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Abstract

This dissertation is about the interaction of computational semantics and formal methods,
in the aim of finding answers to the question: How does natural language work? On the
last three decades, statistical and machine learning methods have taken command giving
good results in solving very specific tasks. Unfortunately, good results does not mean
good understanding. To know that a ninety per cent of the times I will get certain result
does not mean that I am comprehending the phenomenon under study.

This work shows how three aspects of computational semantics have been solved from
the point of view of formal methods. The main goal was to solve the problem of Recog-
nizing Textual Entailment, but very soon aspects of polarity computing and anaphora
resolution had to be considered as well. Fortunately, a characterization of the entailments
that can be done with Natural Logic have been found. Also, the computable concept
of polarity has coincided with respect to the algorithms analyzed. About pronominal
anaphora resolution it should be said that a method to solve anaphora in parsing time
has been found, without the need of a logical form. The method can solve Donkey, intra
and intersentencial anaphora.
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Resumen

Esta tesis trata de la interacción entre semántica computacional y métodos formales, con
el objetivo de encontrar respuestas a la pregunta: ¿Cómo funciona el lenguaje natural?
En las últimas tres décadas, los métodos estadı́sticos y de aprendizaje computacional han
dominado y dado buenos resultados al resolver tareas muy especı́ficas. Desafortunada-
mente, buenos resultados no significan buen entendimiento. Saber que el noventa por
ciento de las veces se obtiene cierto resultado no significa que se está comprendiendo el
fenómeno estudiado.

Este trabajo muestra cómo tres aspectos de la semántica computacional han sido
resueltos desde el punto de vista de los métodos formales. El principal objetivo era
resolver el problema del Reconocimiento de Implicación Textual, pero muy pronto
también se tuvieron que considerar aspectos como el cálculo de polaridad y la resolución
de anáfora. Afortunadamente, se ha encontrado una caracterización de las implicaciones
que se pueden hacer con Lógica Natural. También, que el concepto computable de
polaridad coincide con respecto a los algoritmos analizados. Sobre la resolución de
anáfora pronominal se debe decir que se ha encontrado un método para resolverla al
momento de hacer el análisis sintáctico, sin necesitar alguna forma lógica. El método
puede resolver anáforas tipo Donkey, intra e intersentenciales.
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Chapter 1

Introduction

Textual entailment is defined [DGM06] as a directional relationship between pairs of text
expressions, denoted by t the entailing “Text”, and h the entailed “Hypothesis”. We
say that t entails h if the meaning of h can be inferred from the meaning of t, as would
typically be interpreted by people.

Recognizing Textual Entailment (RTE) is essential for other Natural Language Pro-
cessing tasks such as: Semantic Search, Question Answering, Text Summarization, and
Information Extraction. Even more, there is the expectation that in getting better methods
of textual entailment, these will improve our understanding of how a machine can assign
meaning to natural language.

Different methods have been used to solve the RTE problem [DRSZ13], those methods
are based on machine learning, linear programming, probabilistic calculus, optimization,
and logic.

Without a doubt, the statistical approach has dominated in the solution of Natural
Language Processing tasks in the last two decades. Nevertheless, this dissertation is about
formal semantics applied to problems in computational linguistics, where the explanatory
power is required to understand the linguistic phenomena.

After the bibliographic revision, and focusing on the logical methods to solve RTE, it
was found that all the methods ended up deciding through a machine learning algorithm,
so the explanatory power of the logical formalisms was lost. But, one of those methods
called our attention, the one of MacCartney and Manning [MM07] entitled Natural Logic
for Textual Inference. The following four aspects are remarkable.

First, Natural Logic1 does not produce logical forms. The main objection to use logical
formalisms have been that the coding of natural language sentences in some logical form
overcome practical expectations. The same objection existed in the industry of software

1Natural Logic uses the syntactic structure of a sentence and the monotonic properties of its functors in
order to compute the composition (called polarity) of those functors, if a subexpression of the sentence has
positive/negative polarity it can be changed for a greater/lesser subexpression without changing the truth
value of the resulting sentence.

11
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in the 1990s, but it has faded away with the advent of model checking2.
Second, Natural Logic was created without a model-theoretic semantics. Hence, in

order to recover its explanatory power, we define a model-theoretic semantics for Natural
Logic, and from there a model checking method was built.

Third, the authors reported that they were not able to compute polarity because they
had to use the Stanford parser. After a bibliographic review, it was found that there are
four main algorithms to compute polarity, the ones of van Benthem [vB86, vB91], Sánchez
[SV91], Dowty [Dow94], and van Eijck [vE07].

Sánchez based its algorithm on the algorithm of van Benthem, Sánchez proved that
his algorithm was sound with respect to certain semantics, but he did not prove its
relationship with the algorithm of van Benthem. Dowty said that his algorithm was
more appropiate, than the algorithm of Sánchez, for some linguistic investigations, but
he did not prove it. van Eijck criticised the previous algorithms but never proved why
and in what sense his algorithm was a better one. For all these facts, we investigate the
relationship that the four algorithms have, proving that they are equivalent.

Fourth, the method of MacCartney and Manning is not able to solve anaphora and,
according to Sammons [Sam11], the linguistic phenomenum of anaphora is the one that
appears most in every day and in RTE, even worse it is the main source of error in RTE
systems. In solving anaphora, methods based on probability, clustering and machine
learning techniques [Mit02] have been created. But, also logical formalisms have been
created to solve anaphora, these methods are inspired by Dynamic Propositional Logic
[HTK00], a logic that was developed to reason about the change of state in imperative
programs. We also took ideas from Dynamic Propositional Logic to dynamize an extension
of AB grammars and solve anaphora.

Chapter 2 introduces the reader to the essential concepts which permit to understand
the main contributions in this dissertation, also what other people have formally done in
recognizing textual entailment, computing polarity and solving anaphora is presented.

In Chapter 3 the linguistic phenomenon of polarity is introduced, the algorithms to
compute it are presented and explained. Next, their equivalence is proved.

In Chapter 4 a model-theoretic semantics for Natural Logic is developed. Its soundness
and completeness with respect to the proof theory of AB grammars3 and Natural Logic

2Intuitively, model checking is a method based on formal semantics that decides whether a property is
met. But, its main purpose is to find out why a property is not met.

3AB grammars are built from a set of primitive types (in our case e and t), and functors are constructed
using the operators / and /, these operators are intended to distinguish if the argument of a functor is
either on the right or on the left, respectively. In order to decide whether a natural language expression is a

INAOE Computer Science Department



Introduction 13

are demonstrated. An automatic theorem prover for an extension of AB grammars is
constructed, and a model checking method for Natural Logic is developed. With these
tools is recovered the explanatory power of Natural Logic in RTE.

Chapter 5 contains our proposal to solve pronominal anaphora. Conditional sentences
and relative clauses are added to AB grammars, in such a way that our proposal can
resolve Donkey4, intra and intersentencial anaphora. A method based on model checking
is developed to resolve pronominal anaphora.

Closure contains the conclusions about the achievements reached, a future work
agenda, and the tangible contributions of the research.

sentence, the type t has to be derived by modus ponens from the types of each word in the sentence.
4Donkey anaphora is a relation where a pronoun cannot refer to an indefinite noun phrase, because the

pronoun, after the sentence is passed to a logical form, is not in the scope of the indefinite noun phrase
which is bound by a quantifier. The most famous instance of Donkey anaphora is: Every farmer who owns a
donkey beats it.

Formal Approaches to Textual Entailment,
Polarity, and Pronominal Anaphora





Chapter 2

Background

This chapter introduces the reader to the essential concepts which permit to understand
the main contributions in this dissertation, also what other people have formally done in
recognizing textual entailment, computing polarity and solving anaphora is presented.

First, Textual Entailment is defined and some approaches to recognize it are mentioned.
Besides, our view about textual entailment is stated, i.e., it is important to know if a text
entails a hypothesis, but it is more important to know why it does not. Also, five methods
that use some kind of logic to recognize textual entailment are briefly discussed.

Second, it can be said that Natural Logic is any kind of Categorial Grammar with
modus ponens as the unique inference rule plus reasoning through polarity, in this case
the categorial grammar presented is the calculus of Ajdukiewicz [Ajd78, Bac88, MR12].
Also, the static concept of monotonicity of types is defined, in order to set the dynamic
concept of polarity. As well as, the aspects that were the motivation to find out the
relation between the polarity algorithms, discussed in chapter 3, are mentioned.

The chapter ends with the definition of the problem of anaphora resolution, the
knowledge required to solve it, and some approaches of solution are mentioned. Two
logical methods are emphasized, namely Discourse Representation Theory and Dynamic
Predicate Logic, also some citations to ways of dynamise higher order logics are done.

2.1 Recognizing Textual Entailment

Textual entailment is defined [DGM06] as a directional relationship between pairs of text
expressions, denoted by t the entailing “Text”, and h the entailed “Hypothesis”. We
say that t entails h if the meaning of h can be inferred from the meaning of t, as would
typically be interpreted by people.

For example, if t = At the end of the year, all solid companies pay dividends, and
h = At the end of the year, all solid insurance companies pay dividends, then it can
be said that t entails h. As an example where t does not entail h, it can be considered the

15



16 Recognizing Textual Entailment

sentences t = John owns a car, and h = John bought a Jeep.
RTE is essential for other Natural Language Processing tasks such as: Semantic Search,

Question Answering, Text Summarization, and Information Extraction. Different methods
have been used to solve the RTE problem [DRSZ13], those methods are based on machine
learning, linear programming, probabilistic calculus, optimization, and logic.

One could expect that logical methods have the advantage of answering why the
entailment was not carried out, but even logical methods decide on the entailment using
machine learning, or some kind of optimization. For example, MacCartney and Manning
have a system based on Natural Logic to recognize textual entailment [MM07], but their
system decides on it by a decision tree. Therefore, the scope of Natural Logic is overriden
by the machine learning algorithm.

Natural Logic was developed to reason in natural language without having to use
formal systems as predicate calculus or high order logic [vB07, SV91]. Natural Logic only
uses lexical, syntactic, and the basic semantic information of a language.

Natural Logic was created on purpose without a Model Theory. However, we are
interested in characterizing the scope of Natural Logic in Recognizing Textual Entailment,
for this reason we define a Semantics for Natural Logic in the style of Model Theory, and
a method of model Checking for Natural Logic.

With respect to model theories of Logics for Natural Language, Moss [Mos10] has done
important contributions about fragments of language. Also, Moss [Mos12] has developed
a theory of models for polarity reasoning based on preorders and their opposites, mainly
to make the polarity algorithm of Dowty sound, but he does not define a Model Checking
method for Natural Logic.

The methods discussed in this section use some kind of inference mechanism to
recognize textual entailment, except for the one of MacCartney and Manning, which is
included because it is based on Natural Logic.

2.1.1 Using COGEX

The system of Hodges et al. [HCFM06] transforms the input text and hypothesis into
logical forms. The transformation process includes part-of-speech tagging, parse tree
generation, word sense disambiguation and semantic relations detection.

In order to use a logic prover for question answering (COGEX), a list of clauses called
“set of support” is required, this is used to begin the search for inferences. Another list,
called the usable list, contains clauses used by COGEX to produce inferences. The axioms
are about knowledge of the world, linguistic rewriting rules, and synsets of WordNet.

INAOE Computer Science Department
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The clauses in the set of support are weighted, a clause with a lesser weight is prefered
to participate in the search. The negated hypothesis (COGEX proves by refutation) is
added to the set of support with the largest weight, this guarantees that the hypothesis
will be the last clause used in the search.

If a refutation is found the prover ends, if there is not a refutation the predicate argu-
ments are relaxed. If despite arguments relaxation a refutation is not found, predicates
are dropped from the negated hypothesis until a refutation is found.

When a refutation is found, a score for it is computed, beginning with a perfect score
and subtracting points for axioms used, arguments relaxed, and predicates dropped.

If the score for a refutation is greater than a threshold, then it is considered that the
entailment is true, otherwise it is considered false.

2.1.2 Using OTTER

In the proposal of Akhmatova [Akh06], it is used an automated theorem prover for first
order and equational logic (OTTER). The meaning of a sentence is represented by the set
of atomic propositions contained in it, then the sentences are compared by means of their
associated propositions.

A syntax-driven semantic analysis is used to get the atomic propositions associated
with a sentence. The output of the parser is used as input for the semantic analyzer; from
the output of the analyzer, the representation of the sentence in first order logic, which is
called the logic formula, can be derived.

For Akhmatova, there are many ways to describe meaning through logical form,
but they are rigid and hard to produce. Because of that, a simplified representation is
proposed.

The simplified representation is build from: three types of objects Subj(x), Obj(x)
and Pred(x), a meaning attaching element iq(x,<meaning of x >), and two variants of
relationships attr(x,y) and prep(x,y).

Later, usign WordNet, a relatedness score between words is computed from the paths
between the senses of the words, the longer the path, the lesser the relatedness is. This
score together with knowledge rules are given to the automatic theorem prover OTTER.

If for every proposition in the hypothesis sentence phi there is one proposition in the
text sentence ptj , such that ptj → phi , then the entailment holds, otherwise the entailment
does not hold.

Formal Approaches to Textual Entailment,
Polarity, and Pronominal Anaphora



18 Recognizing Textual Entailment

2.1.3 Using Abduction

Raina et al. [RNM05] begin constructing a syntactic dependency graph using a parser,
hand written rules are used to find the heads of all nodes in the parse tree. The relations
represented in the dependency graph are translated into a logical formula representation.
Each node in the graph is converted into a logical term which is assigned a constant.

Later, abductive theorem proving is realized by the resolution method, where each
abductive assumption, and its degree of plausabilty is quantified as a nonnegative cost
using the assumption cost model. The objective is to find the proof of minimun cost, which
is chosen automatically by a machine learning algorithm.

2.1.4 Using Vampire and Paradox

The approach of Bos and Markert [BM06a, BM06b] is based on what they call shallow
semantic analysis and deep semantic analysis.

Four features are obtained from the shallow semantic analysis, the overlap between
words in text and hypothesis, the length of text, the length of hypothesis, and the relative
length of hypothesis with respect to the text.

To achieve the deep semantic analysis, they use a robust wide-coverage parser, which
produces proof trees of Combinatory Categorial Grammar [SB11]. Afterwards, the
proof trees are used to build discourse representation structures, these are the semantic
representations from Discourse Representation Theory. Later, the semantic representations
are translated into first order logic expressions.

The model checker Paradox and the automatic theorem prover Vampire are used to
prove whether or not the text implies the hypothesis. Bos and Markert take two features
from the automatic theorem prover, and six from the model checker.

A decision tree is trained with the twelve features, and it is used to decide if the text
implies the hypothesis.

2.1.5 Using Natural Logic

MacCartney and Manning [MM07, Mac09] use Natural Logic to avoid logical forms,
their system is called NatLog. They begin with a linguistic pre-processing, the text and
the hypothesis are parsed with the Stanford parser, the main purpose of this step is
monotonicity marking; nevertheless, they do not use polarity (see section 2.2) as an
inference mechanism.

INAOE Computer Science Department



Background 19

First Author Inference Mechanism Logic BK Challenge Decided by

Hodges COGEX FOL WordNet RTE-2 Optimization

Akhmatova OTTER FOL WordNet RTE-1 Unclear

Raina Abduction FOL RTE-1 Machine Learning

Bos Vampire & Paradox FOL WordNet RTE-1 Machine Learning

MacCartney WordNet RTE-3 Machine Learning

Table 2.1: Summary of the main characteristics of some logical approaches to recognize textual

entailment.

The second step consists of an alignment between the text and the hypothesis, align-
ments are represented by sequences of atomic edits over words.

Finally, taking as features the monotonicity information and the sequences of edits, a
decision tree is trained.

2.1.6 Brief Analysis of the Methods

As it can be seen in Table 2.1, the methods based on some inference mechanism use First
Order Logic (FOL) as a form to represent the text and the hypothesis.

For us, it is unclear the decision mechanism that the system of Akhmatova follows, a
relatedness score is computed, but its role in the decision process is never mentioned.

The other methods use a decision process different from the inference mechanism, as
it has been explained, hiding why the entailment was not carried out.

2.2 Natural Logic

Sánchez in his Ph. D. dissertation [SV91] formalizes the ideas of van Benthem about
Natural Logic (NL) and monotonic reasoning [vB86, vB91]. Even though the origins of
NL go back to Aristotle [vB07, Kar15]; the central idea, in the program of NL of van
Benthem et al., is that natural language, besides communicating ideas, serves to reason
without having to use formal systems as the predicate calculus or the high order logic.
The idea is to use the syntactic structure of a sentence, semantic properties of their lexical
constituents, and functor constructors over these.

They use the calculus of Ajdukiewicz [Ajd78, Bac88, MR12] for the syntactic analysis
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of sentences, this has the basic types e (entities, the type of proper nouns), and t (truth
values, the type of sentences), then functors between types are defined to construct more
complex types. Thereby, if α and β are types, then (α,β) is the type of the functors with
domain α and range β (it is read, functor from α to β). To construct a proof tree (also
called derivation tree), the calculus of Ajdukiewicz has only the following inference rule

(α,β) α

β

from the functor of type (α,β) and the argument of type α (either to the right, or to the
left of the functor), the type β is derived as the result.

It is assumed that each word in the lexicon has a type, for example: common nouns
have type (e, t), transitive verbs have type (e, (e, t)), intransitive verbs have type (e, t),
adjectives and adverbs have type ((e, t), (e, t)), noun phrases have type ((e, t), t), and
determiners have type ((e, t), ((e, t), t)).

Hence to know whether a sentence is well formed, the last inference rule is used to
build a proof tree, if its root is t, then the sentence is well formed, otherwise the sentence
is ill-formed.

Nevertheless, as there are words that play different roles (for example, white could
either be an adjective, a noun, or a verb), if a sentence contains words of this kind, the
algorithm that constructs the proof tree for such a sentence would have to try out the
different types of each word until the type t has been derived.

The first semantic element of NL is that each type denotes a set, hence De denotes
the set of entities, Dt denotes the set {0,1}, D

(α,β) denotes the set whose elements are
functions from α to β, and the following partial order relation is defined on each type.

Definition 2.2.1. [Dow94] Partial order relations on the denotations of types can be
defined in the following way:

1. If d,d ′ ∈De, then d ≤e d ′ if and only if d = d ′,

2. If d,d ′ ∈Dt, then d ≤t d ′ if and only if d = 0 or d ′ = 1,

3. If d,d ′ ∈D
(α,β), then d ≤

(α,β) d
′ if and only if for all x ∈Dα,d(x) ≤β d ′(x). ◻

The second semantic element of NL is that working with a proof system based on
functors, and taking into account a partial order relation on each type, it is possible to
define static characteristics on functors, namely a functor can be either upward monotone,
or downward monotone; of course, a functor can also be non-monotone in the following
terms:
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Definition 2.2.2. [Dow94] A function d ∈D
(α,β) is:

1. upward monotone (+d) if and only if

for all x,y ∈Dα,x ≤α y implies that d(x) ≤β d(y), (2.1)

2. downward monotone (−d) if and only if

for all x,y ∈Dα,x ≤α y implies that d(y) ≤β d(x). (2.2)

3. non-monotone (⋅d) if and only if it is neither upward monotone, nor downward
monotone. ◻

The inference rule
(α,β) α

β
must be applied to construct a proof tree, therefore a

functor node and an argument node are required. The resulting node will serve as either
the functor node, or the argument node to construct the following level of the proof tree.
In this way, the construction of a proof tree is done by composing functors: if an upward
(downward) monotone functor α is argument of a functor β, then the static characteristic
of α can change, depending of the static characteristic of β. In Table 2.2 [IIM14] the result
of composing upward monotone (+), downward monotone (−), and non-monotone (⋅)
functors is shown.

○ + − ⋅

+ + − ⋅
− − + ⋅
⋅ ⋅ ⋅ ⋅

Table 2.2: Result of the composition of upward monotone (+), downward monotone (−), and

non-monotone (⋅) functors.

From Table 2.2 we can infer that the composition of m upward and downward
monotone functors will be upward monotone if the number of downward monotone
functors is even, otherwise the composition will be downward monotone, and if one of
the functors in composition is non-monotone, then the whole composition will be non-
monotone. The composition of functors is called polarity, it is said that polarity is positive
(+) when the composition is upward monotone, negative (−) when the composition is
downward monotone, and neutral (⋅) when the composition is non-monotone. Hence,
polarity is a dynamic characteristic of some functors, which is given by the position of
the functors in the composition.
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In terms of the proof tree of a sentence, a functor node that is upward monotone
will have positive polarity if it is the argument of a composition where an even number
of downward monotone functors are involved, it will have negative polarity if it is the
argument of a composition where an odd number of downward monotone functors are
involved, otherwise it will not have polarity. On the same terms, a functor node that is
downward monotone will have positive polarity if it is the argument of a composition
where an odd number of downward monotone functors are involved, it will have negative
polarity if it is the argument of a composition where an even number of downward
monotone functors are involved, otherwise it will not have polarity. Finally, a non-
monotone functor will not have polarity.

Once the polarity of a node i is known in the proof tree of the sentence S, the subtree
whose root is node i can be replaced for a greater one (in the sense of Definition 2.2.1)
if node i has positive polarity, giving as a result sentence S ′; in a dual way, the subtree
whose root is node i can be replaced for a lesser one (in the sense of Definition 2.2.1) if
node i has negative polarity, giving as a result sentence S ′. In both cases, it is said that S
implies S ′.

When we say that N(M) is a natural language expression, we also mean that it has M
as subexpression; a formal definition of subexpression will be given later.

Definition 2.2.3. [Dow94] Implication in the Proof Theory. Let N(M), and N(M ′) be two
natural language expressions with M,M ′ ∶ α,M ≠M ′, we define that N(M) implies in the
proof theory of NL N(M ′) (symbolically N(M) ⊢N(M ′)) in the following way:

N(M) ⊢N(M ′) if and only if
⎧⎪⎪⎪⎨⎪⎪⎪⎩

M has positive polarity and M ≤αM ′, or

M has negative polarity and M ′ ≤αM.

◻

Sánchez[SV91] proved the soundness of the above implication with respect to the
semantics associated with his proof theory. This is the way of reasoning in NL.

For example, given the sentence Dobie didn’t bring every ball, if we accept that in this
sentence ball has polarity −, and big ball ≤α ball, then Dobie didn’t bring every ball entails
Dobie didn’t bring every big ball.

Sánchez [SV91] created an algorithm to compute polarity based on the algorithm
of van Benthem [vB86, vB91] for the same purpose, but Sánchez did not prove their
equivalence.

Dowty [Dow94] proposed an internal algorithm for polarity marking, his proposal
is more elegant than Sánchez’s because, in building the proof tree, the proof system
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assigns the right polarity to each node in the tree. Dowty supposed that his algorithm
is equivalent to the algorithm of Sánchez, but he had no proof. He did not prove the
soundness of his proposal with respect to some semantics, nor did he justify formally
why some nodes belong to two different categories.

van Eijck [vE07] defined an external algorithm for polarity marking. His algorithm is
interesting because he avoided categories from having monotonicity marks for polarity
marking, instead he decorated the resulting category of each functor with the so called
polarity mappings; the mapping i designates that polarity is kept, the mapping r indicates
that polarity is reversed; and the mapping b designates that polarity is broken. He did
not prove that his algorithm is equivalent or better, in some sense, to previous ones, nor
did he offer a proof of the soundness of his algorithm.

Moss [Mos12] formalized the proposal for internal polarity marking of Dowty by a
theory for monotonic functions through preorders (for monotone increasing functions)
and its opposites (for monotone decreasing functions). Specifically, an increasing mono-
tonic function is a monotonic function from the preorder defined over its domain to the
preorder defined over its range, and a decreasing monotonic function is a monotonic
function from the preorder defined over its domain to the opposite preorder defined over
its range. His theory allows him to prove that types σ+ and σ− are isomorphic, with this,
it is formalized that some nodes in the proof tree have two types. Also, he states the
soundness of internalized polarity marking with respect to certain semantics, through the
Context Lemma.

2.3 Solving Anaphora

Anaphora is the linguistic phenomenon in which a reference points back to an entity
previously introduced in discourse. The reference is called anaphor and the pointed
entity is called antecedent. Anaphora resolution is very important because it guarantees
the cohesion among the sentences of a discourse.

Mitkov [Mit02] identifies the following kinds of anaphora according to the form of
the anaphor:

• pronominal anaphora, when the anaphor is a personal, possessive, reflexive, demon-
strative, or relative pronoun. Mary loves a book which Smith abhors.

• lexical noun phrase anaphora, the anaphor is a definite noun phrase or a proper
name. Both noses went down to the footprints in the snow. These footprints were very
fresh.
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• noun anaphora, the anaphor is a non-lexical proform pointing back to the head
noun or nominal group of a noun phrase. I don’t think I’ll have a sweet pretzel, just a
plain one.

• verb anaphora, the auxiliary verb do (in any conjugation) is the anaphor that
points back to a verb or verb phrase. Romeo Dallaire, the Canadian general in charge,
begged for reinforcements; so did Boutros-Ghali.

• adverb anaphora, the anaphor can be a locative adverb as there, or a temporal adverb
as then. Will you walk with me to the garden? I’ve got to go down there and Bugs has to go
to the longhouse.

According to the locations of the anaphor and the antecedent there are only two kinds
of anaphora, intrasentential (sentence) anaphora and intersentential (discourse) anaphora.
Therefore, the previous examples of pronominal and noun anaphora are intrasentential,
the others are intersentencial.

From the very definition of anaphora, a general algorithm to solve anaphora can
be easily inferred: 1. identification of anaphors, 2. location of potencial antecedents,
3. resolution of anaphora, by choosing, for each anaphor identified, an antecedent from
the set of potencial antecedents.

In solving anaphora the following kind of knowledge is required:

• morphological and lexical, in identifying pronouns, and in knowing the gender and
number of nouns and pronouns.

• syntactic, to identify proper nouns, common nouns and noun phrases.

• semantic, consider the example: The petrified kitten refused to come down from the tree.
It gazed beseechingly at the onlookers below. It is not possible to decide if it is pointing
back to The petrified kitten or the tree because both are singular and gender neutral.
To choose one of them, it is necessary the semantic knowledge about the verb gaze
which requieres that the subject in an active voice sentence be animate, and also
that kitten is an animated entity.

• discourse, consider the example: Tilly tried on the dress over her skirt and ripped it.
Without knowing the context it is not possible to assure if it refers to the dress or to
the skirt.

• real world or common sense, consider the example: The soldiers shot at the women
and they fell. Only having the rule “If X shoots at Y and if Z (Z ∈ {X,Y}) falls, then it
is more likely for Z to be Y”, it can be said that they refers to the women.
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From the different kinds of anaphora, pronominal anaphora is the most usually found,
and also it is the easiest to solve, because the set of pronouns is finite and is clearly
identified1. Compare this with the case of lexical noun phrase anaphora, actually it is
very hard to compute when a definite noun phrase is playing the role of an anaphor.

Paradigms of anaphora resolution in the 1960s, 1970s and 1980s were mainly based on
some of the knowledge already mentioned, it is said that they are methods of extensive
domain and linguistic knowledge.

From the 1990s up to now, the paradigm shifts to knowledge poor methods, this was
possible because the availability of Part of Speech Taggers, shallow parsers, raw and
annotated corpora, for example. With these tools, methods for solving anaphora, based
on probability, clustering and machine learning techniques, have been created.

But, also, logical formalisms have been used, the work of Montague about logical
semantics of natural language [Mon70a, Mon70b, Mon73] has been the inspiration of
almost all the subsequent research on formal syntax and semantics, both to criticize it
and to improve it. He based his work on predicate logic and lambda calculus. His main
insight is that the semantics of a sentence depends only on its constituent parts, the so
called principle of compositionality.

The principle of compositionality fails with the intersentential anaphora, because the
antecedent of an anaphor is in a previous sentence. Hence, the meaning of a sentence
change in accordance to its context. In this sense the meaning of a sentence is more
dynamic than static. That is the reason to present two of the more cited works about
pronominal anaphora resolution.

Both of them end representing the sentences of a discourse in First Order Logic and
have a model theoretic semantics, but Discourse Representation Theory has the advantage
of translating sentences in natural language to first order formulas, in an automatic
fashion.

2.3.1 Discourse Representation Theory

Discourse Representation Theory (DRT) of Kamp and Reyle [Kam81, KR93, KVGR11]
is considered the first formal proposal that solves intersentential anaphora. Indefinite
noun phrases introduce new free variables, called discourse referentes (also the constants

1In Computational Linguistics it is almost impossible to talk of general rules, any try of generalization
sooner or later is reached by counterexamples. Of course, anaphora resolution is not the exception. Such is
the case of the so called pleonastic it, in which it does not appear in a referential way, as in the sentence It
is late.

Formal Approaches to Textual Entailment,
Polarity, and Pronominal Anaphora



26 Solving Anaphora

associated with proper names are considered discourse referents), definite noun phrases
and pronouns are also variables, but they are linked to appropiate antecedent variables.

An intransitive verb is treated as a relation constant of arity one, and if it is applied
to a discourse referent forms a condition; transitive verbs are relation constants of arity
two, and if they are applied to two discourse referents they are also a condition. The
appropiate linking of the discourse referent δ1 to the previous one δ2, δ1 is δ2 is also a
condition.

The main representation structure in DRT is called a box, this box has two parts and it
is written [x1 . . . xm∣γ1, . . . ,γn], where x1, . . . ,xm,m ≥ 0 are variables, and γ1, . . . ,γn(n ≥ 0)
are conditions. It is supposed that each processed sentence produces a box, but in
accordance with the kind of discourse the boxes newly created are composed of previous
boxes by means of the logical connectives not, or and ⇒, creating compound conditions.

After processing all the sentences of a discourse, a compound box is obtained and it
is interpreted on ordinary first-order models. In other words, on ending the analysis of
discourse a logical form in first order logic is obtained.

In the interpretation part, the dynamizer concept is embedding, it is a function mapping
discourse referent variables into elements in the domain. Hence, in processing a sentence,
the previous embedding changes in accordance to the new discourse referents introduced
by the sentence being processed, nothing more has to change.

Without going into details, consider the following discourse:

(2.3) A man walks in the park. He whistles

The box corresponding to (2.3) is:

[x∣man(x) ∧walk in the park(x) ∧whistle(x)]

Which means that, the discourse referent x is in the scope of the conditions man(x),
walk in the park(x), and whistle(x). Solving in this way the problem of intersentential
anaphora.

2.3.2 Dynamic Predicate Logic

Dynamic Predicate Logic (DPL) is the proposal of Groenendijk and Stokhof [GS91] to
recover the principle of compositionality in solving intersentential anaphora. Consider
again the pair of sentences in 2.3

The interest here is that the pronoun “He” in the second sentence be bound to the
indefinite noun phrase “A man” of the first sentence. As an indefinite noun phrase
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is associated with an existential quantifier and an appropriate predicate, a possible
translation of (2.3) in Predicate Logic (PL) is:

(2.4) ∃x[man(x) ∧walk in the park(x) ∧whistle(x)]

But, translating the first sentence of (2.3) to PL, ∃x[man(x) ∧walk in the park(x)] is
gotten and this is not a subformula of (2.4).

If it is wished that the representations of the sentences of a discourse be subformulas
of the representation of the discourse as a whole, then the following translation of (2.3) is
needed.

(2.5) ∃x[man(x) ∧walk in the park(x)] ∧whistle(x)

Unfortunately, in this case the variable x in whistle(x) is not in the scope of the existential
quantifier. Notice that the concatenation of the sentences in a discourse has been translated
to predicate formulas through the conjunction of formulas.

It should be noted that previous to each sentence there is information, that each
sentence may contribute with more information, and that all the information collected
has to be passed to the following sentence.

Information in DPL is intended as a function mapping variables to elements in
the domain of discourse, such a function is called an assigment. If G is the set of
all asignments, then JKDPL ⊆ G ×G. Intuitively, it means that each formula has input
information and output information, depending on the kind of formula, input information
may change or not.

If the assignment g is the input information and the assignment h is the output
information for φ∧ψ, then g will be the input information for φ that may change it to
get the output information k; now k will be the input information for ψ that may change
it to the output information h, in this way the information can be passed from a sentence
to the next one, formally:

Jφ∧ψK = {⟨g,h⟩ ∣ ∃k ∶ ⟨g,k⟩ ∈ JφK & ⟨k,h⟩ ∈ JψK} (2.6)

If the assignment g is the input information and the assignment h is the output
information for ∃xφ, then an assignment k, which is as g except in x, should exist, the
assingnment k will be the input information for the formula φ and it may change it to
get the output information h. Hence the existential quantifier is the unique constructor of
formulas that changes the input information, this is formally defined by:

J∃xφK = {⟨g,h⟩ ∣ ∃k ∶ k[x]g & ⟨k,h⟩ ∈ JφK} (2.7)
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The meaning of the other constructors for formulas is the same as in PL, because
they do not change the input information, which is denoted by h = g in its respective
definitions. The definition of the meaning of an atomic predicate is presented in order to
follow the example 2.3.1.

JRt1 . . . tnK = {⟨g,h⟩ ∣ h = g & ⟨Jt1Kh, . . . , JtnKh⟩ ∈ F(R)} (2.8)

Example 2.3.1. In DPL J∃x[man(x)∧walk in the park(x)]∧whistle(x)K = J∃x[man(x)∧
walk in the park(x) ∧whistle(x)]K.

J∃x[man(x) ∧walk in the park(x)] ∧whistle(x)K 2.6=

{⟨g,h⟩ ∣ ∃k ∶ ⟨g,k⟩ ∈ J∃x[man(x) ∧walk in the park(x)]K & ⟨k,h⟩ ∈ Jwhistle(x)K} 2.7=

{⟨g,h⟩ ∣ ∃k ∶ ∃k ′ ∶ k ′[x]g & ⟨k ′,k⟩ ∈ Jman(x) ∧walk in the park(x)K

& ⟨k,h⟩ ∈ Jwhistle(x)K} 2.6=

{⟨g,h⟩ ∣ ∃k ∶ ∃k ′ ∶ k ′[x]g ∃k ′′ ∶ ⟨k ′,k ′′⟩ ∈ Jman(x)K & ⟨k ′′,k⟩ ∈ Jwalk in the park(x)K

& ⟨k,h⟩ ∈ Jwhistle(x)K} 2.8=

{⟨g,h⟩ ∣ ∃k ∶ ∃k ′ ∶ k ′[x]g ∃k ′′ ∶ k ′′ = k ′ & k ′′(x) ∈ F(man) & ⟨k ′′,k⟩ ∈ Jwalk in the park(x)K

& ⟨k,h⟩ ∈ Jwhistle(x)K} 2.8=

{⟨g,h⟩ ∣ ∃k ∶ ∃k ′ ∶ k ′[x]g & k ′(x) ∈ F(man) & k = k ′ & k(x) ∈ F(walk in the park)

& ⟨k,h⟩ ∈ Jwhistle(x)K} 2.8=

{⟨g,h⟩ ∣ ∃k ′ ∶ k ′[x]g & k ′(x) ∈ F(man) & k ′(x) ∈ F(walk in the park)

& h = k ′ & h(x) ∈ F(whistle)} =

{⟨g,h⟩ ∣ ∃h ∶ h[x]g & h(x) ∈ F(man) & h(x) ∈ F(walk in the park) & h(x) ∈ F(whistle)} 2.7=

J∃x[man(x) ∧walk in the park(x) ∧whistle(x)]K

It should be mentioned that there exist proposals to dynamise higher order logics
[GS89], [Eij99], [Jäg05], [dG06], [MP14], but they are out of the scope of this work.
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Chapter 3

Polarity Algorithms

In this chapter the general concept of polarity is discussed in some detail. Later, the
algorithms of van Benthem [vB86, vB91], Sánchez [SV91], Dowty [Dow94], and van Eijck
[vE07] are presented and explained.

Finally, the equivalence among the four algorithms is proved, which makes clear
that internal and external polarity marking compute the same notion of polarity. As a
further consequence, the soundness of the algorithms of van Benthem and van Eijck is
established.

3.1 Introduction

The concept of polarity is pervasive in natural language, relating narrowly syntax,
semantics and pragmatics [Gia11, Isr11], it refers to items of many syntactic categories
such as nouns, verbs and adverbs. Neutral polarity items are those that can appear
in affirmative and negative sentences, negative polarity items (NPI) cannot appear in
affirmative sentences, and positive polarity items (PPI) cannot appear in negative sentences.

If polarity constraints are not fulfilled for NPIs and PPIs, the sentence is ill-formed,
not as a consequence of a syntactic rule, but because of its meaninglessness. For example
[Gia11]: yet is a NPI, so it is right to write Bill isn’t here yet, but it is wrong to write Bill
is here yet; already is a PPI, then it is right to write John is here already, but John isn’t here
already is not.

The main matter is to characterize what expressions licence NPIs and PPIs. According
to Israel [Isr11], Ladusaw found that most of NPIs in English are licenced by downward
entailing propositional operators, these operators reverse the relation of semantic strength
among expressions. Similarly, PPIs are licenced by upward entailing propositional operators,
they preserve the relation of semantic strength among expressions.

Expression e1 is semantically stronger than expression e2 if the set denoted by the
meaning of e1 is a subset of the set denoted by the meaning of e2; hence, in accordance
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with Ladusaw (quoted in [Isr11]) to find a grammar for polarity items it is necessary to
use some logical form for sentences, and then their representation in a model theory.

An alternative from logic to the Ladusaw proposal is NL. Although NL goes back to
Aristotle, the core idea of the NL Program of van Benthem et al. [vB07, Kar15] is that
natural language, besides being a vehicle to communicate things, also serves to reason
without having to use some logical form as predicate logic or high order logic; i.e., the
syntactic analysis of a sentence is enough to reason, avoiding a model theory.

NL uses a proof theory, called categorial grammar, to parse a sentence [vB86, vB91,
SV91]. In these grammars each word in a sentence is assigned to a type (also called
category). It is assumed that types denote sets, each denotation is partially ordered, and
also that types behave as functors. Some functors are upward monotone and correspond
to the Ladusaw upward entailing propositional operators, others are downward monotone
and correspond to the Ladusaw downward entailing propositional operators, some others
are not monotone. Thus, characterizing functors according to their monotonicity is a
static feature.

In order to know if an expression is a well formed sentence, the functors, which are
assigned to each word in the expression, are composed forming a proof tree. Monotonicity
of functors could change according to their place in composition; this is the concept of
polarity in NL, it is a dynamic feature that allows us to reason, a generalization of the
monotonicity concept.

Remembering that the denotations of types are partially ordered, if on parsing a
sentence one of their expressions has positive polarity, then it can be replaced with a
greater expression; if the expression has negative polarity, then it can be replaced with a
lesser expression, without changing in both cases the truth value of the sentences.

We want to characterize the possibilities of NL in problems that require textual
inference, and we have found different algorithms for polarity marking. Specifically, we
refer to the algorithms of van Benthem [vB86, vB91], Sánchez [SV91], Dowty [Dow94],
and van Eijck [vE07].

In his paper, Dowty supposes that his algorithm is equivalent to the algorithm of
Sánchez, nevertheless, he does not prove it. Moss [Mos12] proves that Dowty’s internal
algorithm is sound, but neither its equivalence with an external algorithm has been
proved, nor what the relation between the semantics of Moss and the semantics of
Sánchez is. Finally, Sánchez is recognized because he was the one who formalized van
Benthem’s ideas about NL.

In a few words, the following questions arise:

• Is the polarity computed by the external algorithm of Sánchez equal to the polarity
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computed by the internal algorithm of Dowty?

• Do the external algorithms of van Benthem and van Eijck compute the same polarity
as that of the external algorithm of Sánchez?

• What is the relation between the semantics of Sánchez and the semantics of Moss?

We decided to prove the equivalence between the four analyzed algorithms, showing
by this means that internal and external algorithms for polarity marking are equivalent,
and collaterally that the algorithms of van Benthem and van Eijck are sound.

Even more, as the algorithms of Sánchez and Dowty are equivalent, we have that the
semantics proposed by Sánchez, for his algorithm for polarity marking, is equivalent to the
semantics proposed by Moss for the algorithm of Dowty. This is because independently
of how each semantics justifies the soundness of computing polarity by the respective
algorithm, once the equivalence between the two algorithms is established, the two
semantics make sound each way to compute polarity; in this sense the semantics of
Sánchez and Dowty are equivalent.

3.2 Polarity Marking

There are two sorts of polarity marking algorithms: external and internal. The external
ones compute the polarity outside the proof system, nevertheless they use the proof tree
to compute polarity. The internal methods compute polarity at the same time that the
proof tree is being constructed, i.e., the proof system is designed to mark each node in
the proof tree with its corresponding polarity.

In this part, we discuss the algorithms for polarity marking of van Benthem, Sánchez,
Dowty and van Eijck.

The algorithm of van Benthem constructs the proof tree from the leaves to the root.
To assign polarity marks to the nodes of the tree, it proceeds from the root to the leaves.
The algorithm of Sánchez constructs the proof tree from the leaves to the root, assigning
polarity marks is also done from the leaves to the root. In the algorithm of Dowty, polarity
marks are computed at the same time as the proof tree is being built from the root to the
leaves. The polarity map assignment algorithm of van Eijck, is done from the leaves to
the root, polarity marks are computed from the root to the leaves.
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3.2.1 van Benthem’s Algorithm

According to Icard and Moss [IIM14], van Benthem [vB86] and Sánchez [SV91] define
proof systems to reason about entailment using monotonicity in higher order languages.

Both van Benthem and Sánchez use, for the syntactic analysis of a sentence, a version
of categorial grammars due to Ajdukiewicz. This is based on the basic types e (for
entities), and t (for truth values), more complex types of the categorial language are
constructed recursively by the creation of functors, formally:

Definition 3.2.1. [Dow94] The categorial language of the calculus of Ajdukiewicz LL is
given by:

1. e and t belong to LL.

2. If α and β belong to LL, then (α,β) also belongs to LL.

If (α,β) in LL, then the unique inference rule in the calculus of Ajdukiewicz takes
one of the forms:

(α,β) α

β
or

α (α,β)
β

, (3.1)

i.e., it does not matter if the type α appears either on the left, or on the right of the functor
(α,β). ◻

We have a proof tree in Figure 3.1 for the sentence Dobie didn’t bring every ball. In this
figure, it is worth noting that: the type of every has its first argument on the right; the
type of every ball has its argument on the left; the type of Dobie has its argument on the
right, and the type t has been derived from both of them, indicating that the expression
in natural language is a well formed sentence.

Dobie

((e,t),t)

didn ′t

((e,t), (e,t))

bring

(e, (e,t))

every

((e,t), ((e, (e,t)), (e,t)))
ball

(e,t)

((e, (e,t)), (e,t))

(e,t)

(e,t)
t

Figure 3.1: Proof tree for the sentence Dobie didn’t bring every ball.

In order to mark either the upward monotonicity of a functor from α to β, (α+,β),
or the downward monotonicity of a functor from α to β, (α−,β), the following clause is
added to Definition 3.2.1:

If (α,β) is in LL, then (α+,β), and (α−,β) are also in LL.
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So that, it is supposed that the lexicon contains the information of monotonicity that
some functors require, as shown below:

Dobie ∶ ((e, t)+, t) didn ′t ∶ ((e, t)−, (e, t))

bring ∶ (e, (e, t)) every ∶ ((e, t)−, ((e, (e, t))+, (e, t)))

ball ∶ (e, t)

As an example, we have the proof tree in Figure 3.2 with lexical monotonicity marking
for the sentence Dobie didn’t bring every ball.

Dobie

((e, t)+, t)

didn ′t

((e, t)−, (e, t))

bring

(e, (e, t))

every

((e, t)−, ((e, (e, t))+, (e, t)))
ball

(e, t)
((e, (e, t))+, (e, t))

(e, t)
(e, t)

t

Figure 3.2: Proof tree with lexical monotonicity marking for the sentence Dobie didn’t bring every
ball.

Once the proof tree has lexical monotonicity marks, the algorithm of van Benthem
begins marking the root of the proof tree with polarity +, then if the functor in turn is
upward monotone, the polarity mark is propagated; in case that the functor is downward
monotone, then the polarity mark of the argument is reversed because a downward
monotone functor reverses the order relation of the elements of its domain.

Algorithm 3.2.2. van Benthem external polarity algorithm.

1. Label the root with +.

2. Propagate notations up the tree.

(a) If a node of type β is labeled l and its children are of type (α+,β) and α, then

both children are labeled l (diagrammatically,
(α+,β)

l

α
l

β
l

).

(b) If a node of type β is labeled l and its children are of type (α−,β) and α, then
the former child is to be labeled l and the latter child is to be labeled −l, that is,

the flipped version of l (diagrammatically,
(α−,β)

l

α
−l

β
l

).

Figure 3.3 exemplifies Algorithm 3.2.2 for the sentence Dobie didn’t bring every ball.
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Dobie

((e, t)+, t)
+

didn ′t

((e, t)−, (e, t))
+

bring

(e, (e, t))
−

every

((e, t)−, ((e, (e, t))+, (e, t)))
−

ball

(e, t)
+

((e, (e, t))+, (e, t))
−

(e, t)
−

(e, t)
+

t
+

Figure 3.3: Proof tree with polarity marks for the sentence Dobie didn’t bring every ball, using the

algorithm of van Benthem.

3.2.2 Sánchez’s Algorithm

As stated by Dowty [Dow94], to find the polarity of the elements of a sentence, Sánchez de-
fines a three step method: lexical monotonicity marking, external monotonicity marking,
and determining the polarity of each constituent.

For the lexical monotonicity marking, he does the same as van Benthem, i.e., he
considers that the lexicon has information about the sort of monotonicity of some functors.
Figure 3.2 shows a proof tree with lexical marks for Dobie didn’t bring every ball.

For the external monotonicity marking, he adds “+” and “−” to the functor and
argument nodes in a proof tree, according to the following rules:

(α,β) α

β
⇒

(α,β)
+

α

β
, (3.2)

(α+,β) α

β
⇒

(α+,β)
+

α
+

β
, (3.3)

(α−,β) α

β
⇒

(α−,β)
+

α
−

β
, (3.4)

A proof tree with external monotonicity marks is shown in Figure 3.4 for the sentence
Dobie didn’t bring every ball.

Once having the proof tree with external monotonicity marks, Sánchez defines the
following algorithm to compute polarity.

Algorithm 3.2.3. Sánchez external polarity algorithm. If D is a proof tree with external
monotonicity marks, and root node ρ, then:
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Dobie

((e, t)+, t)
+

didn ′t

((e, t)−, (e, t))
+

bring

(e, (e, t))
+

every

((e, t)−, ((e, (e, t))+, (e, t)))
+

ball

(e, t)
−

((e, (e, t))+, (e, t))
+

(e, t)
−

(e, t)
+

t

Figure 3.4: Proof tree with external monotonicity marks for the sentence Dobie didn’t bring every
ball.

1. a node γ has polarity in D if and only if each node on the path from γ to ρ has
external monotonicity mark, and

2. a node γ is positive if and only if γ has polarity and if the number of nodes in this
path marked by “−” is even;

3. a node γ is negative if and only if γ has polarity and if the number of nodes in this
path marked by “−” is odd;

On applying the algorithm of Sánchez to the proof tree with external monotonicity
marks for the sentence Dobie didn’t bring every ball (Figure 3.4), we get the proof tree with
polarity marks of Figure 3.3.

3.2.3 Dowty’s Algorithm

Dowty [Dow94] defines an internal algorithm, in which marking of monotonicity and
computing the polarity are made in only one step, when the proof tree is being built. So
polarity determination is done within the proof system, this is why it is called internal.

Dowty uses a version of categorial grammars that takes into account the position
of the argument of each functor, hence to form a new functor category there are two
operators “/” and “/”. Intuitively, A/B(B/A) is a functor category that search for B on
the right (left) to give A as result.

Definition 3.2.4. [Dow94] The categorial language is the following:

1. NP (= type e), S (= type t), and CN (= (e, t)) are primitive categories.
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2. If A and B are any categories, so are (A/B)1 and (B/A).

3. If (A/B) is a category, then we have that (A+/B+), (A+/B−), (A−/B+) and (A−/B−)
are also categories.

4. If (B/A) is a category, then we have that (B+/A+), (B−/A+), (B+/A−) and (B−/A−)
are also categories. ◻

As it has been seen, in the proposals of van Benthem and Sánchez the symbols “+”
and “−” are used for two related purposes: to indicate if the functors are monotone either
upward, or downward, and also to indicate if the polarity is either positive, or negative.
In the proposal of Dowty these symbols only indicate the polarity of each node of the
proof tree. To achieve it, the words can belong to two different types, depending on
the context in which they appear. For example, every can belong to either the category
(TV+/VP+)/CN−, or to the category (TV−/VP−)/CN+, both categories encode the same
information, namely that every reverses polarity in its first argument, and preserves
polarity in its second argument.

We have said that in the proposal of Dowty, the symbols “+” and “−” only indicate
polarity, therefore the elements of the lexicon can have both polarity marks “+” and “−”.
The information, that a functor encodes, refers to: the functors that preserve polarity
(for example, (A+/B+) and (A−/B−)), and the functors that reverse polarity (for example,
(A+/B−) and (A−/B+)).

Definition 3.2.5. [Dow94] Polarity marks and sorts of functors:

1. Lexical items in general appear in both a “+”-marked and a “−”-marked category
though with the same interpretation.

2. Polarity preserving functors appear in categories of the form (A+/B+), (A−/B−),
(B+/A+), and (B−/A−).

3. Polarity reversing functors appear in categories of the form (A+/B−), (A−/B+),
(B−/A+), and (B+/A−). ◻

To assign polarity marks to each node, at the same time as the proof tree is con-
structed, the categorial elimination rules have to be applied according to their character
of preserving (reversing) polarity. For example, for preserving polarity there exist rules
of the form (Ax/Bx) Bx

Ax
, with x ∈ {+,−}, and for reversing polarity there exist rules of

the form (Ax/By) By

Ax
, with x,y ∈ {+,−},x ≠ y.

1Although, in examples where categorial grammars are used with the operators / and /, the most
external parentheses will be avoided.
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Definition 3.2.6. [Dow94] The categorial elimination rules (or “Functional Application”
Rules) must appropiately respect +/− marking:

1. Polarity preserving elimination rules:

(A+/B+) B+

A+

B+ (B+/A+)
A+

(3.5)

(A−/B−) B−

A−

B− (B−/A−)
A−

(3.6)

2. Polarity reversing elimination rules:

(A+/B−) B−

A+

B− (B−/A+)
A+

(3.7)

(A−/B+) B+

A−

B+ (B+/A−)
A−

(3.8)

◻

Dobie

S+/VP+

didn ′t

VP+/VP−

bring

TV−

every

(TV−/VP−)/CN+

ball
CN+

TV−/VP−

VP−

VP+

S+

Figure 3.5: Proof tree with polarity marks using the algorithm of Dowty for the sentence Dobie
didn’t bring every ball.

Now let us construct the proof tree of Figure 3.5. We have to derive S+: as Dobie is
a functor that preserves polarity it could belong to the category S+/VP+ or S−/VP−, but
we want to derive S+, therefore we can only apply the rule for / of (3.5) marking with
polarity “+” the argument, i.e., VP+.

In order to derive VP+, we note that didn’t is a functor that reverses polarity, hence it
could belong to the categories VP+/VP− or VP−/VP+, but we want to derive VP+, so we
apply the rule / of (3.7), marking with polarity “−” the argument, i.e., VP−.

Now we have to derive VP−, bring could belong to the category TV+ or TV−, we
suppose that it belongs to TV+, as we wish to derive VP− we apply the rule for / of (3.8),
now we must derive TV+/VP−.

To derive TV+/VP− we have that every reverses polarity in its first argument, and pre-
serves polarity in its second argument, therefore its possible categories are (TV+/VP+)/CN−
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and (TV−/VP−)/CN+, we realize here that it is not possible to derive TV+/VP−, therefore
our supposition that bring belonged to TV+ is wrong, hence it should belong to TV−, now
we have to derive TV−/VP−.

In order to derive TV−/VP−, we have that every reverses polarity in its first argument,
and preserves polarity in its second argument, therefore its possible categories are
(TV+/VP+)/CN− and (TV−/VP−)/CN+, but we want to derive TV−/VP−, so every has to
belong to the category (TV−/VP−)/CN+, which also determines that ball has to belong to
the category CN+, in the last step we use the rule for / of (3.8).

3.2.4 van Eijck’s Algorithm

Although, van Eijck does not define formally the categorial language that he used in his
work, it is inferred from context that it is a categorial grammar as the one found in the
paper of Dowty, except that van Eijck uses a binary functor of the form A/C/B, as can be
expected, it searches to the left for A, and to the right for B, giving as result C.

To avoid increasing the categorial language at keeping track of the monotonicity of
functors (as it is done in the proposals of van Benthem and Sánchez), or their compo-
sition (as it is done by Dowty), van Eijck uses three mappings on the polarity marks
m = {+,−,0}2. The domain and range of the three mappings (these are called marker
transformers) is m. The first mapping is identity i, which preserves monotonicity; the
second mapping is reverse r, which reverses polarity, given for r(+) = −, r(−) = + and
r(0) = 0; the third mapping is break b, given for b(x) = 0, which marks non-monotonicity.

The polarity mappings are annotations over the resulting category of the functors, as
it is observed in the following example of lexicon.

Dobie ∶ (Si/VP) didn ′t ∶ (VPr/VP)

bring ∶ TV every ∶ ((TV/VPi)r/CN)

ball ∶ CN

Later, van Eijck defines the algorithm 3.2.7, this propagates the polarity mappings
from the leaves to the root of the tree. First, the categories that only are arguments
do not have polarity mapping (for example, bring). Then, the polarity mapping of the
resulting category of the current functor, is passed on to the category that is obtained
by applying the functor to its arguments, whether the arguments have or do not have a
polarity mapping assigned. This is done until the root is reached.

2Also, with these mappings the meaning of the symbols + and − is now unique, remember that it was
not the case in the proposals of van Benthem and Sánchez.
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Algorithm 3.2.7. van Eijck’s Polarity Map Assignment

Leaf Marking Functional lexical categories have all their result categories labeled with
marker transformers. Lexical argument categories get an unlabeled basic category.

Tree Marking From a function (Cf/A)f ′ and an argument Ag, (or from an argument
Ag and a function (A/Cf)f ′ , or from an argument Ag, a function (A/Cf/B)f ′ and
an argument Bh), where f, f ′,g and h are marker transformers, it is obtained Cf,
diagrammatically: (Cf/A)f ′ Ag

Cf
(or Ag (A/Cf)f ′

Cf
, or Ag (A/Cf/B)f ′ Bh

Cf
).

For example, in Figure 3.6 we have a proof tree with polarity map assignment for
the sentence Dobie didn’t bring every ball, in this figure we see that from the nodes
((TV/VPi)r/CN) and CN it is obtained (TV/VPi)r, which is the resulting category of the
functor ((TV/VPi)r/CN). Note that in this case the argument CN, because it is a leaf and
argument node, does not have a polarity map assigned.

Following with Figure 3.6, we note that from the nodes (VPr/VP) and VPi the node
VPr is obtained, in this case the argument node has polarity map i, which is ignored.
Finally, from the functor node (TV/VPi)r and argument node TV , VPi is derived; note
that the polarity map r of the functor is ignored, only the polarity map i of the resulting
category is propagated. Nevertheless, the polarity maps now ignored are very important
to mark polarity, as it is seen in Algorithm 3.2.8 and related example.

Dobie

(Si/VP)

didn ′t

(VPr/VP)

bring

TV

every

((TV/VPi)r/CN)
ball
CN

(TV/VPi)r
VPi

VPr
Si

Figure 3.6: Proof tree with polarity map assignment for the sentence Dobie didn’t bring every ball.

Once we have the proof tree with polarity maps assigned, in order to mark the
polarity of each node, van Eijck defines the external Algorithm 3.2.8, this algorithm begins
assigning the positive polarity mark + to the root. Then, for the remaining nodes, the
polarity mark l, of the node obtained by applying a functor to their arguments, is passed
to the functor node, but the argument node is assigned with the resulting polarity by
applying the polarity map f to l, i.e., f(l).

Algorithm 3.2.8. van Eijck’s Polarity Marking Algorithm
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Root Marking The main structure Cf to be marked has positive polarity, so it is marked
with +: (C+f ).

Component Marking If a structure Cf has polarity marking l (Clf ), then:

Leaf Marking If Clf is a leaf, then done.

Composite Marking If Clf is derived from a function Cf/A and argument A (or an
argument A and a function A/Cf, or an argument A, a function A/Cf/B and
an argument B), then the function gets polarity marking l, and the arguments
get polarity marking f(l), where f is the polarity marking map at node Clf,
diagrammatically (Cf/A)l Af(l)

Clf

(or Af(l) (A/Cf)l

Clf

, or Af(l) (A/Cf/B)l Bf(l)

Clf

).

Dobie

(Si/VP)+

didn ′t

(VPr/VP)+

bring

TV−

every

((TV/VPi)r/CN)−
ball
CN+

(TV/VPi)−r
VP−i

VP+r

S+i

Figure 3.7: Proof tree with polarity marks for the sentence Dobie didn’t bring every ball, using the

algorithm of van Eijck.

In Figure 3.7, we find a proof tree with polarity marks, applying the algorithm 3.2.8 to
the proof tree of Figure 3.6, for the sentence Dobie didn’t bring every ball.

In order to close this section, in Table 3.1 the main features of each algorithm are
summarized.

Feature van Benthem Sánchez Dowty van Eijck

computes polarity from root to leaves from leaves to root from root to leaves from root to leaves

kind of functor non-positional non-positional positional positional

kind of algorithm external external internal external

categories by lexical item One One Two One

constructs a proof tree No No Yes No

needs backtracking No No Yes No

Table 3.1: Main features of the presented polarity algorithms.
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3.3 Algorithmic Equivalences

According to Icard and Moss [IIM14], the first to propose an algorithm for polarity
marking was van Benthem [vB86], that is why we prove the equivalence of the algorithms
of Sánchez, Dowty, and van Eijck with respect to the algorithm of van Benthem.

Intuitively, any algorithm that computes polarity has to take into account the composi-
tion of upward monotone and downward monotone functors, as in Table 2.2. Another
element to consider is that the algorithms of van Benthem, Dowty and van Eijck assign
polarity marks from the root to the leaves, and the root is marked with positive polarity.
The algorithm of Sánchez proceeds from the leaves to the root.

Another important consideration is that, in the algorithms that assign polarity marks
from the root to the leaves, the polarity of each node (excepting the root) depends on: the
polarity of its parent node, the kind of monotonicity of the functor, and whether the node
in consideration is a functor or an argument.

In the algorithm of Sánchez the polarity of each node depends on: the external
monotonicity mark of the node, and the parity of the external monotonicity marks on the
path from the node to the root.

Of course these considerations determine the cases in the following proofs.

3.3.1 van Benthem and Sánchez

Theorem 3.3.1. If the algorithm of van Benthem marks node i with polarity l, then the algorithm
of Sánchez marks the same node i with polarity l.

Proof. The algorithm of van Benthem marks with polarity l = + (or −) to node i. We have
two cases:

1. The algorithm of van Benthem uses the clause
(α+,β)

l

α
l

β
l

. Independently of,

whether node i is the functor (α+,β)
l

or it is the argument α
l
, its parent should

have positive (or negative) polarity. Since this polarity was propagated from the

root node (which always is marked with positive polarity), the clause
(α−,β)

l

α
−l

β
l

should have been applied 2n (or 2n+ 1) times. On the other hand, the algorithm of
Sánchez would apply the marking rule for upward monotone functions, namely,

(α+,β) α

β
⇒

(α+,β)
+

α
+

β
. Independently of, whether node i is the functor or it

is the argument, by hypothesis there are 2n (or 2n+ 1) applications of downward
monotone functions on the path from its parent to the root. Accordingly the
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algorithm of Sánchez applies 2n (or 2n+1) times the rule (α−,β) α

β
⇒

(α−,β)
+

α
−

β
,

leaving on the path from its parent to the root 2n (or 2n+ 1) monotonicity marks −,
hence marking node i with positive (or negative) polarity.

2. The algorithm of van Benthem uses the clause
(α−,β)

l

α
−l

β
l

. There are two cases:

(a) If node i is the functor (α−,β)
l

its parent should have positive (or negative)
polarity. Since this polarity was propagated from the root node (which always

is marked with positive polarity), then the clause
(α−,β)

l

α
−l

β
l

should have been

applied 2n (or 2n + 1) times. On the other hand, the algorithm of Sánchez
would apply the marking rule for downward monotone functions, namely,

(α−,β) α

β
⇒

(α−,β)
+

α
−

β
, then as node i is the functor, by hypothesis there

are 2n (or 2n+ 1) applications of downward monotone functions on the path
from its parent to the root. Accordingly the algorithm of Sánchez applies 2n
(or 2n+ 1) times the rule

(α−,β) α

β
⇒

(α−,β)
+

α
−

β
, leaving on the path from its parent to the root 2n (or

2n+ 1) monotonicity marks −, hence marking node i with positive (or negative)
polarity.

(b) If node i is the argument α
−l

its parent should have negative (or positive) polarity.
Since this polarity was propagated from the root node (which always is marked

with positive polarity), the clause
(α−,β)

l

α
−l

β
l

should have been applied 2n+ 1

(or 2n) times. On the other hand, the algorithm of Sánchez would apply one
time the marking rule for downward monotone functions, namely,

(α−,β) α

β
⇒

(α−,β)
+

α
−

β
, then as node i is the argument, by hypothesis there

are 2n+ 1 (or 2n) applications of downward monotone functions on the path
from its parent to the root. Accordingly the algorithm of Sánchez applies

1+ 2n+ 1 = 2n+ 2 (or 1+ 2n = 2n+ 1) times the rule (α−,β) α

β
⇒

(α−,β)
+

α
−

β
,

leaving on the path from its parent to the root 2n+ 2 (or 2n+ 1) monotonicity
marks −, hence marking node i with positive (or negative) polarity.

◻

Theorem 3.3.2. If the algorithm of Sánchez marks node i with polarity l, then the algorithm of
van Benthem marks the same node i with polarity l.
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Proof. The algorithm of Sánchez marks node i with polarity l = + (or −), we have two
cases:

1. Node i is a functor node. Every functor node has + as external monotonicity mark,
independently of its lexical monotonicity mark. Therefore, there are 2n (or 2n+ 1)
nodes with monotonicity mark −, from its parent to the root. This case arises when

the rule (α−,β) α

β
⇒

(α−,β)
+

α
−

β
is applied 2n (or 2n + 1) times due to the use

of downward monotone functors; for this type of functors the algorithm of van

Benthem would use 2n (or 2n + 1) times the clause
(α−,β)

l

α
−l

β
l

(that reverses the

polarity of the argument). As the algorithm of van Benthem begins marking the root
with positive polarity, then positive (or negative) polarity (because l was changed 2n
(or 2n+1) times) is propagated to the parent of node i. As node i is a functor node, it

does not matter if the algorithm of Sánchez uses the rule (α+,β) α

β
⇒

(α+,β)
+

α
+

β
,

or the rule (α−,β) α

β
⇒

(α−,β)
+

α
−

β
; the algorithm of van Benthem would use

the corresponding rule of
(α+,β)

l

α
l

β
l

, or
(α−,β)

l

α
−l

β
l

; inheriting, in any case, the

positive (or negative) polarity of its parent.

2. Node i is an argument node. There are two cases:

(a) Node i has external monotonicity mark +, and there are 2n (or 2n+ 1) nodes
with monotonicity mark −, from its parent to the root. This case arises when

the rule (α−,β) α

β
⇒

(α−,β)
+

α
−

β
is applied 2n (or 2n + 1) times due to the

use of downward monotone functors; for this type of functors the algorithm

of van Benthem would use 2n (or 2n + 1) times the clause
(α−,β)

l

α
−l

β
l

(that

reverses the polarity of the argument). As the algorithm of van Benthem begins
marking the root with positive polarity, then positive (or negative) polarity
(because lwas changed 2n (or 2n+1) times) is propagated to the parent of node
i. Finally, if node i has + as external monotonicity mark, it is because the rule

(α+,β) α

β
⇒

(α+,β)
+

α
+

β
was applied, hence, the van Benthem’s algorithm

would apply the clause
(α+,β)

l

α
l

β
l

, inheriting the positive (or negative) polarity

of its parent.

(b) Node i has external monotonicity mark −, and there are 2n+ 1 (or 2n) nodes
with monotonicity mark −, from its parent to the root. This case arises when
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the rule (α−,β) α

β
⇒

(α−,β)
+

α
−

β
is applied 2n + 1 (or 2n) times due to the

use of downward monotone functors; for this type of functors the algorithm

of van Benthem would use 2n + 1 (or 2n) times the clause
(α−,β)

l

α
−l

β
l

(that

reverses the polarity of the argument). As the algorithm of van Benthem begins
marking the root with positive polarity, then positive (or negative) polarity
(because lwas changed 2n (or 2n+1) times) is propagated to the parent of node
i. Finally, if node i has − as external monotonicity mark, it is because the rule

(α−,β) α

β
⇒

(α+,β)
+

α
−

β
was applied, hence, the van Benthem’s algorithm

would apply the clause
(α−,β)

l

α
−l

β
l

, reversing from negative (or positive) to

positive (or negative) the polarity of node i.

◻

3.3.2 van Benthem and Dowty

Theorem 3.3.3. A node with type β is labeled with polarity l by algorithm 3.2.2 if and only if
using the Functional Application Rules of Definition 3.2.6 that node belongs to a type of the form
Al.

Proof. If algorithm 3.2.2 labeled with polarity l = + (or −) the node with type β, then we
have two cases:

1. If the children of the node have types (α+,β) and α, then the polarities of the chil-

dren and the parent will be
(α+,β)

+

α
+

β
+

(or
(α+,β)

−

α
−

β
−

), which is in biunivocal

correspondence with the internal polarity algorithm where the types of the functor
and the argument (independently of whether the argument is on the right, or
on the left of the functor type) are (A+/B+) B+

A+
or B+ (B+/A+)

A+
( (A−/B−) B−

A−
or

B− (B−/A−)
A−

), i.e., the functor belongs to a type with positive (or negative) polarity
and the argument is also in a type with positive (or negative) polarity.

2. If the children of the node have types (α−,β) and α, then the polarities of the chil-

dren and the parent will be
(α−,β)

+

α
−

β
+

(or
(α−,β)

−

α
+

β
−

), which is in biunivocal

correspondence with the internal polarity algorithm where the types of the functor
and the argument (independently of whether the argument is on the right, or
on the left of the functor type) are (A+/B−) B−

A+
or B− (B−/A+)

A+
( (A−/B+) B+

A−
or
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B+ (B+/A−)
A−

), i.e., the functor belongs to a type with positive (or negative) polarity
and the argument is in a type with negative (or positive) polarity.

◻

3.3.3 van Benthem and van Eijck

Theorem 3.3.4. The algorithm of van Eijck marks node i with polarity l if and only if the
algorithm of van Benthem marks the same node i with polarity l.

Proof. Let us remember that both the algorithm of van Eijck and the algorithm of van
Benthem begin assigning polarity + to the root. In general, we have two cases:

1. The functor is unary, we also have two cases:

(a) The functor is upward monotone. The algorithm of van Eijck uses the rule
for the identity map (Ci/A)l Ai(l)

Cli

(or Ai(l) (A/Ci)l

Cli

), but as i(l) = l we have
(Ci/A)l Al

Cli

(or Al (A/Ci)l

Cli

) that is the same rule (written in a different way)

that the algorithm of van Benthem uses for upward monotone functors, namely,
(α+,β)

l

α
l

β
l

.

(b) The functor is downward monotone. The algorithm of van Eijck uses the rule
for the reverse map (Cr/A)l Ar(l)

Clr
(or Ar(l) (A/Cr)l

Clr
), let us remember that in

the context of the algorithm of van Eijck r(+) = −, r(−) = + and that in the
context of the algorithm of van Benthem −+ = − and −− = +, i.e., r(l) = −l; hence,
the rule for the reverse map is the same rule (written in a different way) that
the algorithm of van Benthem uses for downward monotone functors, namely,

(α−,β)
l

α
−l

β
l

.

2. The functor is binary. The algorithm of van Benthem does not take into account
a binary functor as the one in the algorithm of van Eijck Af(l) (A/Cf/B)l Bf(l)

Clf

.

Nevertheless, if we do not take precedence between the contructors / and /, it is
possible to get the same derivation only using unary constructors, in either of the
two following ways.

Af(l) (A/(Cf/B))l

(Cf/B)l Bf(l)

Clf

, or Af(l)

((A/Cf)/B)l Bf(l)

(A/Cf)l

Clf

,

achieving exactly the same effect, i.e., the binary functor inherits the polarity of the
root and the arguments have polarity f(l).
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◻
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Chapter 4

Model-Theoretic Semantics for NL

Although NL was designed without a semantics in the style of model theory, in this
chapter a semantics in that style is developed. The main reason for this is to define a
model checking algorithm for NL. This will permit to know why a text does not imply a
hypothesis, in the sense of section 2.1.

It should be remembered that a proof tree is needed to compute polarity. Hence, an
automatic theorem prover for an extension to AB grammars is built. The algorithm of
van Benthem is the one implemented to compute polarity.

4.1 Semantics for Natural Logic

We need to define what a modelM= (D, JK) for NL is, where D is a non empty set called
the domain of the model, and JK is the meaning function that maps expressions from a
language to either elements or subsets of the domain.

We are going to extend a version of categorial grammars called AB grammars [MR12],
this extension is in order to mark the monotonicity of functors. Types are constructed by
the following rules

L ∶∶= P∣(Ls/L)∣(L/sL),

where P is the set of primitive types (in our case e and t), and functors are constructed
using the operators s/ and /s, with s ∈ {+,−, ⋅}, these operators are intended to distinguish
if the argument of a functor is either on the right or on the left, respectively. Also to mark
whether a functor is upward monotone (+), downward monotone (−), or non-monotone
(⋅).

A modelM= (D, JK) for NL has a family D of domains, beginning with the domain
De corresponding to elements of type e (entity nouns), then the domain Dt corresponding
to truth values, i.e., Dt = {0,1}, and a family of domains D

X
s
→Y

corresponding to functors1

1In the case of s = ⋅, we are going to write /, /, and →; instead of ⋅/, /⋅, and
⋅
→.
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with domain X and range Y, and the meaning function JK is given through Definitions
4.1.1, 4.1.2, 4.1.3, and 4.1.9.

Definition 4.1.1. [Dow94] Meaning of types. Let e, t ∈ P;X,Y ∈ L, then

• JeK =De,

• JtK =Dt,

• J(Xs/Y)K = J(Y/sX)K =D
Y
s
→X

if JYK =DY , and JXK =DX. ◻

In general, if X ∈ L, then JXK =DX, if x ∈DX is said that x has type X (in symbols, x ∶ X).
Each word in a sentence has a type, and we want to give them a meaning as a sequence

of types, as in the following definition.

Definition 4.1.2. Juxtaposition of meanings. If X,Y ∈ L, then JXKJYK = JXYK. ◻

As it has been stated, to prove that a natural language expression is well formed (it is
a sentence), a proof tree with root t has to be constructed, using the functional application

rules for syntactic categories
Xs/Y Y

X
, and

Y Y/sX
X

; the proof tree in Figure 4.1 is
an example.

Dobie

(t+/(t/e))

brought

((t/e)/e)

every

((((t/e)/e)/+(t/e))−/(t/e))
ball

(t/e)
(((t/e)/e)/+(t/e))

(t/e)
t

Figure 4.1: Proof tree for the sentence Dobie brought every ball.

In our semantics, we have to do an equivalent analysis, i.e., we have to assign a
meaning to functor application, therefore we have the following definition.

Definition 4.1.3. Meaning of function application. Let X,Y ∈ L, and let Z1, and Z2 be
sequences of types (possibly empty), then

JZ1 (Xs/Y) Y Z2K = JZ1 Y (Y/sX) Z2K = JZ1 X Z2K.

◻

Example 4.1.4. Taking the types of the words of the sentence Dobie brought every ball, and
computing their meaning by Definitiions 4.1.1 and 4.1.3, we get the domain Dt.
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J

Z1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(t+/(t/e)) ((t/e)/e)

(Xs/Y)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((((t/e)/e)/+(t/e))−/(t/e))

Y
­
(t/e) K 4.1.3=

J

Z1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(t+/(t/e)) ((t/e)/e)

X
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(((t/e)/e)/+(t/e)) =

J

Z1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(t+/(t/e))

Y
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((t/e)/e)

(Y/sX)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(((t/e)/e)/+(t/e))K 4.1.3=

J

Z1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(t+/(t/e))

X
­
(t/e) K 4.1.3=

J

(Xs/Y)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(t+/(t/e))

Y
­
(t/e) K =

J
X
©
t K 4.1.1= Dt.

◻

Now, we prove that if a proof tree with root Z ∈ L is constructed, then Z has meaning
DZ.

Theorem 4.1.5. If Z ∈ L is the root of a proof tree, then JZK =DZ.

Proof. The proof is by induction on the depth of the proof tree. If the depth of the proof
tree is 0, we have the following cases:

1. Z = e, therefore JeK 4.1.1= De,

2. Z = t, therefore JtK 4.1.1= Dt,

3. Z = (Xs/Y), therefore J(Xs/Y)K 4.1.1= D s
Y→X

if JYK =DY , and JXK =DX,

4. Z = (Y/sX), similar to Z = (Xs/Y).

If the depth of the proof tree is n, we have the following cases:

1. Z = e, therefore it is the root of one of the two following trees:

(a)

⋮

(es/Y)
⋮

Y
e , then (es/Y), and Y are the roots of proof trees with depth less

than n, hence by induction hypothesis we have J(es/Y)K JYK 4.1.2= J(es/Y) YK
4.1.3= JeK 4.1.1= De,

Formal Approaches to Textual Entailment,
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(b)

⋮

Y
⋮

(Y/se)
e , then Y, and (Y/se) are the roots of proof trees with depth less

than n, hence by induction hypothesis we have JYK J(Y/se)K 4.1.2= JY (Y/se)K
4.1.3= JeK 4.1.1= De.

2. Z = t, similar to Z = e.

3. Z = (Zs1/Z2), therefore it is the root of one of the two following trees:

(a)

⋮

((Zs1/Z2)s
′/Z3)

⋮

Z3

(Zs1/Z2)
, then ((Zs1/Z2)s

′/Z3), and Z3 are the roots of proof trees

with depth less than n, hence by induction hypothesis we have J((Zs1/Z2)s
′/Z3)K

JZ3K
4.1.2= J((Zs1/Z2)s

′/Z3) Z3K
4.1.3= J(Zs1/Z2)K

4.1.1= D
Z2
s
→Z1

,

(b)

⋮

Z3

⋮

(Z3/s
′(Zs1/Z2))

(Zs1/Z2)
, then Z3, and (Z3/s

′(Zs1/Z2)) are the roots of proof

trees with depth less than n, hence by induction hypothesis we have JZ3K
J(Z3/s

′(Zs1/Z2))K
4.1.2= JZ3 (Z3/s

′(Zs1/Z2))K
4.1.3= J(Zs1/Z2)K

4.1.1= D
Z2
s
→Z1

.

4. Z = (Z1/sZ2), similar to Z = (Zs1/Z2).

◻
The next theorem proves that if Z ∈ L has meaning DZ, then there exists a proof tree

whose root is Z.

Theorem 4.1.6. Let Z ∈ L, if JZK =DZ, then there exists a proof tree whose root is Z.

Proof. The proof is by induction on the number of times that Definition 4.1.3 was used to
get DZ.

1. If Definition 4.1.3 was used 0 times, we have four cases:

(a) If JeK 4.1.1= De, then we construct the tree e , i.e., a tree with depth 0, and root
e;

(b) If JtK 4.1.1= Dt, similar to JeK 4.1.1= De;

(c) If J(Xs/Y)K 4.1.1= D s
Y→X

, then we construct the tree
(Xs/Y)

, i.e., a tree with

depth 0, and root (Xs/Y);

(d) If J(Y/sX)K 4.1.1= D s
Y→X

, similar to J(Xs/Y)K 4.1.1= D s
Y→X

.

2. If Definition 4.1.3 was used n times, we have eight cases:

INAOE Computer Science Department



Model-Theoretic Semantics for NL 51

(a) De
4.1.1= JeK 4.1.3= J(es/Y) YK 4.1.2= J(es/Y)K JYK, but to get J(es/Y)K, and JYK Defini-

tion 4.1.3 was used less than n times, hence by induction hypothesis there exist

proof trees which are root, namely

⋮

(es/Y)
⋮

Y
. Now, using the functional

application rule for syntactic categories, we get the tree

⋮

(es/Y)
⋮

Y
e ;

(b) De
4.1.1= JeK 4.1.3= JY (Y/se)K 4.1.2= JYK J(Y/se)K, but to get JYK, and J(Y/se)K Defini-

tion 4.1.3 was used less than n times, hence by induction hypothesis there exist

proof trees which are root, namely

⋮

Y
⋮

(Y/se)
. Now, using the functional

application rule for syntactic categories, we get the tree

⋮

Y
⋮

(Y/se)
e ;

(c) Dt
4.1.1= JtK 4.1.3= J(ts/Y) YK 4.1.2= J(ts/Y)K JYK, similar to De

4.1.1= JeK 4.1.3= J(es/Y) YK;

(d) Dt
4.1.1= JtK 4.1.3= JY (Y/st)K, similar to De

4.1.1= JeK 4.1.3= JY (Y/se)K;

(e) D
Z2
s
→Z1

4.1.1= J(Zs1/Z2)K
4.1.3= J((Zs1/Z2)s

′/Z3) Z3K
4.1.2= J((Zs1/Z2)s

′/Z3)K JZ3K, but

to get J((Zs1/Z2)s
′/Z3)K, and JZ3K Definition 4.1.3 was used less than n times,

hence by induction hypothesis there exist proof trees which are root, namely
⋮

((Zs1/Z2)s
′/Z3)

⋮

Z3
. Now, using the functional application rule for syntac-

tic categories, we get the tree

⋮

((Zs1/Z2)s
′/Z3)

⋮

Z3

(Zs1/Z2)
;

(f) D
Z2
s
→Z1

4.1.1= J(Zs1/Z2)K
4.1.3= JZ3 (Z3/s

′(Zs1/Z2))K
4.1.2= JZ3K J(Z3/s

′(Zs1/Z2))K,

but to get JZ3K, and J(Z3/s
′(Zs1/Z2))K Definition 4.1.3 was used less than n

times, hence by induction hypothesis there exist proof trees which are root,

namely

⋮

Z3

⋮

(Z3/s
′(Zs1/Z2)) . Now, using the functional application rule for

syntactic categories, we get the tree

⋮

Z3

⋮

(Z3/s
′(Zs1/Z2))

(Zs1/Z2)
;

(g) D
Z2
s
→Z1

4.1.1= J(Z1/sZ2)K
4.1.3= J((Z1/sZ2)s

′/Z3) Z3K, similar toD
Z2
s
→Z1

4.1.1= J(Zs1/Z2)K
4.1.3= J((Zs1/Z2)s

′/Z3) Z3K;

(h) D
Z2
s
→Z1

4.1.1= J(Z1/sZ2)K
4.1.3= JZ3 (Z3/s

′(Z1/sZ2))K, similar toD
Z2
s
→Z1

4.1.1= J(Zs1/Z2)K
4.1.3= JZ3 (Z3/s

′(Zs1/Z2))K.

◻
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With theorems 4.1.5 and 4.1.6 it is proved that the proposed semantics is sound and
complete with respect to the proof system of the AB grammars.

To know when a sentence N ′ is inferred from a sentence N, first we have to define
what a subexpression of a natural language expression is.

Definition 4.1.7. Subexpression. LetN =w1w2⋯wn,n ≥ 1, be a natural language expression,
where each word wi ∈ Dαi , it is said that M is a subexpression of N if and only if one of
the following holds:

1. M =wi,1 ≤ i ≤ n;

2. M =wiM ′,1 ≤ i ≤ n−1, where M ′ is a subexpression of N, and (wi ∈Dα→β and M ′ ∈
Dα) or (wi ∈Dα and M ′ ∈Dα→β) holds;

3. M =M ′wi,2 ≤ i ≤ n, where M ′ is a subexpression of N, and (wi ∈ Dα→β and M ′ ∈
Dα) or (wi ∈Dα and M ′ ∈Dα→β) holds;

4. M =M ′M ′′, where M ′ and M ′′ are subexpressions of N, and (M ′ ∈Dα→β and M ′′ ∈
Dα) or (M ′ ∈Dα and M ′′ ∈Dα→β) holds. ◻

Example 4.1.8. Let N = Dobie brought every ball, according to clause 1 of Definition 4.1.7,
we have that Dobie, brought, every, and ball are subexpressions of N; looking at Figure 4.1
we have that every ball is also a subexpression by clause 2 of Definition 4.1.7, because every:
((((t/e)/e)/+(t/e))−/(t/e)), and ball: (t/e), by the same clause are also subexpressions
brought every ball, and Dobie brought every ball. ◻

The following definition is important because it states what the meaning of a natural
language expression is.

Definition 4.1.9. Meaning of expressions. Let x ∶ X, be a natural language expression, we
define the meaning of the expression x as the set JxKX = {y ∈DX ∣ y ≤ x}. ◻

Now, we can define when a natural language expression entails another one, the idea
behind is to connect the notions of polarity, subexpression and meaning of an expression.
Also this definition is the kernel of our method of Model Checking for NL.

Definition 4.1.10. Entailment on the same subexpression. Let N(M), and N(M ′) be two
natural language expressions with M,M ′ ∶ α,M ≠M ′, we define that N(M) entails on the
same subexpression N(M ′) (symbolically N(M)

∗

⊧N(M ′)) in the following way:

N(M)
∗

⊧N(M ′) if and only if
⎧⎪⎪⎪⎨⎪⎪⎪⎩

M has positive polarity and JMKα ⊆ JM ′Kα, or

M has negative polarity and JM ′Kα ⊆ JMKα.

◻
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According to Israel [Isr11], Ladusaw found that most of Negative Polarity Items in
English are licenced by downward entailing propositional operators, these operators reverse
the relation of semantic strength among expressions. Similarly, Positive Polarity Items are
licenced by upward entailing propositional operators, they preserve the relation of semantic
strength among expressions.

Considering that an expression e1 is semantically stronger than the expression e2, if
the set denoted by the meaning of e1 is a subset of the set denoted by the meaning of e2,
then the Definition 4.1.10 meets Ladusaw’s findings.

Example 4.1.11. A proof tree with polarity marks for the natural language expression An
elk ran is shown in Figure 4.5.

An

((t+/(t/e))+/(t/e))
+

elk

(t/e)
+

(t+/(t/e))
+

ran

(t/e)
+

t
+

Figure 4.2: Proof tree with polarity marks for the natural language expression An elk ran.

If N = An elk ran, M = elk y M ′ = mammal, then we can say that An elk ran
∗

⊧ A mammal
ran, because elk has positive polarity, and JelkK

(t/e) ⊆ JmammalK
(t/e). ◻

Example 4.1.12. If N = An elk ran, M = elk and M ′ = animal we can say that An elk ran
∗

⊧
An animal ran, because elk has positive polarity and JelkK

(t/e) ⊆ JanimalK
(t/e). ◻

Theorem 4.1.13 proves that our notion of entailment on the same subexpression is
sound with respect to the notion of implication in the proof theory of NL.

Theorem 4.1.13. If N(M) ⊢N(M ′), then N(M)
∗

⊧N(M ′).

Proof. We have two cases:

1. M has positive polarity, then M ≤αM ′, hence {y ∈Dα ∣ y ≤M} ⊆ {y ∈Dα ∣ y ≤M ′},
which implies that JMKα ⊆ JM ′Kα, therefore N(M)

∗

⊧N(M ′).

2. M has negative polarity, then M ′ ≤αM, hence {y ∈Dα ∣ y ≤M ′} ⊆ {y ∈Dα ∣ y ≤M},
which implies that JM ′Kα ⊆ JMKα, therefore N(M)

∗

⊧N(M ′).

◻
Now, in Theorem 4.1.14 it is proved that the concept of entailment on the same

subexpression is complete with respect to the proof theory of NL.
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Theorem 4.1.14. If N(M)
∗

⊧N(M ′), then N(M) ⊢N(M ′).

Proof. We have two cases:

1. M has positive polarity, then JMKα ⊆ JM ′Kα, hence JMKα = {y ∈ Dα ∣ y ≤ M} ⊆
{y ∈ Dα ∣ y ≤M ′} = JM ′Kα, as Dα is partially ordered, it is implied that M ≤α M ′,
therefore N(M) ⊢N(M ′).

2. M has negative polarity, then JM ′Kα ⊆ JMKα, hence JM ′Kα = {y ∈Dα ∣ y ≤M ′} ⊆ {y ∈
Dα ∣ y ≤M} = JMKα, as Dα is partially ordered, it is implied that M ′ ≤αM, therefore
N(M) ⊢N(M ′).

◻
With Theorems 4.1.13 and 4.1.14 is warranted that the method of Model Checking for

NL, presented in 4.3 is correct with respect to the Proof Theory of NL.
To define a method of Model Checking for Natural Logic is needed to chain entailments

on more than one subexpression, this is done in the following way:

Definition 4.1.15. Entailment. Let N, and N ′ be two natural language expressions with
N ≠N ′, we define that N entails N ′ (symbolically N ⊧N ′) as follows:

N ⊧N ′ if and only if
⎧⎪⎪⎪⎨⎪⎪⎪⎩

N ′ =N(M ′) and N(M)
∗

⊧N(M ′), or

N ′′ =N(M ′′),N(M)
∗

⊧N(M ′′) and N ′′ ⊧N ′.

◻

4.2 Proof Theory for an Extension of AB Grammars

Before the method of model checking can be constructed, it is necessary to build

proof trees for English sentences using the function application rules
Xs/Y Y

X
, and

Y Y/sX
X

. Therefore, an automatic theorem prover for the extension of AB grammars
is developed in this section.

A natural language expression nlexp is represented by the list [w1 ∶ X1, . . . ,wn ∶ Xn],
where wi is an english word in nlexp, and Xi is its type, 1 ≤ i ≤ n. As an example, the
natural language expression Dobie didn’t bring every ball is represented by the list

[Dobie ∶ (t+/(t/e)),didn ′t ∶ ((t/e)−/(t/e)),bring ∶ ((t/e)/e),

every ∶ ((((t/e)/e)/+(t/e))−/(t/e)),ball ∶ (t/e)].
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Dobie

(t+/(t/e))

didn ′t

((t/e)−/(t/e))

bring

((t/e)/e)

every

((((t/e)/e)/+(t/e))−/(t/e))
ball

(t/e)
(((t/e)/e)/+(t/e))

(t/e)
(t/e)

t

Figure 4.3: Proof tree for the sentence Dobie didn’t bring every ball, in an extension of AB grammars.

As it is known, there are natural language expressions that admit more than one
syntactic analysis. Evenmore, sometimes it is possible to use the inference rules in more
than one pair of adjacent words.

Hence, we need to look for those pairs of words that may conform the initial subtrees
of possible proof trees. Also, for each initial subtree we need to know the list of pairs
w ∶ X on the left, and on the right of the subtree, these three elements will be called an
environment.

For example, for the proof tree in Figure 4.3 its unique initial subtree is

every

((((t/e)/e)/+(t/e))−/(t/e))
ball

(t/e)
(((t/e)/e)/+(t/e))

,

and its lists of pairs are [Dobie ∶ (t+/(t/e)),didn ′t ∶ ((t/e)−/(t/e)), bring ∶ ((t/e)/e)] on
the left, and [] on the right; the algorithm bfstl returns a list of environments of the form

[([w1 ∶ X1, . . . ,wi1−1 ∶ Xi1−1],

wi1
Xi1

wi1+1

Xi1+1

X1
, [wi1+2 ∶ Xi1+2, . . . ,wn ∶ Xn]), . . . ,

([w1 ∶ X1, . . . ,wim−1 ∶ Xim−1],

wim
Xim

wim+1

Xim+1

Xm
, [wim+2 ∶ Xim+2, . . . ,wn ∶ Xn])],

1 ≤ i1, im,m < n.
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Function bfstl(left,current,envs)
1 switch
2 case current = [] and envs = [] ∶
3 raise exception NoFirstSubTree
4 case current = [] ∶
5 return envs
6 case current = [wn ∶ Xn] and envs = [] ∶
7 raise exception NoFirstSubTree
8 case current = [wn ∶ Xn] ∶
9 return envs

10 case current = [wi ∶ Xi,wi+1 ∶ Xi+1,wi+2 ∶ Xi+2, . . . ,wn ∶ Xn] ∶
11 if Xi = Xs/Xi+1 or Xi+1 = Xi/sX
12 then bfstl(left⊎ [wi ∶ Xi], [wi+1 ∶ Xi+1, . . . ,wn ∶ Xn],

13 envs⊎ [(left,

wi
Xi

wi+1
Xi+1

X
,

14 [wi+2 ∶ Xi+2, . . . ,wn ∶ Xn])]
15 else bfstl(left⊎ [wi ∶ Xi], [wi+1 ∶ Xi+1, . . . ,wn ∶ Xn],
16 envs)
17 end

The algorithm bfstl has three input parameters: left the pairs wj ∶ Xj,1 ≤ j < i already
processed; current the pairs wk ∶ Xk, i ≤ k ≤ n which are not being processed; and envs
the list of environments found until now.

In general (line 10), if some inference rule can be applied to Xi and Xi+1 (line 11),
then a recursive call is performed appending (⊎) left and the list [wi ∶ Xi]; stating that
[wi+1 ∶ Xi+1, . . . ,wn ∶ Xn] is the new current, and appending envs and the list with the

environment found [(left,

wi
Xi

wi+1
Xi+1

X
, [wi+2 ∶ Xi+2, . . . ,wn ∶ Xn])] (lines 12-14).

If no rule can be applied (lines 15 and 16), a recursive call is made indicating that a
word has been processed, and leaving envs without change.

If no environment was found (lines 2 and 6) then the NoFirstSubTree exception is
raised (lines 3 and 7). If there are no more elements to process (line 4) or there is only
one element (line 8), then the work has been done and the list of environments envs is
returned (lines 5 and 9).

The algorithm bawpt builds a proof tree from a list of environments. If the list of
environments is not empty (lines 4 and 5), then the algorithm bapt is called with the

INAOE Computer Science Department



Model-Theoretic Semantics for NL 57

elements of the first environment in the list, and the type of the root of the first subtree
(line 6).

Function bawpt(environmentsList)
1 switch
2 case environmentsList = [] ∶
3 raise exception NoProofTree
4 case environmentsList =
5 [(left1, fst1, right1), . . . , (leftn, fstn, rightn)] ∶
6 tree← bapt(left1, fst1, right1, extracType(fst1))
7 if tree = s

X
8 then bawpt([(left2, fst2, right2), . . . ,
9 (leftn, fstn, rightn)])

10 else return tree
11 end

If the algorithm bapt could not build a proof tree, then a recursive call is performed
with the rest of the list of environments (lines 8 and 9). If the algorithm bapt built a proof
tree, this is returned (line 10). If the environment list is empty, then it was not possible to
build a proof tree and the exception NoProofTree is raised (lines 2 and 3).

The algorithm extracType merely returns the root of a unary tree (lines 2 and 3), or
the root of a binary tree (lines 4 and 5). This is used in line 6 of the algorithm bawpt.

Function extracType(tree)
1 switch
2 case tree = s

X
∶

3 return X

4 case tree =
proofSubTreel proofSubTreer

X
∶

5 return X

The purpose of the algorithm bapt is to build a proof tree. It takes four arguments:
the list left of pairs w ∶ X on the left of the proof subtree proofSubTree, the proof subtree
proofSubTree already built, the list right of pairs w ∶ X on the right of the proof subtree
proofSubTree, and the type X of the root of the proof subtree proofSubTree.

If left and right are empty, then a proof tree has been constructed, and there is
nothing more to process (lines 2 and 3).

If left is not empty, but right is empty, then to construct a new proof subtree it is
needed that the root X of subProofTree can combine with the type Xi of the last element

Formal Approaches to Textual Entailment,
Polarity, and Pronominal Anaphora



58 Proof Theory for an Extension of AB Grammars

of left, this is possible when X = Xi/sX ′ is the functor and Xi is the argument, or when
X is the argument and Xi = X ′s/X is the functor, if that is the case, then a recursive
call is performed pointing out that: wi ∶ Xi has been processed, the new proof subtree

wi
Xi proofSubTree

X ′
has been constructed, right is still empty, the root of the new

proof subtree is X ′ (lines 4-7).
Function bapt(left,proofSubTree, right,X)

1 switch
2 case left = [] and right = [] ∶
3 return proofSubTree
4 case left = [w1 ∶ X1, . . . ,wi ∶ Xi] and right = [] ∶
5 if X = Xi/sX ′ or Xi = X ′s/X
6 then bapt([w1 ∶ X1, . . . ,wi−1 ∶ Xi−1],

7

wi
Xi proofSubTree

X ′
, [],X ′)

8 else return “”
e

9 case left = [] and right = [wj ∶ Xj, . . . ,wn ∶ Xn] ∶
10 if X = X ′s/Xj or Xj = X/sX ′

11 then bapt([],
proofSubTree

wj

Xj

X ′
,

12 [wj+1 ∶ Xj+1, . . . ,wn ∶ Xn],X ′)
13 else return “”

e
14 case left = [w1 ∶ X1, . . . ,wi ∶ Xi] and
15 right = [wj ∶ Xj, . . . ,wn ∶ Xn] ∶
16 switch
17 case X = Xi/sX ′ or Xi = X ′s/X ∶
18 bapt([w1 ∶ X1, . . . ,wi−1 ∶ Xi−1],

19

wi
Xi proofSubTree

X ′
,

20 [wj ∶ Xj, . . . ,wn ∶ Xn],X ′)
21 case X = X ′s/Xj or Xj = X/sX ′ ∶
22 bapt([w1 ∶ X1, . . . ,wi ∶ Xi],

23

proofSubTree

wj

Xj

X ′
,

24 [wj+1 ∶ Xj+1, . . . ,wn ∶ Xn],X ′)
25 case default ∶
26 return “”

e
27 end
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If it was not possible to build a new proof subtree, then the tree “”
e is returned

(lines 8, 13 and 23), so that the algorithm bawpt tries to build a proof tree with the
remaining environments.

If left is empty, but right is not empty, then to construct a new proof subtree it
is needed that the root X of subProofTree can combine with the type Xj of the first
element of right, this is possible when X = X ′s/Xj is the functor and Xj is the argument,
or when X is the argument and Xj = X/sX ′ is the functor, if that is the case, then a
recursive call is performed pointing out that: left is still empty, the new proof subtree

proofSubTree

wj

Xj

X ′
has been constructed, wj ∶ Xj has been processed, the root of

the new proof subtree is X ′ (lines 9-12).
If left and right are not empty, then the root X of proofSubTree can combine with

the type Xi of the last element of left (lines 17-20); or the root X of proofSubTree can
combine with the type Xj of the first element of left (lines 21-24), just like the respective
previous cases.

The algorithm buildProofTree passes the appropriate initial values to bfstl in order
to get a list of environments, this list is passed to bawpt, which constructs a proof tree.

Function buildProofTree(nlexp)
1 return bawpt(bfstl([],nlexp, []))
2 end

To compute polarity in our extension to AB grammars, the algorithm of van Benthem
is adapted as follows.

Algorithm 4.2.1. van Benthem’s polarity algorithm adapted to an extension of AB gram-
mars.

1. Label the root with +.

2. Propagate notations up the tree.

(a) If a node of type X is labeled l and its children are of type (Xs/Y) and Y, then
the former child is to be labeled l and the latter child is to be labeled l ○ s
(diagrammatically,

(Xs/Y)
l

Y
l○s

X
l

).

(b) If a node of type X is labeled l and its children are of type Y and (Y/sX), then
the former child is to be labeled l ○ s and the latter child is to be labeled l

(diagrammatically,
Y
l○s

(Y/sX)
l

X
l

).
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As an example we have the proof tree of Figure 4.4.

Dobie

(t+/(t/e))
+

didn ′t

((t/e)−/(t/e))
+

bring

((t/e)/e)
−

every

((((t/e)/e)/+(t/e))−/(t/e))
−

ball

(t/e)
+

(((t/e)/e)/+(t/e))
−

(t/e)
−

(t/e)
+

t
+

Figure 4.4: Proof tree with polarity marks for the sentence Dobie didn’t bring every ball, using the

adapted algorithm of van Benthem, in an extension of AB grammars.

The algorithm polalg encodes the algorithm of van Benthem more precisely. It returns
a proof tree with polarity marks. Its arguments are: the polarity label l for the root of
tree, and the proof tree tree.

Function polalg(l, tree)
1 switch
2 case tree = w

X
∶

3 return w
X
l

4 case tree =

⋮
(Xs/Y)

⋮
Y

X
∶

5 lptp← polalg(l, ⋮
(Xs/Y)

)

6 rptp← polalg(l ○ s, ⋮
Y

)

7 return
lptp rptp

X
l

8 case tree =

⋮
Y

⋮
(Y/sX)

X
∶

9 lptp← polalg(l ○ s, ⋮
Y

)

10 rptp← polalg(l, ⋮
(Y/sX)

)

11 return
lptp rptp

X
l

12 end

If the current tree is a unary tree, then it returns a unary tree marking the root with l
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(lines 2 and 3).
If the current tree is a binary tree and the functor is the left subtree, then it recursively

propagates the polarity l on the left subtree lptp, and also it recursively propagates the
polarity l ○ s on the right subtree rptp. Finally it returns a binary tree marking the root
with l, and having lptp and rptp as left and right subtrees, respectively (lines 4-7).

If the current tree is a binary tree and the functor is the right subtree, then it recursively
propagates the polarity l ○ s on the left subtree lptp, and also it recursively propagates
the polarity l on the right subtree rptp. Finally it returns a binary tree marking the root
with l, and having lptp and rptp as left and right subtrees, respectively (lines 8-11).

The algorithm polarity returns a proof tree with polarity marks, it receives as
argument the representation of a natural language expression nlexp, as it was discussed
in section 4.2. polarity calls polalg with the mark of positive polarity and the proof tree
for nlexp.

Function polarity(nlexp)
1 return polalg(+, buildProofTree(nlexp))
2 end

Example 4.2.2. A proof tree with polarity marks for the natural language expression An
elk ran is shown in Figure 4.5.

An

((t+/(t/e))+/(t/e))
+

elk

(t/e)
+

(t+/(t/e))
+

ran

(t/e)
+

t
+

Figure 4.5: Proof tree with polarity marks for the natural language expression An elk ran, in an

extension of AB grammars.

If N = An elk ran, M = elk y M ′ = mammal, then we can say that An elk ran
∗

⊧ A mammal
ran, because elk has positive polarity, and JelkK

(t/e) ⊆ JmammalK
(t/e). ◻

Example 4.2.3. If N = An elk ran, M = elk and M ′ = animal we can say that An elk ran
∗

⊧ An
animal ran, because elk has positive polarity and JelkK

(t/e) ⊆ JanimalK
(t/e). ◻

4.3 Model Checking for Natural Logic

Now, we define the algorithms ModChkNatLog, EntailsAll, and EntailsOne.
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Function ModChkNatLog(N,N ′)
1 Form the set DifSub with all the pairs M,M ′ subexpressions of N,N ′, such that M ≠M ′

2 return EntailsAll(DifSub, true)
3 end

The algorithm ModChkNatLog has as input the natural language expressions N, and
N ′, it returns the result of the algorithm EntailsAll. The purpose of ModChkNatLog

is to warrant that EntailsAll receives, in the set DifSub, all the pairs (M,M ′), where
M,M ′ are respectively subexpressions of N,N ′ that make N ≠N ′. Also it receives true
the first time that it is called.

EntailsAll(DifSub, flag)
1 if DifSub = ∅
2 then return flag
3 else From DifSub take a pair (M,M ′)
4 if type(M) = type(M ′)
5 then if not EntailsOne(M,M ′)
6 then if polarity(M) = polarity(M ′)
7 then switch
8 case polarity(M) = + ∶
9 write: JMKα /⊆ JM ′Kα

10 case polarity(M) = − ∶
11 write: JM ′Kα /⊆ JMKα
12 case default ∶
13 write: There is not a relationship between M and M ′.
14 else write: There is a possible contradiction between M and M ′.
15 EntailsAll(DifSub− (M,M ′), false∧ flag)
16 else EntailsAll(DifSub− (M,M ′), true∧ flag)
17 else write: The syntactic structures of M and M ′ are not equal.
18 return false
19 end

EntailsAll tries to find models that form counterexamples to the entailment of two
natural language expressions. The algorithm EntailsAll codes Definition 4.1.15, it takes
two parameters as input: DifSub containing the pairs of subexpressions (M,M ′) that
make N and N ′ different, and the variable flag, which records (line 15) if a counterexam-
ple, that is falsifying the entailment, has been found.

As it is implicit in Definition 4.1.10, a natural language expression N(M) entails
N(M ′) if they vary in subexpressions M and M ′ of the same type, and the meaning of
M contains (is contained in) the meaning of M ′ according to their polarity.

Hence, the main purpose of EntailsAll is to process a pair (M,M ′) from DifSub

with the same type (lines 3 and 4), then if EntailsOne fails (line 5) and M has the same
polarity as M ′ (line 6), it means that a counterexample has been found, and it writes the
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cause of the failure (lines 9, 11, 13, 14), then it calls itself removing the pair (M,M ′) from
DifSub, and recording by false∧ flag that a counterexample was found (line 15).

If EntailsOne does not fail, then a recursive call is performed (line 16) removing the
pair (M,M ′) from DifSub, and recording by true∧ flag that a counterexample was not
found.

If subexpressions M, and M ′ have different types (line 17), then it is indicated that
the subexpressions have not the same syntactic structure, because NL cannot reason with
this kind of expressions, in this case the algorithm finishes returning false (line 18).

When each pair of DifSub has been processed, the result of EntailsAll has to do
with whether or not counterexamples have been found (lines 1 and 2).

EntailsOne(M,M ′)
1 switch
2 case polarity(M) = + ∶
3 return JMKα ⊆ JM ′Kα
4 case polarity(M) = − ∶
5 return JM ′Kα ⊆ JMKα
6 case default ∶
7 return false
8 end

The algorithm EntailsOne codes almost directly Definition 4.1.10, it takes subex-
pressions M and M ′, analysing if their meanings have some containment relationship
according to their polarity.

4.4 Examples

At this time, we have a prototype that constructs a model for the pair text-hypothesis
of natural language expressions. It is implemented in a strong typed functional pro-
gramming language called Meta Language (ML), for what has been discussed previously,
the prototype asks the user for the veracity of the constructed models in the entailment
process.

Example 4.4.1. An elk ran ⊧ An animal moved

- modChckNatLog([lxe("An",sl(u,sl(u,t,sl(n,t,e)),sl(n,t,e))),

lxe("elk",sl(n,t,e)),lxe("ran",sl(n,t,e))],

[lxe("An",sl(u,sl(u,t,sl(n,t,e)),sl(n,t,e))),lxe("animal",sl(n,t,e)),
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lxe("moved",sl(n,t,e))]);

Is "ran" a kind of, or a manner of "moved"? true

Is "elk" a kind of, or a manner of "animal"? true

The entailment is true.

This exemplifies that a very specific statement can be generalized at the extreme that it
loses information. Nevertheless, the entailment is true. ◻

Example 4.4.2. Dobie brought every ball ⊧ Dobie brought every black ball

- modChckNatLog([lxe("Dobie",sl(u,t,sl(n,t,e))),

lxe("brought",sl(n,sl(n,t,e),e)),

lxe("every",sl(d,bs(u,sl(n,sl(n,t,e),e),sl(n,t,e)),sl(n,t,e))),

lxe("ball",sl(n,t,e))],

[lxe("Dobie",sl(u,t,sl(n,t,e))),lxe("brought",sl(n,sl(n,t,e),e)),

lxe("every",sl(d,bs(u,sl(n,sl(n,t,e),e),sl(n,t,e)),sl(n,t,e))),

lxe("black",sl(u,sl(n,t,e),sl(n,t,e))),lxe("ball",sl(n,t,e))]);

Is "black ball" a kind of, or a manner of "ball"? true

The entailment is true.

In this case we have the role of ”every” that is downward monotone on its first argument,
therefore it sets the polarity of ball to negative. Hence it can be replaced with black ball a
expression with a lesser denotation. The entailment is true. ◻

Example 4.4.3. Dobie didn’t bring every ball ⊧ Dobie didn’t bring every black ball

- modChckNatLog([lxe("Dobie",sl(u,t,sl(n,t,e))),

lxe("didn’t",sl(d,sl(n,t,e),sl(n,t,e))),

lxe("bring",sl(n,sl(n,t,e),e)),

lxe("every",sl(d,bs(u,sl(n,sl(n,t,e),e),sl(n,t,e)),sl(n,t,e))),

lxe("ball",sl(n,t,e))],

[lxe("Dobie",sl(u,t,sl(n,t,e))),lxe("didn’t",sl(d,sl(n,t,e),sl(n,t,e))),

lxe("bring",sl(n,sl(n,t,e),e)),

lxe("every",sl(d,bs(u,sl(n,sl(n,t,e),e),sl(n,t,e)),sl(n,t,e))),

lxe("black",sl(u,sl(n,t,e),sl(n,t,e))),lxe("ball",sl(n,t,e))]);

Is "ball" a kind of, or a manner of "black ball"? false

The entailment is false.
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In this case the verb is negated, therefore it changes the polarity of the following con-
stituents. Hence, the prototype asks if ball is a kind of black ball, i.e, if the denotation of
ball is a subset of the denotation of black ball. Thence the entailment is false. ◻

Don ′t

(p−/p)
+

dig

(p+/(t/p))
−

your

((t/p)+/p)
−

grave
p
−

with

((p/+p)+/(t/p))
−

your

((t/p)+/p)
−

own

(p+/p)
−

knife
p
−

p
−

(t/p)
−

(p/+p)
−

p
−

(t/p)
−

p
−

p
+

Figure 4.6: Proof tree with polarity marks for the sentence Don’t dig your grave with your own knife,

in this tree p = (t/e).

Example 4.4.4. Don’t dig your grave with your own knife ⊧ Don’t trench your grave with your
own penknife. For this example, refer to Figure 4.6.

- modChckNatLog([lxe("Don’t",sl(d,q,q)),lxe("dig",sl(u,q,sl(n,t,q))),

lxe("your",sl(u,sl(n,t,q),q)),lxe("grave",q),

lxe("with",sl(u,bs(u,q,q),sl(n,t,q))),lxe("your",sl(u,sl(n,t,q),q)),

lxe("own",sl(u,q,q)),lxe("knife",q)],

[lxe("Don’t",sl(d,q,q)),lxe("trench",sl(u,q,sl(n,t,q)),

lxe("your",sl(u,sl(n,t,q),q)),lxe("grave",q),

lxe("with",sl(u,bs(u,q,q),sl(n,t,q))),lxe("your",sl(u,sl(n,t,q),q)),

lxe("own",sl(u,q,q)),lxe("penknife",q)]);

Is "penknife" a kind of, or a manner of "knife"? true

Is "trench" a manner of "dig"? true

The entailment is true.

If WordNet is consulted we find that trench is a direct troponym of dig. Also, that penknife
is a hyponym of knife. The entailment is true. ◻

Example 4.4.5. Don’t dig your grave with your own knife ⊧ Don’t trench your hole with your
own penknife

- modChckNatLog([lxe("Don’t",sl(d,q,q)),lxe("dig",sl(u,q,sl(n,t,q))),
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lxe("your",sl(u,sl(n,t,q),q)),lxe("grave",q),

lxe("with",sl(u,bs(u,q,q),sl(n,t,q))),lxe("your",sl(u,sl(n,t,q),q)),

lxe("own", sl(u,q,q)), lxe("knife",q)],

[lxe("Don’t",sl(d,q,q)),lxe("trench",sl(u,q,sl(n,t,q))),

lxe("your",sl(u,sl(n,t,q),q)),lxe("hole",q),

lxe("with",sl(u,bs(u,q,q),sl(n,t,q))),lxe("your",sl(u,sl(n,t,q),q)),

lxe("own",sl(u,q,q)),lxe("penknife",q)]);

Is "penknife" a kind of, or a manner of "knife"? true

Is "hole" a kind of, or a manner of "grave"? false

Is "trench" a manner of "dig"? true

The entailment is false.

penknife is a hyponym of knife, trench is a direct troponym of dig, but hole is an hypernym
of grave, it is not an hyponym. The entailment is false. ◻
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Chapter 5

Pronominal Anaphora Resolution as Parsing

Our proposal to solve pronominal anaphora is inspired by the obvious algorithm com-
mented in section 2.3. AB grammars and phrase structure rules, such as used by Kamp
and Reyle [KR93], are related to look for possible antecedents in each sentence of a
discourse, so some features of phrase structure rules are added to AB grammars in order
to bind anaphors with antececents.

Conditional sentences and relative clauses are added to AB grammars, in such a way
that our proposal can resolve Donkey, intra and intersentential anaphora. A method
based on model checking is developed to resolve pronominal anaphora.

5.1 Phrase Structure Rules

Pronominal Anaphora is the linguistic phenomenon in which a pronoun points back to
a noun phrase. The pronoun is called anaphor and the pointed noun phrase is called
antecedent. To solve pronominal anaphora is relevant because it guarantees the cohesion
among the sentences of a discourse.

In [KR93], Kamp and Reyle use a phrase structure grammar to carry out the syntactic
analysis of English sentences. From the features that they use, we are interested in
those related with number (Num = sing/plur), gender (Gen = male/female/ − hum),
case (Case = +nom/ −nom), and a feature to mark if a verb is transitive or intransitive
(Trans = +/−).

Grammatical categories in phrase structure grammars have not a type, and types in
AB grammars have no features, therefore we are going to relate both formalisms, after
this we will be able to propose a method for anaphora resolution.

Let us begin with the constituents of a sentence, it is formed with a noun phrase
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followed by a verb phrase.

SNum=α → NP
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

Case = +nom

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

VPNum=α

As it can be noted, the grammatical categories S and VP only have the feature Num, it is
supposed that the Num of S and the Num of VP are equal, this is denoted by writing
that both have Num = α.

It can also be noted that NP has three features, Num, Gen, and Case. Its Num feature
has to be α, matching with the type of VP, the gender Gen of NP has no restriction, but
the Case feature has to be +nom, which means that only nominative pronouns (I, he, she,
it, we, you, they) can be in the subject position.

Non nominative pronouns (me, him, her, it, us, you, them) denoted by Case = −nom,
called objective pronouns, take the place of the object of transitive verbs. It is worth
noting that not all the forms of NP have the feature Case, hence it is not mandatory that
the whole list of features of a grammatical category be present in each occurrence of it.

With these elements it can be said that: a sentence is formed with a noun phrase
NP followed by a verb phrase VP, they must be equal in their number, gender does not
matter, if the subject is a pronoun, then it must be nominative, finally the sentence inherits
the number from the noun phrase and the verb phrase.

What we are going to do is subindexing the corresponding types of AB grammars
with the features required to get the agreement of number, gender, case and transitivity.
From Figure 5.1 we get1 that the type of noun phrases is (t/(e/t)) and that the type of
intransitive verbs (the simplest form of a verb phrase) is (e/t), when the most general
case for verb phrases is discussed, it will be proved that indeed (e/t) is the type of verb
phrases.

In attaching the appropriate subindexes to both types, we get the following proof tree.

(t/(e/t))Num=α,Gen=β,Case=+nom (e/t)Num=α
tNum=α

Of course, the intuitive meaning of the subindexes is the same as the one for the rules
in phrase structure grammars. Note that after a functor for noun phrases is applied to
a functor for verb phrases, t is got, saying that the expression analyzed is a sentence in
English.

1If it is needed to know the type of a grammatical category, Figure 5.1 has to be consulted.
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• sentences: t

• proper names: e

• common nouns: (t/e) or r

• intransitive verbs: (e/t) or q

• adjectives: ((t/e)/(t/e)) or (r/r)

• determiners:

– at the beginning of a sentence: ((t/(e/t))/(t/e)) or ((t/q)/r)

– in the direct object position of a transitive verb: ((((e/t)/e)/(e/t))/(t/e)) or
(((q/e)/q)/r)

• noun phrases: (t/(e/t)) or (t/q)

• transitive verbs:

– with proper names: ((e/t)/e) or (q/e)

– with pronouns: ((e/t)/(t/(e/t))) or (q/(t/q))

• adverbs: ((e/t)/(e/t)) or (q/q)

• modifiers:

– for adjectives: (((t/e)/(t/e))/((t/e)/(t/e))) or ((r/r)/(r/r))

– for adverbs: (((e/t)/(e/t))/((e/t)/(e/t))) or ((q/q)/(q/q))

• prepositions:

– for common noun: (((t/e)/(t/e))/(t/(e/t))) or ((r/r)/(t/q))

– for verbs: (((e/t)/(e/t))/(t/(e/t))) or ((q/q)/(t/q))

• prepositional phrases:

– for common nouns: ((t/e)/(t/e)) or (r/r)

– for verbs: ((e/t)/(e/t)) or (q/q)

Figure 5.1: The types of some Grammatical Categories.
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Later, a rule stating that a personal noun (type e) is a noun phrase (type (t/(e/t)))
will be introduced, but in practice the lexicon states that a personal noun has type e, so it
is usual to find trees as the next one.

eNum=α,Gen=β (e/t)Num=α
tNum=α

The following rule states that a noun phrase is composed of a determiner followed by
a common noun, the components must agree in number, the noun phrase inherits the
number and the gender of the common noun.

NP
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

→ DETNum=α N
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

The type of common nouns is (t/e), and for the type of the determiner there exist two
cases.

In the first case the determiner is at the beginning of a sentence, in this case its type is
((t/(e/t))/(t/e)), the following tree is obtained.

((t/(e/t))/(t/e))Num=α (t/e)Num=α,Gen=β

(t/(e/t))Num=α,Gen=β

After the functor for determiners is applied to the functor for common nouns, the type of
noun phrases is obtained, and it is ready to be applied to a verb phrase on the right to
get a sentence.

The second case is when the determiner is at the beginning of the direct object of a
transitive verb, i.e. the determiner is after the verb of the sentence, in which case it has
type ((((e/t)/e)/(e/t))/(t/e)), we have the following tree.

((((e/t)/e)/(e/t))/(t/e))Num=α (t/e)Num=α,Gen=β

(((e/t)/e)/(e/t))Num=α,Gen=β

The root of the tree does not have the type of a noun phrase, but there is no problem,
the functor (((e/t)/e)/(e/t)) will combine on the left with a transitive verb ((e/t)/e)
becoming an intransitive verb (e/t).

The next rule states that a personal noun is also a noun phrase.

NP
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

→ PN
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

INAOE Computer Science Department



Pronominal Anaphora Resolution as Parsing 71

G If an expression occurs in type (b/a), then it may also occur in any type ((b/c)/(a/c))
(for arbitrary c).

M If an expression occurs in type a, then it may also occur in any type (b/(b/a)) (for
arbitrary b).

Homomorphic inflation If an expression occurs in type (a/b), then it may also occur in
any type ((t/b)/(t/a)).

Determiners in direct object position If an expression occurs in type ((t/(t/e))/(t/e)),
then it may also occur in any type (((t/e)/((t/e)/e))/(t/e)).

Figure 5.2: Rules for change of type in categorial grammars.

Personal nouns have type e, but for the M rule2 we get (t/(e/t)) the type of noun phrases.
Pronouns are also noun phrases, as it was stated, pronouns introduce the feature

Case.

NP
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

Case = γ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→ PRO
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

Case = γ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

If pronouns are noun phrases, then they have type (t/(e/t)).
An adjective goes before a common noun, the result is a common noun.

N
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

→ ADJ N
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

The type for adjectives is ((t/e)/(t/e)) and the type for common nouns is (t/e), getting
as a result (t/e), a common noun.

((t/e)/(t/e)) (t/e)Num=α,Gen=β

(t/e)Num=α,Gen=β

2In categorial grammar there exists a serie of rules making possible that certain types can be changed
for related types, see Figure 5.2.
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A prepositional phrase goes after a common noun giving as result a common noun.

N
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

→ N
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

PP

The type of common nouns is (t/e) and the type of prepositional phrases is ((t/e)/(t/e)).

(t/e)Num=α,Gen=β ((t/e)/(t/e))
(t/e)Num=α,Gen=β

A prepositional phrase is constructed with a preposition followed by a noun phrase.

PP
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

→ P NP
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

A preposition has type (((t/e)/(t/e))/(t/(e/t))) and a noun phrase has type (t/(e/t)).

(((t/e)/(t/e))/(t/(e/t))) (t/(e/t))Num=α,Gen=β

((t/e)/(t/e))Num=α,Gen=β

A verb phrase is an intransitive verb.

VPNum=α → V
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Trans = −

⎤
⎥
⎥
⎥
⎥
⎦

Its type in this case is (e/t).
Also, a verb phrase is composed of a transitive verb followed by a noun phrase. In

this case note that: the number of the verb and the number of the noun phrase do not
have to be equal, the verb has to be transitive, and if the noun phrase is a pronoun, it has
to be non nominative.

VPNum=α → V
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Trans = +

⎤
⎥
⎥
⎥
⎥
⎦

NP
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = β

Gen = γ

Case = −nom

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

As it was already stated, we want that the type resulting from applying a transitive
verb to a noun phrase to be (e/t). The simplest case is when the transitive verb is applied
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to a proper name with type e, knowing that transitive verbs have type ((e/t)/e), the
following tree is got.

((e/t)/e)Num=α,Trans=+ eNum=β,Gen=γ

(e/t)Num=α

When the noun phrase is a pronoun its type is (t/(e/t)), the type of transitive verbs
should be ((e/t)/(t/(e/t))).

((e/t)/(t/(e/t)))Num=α,Trans=+ (t/(e/t))Num=β,Gen=γ,Case=−nom

(e/t)Num=α

The problem here is that the type of transitive verbs is ((e/t)/e), but by the homomorphic
inflation rule (see Figure 5.2) we get ((e/t)/(t/(e/t))).

As it was noted, when the direct object of the transitive verb begins with a determiner,
the type of the noun phrase is (((e/t)/e)/(e/t)) in which case the resulting type is (e/t).

((e/t)/e)Num=α,Trans=+ (((e/t)/e)/(e/t))Num=β,Gen=γ,Case=−nom

(e/t)Num=α

Therefore, as it was anticipated, the type of verb phrases is (e/t), hence it does not matter
whether the involved verb is transitive or intransitive.

Now, the so called lexical introduction rules are presented, following each rule is
shown the corresponding indexed type.

• N
⎡
⎢
⎢
⎢
⎢
⎣

Num = sing

Gen =male

⎤
⎥
⎥
⎥
⎥
⎦

→ stockbroker, man, . . . ,

(t/e)Num=sing,Gen=male

• N
⎡
⎢
⎢
⎢
⎢
⎣

Num = sing

Gen = female

⎤
⎥
⎥
⎥
⎥
⎦

→ stockbroker, woman, widow, . . . ,

(t/e)Num=sing,Gen=female

• N
⎡
⎢
⎢
⎢
⎢
⎣

Num = sing

Gen = −hum

⎤
⎥
⎥
⎥
⎥
⎦

→ book, donkey, horse, Porsche, bicycle, . . . ,

(t/e)Num=sing,Gen=−hum
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• P → about, behind, except, on, since, toward, . . . ,

(((t/e)/(t/e))/(t/(e/t)))

• PRO
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = sing

Gen =male

Case = +nom

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→ he,

(t/(e/t))Num=sing,Gen=male,Case=+nom

• PRO
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = sing

Gen =male

Case = −nom

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→ him,

(t/(e/t))Num=sing,Gen=male,Case=−nom

• PRO
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = sing

Gen = female

Case = +nom

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→ she,

(t/(e/t))Num=sing,Gen=female,Case=+nom

• PRO
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = sing

Gen = female

Case = −nom

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→ her,

(t/(e/t))Num=sing,Gen=female,Case=−nom

• PRO
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = sing

Gen = −hum

Case = −nom/ +nom

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→ it,

(t/(e/t))Num=sing,Gen=−hum,Case=−nom/+nom

• PRO
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = plur

Gen =male/female/ −hum

Case = +nom

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→ they,

(t/(e/t))Num=plur,Gen=male/female/−hum,Case=+nom

INAOE Computer Science Department



Pronominal Anaphora Resolution as Parsing 75

• PRO
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = plur

Gen =male/female/ −hum

Case = −nom

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→ them,

(t/(e/t))Num=plur,Gen=male/female/−hum,Case=−nom

• PN
⎡
⎢
⎢
⎢
⎢
⎣

Num = sing

Gen =male

⎤
⎥
⎥
⎥
⎥
⎦

→ Jones, Smith, Bill, . . . ,

eNum=sing,Gen=male

• PN
⎡
⎢
⎢
⎢
⎢
⎣

Num = sing

Gen = female

⎤
⎥
⎥
⎥
⎥
⎦

→ Jones, Smith, Mary, Anna Karenina, Madame Bovary, . . . ,

eNum=sing,Gen=female

• PN
⎡
⎢
⎢
⎢
⎢
⎣

Num = sing

Gen = −hum

⎤
⎥
⎥
⎥
⎥
⎦

→ Anna Karenina, Buddenbrooks, Middlemarch, Ulyses, . . . ,

eNum=sing,Gen=−hum

• V
⎡
⎢
⎢
⎢
⎢
⎣

Num = sing

Trans = +

⎤
⎥
⎥
⎥
⎥
⎦

→ likes, loves, abhors, rotates, . . . ,

((e/t)/e)Num=sing,Trans=+

• V
⎡
⎢
⎢
⎢
⎢
⎣

Num = sing

Trans = −

⎤
⎥
⎥
⎥
⎥
⎦

→ stinks, rotates, . . . ,

(e/t)Num=sing,Trans=−

5.2 A Model Checker for Pronominal Anaphora Resolu-

tion

In resolving pronominal anaphora, it has to be taken into account that anaphors are
pronouns pointing back to proper names, common nouns and noun phrases. But the
phenomenon of pointing back can reach sentences that are before the one in which an
anaphor appears.
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Let S1,S2,⋯,Sn, be n ≥ 1 be sentences in English, with the following configuration SC:

SC =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 =w1,1 ∶ Xfeatures1,1w2,1 ∶ Xfeatures2,1⋯wm1,1 ∶ Xfeaturesm1,1 .

⋮

Sj =w1,j ∶ Xfeatures1,jw2,j ∶ Xfeatures2,j⋯wmj,j ∶ Xfeaturesmj,j .

⋮

Sn =w1,n ∶ Xfeatures1,nw2,n ∶ Xfeatures2,n⋯wmn,n ∶ Xfeaturesmn,n .

As it was shown in the previous section, there exist only lexical insertion rules for
proper nouns, common nouns and pronouns. Therefore, it is necesary to look for these
grammatical categories in each sentence. Proper and common nouns will be part of the
list of Antecedents, pronouns will be part of the list of Anaphors. This is the purpose of the
algorithm FindPCPRON(SC).

Procedure FindPCPRON(SC)
1 for j← 1 to n
2 do for i← 1 to mj

3 do if wi,j ∶ eNum=α,Gen=β /*proper names*/
4 then insert((wi,j ∶ eNum=α,Gen=β, j),Antecedents)
5 if wi,j ∶ (t/e)Num=α,Gen=β /*common nouns*/
6 then insert((wi,j ∶ (t/e)Num=α,Gen=β, j),Antecedents)
7 if wi,j ∈ {he, him, she, her, it, they, them} /*pronouns*/
8 then insert((wi,j ∶ (t/(e/t))Num=α,Gen=β,Case=γ, j),Anaphors)
9 if wi,j ∈ {who, that, which, whose, where, when} /*relative pronouns*/

10 then insert((wi,j ∶ XNum=α,Gen=β, j),Anaphors)
11 JSjK
12 end

Let us remember the definition for the meaning of functor application.

Definition 5.2.1. Meaning of functor application. Let X,Y ∈ L, and let Z1, and Z2 be sequences
of types (possibly empty), then

JZ1 (Xs/Y) Y Z2K = JZ1 Y (Y/sX) Z2K = JZ1 X Z2K.

◻

This definition is fine in general, but it is necessary to distinguish when a noun phrase
is formed, when a common noun is after an adjective, and when a common noun is
before a prepositional phrase. In other words, it has to be recorded when it is formed an
Antededent that does not have a lexical insertion rule.
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The first case is:
NP

⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

→ DETNum=α N
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

,

but this has two subcases.
Determiners have type ((t/(e/t))/(t/e)) when they are at the beginning of a sentence,

so we have:

JZ1 wi,j ∶ ((t/(e/t))/(t/e))Num=α wi+1,j ∶ (t/e)Num=α,Gen=β Z2K =

JZ1 wi,jwi+1,j ∶ (t/(e/t))Num=α,Gen=β Z2K and

insert((wi,jwi+1,j ∶ (t/(e/t))Num=α,Gen=β, j),Antecedents)

The other subcase is when determiners have type ((((e/t)/e)/(e/t))/(t/e)) because
they are in the direct object position of a transitive verb.

JZ1 wi,j ∶ ((((e/t)/e)/(e/t))/(t/e))Num=α wi+1,j ∶ (t/e)Num=α,Gen=β Z2K =

JZ1 wi,jwi+1,j ∶ (((e/t)/e)/(e/t))Num=α,Gen=β Z2K and

insert((wi,jwi+1,j ∶ (((e/t)/e)/(e/t))Num=α,Gen=β, j),Antecedents)

The second case is:

N
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

→ ADJ N
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

,

and its corresponding function application is

JZ1 wi,j ∶ ((t/e)/(t/e))wi+1,j ∶ (t/e)Num=α,Gen=β Z2K =

JZ1 wi,jwi+1,j ∶ (t/e)Num=α,Gen=β Z2K and

insert((wi,jwi+1,j ∶ (t/e)Num=α,Gen=β, j),Antecedents)

The third case is:

N
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

→ N
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

PP,

and it is evaluated in the following way.

JZ1 wi,j ∶ (t/e)Num=α,Gen=β wi+1,j ∶ ((t/e)/(t/e)) Z2K =

JZ1 wi,jwi+1,j ∶ (t/e)Num=α,Gen=β Z2K and

insert((wi,jwi+1,j ∶ (t/e)Num=α,Gen=β, j),Antecedents)
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The fourth case is:

PP
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

→ P NP
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

and it is evaluated in the following way.

JZ1 wi,j ∶ (((t/e)/(t/e))/(t/(e/t)))wi+1,j ∶ (t/(e/t))Num=α,Gen=β Z2K =

JZ1 wi,jwi+1,j ∶ ((t/e)/(t/e))Num=α,Gen=β Z2K and

insert((wi,jwi+1,j ∶ ((t/e)/(t/e))Num=α,Gen=β, j),Antecedents)

For the rest of cases, Definition 5.2.1 is redefined in the following way.

Definition 5.2.2. Meaning of functor application with carry. Let X,Y ∈ L, and let Z1, and Z2
be sequences of types (possibly empty), then

JZ1 expi ∶ (X/Y) expi+1 ∶ Y Z2K =

JZ1 expi ∶ Y expi+1 ∶ (Y/X) Z2K =

JZ1 expiexpi+1 ∶ X Z2K.

◻

If these functor applications have been performed, it must be clear that, for example,
in processing “a very big apple”, in the list of Antecedents the expressions “apple”,
“big apple”, “very big apple” and “a very big apple” will be found, but for purposes
of pronoun anaphora resolution we are interested in the longest of these expressions,
deleting the shorter ones. This work is done by Function longestNP(list).
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Function longestNP(list)
1 switch
2 case list = [] ∶
3 return []
4 case list = [(e ∶ XNum=α,Gen=β, i)] ∶
5 return [(e ∶ XNum=α,Gen=β, i)]
6 case list = [(e1 ∶ X1Num=α1,Gen=β1

, i1), (e2 ∶ X2Num=α2,Gen=β2
, i2), . . . ,

7 (en ∶ XnNum=αn,Gen=βn , in)] ∶
8 if i1 = i2
9 then if α1 = α2 and β1 = β2 and

10 subExpList((e1 ∶ X1Num=α1,Gen=β1
, i1),

11 [(e2 ∶ X2Num=α2,Gen=β2
, i2), . . . , (en ∶ XnNum=αn,Gen=βn , in)])

12 then longestNP([(e2 ∶ X2Num=α2,Gen=β2
, i2), . . . ,

13 (en ∶ XnNum=αn,Gen=βn , in)])
14 [(e1 ∶ X1Num=α1,Gen=β1

, i1)] ⊎ longestNP([(e2 ∶ X2Num=α2,Gen=β2
, i2), . . . ,

15 (en ∶ XnNum=αn,Gen=βn , in)])
16 end

Function subExpList(exp, expList) verifies if an expression is a subexpression of a list
of expressions, taking into account that they should be in the same sentence.

Function subExpList(exp,expList)
1 switch
2 case expList = [] ∶
3 return false
4 case exp = (e ∶ XNum=α,Gen=β, i) and
5 expList = [(e1 ∶ X1Num=α1,Gen=β1

, i1), (e2 ∶ X2Num=α2,Gen=β2
, i2), . . . ,

6 (en ∶ XnNum=αn,Gen=βn , in)] ∶
7 if i = i1
8 then if α = α1 and β = β1 and subExp(e,e1)
9 then return true

10 else subExpList((e ∶ XNum=α,Gen=β, i),
11 [(e2 ∶ X2Num=α2,Gen=β2

, i2), . . . , (en ∶ XnNum=αn,Gen=βn , in)])
12 return false
13 end

After this process has been carried out, there exist the list of antecedents and the list
of the anaphors, they have the following form, respectively.
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Antecedents =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(Ante1 ∶ X1Num=α1,Gen=β1
, i1),

(Ante2 ∶ X2Num=α2,Gen=β2
, i2),

⋮

(Anten ∶ XnNum=αn,Gen=βn , in)]

Anaphors =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(Anap1 ∶ Y1Num=α ′
1

,Gen=β ′
1

,Case=γ ′
1

, i ′1),

(Anap2 ∶ Y2Num=α ′
2

,Gen=β ′
2

,Case=γ ′
2

, i ′2),

⋮

(Anapm ∶ YmNum=α ′m,Gen=β ′m,Case=γ ′m
, i ′m)]

Now, the concept of binding an anaphor to an antecedent can be defined.

Definition 5.2.3. Binding. The anaphor (Anapi ∶ YiNum=α ′
i

,Gen=β ′
i

,Case=γ ′
i

, i ′i) binds the an-

tecedent (Antej ∶ XjNum=αj,Gen=βj , ij) if and only if ij ≤ i ′i ,αj = α
′

i ,βj = β
′

i . ◻

The purpose of Function Bind(Anaphor, Antecedents, Bindings) is to bind an Anaphor
to a list of Antecedents, when a binding is possible, it is added to the list of Bindings.

Function Bind(Anaphor,Antecedents,Bindings)
1 switch
2 case Antecedents = [] ∶
3 return Bindings
4 case Anaphor = (Anap ∶ (t/(e/t))Num=α,Gen=β,Case=γ, i) and
5 Antecedents = [(Ante1 ∶ X1Num=α1,Gen=β1

, i1),
6 (Ante2 ∶ X2Num=α2,Gen=β2

, i2), . . . , (Anten ∶ XnNum=αn,Gen=βn , in)] ∶
7 if i1 ≤ i
8 then if α1 = α and β1 = β
9 then Bind(Anaphor, [(Ante2 ∶ X2Num=α2,Gen=β2

, i2), . . . ,
10 (Anten ∶ XnNum=αn,Gen=βn , in)],
11 Bindings⊎ [((Anap ∶ (t/(e/t))Num=α,Gen=β,Case=γ, i),
12 (Ante1 ∶ X1Num=α1,Gen=β1

, i1))])
13 else Bind(Anaphor, [(Ante2 ∶ X2Num=α2,Gen=β2

, i2), . . . ,
14 (Anten ∶ XnNum=αn,Gen=βn , in)],Bindings)
15 else return Bindings
16 end

Function ResAna(Anaphors, Antecedents, Bindings) processes the whole list of Anaphors
trying to bind them to the Antecedents, it returns a list of Bindings.
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Function ResAna(Anaphors,Antecedents,Bindings)
1 switch
2 case Anaphors = [] ∶
3 return Bindings
4 case Anaphors = [(Anap1 ∶ (t/(e/t))Num=α ′

1
,Gen=β ′

1
,Case=γ ′

1
, i ′1),

5 (Anap2 ∶ (t/(e/t))Num=α ′
2

,Gen=β ′
2

,Case=γ ′
2
, i ′2), . . . ,

6 (Anapm ∶ (t/(e/t))Num=α ′m,Gen=β ′m,Case=γ ′m , i ′m)] and
7 Antecedents = [(Ante1 ∶ X1Num=α1,Gen=β1

, i1),
8 (Ante2 ∶ X2Num=α2,Gen=β2

, i2), . . . ,
9 (Anten ∶ XnNum=αn,Gen=βn , in)] ∶

10 ResAna([(Anap2 ∶ (t/(e/t))Num=α ′
2

,Gen=β ′
2

,Case=γ ′
2
, i ′2), . . . ,

11 (Anapm ∶ (t/(e/t))Num=α ′m,Gen=β ′m,Case=γ ′m , i ′m)],Antecedents,
12 Bind((Anap1 ∶ (t/(e/t))Num=α ′

1
,Gen=β ′

1
,Case=γ ′

1
, i ′1),Antecedents,Bindings))

13 end

Example 5.2.4. Let us consider the following sentences configuration.

SC =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1 = Jones owns a book on semantics.

S2 = He uses it.

Types are omitted to save space, but look at Figure 5.3 as a guide for this example.
After the function FindPCPRON(SC) is applied, we get:

Antecedents =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(Jones ∶ eNum=sing,Gen=male,1),

(book ∶ rNum=sing,Gen=−hum,1),

(semantics ∶ (t/q)Num=sing,Gen=−hum,1),

(on semantics ∶ (r/r)Num=sing,Gen=−hum,1),

(book on semantics ∶ rNum=sing,Gen=−hum,1),

(a book on semantics ∶ ((q/e)/q)Num=sing,Gen=−hum,1)]

Anaphors =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[(He ∶ (t/q)Num=sing,Gen=male,Case=+nom,2),

(it ∶ (t/q)Num=sing,Gen=−hum,Case=−nom/+nom,2)]

Then, executing function longestNP(Antecedents) only the longest antecedents remain.

Antecedents =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[(Jones ∶ eNum=sing,Gen=male,1),

(a book on semantics ∶ ((q/e)/q)Num=sing,Gen=−hum,1)]
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Figure 5.3: Proof trees for Example 5.2.4.
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Finally, function ResAna(Anaphors, Antecedents, []) should be executed to get:

Bindings =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[((He ∶ (t/q)Num=sing,Gen=male,Case=+nom,2),

(Jones ∶ eNum=sing,Gen=male,1)),

((it ∶ (t/q)Num=sing,Gen=−hum,Case=−nom/+nom,2),

(a book on semantics ∶ ((q/e)/q)Num=sing,Gen=−hum,1))]

◻

Example 5.2.5. Let us consider the following sentences configuration.

SC =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S1 = Jones knows a woman.

S2 = He admires her.

S3 = She fascinates him.

Types are omitted to save space, but look at Figure 5.4 as a guide for this example.
After the function FindPCPRON(SC) is applied, we get:

Antecedents =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[(Jones ∶ eNum=sing,Gen=male,1),

(woman ∶ rNum=sing,Gen=fem,1),

(a woman ∶ ((q/e)/q)Num=sing,Gen=fem,1)]

Anaphors =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(He ∶ (t/q)Num=sing,Gen=male,Case=+nom,2),

(her ∶ (t/q)Num=sing,Gen=fem,Case=−nom,2),

(She ∶ (t/q)Num=sing,Gen=fem,Case=+nom,3),

(him ∶ (t/q)Num=sing,Gen=male,Case=−nom,3)]

Then, executing function longestNP(Antecedents) only the longest antecedents remain.

Antecedents =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[(Jones ∶ eNum=sing,Gen=male,1),

(a woman ∶ ((q/e)/q)Num=sing,Gen=fem,1)]
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Figure 5.4: Proof trees for example 5.2.5.
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Finally, function ResAna(Anaphors, Antecedents, []) should be executed to get:

Bindings =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[((He ∶ (t/q)Num=sing,Gen=male,Case=+nom,2),

(Jones ∶ eNum=sing,Gen=male,1)),

((her ∶ (t/q)Num=sing,Gen=fem,Case=−nom,2),

(a woman ∶ ((q/e)/q)Num=sing,Gen=fem,1)),

((She ∶ (t/q)Num=sing,Gen=fem,Case=+nom,3),

(a woman ∶ ((q/e)/q)Num=sing,Gen=fem,1)),

((him ∶ (t/q)Num=sing,Gen=male,Case=−nom,3),

(Jones ∶ eNum=sing,Gen=male,1))]

◻

5.3 Conditional Sentences and Relative Clauses

To capture conditional sentences in DRT the following phrase structural rule S → If S then S
is used, we are going to do something similar,

As it can be seen in Figure 5.5, then is followed by S which has type t, and the type
of the root is t, therefore the type of then has to be (t/t).

then
?

S
t

t

Figure 5.5: Looking for the type of then.

In Figure 5.6 it can be observed that If needs two arguments, the first one is the
sentence after if, and the second is the sentence after then. Hence, the type of If needs to
be ((t/t)/t), as it is shown in Figure 5.7.

If
?

S
t

?

then

(t/t)
S
t

t
t

Figure 5.6: Looking for the type of If.
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If

((t/t)/t)
S
t

(t/t)

then

(t/t)
S
t

t
t

Figure 5.7: A proof tree for conditional sentences.

Example 5.3.1. Let us consider the following sentence configuration.

SC = {S1 = If Jones likes Buddenbrooks then he owns it.

Types are omitted to save space, but look at Figure 5.8 as a guide for this example.
After the function FindPCPRON(SC) is applied, we get:

Antecedents =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[(Jones ∶ eNum=sing,Gen=male,1),

(Buddenbrooks ∶ rNum=sing,Gen=−hum,1)]

Anaphors =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[(He ∶ (t/q)Num=sing,Gen=male,Case=+nom,1),

(it ∶ (t/q)Num=sing,Gen=−hum,Case=−nom/+nom,1)]

After executing function longestNP(Antecedents), it is obtained the same list of
Antecedents.

Finally, function ResAna(Anaphors, Antecedents, []) should be executed to get:

Bindings =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[((He ∶ (t/q)Num=sing,Gen=male,Case=+nom,1),

(Jones ∶ eNum=sing,Gen=male,1)),

((it ∶ (t/q)Num=sing,Gen=−hum,Case=−nom/+nom,1),

(Buddenbrooks ∶ rNum=sing,Gen=−hum,1))]

◻

Example 5.3.2. Let us consider the following sentence configuration.

SC = {S1 = Every farmer who owns a donkey beats it.

Trying to build a proof tree for it, a failed proof tree is obtained, as it is shown in
Figure 5.9. The failed proof tree has three subtrees, the subtree in the middle is a sentence
(it has t as root), and if it is taken away, then the left and right subtrees could combine to
derive t. ◻
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Figure 5.8: Proof tree for the conditional sentence If Jones likes Buddenbrooks then he owns it.
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Every

((t/q)/r)
farmer
r

(t/q)

who

(t/q)

owns

(q/e)

a

(((q/e)/q)/r)
donkey

r

((q/e)/q)
q

t

beats

((q/(t/q)))
it

(t/q)
q

Figure 5.9: A failed proof tree for the sentence Every farmer who owns a donkey beats it.

The middle subtree in Figure 5.9 corresponds to a relative clause. This kind of clause
begins with the so called relative pronouns who, that, which, whose, where, when, it is
frecuently used to identify or define the noun phrase, common noun or proper name
preceding it.

Kamp and Reyle [KR93] consider that relative clauses are sentences with a gap. For
example, in the expression owns a donkey the subject is missing; in the expression Smith
abhors the direct object is missing. Hence, to fill the gap the empty word φ with type
(t/q) is introduced. For example, φ owns a donkey, Smith abhors φ.

Another aspect to take into account is that relative clauses can refer to the subject or
to the direct object of a sentence. If the relative clause refers to the subject of a sentence,
then (t/q) is the type of noun phrases with deteminer at the beginning of a sentence, so
the type of relative clauses is ((t/q)/(t/q)).

NP
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

→ NP
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

RC
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

(t/q)Num=α,Gen=β ((t/q)/(t/q))Num=α,Gen=β

(t/q)Num=α,Gen=β
,

((t/q)/(t/q)) is the type of relative clauses, hence the type of relative pronouns is
(((t/q)/(t/q))/t).

RC
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

→ RPRO
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

S
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gap =NPNum=α

⎤
⎥
⎥
⎥
⎥
⎦

(((t/q)/(t/q))/t)Num=α,Gen=β tNum=α,Gap=NPNum=α
((t/q)/(t/q))Num=α,Gen=β

,

Note that the feature Gap has been added to the grammatical category S. The meaning
of Gap =NPNum=α is the sentence S has a gap in a noun phrase with number α.
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If the relative clause refers to the direct object of a transitive verb, it means that on the
left of the relative clause there is a sentence with its own proof tree with root t. Hence, in
order to produce a sentence the relative clause has to have type (t/t). Therefore we have
the following phrase structure rule with its respective proof tree.

SNum=α → SNum=α RC
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

tNum=α (t/t)Num=α,Gen=β

tNum=α
,

The relative clause in this case has type (t/t), S has type t, in such a way that the
relative pronoun has type ((t/t)/t), as it is shown below.

RC
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

→ RPRO
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

⎤
⎥
⎥
⎥
⎥
⎦

S
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gap =NPNum=α

⎤
⎥
⎥
⎥
⎥
⎦

((t/t)/t)Num=α,Gen=β tNum=α,Gap=NPNum=α
(t/t)Num=α,Gen=β

,

The following lexical introduction rule for the empty noun phrase is required.

NP
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

Case = γ

Gap =NPNum=α

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→ φ

As the empty string φ is a NP, it has type (t/q). If after a relative pronoun there is a
subject, then the gap is at the position of the direct object (after the verb) of the relative
clause. If after a relative pronoun there is a verb, then the gap is at the position of the
subject (before the verb) of the relative clause.

If the relative pronoun “who” refers to the subject of the main sentence then it has
type (((t/q)/(t/q))/t)Num=sing/plur,Gen=male/fem; or when it refers to the direct object of
the main sentence, it has type ((t/t)/t)Num=sing/plur,Gen=male/fem.

RPRO
⎡
⎢
⎢
⎢
⎢
⎣

Num = sing/plur

Gen =male/fem

⎤
⎥
⎥
⎥
⎥
⎦

→ who
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If the relative pronoun “which” refers to the subject of the main sentence then it has
type (((t/q)/(t/q))/t)Num=sing/plur,Gen=−hum; or when it refers to the direct object of the
main sentence, it has type ((t/t)/t)Num=sing/plur,Gen=−hum,.

RPRO
⎡
⎢
⎢
⎢
⎢
⎣

Num = sing/plur

Gen = −hum

⎤
⎥
⎥
⎥
⎥
⎦

→ which

Two phrase structure rules are introduced for the grammatical category S. In the first
one, the gap is in the noun phrase of the sentence, the number of the gap must match the
number of the noun phrase and the number of the verb phrase. The verb phrase cannot
have gap.

S
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gap =NPNum=α

⎤
⎥
⎥
⎥
⎥
⎦

→ NP
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

Case = +nom

Gap =NPNum=α

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

VP
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gap = −

⎤
⎥
⎥
⎥
⎥
⎦

(t/(e/t))Num=α,Gen=β,Case=+nom,Gap=NPNum=α (e/t)Num=α,Gap=−

tNum=α,Gap=NPNum=α

In the second one, the noun phrase does not have gap, the verb phrase has it, the
number of the gap does not have to match the number of the noun phrase or the number
of the verb phrase.

S
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gap =NPNum=γ

⎤
⎥
⎥
⎥
⎥
⎦

→ NP
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Num = α

Gen = β

Case = +nom

Gap = −

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

VP
⎡
⎢
⎢
⎢
⎢
⎣

Num = α

Gap =NPNum=γ

⎤
⎥
⎥
⎥
⎥
⎦

(t/(e/t))Num=α,Gen=β,Case=+nom,Gap=− (e/t)Num=α,Gap=NPNum=γ
tNum=α,Gap=NPNum=γ

Now, we have everything we need to define how the meaning of an expression in natu-
ral language is computed, with their corresponding dynamic elements to solve pronominal
anaphora. This definition corresponds to line 11 of algorithm FindPCPRON(SC).

Definition 5.3.3. Meaning of functor application for composed sentences. Let X,Y ∈ L, and let
Z1, and Z2 be sequences of types (possibly empty), then
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1. NP → DET N, at the beginning of a sentence:

JZ1 wi,j ∶ ((t/(e/t))/(t/e))Num=α wi+1,j ∶ (t/e)Num=α,Gen=β Z2K =

JZ1 wi,jwi+1,j ∶ (t/(e/t))Num=α,Gen=β Z2K and

insert((wi,jwi+1,j ∶ (t/(e/t))Num=α,Gen=β, j),Antecedents)

2. NP → DET N, at the beginning of a direct object:

JZ1 wi,j ∶ ((((e/t)/e)/(e/t))/(t/e))Num=α wi+1,j ∶ (t/e)Num=α,Gen=β Z2K =

JZ1 wi,jwi+1,j ∶ (((e/t)/e)/(e/t))Num=α,Gen=β Z2K and

insert((wi,jwi+1,j ∶ (((e/t)/e)/(e/t))Num=α,Gen=β, j),Antecedents)

3. N → ADJ N

JZ1 wi,j ∶ ((t/e)/(t/e))wi+1,j ∶ (t/e)Num=α,Gen=β Z2K =

JZ1 wi,jwi+1,j ∶ (t/e)Num=α,Gen=β Z2K and

insert((wi,jwi+1,j ∶ (t/e)Num=α,Gen=β, j),Antecedents)

4. N → N PP

JZ1 wi,j ∶ (t/e)Num=α,Gen=β wi+1,j ∶ ((t/e)/(t/e)) Z2K =

JZ1 wi,jwi+1,j ∶ (t/e)Num=α,Gen=β Z2K and

insert((wi,jwi+1,j ∶ (t/e)Num=α,Gen=β, j),Antecedents)

5. PP → P NP

JZ1 wi,j ∶ (((t/e)/(t/e))/(t/(e/t)))wi+1,j ∶ (t/(e/t))Num=α,Gen=β Z2K =

JZ1 wi,jwi+1,j ∶ ((t/e)/(t/e))Num=α,Gen=β Z2K and

insert((wi,jwi+1,j ∶ ((t/e)/(t/e))Num=α,Gen=β, j),Antecedents)

6. Functor application in any other case.

JZ1 expi ∶ (X/Y) expi+1 ∶ Y Z2K =

JZ1 expi ∶ Y expi+1 ∶ (Y/X) Z2K =

JZ1 expi expi+1 ∶ X Z2K.
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7. The case for compound sentences, the argument of the functor is on the right, and
the functor cannot be applied.

JZ1 expi ∶ (X/Y) expi+1 ∶ Z Z2K =

JJZ1 expi ∶ (X/Y)K expi+1 ∶ Z Z2K

8. The case for compound sentences, the argument of the functor is on the left, and
the functor cannot be applied.

JZ1 expi ∶ Z expi+1 ∶ (Y/X) Z2K =

JJZ1 expi ∶ ZK expi+1 ∶ (Y/X) Z2K

9. The sentence has been reduced to a single expression.

Jexp ∶ XK = exp ∶ X

◻

Cases 1 to 5 in Definition 5.3.3 are the dynamic behavior given to AB grammars. Case
6 is the usual functor application, or the statical functor application rule. The main idea
behind cases 7 and 8 is that in parsing a sentence the process is conducted from the right
to the left of the sentence, in such a way that when it is not possible to apply a functor,
the words on the left of the current parsed subexpression have to be parsed next, hoping
that after they are parsed both will combine.

To understand this, it is convenient to do the following analysis, the point here is to
understand how a sentence in AB grammars is parsed, in other words, how a proof tree
is constructed in order to get a sentence.

• A noun phrase followed by a verb phrase, where the verb phrase is an intransitive
verb.

1. The noun phrase is a proper name, there are only two words.

anyProperName
e

anyIntransitiveVerb

q = (e/t)
t

2. The noun phrase is a pronoun, also there are only two words.

anyPronoun

(t/q)
anyIntransitiveVerb

q

t
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3. The noun phrase begins with a determiner, at least there are three words, it
depends of the complexity of the noun.

anyDet

((t/q)/r)
anyNoun

r

(t/q)
anyIntransitiveVerb

q

t

anyNoun cannot combine with anyIntransitiveVerb, so anyDet has to com-
bine first with anyNoun, case 7 in Definition 5.3.3.

• A noun phrase followed by a verb phrase, where the verb phrase is a transitive verb.
As it was noted, a verb phrase is always reduced to q, so the interesting thing here
is to analyze the structure of the verb phrase, i.e., a transitive verb followed by a
noun phrase.

1. The noun phrase is a proper name.

anyTransitiveVerb

(q/e)
anyProperName

e
q

2. The noun phrase is a pronoun.

anyTransitiveVerb

(q/(t/q))
anyPronoun

(t/q)
q

3. The noun phrase begins with a determiner.

anyTransitiveVerb

(q/e)

anyDet

(((q/e)/q)/r)
anyNoun

r

((q/e)/q)
q

From the previous analysis it can be concluded that in order to parse a sentence in AB
grammars, the process is done from the right to the left of the sentence. In other words,
to combine a noun phrase with a verb phrase to get a sentence, the verb phrase has to be
parsed first.

Cases 7 or 8 in Definition 5.3.3 are used in parsing sentences beginning with a
determiner, sentences containing a relative clause or conditional sentences.

Example 5.3.4. This example shows the behavior of Definition 5.3.3, types and their
features are avoided to save space, if you wish, look at Figure 5.10 as a guide for functor
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applications. When two words or expressions are underlined it means that a functor
application has been applied. Each number over the equal sign corresponds to the case in
Definition 5.3.3 used to compute JexpK.

JEvery farmer who φ owns a donkey beats itK 6=

JEvery farmer who φ owns a donkey beats itK 6=

JJEvery farmer who φ owns a donkeyK beats itK 7=

JJEvery farmer who φ owns a donkeyK beats itK and

insert(a donkey,Antecedents) 2=

JJEvery farmer who φ owns a donkeyK beats itK and

insert(a donkey,Antecedents) 6=

JJEvery farmer who φ owns a donkeyK beats itK and

insert(a donkey,Antecedents) 6=

JJEvery farmer who φ owns a donkeyK beats itK and

insert(a donkey,Antecedents) 7=

JJJEvery farmerKwho φ owns a donkeyK beats itK and

insert(a donkey,Antecedents) 1=

JJJEvery farmerKwho φ owns a donkeyK beats itK and

insert(Every farmer,Antecedents) and

insert(a donkey,Antecedents) 9=

JJEvery farmer who φ owns a donkeyK beats itK and

insert(Every farmer,Antecedents) and

insert(a donkey,Antecedents) 6=

JJEvery farmer who φ owns a donkeyK beats itK and

insert(Every farmer,Antecedents) and

insert(a donkey,Antecedents) 9=

JEvery farmer who φ owns a donkey beats itK and

insert(Every farmer,Antecedents) and
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insert(a donkey,Antecedents) 6=

JEvery farmer who φ owns a donkey beats itK and

insert(Every farmer,Antecedents) and

insert(a donkey,Antecedents) 9=

Every farmer who φ owns a donkey beats it and

insert(Every farmer,Antecedents) and

insert(a donkey,Antecedents)

The following three examples show how pronominal anaphora is solved with relative
clauses.

Example 5.3.5. Let us consider the following sentence configuration.

SC = {S1 = Every farmer who owns a donkey beats it.

Types are omitted to save space, but look at Figure 5.10 as a guide for this example.
After the function FindPCPRON(SC) is applied, we get:

Antecedents =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(farmer ∶ rNum=sing,Gen=male,1),

(donkey ∶ rNum=sing,Gen=−hum,1),

(a donkey ∶ ((q/e)/q)Num=sing,Gen=−hum,1),

(Every farmer ∶ (t/q)Num=sing,Gen=male,1)]

Anaphors =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[(it ∶ (t/q)Num=sing,Gen=−hum,Case=−nom/+nom,1)

(who ∶ (((t/q)/(t/q))/t)Num=sing/plur,Gen=male/fem,1)]

Then, executing function longestNP(Antecedents) only the longest antecedents remain.

Antecedents =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[(a donkey ∶ ((q/e)/q)Num=sing,Gen=−hum,1),

(Every farmer ∶ (t/q)Num=sing,Gen=male,1)]

Finally, function ResAna(Anaphors, Antecedents, []) should be executed to get:

Bindings =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[((it ∶ (t/q)Num=sing,Gen=−hum,Case=−nom/+nom,1),

(a donkey ∶ ((q/e)/q)Num=sing,Gen=−hum,1)),

((who ∶ (((t/q)/(t/q))/t)Num=sing/plur,Gen=male/fem,1),

(Every farmer ∶ (t/q)Num=sing,Gen=male,1))]

◻
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Figure 5.10: Proof tree for the sentence Every farmer who owns a donkey beats it.
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Example 5.3.6. Let us consider the following sentence configuration.

SC = {S1 =Mary loves a book which Smith abhors.

Types are omitted to save space, but look at Figure 5.11 as a guide for this example.
After the function FindPCPRON(SC) is applied, we get:

Antecedents =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(Mary ∶ eNum=sing,Gen=female,1),

(book ∶ rNum=sing,Gen=−hum,1),

(Smith ∶ eNum=sing,Gen=male,1),

(a book ∶ ((q/e)/q)Num=sing,Gen=−hum,1)]

Anaphors = {[(which ∶ ((t/t)/t)Num=sing/plur,Gen=−hum,1)]

Then, executing function longestNP(Antecedents) only the longest antecedents remain.

Antecedents =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[(Mary ∶ eNum=sing,Gen=female,1),

(Smith ∶ eNum=sing,Gen=male,1),

(a book ∶ ((q/e)/q)Num=sing,Gen=−hum,1)]

Finally, function ResAna(Anaphors, Antecedents, []) should be executed to get:

Bindings =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[((which ∶ ((t/t)/t)Num=sing/plur,Gen=−hum,1),

(a book ∶ ((q/e)/q)Num=sing,Gen=−hum,1))]

◻

Example 5.3.7. Let us consider the following sentence configuration.

SC = {S1 = Jones likes a stockbroker who loves Mary.

Types are omitted to save space, but look at Figure 5.12 as a guide for this example.
After the function FindPCPRON(SC) is applied, we get:

Antecedents =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(Jones ∶ eNum=sing,Gen=male,1),

(stockbroker ∶ rNum=sing,Gen=male/fem,1),

(Mary ∶ eNum=sing,Gen=female,1),

(a stockbroker ∶ ((q/e)/q)Num=sing,Gen=male/fem,1)]

Anaphors = {[(who ∶ ((t/t)/t)Num=sing/plur,Gen=male/fem,1)]
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Figure 5.11: Proof tree for the sentence Mary loves a book which Smith abhors.
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Figure 5.12: Proof trees for the sentence Jones likes a stockbroker who loves Mary.
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Then, executing function longestNP(Antecedents) only the longest antecedents remain.

Antecedents =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[(Jones ∶ eNum=sing,Gen=male,1),

(Mary ∶ eNum=sing,Gen=female,1),

(a stockbroker ∶ ((q/e)/q)Num=sing,Gen=male/fem,1)]

Finally, function ResAna(Anaphors, Antecedents, []) should be executed to get:

Bindings =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[((who ∶ ((t/t)/t)Num=sing/plur,Gen=male/fem,1),

(a stockbroker ∶ ((q/e)/q)Num=sing,Gen=male/fem,1))]

◻
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Chapter 6

Closure

We close this dissertation stating conclusions about the achievements reached, defining
an agenda for future work, and summarizing the tangible contributions.

6.1 Conclusions

Shortly, this work has been about the application of formal semantics to the recognition
of textual entailment via NL. A model theoretic semantics and a model checker for NL
were developed, with these it can be said why a text does not entail a hypothesis, so
the explanatory power of NL has been recovered. The open questions about the polarity
algorithms have been closed proving their equivalence. Also, the problem of pronominal
anaphora resolution was solved by dynamizing the model-theoretic semantics of an
extension of AB grammars, with this, a model checker for solving pronominal anaphora
was defined. Next, detailed conclusions can be found.

The equivalence of the algorithms of van Benthem, Sánchez, Dowty and van Eijck
permits to state that the algorithms of van Benthem and van Eijck are sound, also that
the semantics of Sánchez and Moss are equivalent. Contrary to Dowty’s assumption, his
internal algorithm has no advantage with respect to the external algorithms.

As far as we know, the equivalence between the algorithms for marking polarity here
analyzed had not been proved, therefore we have proved that the concept of polarity
computed by these algorithms is the same.

We are not linguists, but as computer scientists we would prefer the van Benthem’s
algorithm because it is the simplest and it just needs two steps to compute polarity. The
algorithm of Dowty would be the second option, apparently it needs one single step
but when the functor is the result of a composition, the algorithm has to make a guess,
and if it fails, backtracking is required (this has been shown in the explanation of the
construction of the proof tree of Figure 3.5.). The algorithms of Sánchez and van Eijck
require three steps.
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102 Future Work

From the model theoretic semantics here developed, a model checker for Natural
Logic has been proposed, and the explanatory power of Natural Logic has been recovered.
Using Natural Logic, the recognizable textual entailments are restricted to those sentences
that have the same syntactic structure.

The model theoretic semantics is based on the denotations of the subexpressions of a
natural language sentence, these denotations just are sets. Hence, a high order semantics
is not needed.

To implement a model checker for NL, lexicons having pairs word ∶ type are needed,
but, as far as we know, there are not such lexicons. Another possibility is to have a Part
Of Speech (POS) tagger that associates each word with its proper type.

The C & C tools [CC04] have a POS tagger, but it uses the inference rules of Combi-
natory Categorial Grammars, and there is not an algorithm to compute polarity for this
kind of grammars, actually the known algorithms to compute polarity only work with
Categorial Grammars which have function application as the unique inference rule.

There are not domains partially ordered as it is supposed in section 2.2, therefore to
compute the meaning of a natural language expression is not possible, but it is possible to
take advantage of tools such as WordNet [Uni10], BabelNet [NP12], etc., to find synonyms,
hyponyms, hyperonyms, and troponyms.

By relating AB grammars with phrase structure grammars it is possible to construct
the noun phrase antecedents in parsing time, even though the binding phase between
anaphors and antecedents is performed after the parsing time.

Nevertheless, AB grammars are a kind of Type Logical Grammar [Jäg05], it should
be noticed that our method of anaphora resolution does not produce any logical form,
because the syntactic part to look for antecedents is enough, from there the name
Anaphora Resolution as Parsing.

It should be noticed that our pronominal anaphora solver is in the line of knowledge
poor methods, because it is only necessary the lexical knowledge about the type and
features of each word in a sentence, of course also the syntactic knowledge underlying
Definition 5.3.3 is needed. In spite of being a poor knowledge method, the method can
solve Donkey, inter and intra sentential pronominal anaphora. Unfortunately, there are
not lexicons having pairs word ∶ typefeatures.

6.2 Future Work

1. In order to widen the scope of NL to Recognize Textual Entailment, it is desirable to
be able to compare subexpressions of similar types; for example, the type of nouns
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is similar to the type of noun phrases.

2. Another point of interest is to compare the proposals to dynamise higher order
logics, looking for an unifying type logical grammar.

3. Other points on the agenda for future work are:

(a) To construct lexicons where the words are associated with their types and
features.

(b) To define an algorithm to compute polarity for Combinatory Categorial Gram-
mars.

(c) To build interfaces to take advantage of resources such as WordNet, and
BabelNet.

6.3 Contributions

The main contributions of the research reported here are the following:

1. The equivalence among the polarity algorithms presented in Chapter 3 has been
proved, which makes clear that internal and external polarity marking compute the
same notion of polarity. As others consequences, the soundness of the algorithms
of van Benthem and van Eijck are established. The work developed there has been
electronically published in Studia Logica with the title Equivalences among polarity
algorithms.

2. A model theoretic semantics for NL has been defined, and it is sound and complete
to both, the proof theory of an extension of AB grammars and the proof theory of
NL. This permits us to define a method of model checking for NL and characterize
the kind of textual entailments that can be recognized with NL. All this work is
reported in the article Textual Entailment via Model Checking for NL. It has been sent
to Studia Logica for revision.

3. An automatic theorem prover for NL has been developed. With this, it was possible
to compute the polarity of the subexpressions of a sentence. This was informed in
the article Automatic Theorem Proving for NL: a Case Study on Textual Entailment. It
has been accepted for publication in Computación y Sistemas.

Formal Approaches to Textual Entailment,
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4. A model checker to solve pronominal anaphora has been built. It is a poor knowl-
edge method. It covers Donkey, intrasentential and intersentencial anaphora, and it
does not need a representation in logical form. This contribution will be sent for
publication to Computational Linguistics with the title Pronominal Anaphora Resolution
as Parsing.
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