HRFm+iCAEP and

(SMOTE-TL+LCMine)+iCAEP are statistically significant. Nevertheless, the differ-

ence of the results of HRFm+PBC4cip against (SMOTE-TL+LCMine)+PBC4cip is

not statistically significant. Therefore, we performed a pairwise comparison between

HRFm+PBC4cip and (SMOTE-TL+LCMine)+PBC4cip; using the Wilcoxon signed-

rank test, as suggested in [Demšar, 2006; Garćıa and Herrera, 2008; Garćıa et al., 2010;

Derrac et al., 2011].



Chapter 5. Emerging pattern-based classifier for class imbalance problems 71

Table 5.2: Average AUC, standard deviation (SD), average rankings (based on the
Friedman’s test), and p-values (based on the Finner’s procedure) for all the tested
emerging pattern-based classifiers using all the tested databases.

Algorithms Average AUC SD Ranking Adjusted p-value

HRFm+PBC4cip 0.8715 0.1027 1.8158 -
(SMOTE-TL+LCMine)+PBC4cip 0.8493 0.1227 2.1421 0.0815
(SMOTE-TL+LCMine)+iCAEP 0.8288 0.1316 2.9211 0
HRFm+iCAEP 0.8089 0.1437 3.1211 0

The results of applying theWilcoxon signed-rank test for comparing HRFm+PBC4cip

against (SMOTE-TL+LCMine)+PBC4cip are shown in Table 5.3. This table shows the

compared classifiers (Comparison), the sum of ranks for the problems where HRFm+PBC4cip

outperformed (SMOTE-TL+LCMine)+PBC4cip (R+), the sum of ranks for the oppos-

ite (R−), the result of the null hypothesis (Hypothesis), and the p-value computed by

the Wilcoxon signed-rank test.

Table 5.3: Wilcoxon signed-rank test (α = 0.05) comparing the AUC results of
HRFm+PBC4cip against the AUC results of (SMOTE-TL+LCMine)+PBC4cip, us-
ing all the tested databases.
Comparison R+ R− Hypothesis p-value

HRFm+PBC4cip vs (SMOTE-TL+LCMine)+PBC4cip 3311.0 1249.0 Rejected 0.000123

From Table 5.3, we can assert that HRFm+PBC4cip significantly outperforms

(SMOTE-TL+LCMine)+PBC4cip. Thus, from tables 5.2 and 5.3, we can conclude

that HRFm+PBC4cip is the best solution based on emerging patterns for class imbal-

ance problems regarding the other evaluated solutions.

5.2.2 Comparing against supervised classifiers not based on
emerging patterns for class imbalance problems

In this section, we show the results of comparing HRFm+PBC4cip against state-of-the-

art classifiers for class imbalance problems, which are not based on emerging patterns.

Table 5.4 shows the results of comparing HRFm+PBC4cip against classifiers not
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based on emerging patterns, for class imbalance problems. This table has the same

structure as in Table 5.2. From this table, we can see that PBC4cip obtained the best

position, into the Friedman’s ranking. Also, HRFm+PBC4cip obtained better average

AUC and lower standard deviation than all the tested classifiers for class imbalance

problems, which are not based on emerging patterns. From Table 5.4, we can see that

HRFm+PBC4cip significantly outperforms the AUC results of Coverage, CTC, RB-

Boost, kENN, KRNN, HeDex, KLPART, CCPDT, OCSVM, and OCC. Nevertheless,

the differences of the results of HRFm+PBC4cip and RUSBoost are not statistically

significant. Therefore, similarly as in the previous experiment, we performed a pairwise

comparison between HRFm+PBC4cip and RUSBoost; using the Wilcoxon signed-rank

test.

Table 5.4: Average AUC, standard deviation (SD), average rankings (based on the
Friedman’s test), and p-values (based on the Finner’s procedure) for HRFm+PBC4cip
and all tested classifiers for class imbalance problems not based on emerging patterns
using all the tested databases.

Algorithms Average AUC SD Ranking p-value

HRFm+PBC4cip 0.8715 0.1027 3.2368 -
RUSBoost 0.8505 0.1222 3.9158 0.194353
KRNN 0.8323 0.1478 4.8947 0.001529
Coverage 0.8299 0.1284 4.9579 0.001003
CTC 0.8285 0.1277 5.2526 0.000117
RB-Boost 0.8180 0.1445 5.5053 0.000015
HeDex 0.7838 0.1608 7.2526 0
kENN 0.7803 0.1702 7.2789 0
KLPART 0.7825 0.1553 7.4211 0
CCPDT 0.7771 0.1665 7.6632 0
OCSVM 0.6852 0.1815 9.5842 0
OCC 0.5611 0.1439 11.0368 0

Table 5.5: Wilcoxon signed-rank test comparing the AUC results of HRFm+PBC4cip
against the AUC results of the RUSBoost classifier, using all the tested databases.

Comparison R+ R− Hypothesis (α = 0.05) p-value

PBC4cip vs RUSBoost 2959.0 1601.0 Rejected 0.011546

Table 5.5 shows the results of the pairwise comparison between HRFm+PBC4cip

and RUSBoost; using the Wilcoxon signed-rank test, in the same way as in Table 5.3.
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From this table, we can see that HRFm+PBC4cip significantly outperforms RUSBoost.

Then, based on tables 5.4 and 5.5, we can conclude that PBC4cip also is better than

other classifiers, not based on emerging patterns, designed for class imbalance problems.

5.3 Concluding remarks

In this chapter, we introduced a new emerging pattern-based classifier for class imbal-

ance problems. Our classifier (PBC4cip) addresses the class imbalance problem through

a strategy that combines the support of the patterns and the class imbalance level of the

dataset. From our experimental results, we can conclude that PBC4cip significantly

outperforms iCAEP, which is the only emerging pattern-based classifier reported in

the literature for class imbalance problems. PBC4cip significantly outperforms iCAEP

using both a conventional emerging pattern miner and emerging pattern miners de-

signed for class imbalance problems. Also, PBC4cip significantly outperforms other

state-of-the-art classifiers designed for class imbalance problems, which are not based

on emerging patterns. Finally, as far as we know, our proposal is the first emerging

pattern-based classifier specifically designed for class imbalance problems.





Chapter 6
Conclusions

Emerging pattern-based classifiers have become an important family of supervised clas-

sifiers in the last years. However, in those problems where the objects are not equally

distributed into the classes (class imbalance problems), emerging pattern-based classifi-

ers, like other supervised classifiers, bias their classification results towards the majority

class; obtaining poor classification results for the minority class. In the literature, su-

pervised classification based on emerging patterns for class imbalance problems has not

been enough studied, for this reason in this thesis we addressed this research line.

In this research, we first investigated the effect of class imbalance over quality meas-

ures for patterns; this allowed us to select the best one for class imbalance problems.

One important issue for building an emerging pattern-based classifier is to extract

emerging patterns from a database. Currently, most algorithms for mining emerging

patterns have not been designed for class imbalance problems, and those designed for

this kind of problems obtain a set of emerging patterns which produce poor classific-

ation results. Hence, we proposed three emerging pattern mining algorithms for class

imbalance problems. Each proposal follows one of the main approaches reported in the

literature to deal with class imbalance problems, i.e., data level, algorithm level, and

cost-sensitive.

Finally, we proposed an emerging pattern-based classifier for class imbalance prob-

lems, which takes into account the class imbalance level of the training dataset for

classifying query objects.

The content of this chapter is organized as follows: Section 6.1 presents the con-

clusions of this PhD research, Section 6.2 shows the contributions of this research,
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Section 6.3 contains some directions for future work and finally, Section 6.4 lists the

publications derived from this PhD research.

6.1 Conclusions

Regarding our study about the effect of class imbalance on quality measures for patterns,

based on our experimental results, we can conclude that:

• Jacc is the best quality measure for ranking emerging patterns for supervised

classification in class imbalance problems.

• Quality measures perform differently depending on the class imbalance level. Our

study allowed determining what are the best quality measures for different class

imbalance levels (see Table 3.4).

Regarding our proposed emerging pattern miners, based on our experimental results,

we can conclude that:

• Into the data level approach, our proposal (SMOTE-TL+LCMine) allows obtain-

ing a set of emerging patterns which produce better classification results in class

imbalance problems than the best solution, at the data level, reported in the

literature for class imbalance problems.

• Into the algorithm level, our proposal for mining emerging patterns (HRFm)

extracts a set of emerging patterns which allows attaining better classification

results than other solutions reported in the literature for class imbalance problems.

• From comparing HRFm and SMOTE-TL+LCMIne, we have concluded that HRFm

is the best solution for mining emerging patterns in class imbalance problems with
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low or very high imbalance ratio (IR), while SMOTE-TL+LCMine is the best one

for those problems with medium IR (see Table 4.5).

• Our proposal into the cost-sensitive approach (CSEPm) obtains emerging patterns

that allow attaining significantly lower misclassification cost than those misclassi-

fication cost produced by using the emerging patterns mined by other well-known

emerging pattern miners, and the same classifier used in our proposed approach,

as base classifier for Metacost [Domingos, 1999].

Regarding our proposed emerging pattern-based classifier (PBC4cip), based on our

experimental results, we can conclude that:

• PBC4cip significantly outperforms iCAEP, the only emerging pattern-based clas-

sifier reported in the literature for solving class imbalance problems.

• PBC4cip significantly outperforms other state-of-the-art classifiers designed for

class imbalance problems, which are not based on emerging patterns.

6.2 Contributions

The contributions of this PhD research are the following:

• A study of quality measures for emerging patterns in class imbalance problems

that allows selecting the best quality measure for emerging patterns in this kind

of problems.

• A guide for determining which quality measures would have better behavior for

filtering emerging patterns regarding the class imbalance level of a dataset.
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• An emerging pattern miner (SMOTE-TL+LCMine), at the data level approach,

which obtains better emerging patterns for class imbalance problems than the

best emerging pattern miner, in this approach, reported in the literature.

• An emerging pattern miner for class imbalance problems (HRFm), at the al-

gorithm level approach, which to the best of our knowledge is the first emerging

pattern miner based on decision tree following this approach.

• An algorithm for mining emerging patterns based on cost matrices (CSEPm). As

far as we know, CSEPm is the first cost-sensitive emerging pattern miner.

• A new emerging pattern-based classifier designed to deal with class imbalance

problems (PBC4cip). As far as we know, PBC4cip is the first emerging pattern-

based classifier specifically designed for class imbalance problems.

6.3 Future work

The results obtained in this thesis open further studies on emerging pattern miners

and supervised classifiers based on emerging patterns for class imbalance problems. As

future work, we will consider the following:

• An interesting research line is to create fuzzy emerging pattern miners and fuzzy

emerging pattern-based classifiers for class imbalance problems. We suggest this

line because, in some domains, the fuzzy-based approach has reported better

classification results than the crisp-based approach. Also, as far as we know,

there are not algorithms reported for both fuzzy-emerging pattern miners and

fuzzy emerging pattern-based classifiers.

• Unlike univariate decision trees, multivariate decision trees are not restricted to

splits involving a single feature. Hence, an interesting alternative to explore is



Chapter 6. Conclusions 79

to extract emerging patterns, for class imbalance problems, from multivariate

decision trees. We suggest this line because, in some domains, multivariate de-

cision trees have reported better classification results than univariate decision

trees. Then, we have the hypothesis that emerging patterns extracted from mul-

tivariate decision trees could improve the classification results obtained regarding

those emerging patterns extracted from univariate decision trees. Also, as far as

we know, there are not algorithms reported for both mining emerging patterns

from multivariate decision trees and emerging pattern-based classifiers that use a

collection of emerging patterns extracted from multivariate decision trees.

6.4 Publications

The following publications were derived from this PhD research.

JCR Journals:

• O. Loyola-González, MA. Medina-Pérez, JF. Mart́ınez-Trinidada, JA. Carrasco-
Ochoa, R. Monroy, M. Garćıa-Borroto. PBC4cip: A New Contrast Pattern-based
Classifier for Class Imbalance Problems. Knowledge-Based Systems 115, pp. 100-
109, 2017. [IF: 4.529, Q1]

• M. Garćıa-Borroto, O. Loyola-González, JF. Mart́ınez-Trinidada, JA. Carrasco-
Ochoa. Evaluation of Quality Measures for Contrast Patterns by Using Unseen
Objects. Expert Systems with Applications 83, pp. 104-113, 2017. [IF: 3.928, Q1]

• O. Loyola-González, JF. Mart́ınez-Trinidada, JA. Carrasco-Ochoa, M. Garćıa-
Borroto. Effect of Class Imbalance on Quality Measures for Contrast Patterns:
An Experimental Study. Information Science 374, pp. 179-192, 2016. [IF: 4.832,
Q1]

• O. Loyola-González, JF. Mart́ınez-Trinidada, JA. Carrasco-Ochoa, M. Garćıa-
Borroto. Study of the Impact of Resampling Methods for Contrast Pattern-based
Classifiers in Imbalanced Databases. Neurocomputing 175, pp. 935-947, 2016.
[IF: 3.317, Q1]

• O. Loyola-González, JF. Mart́ınez-Trinidada, JA. Carrasco-Ochoa, M. Garćıa-
Borroto. An Empirical Comparison among Quality Measures for Pattern-based
Classifiers. Intelligent Data Analysis 18, pp S5-S17, 2014. [IF: 0.772, Q4]

http://dx.doi.org/10.1016/j.knosys.2016.10.018
http://dx.doi.org/10.1016/j.knosys.2016.10.018
http://dx.doi.org/10.1016/j.eswa.2017.04.038
http://dx.doi.org/10.1016/j.eswa.2017.04.038
http://dx.doi.org/10.1016/j.ins.2016.09.040
http://dx.doi.org/10.1016/j.ins.2016.09.040
http://dx.doi.org/10.1016/j.neucom.2015.04.120
http://dx.doi.org/10.1016/j.neucom.2015.04.120
http://content.iospress.com/articles/intelligent-data-analysis/ida00705
http://content.iospress.com/articles/intelligent-data-analysis/ida00705
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Conference Proceedings:

• O. Loyola-González, JF. Mart́ınez-Trinidada, JA. Carrasco-Ochoa, M. Garćıa-
Borroto. A Novel Contrast Pattern Selection Method for Class Imbalance Prob-
lems. Lecture Notes in Computer Science 10267, pp. 42-52, 2017.

• O. Loyola-González, JF. Mart́ınez-Trinidada, JA. Carrasco-Ochoa, M. Garćıa-
Borroto. Correlation of Resampling Methods for Contrast Pattern-based Classi-
fiers. Lecture Notes in Computer Science 9116, pp. 93-102, 2015.

• M. Garćıa-Borroto, O. Loyola-González, JF. Mart́ınez-Trinidada, JA. Carrasco-
Ochoa. Comparing Quality Measures for Contrast Pattern Classifiers. Lecture
Notes in Computer Science 8258, pp. 311-318, 2013.

• O. Loyola-González, MA. Medina-Pérez, JF. Mart́ınez-Trinidada, JA. Carrasco-
Ochoa, M. Garćıa-Borroto. An Empirical Study of Oversampling and Under-
sampling Methods for LCMine an Emerging Pattern-based Classifier. Lecture
Notes in Computer Science 7914, pp. 264-273, 2013.

Technical Reports:

• O. Loyola-González, JF. Mart́ınez-Trinidada, M. Garćıa-Borroto. Supervised clas-
sifiers based on Contrast Patterns for Class Imbalance Problems (Report No.
CCC-14-004). Puebla, Mexico: Instituto Nacional de Astrof́ısica, Óptica y Electrónica,
pp. 1-44, 2014.
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Demšar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of
Machine Learning Research, 7:1–30.
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Garćıa, S. and Herrera, F. (2008). An Extension on ”Statistical Comparisons of Classifiers over
Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning Research,
9:2677–2694.

Garćıa-Borroto, M., Loyola-González, O., Mart́ınez-Trinidad, J., and Carrasco-Ochoa, J.
(2013). Comparing Quality Measures for Contrast Pattern Classifiers. In Ruiz-Shulcloper,
J. and Sanniti di Baja, G., editors, Progress in Pattern Recognition, Image Analysis, Com-
puter Vision, and Applications SE - 39, volume 8258 of Lecture Notes in Computer Science,
pages 311–318. Springer Berlin Heidelberg.
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Sociales et de l’Information (Institut Mines-Télécom-Télécom Bretagne-UEB), Faculté des
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Luengo, J., Fernández, A., Garćıa, S., and Herrera, F. (2011). Addressing data complex-
ity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary
undersampling. Soft Computing, 15(10):1909–1936.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to information retrieval.
Cambridge university press Cambridge, 1 edition.

Mao, S. and Dong, G. (2012). Discriminating Gene Transfer and Microarray Concordance
Analysis. In Dong, G. and Bailey, J., editors, Contrast Data Mining: Concepts, Algorithms,
and Applications, Data Mining and Knowledge Discovery Series, chapter 16, pages 233–240.
Chapman & Hall/CRC, United States of America.

McGarry, K. (2005). A survey of interestingness measures for knowledge discovery. Knowl.
Eng. Rev., 1(3):39–61.

McGarry, K. and Malone, J. (2004). Analysis of rules discovered by the data mining process. In
Lotfi, A. and Garibaldi, J., editors, Applications and Science in Soft Computing, volume 24
of Advances in Soft Computing, pages 219–224. Springer Berlin Heidelberg.
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Appendix A
Statistical tests

This appendix presents a brief description of the statistical tests used throughout this

PhD thesis, which have been commonly used in the literature for comparing classifica-

tion results [Demšar, 2006; Garćıa and Herrera, 2008; Garćıa et al., 2010; Derrac et al.,

2011]. In this thesis, all statistical tests were performed using the KEEL data mining

tool [Alcalá-Fdez et al., 2009]. In order to provide a better flow for the readers, we

split the content of this appendix as follows: Section A.1 describes the statistical test

used for comparing the classification results between two classifiers. After, Section A.2

presents the nonparametric statistical procedure for comparing the classification results

among more than two classifiers. Finally, Section A.3 describes the post-hoc procedures

used in our experiments for determining which classifiers obtain significantly better or

worse results among all the classifiers under comparison.

A.1 Wilcoxon signed-rank test

Several authors consider the Wilcoxon signed-rank test as a safe and robust nonparamet-

ric test for pairwise statistical comparisons between the classification results provided

by two supervised classifiers [Demšar, 2006; Garćıa and Herrera, 2008; Garćıa et al.,

2010; Derrac et al., 2011]. This test does not assume normal distributions, and outliers

(exceptionally good/bad performances on a few databases) have less effect on the Wil-

coxon signed-rank test than other on pairwise statistical tests as t-test [Derrac et al.,

2011]. We used the Wilcoxon signed-rank test, in Chapter 4 and Chapter 5, to verify

whether the results obtained by our proposal are statistically better than the results
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obtained by other proposal reported in the literature.

In the context of supervised classification, the Wilcoxon signed-rank test aims to

determine whether or not there is a statistically significant difference between the results

reached by two supervised classifiers, when applied over several databases. For that, for

each database i, the difference di between the classification results of the two compared

classifiers is computed. After, the differences are ranked according to their absolute

rank(di); where rank 1 is assigned for the lowest difference di, rank i for the highest

difference di, and average ranks are assigned in case of ties di = 0. Finally, the sum

of ranks for the databases in which the first algorithm outperformed the second one

(R+) and the sum of ranks for the opposite (R−) are computed using the following

expression:

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di)

(A.1)

Finally, if the value of min(R+, R−) is less than or equal to a certain value (see

Table A5 in [Sheskin, 2007], containing the critical values of the Wilcoxon signed-ranks

test) then, it means that, an algorithm statistically outperforms the other one according

to the associated p-value. The p-value provides information about how significant the

statistical result is: the smaller the p-value, the more significant the statistical results

[Derrac et al., 2011]. According to Garćıa and Herrera [2008], the p-value is computed

through normal approximations by using a normal distribution table (see Table A1 in

[Sheskin, 2007]).
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A.2 Friedman test

Friedman’s test [Friedman, 1937, 1940] is a non-parametric test, equivalent to the

repeated-measures ANOVA (Analysis of Variance), with the aim of detecting signi-

ficant differences among the classification results provided by more than two classifiers

[Demšar, 2006; Derrac et al., 2011].

We used the Friedman’s test for creating a ranking among our proposals, (in Sec-

tion 4.1, Section 4.2, Section 4.3, and Section 5.1), and the other algorithms reported

in the literature.

For calculating the Friedman’s test the first step is to convert the original results to

ranks as follows:

1. Gather all the classification results for each classifier j in each database i.

2. For each database, rank the result of the classifiers from 1 (for the best result)

to k (for the worst result), denoted as rji with 1 ≤ j ≤ k being k the number of

compared classifiers. For ties an average is computed, i.e., if two classifiers have

the same rank value for a specific database (e.g. 1), then a rank value of 1.5 for

both classifiers will be assigned.

3. For each classifier, compute the average of the ranks obtained in all databases as

follows: Rj =
1
n

∑
i r

j
i , being n the total number of tested databases.

Following these steps, the classifier with the best classification result should have

the smallest rank value, the second best one should have the second best average rank

value, and so on.

Finally, the Friedman’s test is computed by using Equation A.2, which is distributed
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according to a X2 distribution [Derrac et al., 2011].

F =
12n

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
(A.2)

The Friedman’s test only reveals whether or not there are significant statistical

differences among the compared classifiers. However, the Friedman’s test is not able

to determine which classifiers have statistical differences among them. Hence, in or-

der to determine which classifiers have statistical differences among them, a post-hoc

procedure is needed.

A.3 Post-hoc procedures

Commonly, once the Friedman’s test determined that there are statistical differences

among the classification results of the compared classifiers, a post-hoc procedure is

executed [Garćıa et al., 2010; Derrac et al., 2011]. A post-hoc procedure aims to find

those pairwise comparisons which produce statistically significant differences.

To statistically validate a study among the classification results provided by more

than two classifiers, a statistical test for evaluating all possible pairwise comparisons

among these results should be executed. For this, the Bergmann-Hommel’s procedure

[Bergmann and Hommel, 1988] is suggested by several authors [Garćıa and Herrera,

2008; Garćıa et al., 2010; Derrac et al., 2011].

The Bergmann-Hommel’s procedure is based on the idea of finding a set of hy-

potheses H which cannot be rejected. For doing this, first, all possible hypotheses

about pairwise comparisons, according to the k evaluated classifiers, C1, · · · , Ck are

considered. Each Hi corresponds to a hypothesis: the classifier Cs statistically has the

same behavior as the classifier Cr; s, r = 1, · · · , k. Clearly, there arem = (k · (k − 1)) /2

different hypotheses. According to [Derrac et al., 2011] the p-value (pj) is not suitable
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for post-hoc procedures; therefore, for each hypothesis Hi, they propose computing an

adjusted p-value (APVi) as APVi = min {vi, 1}, where

vi = max
I is exhaustive and i ∈ I

{|I| ·min {pj, j ∈ I}}

where I ⊆ {1, . . . ,m} is called exhaustive if exactly all Hi, i ∈ I, could be true; i.e.,

for all i = 1, · · · ,m : Hi is true iff i ∈ I. An algorithm for obtaining all exhaustive sets

is provided by Derrac et al. [2011]. The Bergmann-Hommel’s procedure rejects all Hi

such that i /∈ A, where A is computed as:

A =
∪
{I : I is exhaustive and min {APVi : i ∈ I} > α/ |I|}

where α is a significance level provided by the user.

We used the Bergmann-Hommel’s procedure in our study about quality measures

for patterns (see Section 3.2) with the aim of knowing which quality measures are stat-

istically similar among them. Also, we used this procedure in Section 4.1 for knowing

which resampling methods, for balancing classes before mining emerging patterns, are

statistically similar among them.

To statistically validate the results obtained by a new classifier proposed by us and

the results obtained by other classifiers reported in the literature, a test of multiple

comparisons with a control classifier should be executed. According to Derrac et al.

[2011], the Finner’s procedure, proposed by Finner [1993], shows the best behavior for

this type of comparison.

The Finner’s procedure considers all possible hypotheses about pairwise comparisons

of a classifier C1 and the remaining ones C2, . . . , Ck. Here, each Hi corresponds to a

hypothesis: C1 statistically has the same behavior as Cr, for (r = 2, . . . , k). Thus,

for k classifiers to be evaluated, there are m = k − 1 different hypotheses. Then,

the hypotheses are sorted according the p-value (pj) of the corresponding pairwise
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comparison. The Finner’s procedure rejects the hypotheses H1 to Hi−1 if i is the

smallest integer so that APVi > 1 − (1 − α)(m−1)/i. Where α is a significance level

provided by the user and APVi is the adjusted p-value computed for each hypothesis

Hi as: APVi = min {vi, 1}; where vi = max
{
1− (1− pj)

(m−1)/j : 1 ≤ j ≤ i
}
.

We used the Finner’s procedure (in Section 4.2, Section 4.3, and Section 5.1) in

order to compare our proposal versus other proposals reported in the literature.
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