
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Elaborating a new technique 
for acousto-optical spectrum analysis 
of ultra-high-frequency radio-wave 
signals with an improved resolution, 
using collinear wave heterodyning 

 
 

Principal contributors: 
 
 
 

Alexandre S. Shcherbakov(1), Alexej M. Bliznetsov(2), 
Jewgenij Maximov(3), Olga I. Belokurova(2), 

Daniel Sanchez Lucero(1), Abraham Luna Castellanos(1), 
Sergey A. Nemov(2) & Karla J. Sanchez Perez(1). 

 
 

 
            1) National Institute for Astrophysics, Optics 
                 & Electronics (INAOE), Puebla, Mexico. 
            2) St.-Petersburg State Polytechnic University, 
                   Saint-Petersburg, Russian Federation. 
            3) Molecular Technology GmbH, Berlin, Germany. 

 
 

Technical report 

Optics Department, INAOE. 
 
 

©INAOE 2010 
The authors hereby grant to INAOE 

permission to reproduces and distribute 
copies of this technical report. 



1 
 

INDEX 
 

Introduction                                                                                                                                                      2 
 

1. Formulating the problem. Frequency performances and resolution of the Bragg 
    acousto-optical deflector operating in a one-phonon Bragg normal light scattering regime               3 
     1.1. References                                                                                                                                             5 
 

2. Collinear acoustic wave heterodyning: theoretical consideration 
     and experimental investigation using acousto-optical technique                                                           6 

     2.1. Introductive remarks                                                                                                                              6 
     2.2. Co-directional collinear propagation and interaction of the longitudinal acoustic waves 
             of finite amplitudes                                                                                                                               6 
     2.3. Experimental verifications and modeling using acousto-optical technique                                         10 
     2.4. Potential acousto-optical efficiency                                                                                                     11 
     2.5. Conclusion                                                                                                                                           13 
     2.6. References                                                                                                                                            13 
 

3. Practical estimations and proof-of-principle experimental studies of the potentials peculiar to 
    optical spectrum analysis with a novel lead molybdate crystalline acousto-optical cell                     14 
 

     3.1. General remarks                                                                                                                                   14 
     3.2. Potential performances of a novel lead molybdate crystalline acousto-optical cell with 1         15 

     3.3. Potential performances of a novel lead molybdate crystalline acousto-optical cell with 1         19 
     3.4. Brief comparative discussion                                                                                                              23 
     3.5. Characterizing the optical part of experimental set-up and various practical estimations                  24 
     3.6. Conclusion                                                                                                                                          28 
     3.7. References                                                                                                                                           28 
 

4. Potentials of the acousto-optical spectrum analysis on a basis of a novel algorithm 
    of the collinear wave heterodyning in a large-aperture KRS-5 crystalline cell                                   29 
 

      4.1. Preliminary remarks                                                                                                                            29 
      4.2. Efficiency of acousto-optical interaction in a KRS-5 cubic crystal                                                    30 
      4.3. Efficiency of the co-directional collinear acoustic wave heterodyning                                              33 
      4.4. Estimating the frequency potentials peculiar to a multi-channel 
             direct optical spectrum analysis with a KRS-5 cell                                                                            37 
      4.5. Estimating the efficiency of collinear wave heterodyning                                                                 42 
      4.6. Proof-of-principal experimental modeling                                                                                         44 
      4.7. Brief comparative discussion                                                                                                              47 
      4.8. Conclusion                                                                                                                                          48 
      4.9. References                                                                                                                                           48 
 

5. Acknowledgment                                                                                                                                        49 
 
 
 
 
 
 
 



2 
 

INTRODUCTION 
 
This technical report is devoted to the problem of improving the frequency resolution inherent in a parallel acousto-
optical spectrum analysis via involving an additional nonlinear phenomenon into the data processing. In so doing, we 
examine possible application of the wave heterodyning to the real-time scale acousto-optical analysis of the frequency 
spectrum belonging to ultra-high-frequency radio-wave signals peculiar, for example, for radio-astronomy. The 
nonlinear process of wave heterodyning is realized through providing a co-directional collinear interaction of the 
longitudinal acoustic waves of finite amplitudes. This process, which is beforehand studied theoretically and 
investigated experimentally via the acousto-optical technique as well, allows us either to improve the frequency 
resolution of spectrum analysis at a given frequency range or to increase by a few times the current frequencies of 
radio-wave signals under processing. The first step along this way is connected with experimental modeling of the 
acoustic wave heterodyning in solids via exploitation of specific acousto-optical cell based on a liquid, which allows 
the simplest realization of a cell with the needed properties. Then, these theoretical and practical findings are used in 
our experimental studies aimed at creating a new type of acousto-optical cells, which are able to improve the resolution 
inherent in acousto-optical spectrum analyzer operating over ultra-high-frequency radio-wave signals. In particular, the 
possibility of upgrading the frequency resolution through the acoustic wave heterodyning is experimentally 
demonstrated using the cell made of lead molybdate crystal. The obtained results demonstrate practical efficiency of 
the novel approach presented. Thereafter, potentials peculiar to the acousto-optical spectrum analysis of a gigahertz-
frequency range radio-wave signals with essentially improved relative value of the frequency resolution, which can be 

in the order of 510  in our case, is considered with exploiting a new type of the acousto-optical cell made of really 
effective 5KRS   cubic single crystal. The obtained estimations show that the elaborated approach, based 
algorithmically on a two-cascade processing, allows the direct 5000 -cannel parallel optical analysis of spectra inherent 
in ultra-high-frequency radio-wave signals. In frames of the performed investigations, the efficiencies of both non-
collinear acousto-optical and collinear acoustic interactions are analytically estimated. Moreover, analytic expression 
for the corresponding effective acoustic modulus of the third order in 5KRS   has been found for the first time in our 
knowledge. In so doing, contrary to our previously developed theoretical approach based on the technique of 
substantial approximations, a regime of the coupled acoustic modes is considered, which provides more accurate 
analysis. These findings make it possible first to estimate the technical requirements to performance data of the 
acousto-optical cell as well as to acceptable values of the operating frequencies. At the end, above-proposed 
methodology for the experimental simulation is practically applied and exploited within a specific example of the 
liquid-made cell to estimate performances of the parallel spectrum analysis with the new 5KRS  -crystal based 
acousto-optical cell. 
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1. FORMULATING THE PROBLEM. FREQUENCY PERFORMANCES AND RESOLUTION 

OF THE BRAGG ACOUSTO-OPTICAL DEFLECTOR OPERATING IN A ONE-PHONON 
BRAGG NORMAL LIGHT SCATTERING REGIME 

 
Let us start from preliminary estimations of the frequency bandwidth f , the frequency resolution f , and the 

number N  of resolvable spots inherent in the Bragg acousto-optical deflector operating in a one-phonon normal light 
scattering regime. A one-phonon non-collinear light scattering in isotropic medium, see Fig.1.1a, is associated with the 
Bragg condition [1.1, 1.2] 
 

)Vn2(f)k2(Ksin 0                                                            (1.1) 
 

for normal process without changing the state of light polarization. Here,   is the Bragg angle of light scattering, 0k  

and   are the wave number and the wavelength of light, n  is the corresponding refractive index, K , f , and V  are 
the wave number, carrier frequency, and phase velocity of the acoustic wave. The corresponding wave vector diagram 
is depicted in Fig.1.1b. The frequency bandwidth of acousto-optical interaction f  can be estimated through 

differentiating this Bragg condition in Eq.(1.1) as  cos)Vn2(f , where   is the variation of the angle of 

light incidence associated with the variation of the acoustic frequency f  needed to provide the Bragg condition. In 

the case of light modulation, we have usually the geometry of interaction with rather wide optical beam, whose angle 
of spreading   is small, and rather narrow aperture of the acoustic beam, whose angle of spreading is 

 )LfV( , where L  is the length of acousto-optical interaction, see Fig.1.1a. Assuming that   and 

1cos  , we yield the following approximation 
 

fL

Vn2
f

2


                                                                              (1.2) 

 

for the bandwidth of a normal Bragg acousto-optical interaction in isotropic medium. This approximate equality 
follows geometrically from the plot in Fig.1.1b, because V)f(2K   and )fL(Vn4cosk2 0  . 

 

                  
 

                                                    a.                                                                                b. 
 

Figure 1.1. A one-phonon normal light scattering regime: principal schematic arrangement 
for the Bragg light scattering (a) and vector diagram determining the frequency bandwidth (b). 

 
Generally, the momentum p  of a photon is connected with the wave number k  as )2(khp  , where h  is the 

Planck constant, so an uncertainty )2()k(hp   in the momentum related to the uncertainty in the wave number 

k  of a photon. The same view is true, if one will consider the phonons. Namely, the momentum P  of a phonon is 
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connected with the wave number K  as )2(KhP  , and an uncertainty )2()K(hP   in the momentum 

related to the uncertainty in the wave number K  of a phonon. Then, because the phonon wave number is 

Vf2K  , one can note that an uncertainty of the phonon wave number, in its turn, can be explained in terms of an 

uncertainty in the phonon frequency f  as V)f(2K  . The limiting case of just Bragg light scattering in 

acousto-optics is determined by the well-known [1.1 – 1.3] dimensionless inequality for the Klein-Cook parameter 
 

1VLfQ 22   .                                                                   (1.3) 
 

In this limit an uncertainty in the momentum of the issuing photon is characterized by the relation Pp  , and, 

consequently, Kk  , because they both are localized inside the same spatial area determined by the aperture D . 

Together with this, the value of k  is significantly smaller than the photon wave number variation connected with 

scattering from the order j  to the order 1j  , i.e. kKKkk j1j 


. By this is meant that the wave 

numbers of both the photons and the phonons are well determined in the Bragg limit of acousto-optical interaction. 
Due to the Heisenberg uncertainty principle [1.4] proclaims that p x   h  with Dx  , one can found that 
 

1TDVf  ,                                                                           (1.4) 
 

where T  is the time of passing the acoustic wave through the aperture D . Just this value determines the frequency 
resolution of acousto-optical modulator operating in a one-phonon Bragg normal light scattering regime. The number 
N  of resolvable spots in the regime under consideration is given by the ratio 
 

fTffN  .                                                                          (1.5) 
 

In high-frequency devices, the value of N  is restricted by both the geometrical factors and the acoustic attenuation in a 
medium. The first geometric factor is the maximal aperture D  of a deflector. In connection with this, one can estimate 
the maximal bandwidth as 2ff 0 , where 0f  is the central carrier frequency of the acoustic wave, and obtain the 

first limitation 
 

V2

fD
N 0

1   .                                                                                (1.6) 

 

The second factor is determined by the acoustic beam spreading. One can assume that the aperture D  of that deflector 
belongs to the near zone of radiation from the piezo-electic transducer, whose size can be taken to be equal to L , so 

that )V2(fLD 0
2 . This relation leads to )f2(QVnL 2

0
2   and to the second limitation 

 
2

0
2 f4

QVn
N 










  .                                                                         (1.7) 

 

The third principal limitation is conditioned by acoustic attenuation. It can be also represented as a function of 0f . Let 

us use the factor 0  of acoustic attenuation expressed in [dB/(cm GHz2)], so that  -dB level of attenuation will 

require the aperture 2
0

1
0 fD  . Substituting this formula into Eq.(1.6), one can find 

 

00
3 fV2

N



  .                                                                            (1.8) 

 

Thus, the number of resolvable spots is restricted by a triplet of the above-mentioned independent limitations. To make 
illustrating numerical estimations one can take, for example, an acousto-optical deflector made of such widely 
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exploited crystalline material as a lead molybdate ( 4PbMoO ). In this particular case of a one-phonon Bragg normal 

light scattering, one can take the following values inherent in this crystal: 51063.3V   cm/s, 633 nm, 26.2n  , 
and 150   dB/(cm GHz2) [1.1, 1.5]. The numerical estimations have been realized for the apertures 41D   cm; 

the attenuation factors along the total aperture 4  and 6 (dB/aperture), and the Klein-Cook parameter 

 4,3,2Q  providing just the Bragg regime of light scattering, see Fig.1.2. It is seen that a lead molybdate 

deflector with 2D   cm,  2Q , and 4  (dB/aperture) is capable to provide 700N   resolvable spots with 

potential frequency resolution f  of approximately 180  KHz in the frequency bandwidth close to 120  MHz at a 

central frequency 0f  of about 250  MHz. Together with this, using Fig.1.2 one can conclude that conventional lead 

molybdate deflector even with an aperture of 1  cm is not operable at the carrier frequencies exceeding 600  MHz. 
Thus, now one can formulate the problem facing this technical report. Taking alone a given lead molybdate optical 
deflector with the given aperture 2D   cm, is it possible to keep the same number of resolvable spots with the same 
potential frequency resolution in the same frequency bandwidth at significantly increased central carrier frequency 0f  

exceeding the above-mentioned 600 MHz ? The main goal of our considerations is to give definitely positive answer 
to this question under condition of exploiting the collinear acoustic wave heterodyning in the taken optical deflector. 
 

 
 

Figure 1.2. The combined diagram illustrating effect of a triplet of the restricting factors. The solid straight lines are 
related to N1, the chosen apertures D are equal to 1, 2, 3, and 4 cm. The dashed lines regards to N2 in the particular 
cases of Q = 2 , 3 , and 4 . The solid hyperbolic-like falling curves illustrate N3 and reflect contributions of the 

acoustic attenuation with total losses of 4 and 6 dB along the optical aperture. 
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2. COLLINEAR ACOUSTIC WAVE HETERODYNING: THEORETICAL CONSIDERATION 
AND EXPERIMENTAL INVESTIGATION USING ACOUSTO-OPTICAL TECHNIQUE 

 
2.1. INTRODUCTIVE REMARKS 

 
A major portion of modern developments in a high-speed and extremely precise optical data processing is currently 
connected with applying various nonlinear effects, such as soliton phenomena and parametric processes, all-optical 
multi-stability, etc. [2.1, 2.2]. In this chapter, the practical potentials related to exploiting the nonlinear process of wave 
heterodyning in a medium with dispersive losses are considered. In the case of wave heterodyning, beneficial analogue 
information incorporated into the spectrum of a signal becomes to be converted from a high-frequency signal wave to a 
difference-frequency wave, so that just spectral components peculiar to the resulting difference-frequency wave are 
exploited during subsequent optical data processing. Usually, the precision of both spectral and frequency 
measurements for signals is determined by the uncertainty in the energy or momentum inherent in a photon localized in 
the interaction area [2.3]. Due to the dispersion of losses, heterodyning leads to increasing the characteristic length 
and/or time of propagation for the converted signal in that medium and to improving significantly the accuracy of 
optical data processing, because both spectral and frequency resolutions are in inverse proportion to the length or time 
of acousto-optical interaction. Here, we are reporting our investigations of the co-directional collinear longitudinal 
acoustic wave heterodyning through acousto-optic technique and its possible application to a real-time acousto-optical 
analysis of the frequency spectrum belonging to ultra-high-frequency (UHF) radio-wave analogue signals. The 
character of our studies is directly connected with actual absence of sufficiently effective acousto-optical materials 
suitable for processing ultra-high-frequency radio-wave analogue signals. Exploiting the introduced approximation, the 
theory of wave heterodyning in a medium with the dispersive losses has been progressed. Then, the developed theory 
was applied to our experiments directed to increasing the accuracy of acousto-optical spectrum analyzers working in 
the UHF-range. The obtained results confirm principally the advantages of our approach. 
 

2.2. CO-DIRECTIONAL COLLINEAR PROPAGATION AND INTERACTION 
OF THE LONGITUDINAL ACOUSTIC WAVES OF FINITE AMPLIUDES 

 
It is well known that co-directional collinear propagation of longitudinal acoustic waves of finite amplitudes in 
isotropic media and along the acoustic axes in crystalline materials, which do not have the group-velocity dispersion, 
but have the dispersive losses, is governed by the Burgers equation for the normalized distortion 0DD  [2.4] 
 

2

2
B

y 











 .                                                                     (2.1) 

 

Here, D  is the amplitude of distortion, 0D  is the amplitude of acoustic pump distortion, )Vxt(P  , 

xy P , PP f2 , V , and P  are the cyclic frequency, velocity, and logarithmic attenuation of the pump 

acoustic wave. Then, the parameter )V2(DB P0P   describes a ratio of the acoustic nonlinearity to the 

acoustic dissipation;   is the constant of acoustic nonlinearity. Figure 2.1 illustrates arranging the interacting beams of 
the acoustic waves in a cell. 
 

 
 

Figure 2.1. Arranging the interacting acoustic beams consisting of 
the longitudinal acoustic waves of finite amplitudes in a cell. 
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Broadly speaking, Eq.(2.1) can be analytically solved in its general form with arbitrary boundary conditions due to 
well-known Hopf-Cole substitution converting the nonlinear Burgers equation into linear heat conduction equation 
[2.4]. However, very cumbersome form of such a solution does not give a chance to perform the subsequent harmonic 
analysis. The spectral approach, when the project of solution has a given form, does not lead to a success as well, 
because in this case one has to solve an infinite set of the combined nonlinear equations. That is why the most 
worthwhile way is connected with finding an approximate solution by the method of successive approximations. The 
needed approximate solutions can be obtain rather fast when the parameter B  is not too large. In so doing, let us take 
the boundary condition to Eq.(2.1) in the form of a superposition of two longitudinal waves. One of them with unit 
amplitude and the above-noted cyclic frequency PP f2  can be considered as a pump, while the other wave 

represents a signal with an amplitude of   and a cyclic frequency of SS f2 , so that 

 

      sinsin,0y  ,                                                      (2.2) 
 

where PS  ,   is the phase shift between the signal and pump, PS PP , S,PP  are the acoustic power 

densities for the pump and signal, respectively. Here, we restrict ourselves by the regime of non-degenerate acoustic 
interaction. Substituting Eq.(2.2) into Eq.(2.1), one can find the zero approximation solution describing the propagation 
of two attenuating non-interacting waves as 
 

        sinyexpsinyexp 2)0( .                                           (2.3) 
 

Now, using )0(  in the nonlinear term of Eq.(2.1), one can estimate the first approximation solution as 
 

       2sina2sina
)1(
SS

)1(
PP

)0()1(  
 

       1sina1sina
)1(
PS

)1(
PS  .                                         (2.4) 

 

Here,     y4expy2exp
4

B
a

)1(
PP    is the second harmonic amplitude of an acoustic pump wave, and 

    y4expy2exp
4

B
a 22

2)1(
SS 




   is the amplitude of the second harmonic of an acoustic signal wave. 

Then, a pair of the following expressions:      2)1(
PS 1yexp1y2exp

4

)1(B
a 




  and 

     2)1(
PS 1yexpy2exp1

4

)1(B
a 




   gives the amplitudes of acoustic waves with the combined 

and difference frequencies. Exploiting quite similar technique and neglecting the terms of the order of 3 , one can 
calculate approximate solutions of the second order. In the particular case of the second approximation for acoustic 
wave amplitude with the difference frequency, one can write 
 

     


















 1

])1(y2[exp1

16

)1(B
y2exp11yexp

4

)1(B
a

2
2)2(

PS  

























12

])12(y2[exp1

2

])2(y2[exp1

)1(2

])1(y4[exp1
 .                        (2.5) 
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In the case, when the nonlinearity does not exceed the dissipation, i.e. if 1B2   and 13  , an additional acoustic 
wave with the difference frequency can be characterized by the first order solution as well. After squaring and 
normalizing, one obtains 
 

   x,E1
4

1
Ba S

2
i

2
22

2)1(
PS 



















 
 ,                                          (2.6) 

 

 




















































2

S
S

Si
1

xexp
x2

exp1x,E  .                        (2.7) 

 

Here, the relations xxy 2
SP

  were used; S  is logarithmic decrement characterizing amplitude acoustic 

attenuation of the signal acoustic wave. The spatial dependences reflecting Eqs.(2.7) are presented in Fig.2.2. For the 
comparison, these plots include the exponential dependence )x2(exp S , which describes decreasing the acoustic 

signal power in zero approximation with 1B  . One can see that the distributions of acoustic power on these plots are 
as more uniform as values of the parameter   are closer to unity. However, therewith the intensity of an additional 

acoustic wave is decreasing directly proportional to 2)1(  . 

 

 
a. 1  

      
b. 1  

 

Figure 2.2. The spatial normalized plots of an additional acoustic wave power with the different frequency 

in the case of 1B   and 13   for various values of the parameter  . 

 

It follows from Eq.(2.5) that the correction to the first order solution 
)1(
PSa   increases the amplitude of additional 

acoustic wave. By this it mean that when 2B , which is directly proportional to the inputting power of acoustic pump, 
grows by ten times, the acoustic power of an additional wave becomes to be increased by more then ten times, see 
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Fig.2.3. Including the obtained corrections of the second order in the solution of the first order changes nothing in the 
character of these dependences and leads to only slight numerical additions in comparison with the first approximation. 
 

 
 

Figure 2.3. The spatial normalized plots of an additional acoustic wave power with the different frequency 

in the case of 15.1  and 13   for various values of the parameter B  

 
The power density DP  inherent in an additional acoustic wave of the difference frequency in the first approximation 

can be explained in dimensional values as 
 

   x,Em
ff

f
PPx,P S

2
D

2

SP

D
SPSD 








  ,                                                 (2.8) 

 

where SPD fff  . Then, the value 
2
0

5

22

V8
m




  determines the efficiency of generating an additional 

difference-frequency acoustic wave in a medium and takes into account the factor 0  characterizing the attenuation of 

acoustic waves. Usually, the acoustic attenuation is mentioned in bibliography in units of [ dB/(cm GHz2) ] , but 
Eq.(2.8) needs it in the form recalculated for an acoustic power 
 

0  (s2/cm) = 023.0   [ dB/(cm GHz2) ] 1810  .                                                   (2.9) 

 

Physical parameters for a few materials available for acoustic wave heterodyning are presented in Table 2.1.  
 

Material H2O C2H5OH PbMoO4 As2S3 
Material density  [g/cm3] 1.00 0.787 6.95 3.20 
Direction of propagation for the longitudinal acoustic waves arbitrary arbitrary [001] arbitrary 
Velocity of propagation V 10 - 5 [cm/s] 1.49 1.15 3.62 2.60 
Modulus of the nonlinear parameter |  | 8.0 12.3 17.5 21.5 
Factor of the acoustic attenuation  10 18 [s2/cm] 552 1247 3.45 39.1 

Acoustic quality factor 610m   [s/g] 3.53 7.545 725 98.1 

Acousto-optic figure of merit M2 10 18 [s3/g] 126 543 36.3 429 
 
 

Table 2.1. Physical properties of some materials appropriate for the acousto-optic cell, see [2.5, 2.6]. 
 
            Acousto-optical technique is one of the most sensitive methods to detect various acoustic signals. In connection 
with this, it would be worthwhile to discuss the efficiency I  of light scattering by an additional acoustic wave in the 
linear regime of rather weak acoustic signals. In this particular case [2.5, 2.7],  
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2

2
D2

2

2

LPM
I




  .                                                                          (2.10) 

 

where   is the optical wavelength. Now, we can exploit Eq.(2.7) and (2.8) to rewrite Eq.(2.9) as 
 

 x,Em
ff

f
PP

2

LM
I S

2
D

2

SP

D
SP2

2
2

2













  ,                                          (2.11) 

 

which determines the combined efficiency of the acousto-optical cell in terms of light scattering. 
 

2.3. EXPERIMENTAL VERIFICATIONS AND MODELLING 
USING ACOUSTO-OPTICAL TECHNIQUE 

 
The obtained theoretical results related to collinear interaction of longitudinal acoustic waves were examined 
experimentally via exploitation of the acousto-optic technique. The main attention was paid to the process of 
generating an additional acoustic wave with the difference frequency. In so doing the experimental set-up, whose 
optical part is presented in Fig.2.4, were used. The collimated laser light beam with a wavelength of 633  nm was 
directed at the rotating mirror placed at the focus of the cylindrical lens 2. Rotation of this mirror provided the 
incidence of light beam at an arbitrary point of the acoustic duct. Light, scattered by an additional acoustic wave, was 
redirected to photo-detector placed at the focal plane of the cylindrical lens 1. At this step, one has to say that the 
analytical calculations allow the principal opportunity for experimental simulation of the desirable collinear interaction 
between high-frequency acoustic waves passing along the wave axes in anisotropic solid states through studying 
similar processes at low frequencies in isotropic media with acceptable characteristics, namely, parameters of acoustic 
nonlinearity, acoustic attenuation, acoustic and acousto-optical figures of merit. In particular, the performed 
investigations were oriented on experimental simulation of co-directional collinear interaction for acoustic waves of 
about 1 GHz, for example, in lead molybdate crystal ( 4PbMoO ) through studying similar process in the acousto-

optical cell exploiting ethanol ( OHHC 52 ) at the frequencies of about 8030   MHz, see Fig.2.5. 
 

 
Figure 2.4. Optical scheme of the experimental set-up. 

 

In fact, the experiments were carried out at the following pairs of the modeling frequencies in ethanol: 
 
 

30fS   MHz,          2.47fP   MHz,           2.17fD   MHz,       64.0 ; 

                                   3.57fS   MHz,       82fP   MHz,              7.24fD   MHz,       70.0 ; 

                                   47fS   MHz,          57fP   MHz,              10fD   MHz,          82.0 ; 

                                   28fS   MHz,           31fP   MHz,              3fD   MHz,            91.0 .                      (2.12) 
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Using Eq.(2.9), one can find that the experimental parameters of the modeling and real media are connected with each 
other as 
 

a)  2
M,S

0

M,02
S ff




  ,           b)  M  ,          c)  

M
22
SP

0

M,0M

22
SP

H

PP

H

PP

















,                (2.13) 

 

where the index “M” is related to parameters of the modeling process. In the case of, for example, a lead molybdate 
crystal, these data are represented by: 
 

53.0fS   GHz,          84.0fP   GHz,         31.0fD   GHz,       64.0 ; 

02.1fS   GHz,          46.1fP   GHz,         44.0fD   GHz,       70.0 ; 

83.0fS   GHz,          01.1fP   GHz,         18.0fD   GHz,       82.0 ; 

49.0fS   GHz,           54.0fP   GHz,        05.0fD   GHz,       91.0 .                          (2.14) 
 

The normalized data reflecting the coordinate dependences of light scattering efficiency by an additional acoustic wave 
are presented in Fig.2.6. The points are experimental data, while the solid lines explain the corresponding calculations. 
The comparison of these data illustrates the possibility of applying the elaborated analytical method to describing co-
directional collinear interaction of the longitudinal high-frequency acoustic waves, in particular, to the process of 
exiting an additional acoustic wave with the difference frequency and its visualizing via acousto-optic technique. 
 

                              
 
Figure 2.5. Acousto-optical cell with two piezo-electric                    Figure 2.6. Normalized spatial dependences for 
transducers and with liquid medium represented by                        the efficiency I  of light scattering by the difference- 
ethanol.                                                                                                 frequency acoustic wave. 
 

2.4. POTENTIAL ACOUSTO-OPTICAL EFFICIENCY 
 
Now, let us discuss the efficiency I  of Bragg light scattering by the difference-frequency acoustic wave. In the case of 
weak acoustic signals, when nonlinearity inherent in acousto-optical interaction can be omitted [2.5], one can use the 
following expansion 
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a)   44222 Lq
3

1
Lq)Lq(sinI  ,                   b)  2PMq D2

1  .        (2.15) 

 

Here,   is the light wavelength in the air. The figure )V(pnM 32
eff

6
2   of acousto-optical merit for the chosen 

crystal includes the refractive index n  and the effective photo-elastic constant effp , which both depend on the crystal 

cut. Under condition 3Lq 22  , i.e. within 
 

)LM(6P 2
2

22
D  ,                                                      (2.16) 

 

one may take only the first term in Eq.(2.15a). Exploiting Eqs.(2.8) , one can rewrite Eq.(2.15a) as 
 

   2
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f
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






  ,         (2.17) 

 

which determines the combined efficiency of the acousto-optical cell under consideration in terms of light scattering. 
Now, the potential efficiency I  of Bragg light scattering by the difference-frequency acoustic wave has to be estimated 
in a lead molybdate ( 4PbMoO ) single crystal; symmetry ( m4 ). The crystal allows existing pure longitudinal elastic 

mode with velocity 51062.3V   cm/s when this elastic wave is passing along the ]001[ -axis. Such an orientation has 

its original motivation in preliminary data related to linear and nonlinear manifestations of optical and acoustical 
properties inherent in this crystal. In particular, it exhibits rather high efficiency of collinear interaction for the 
longitudinal acoustic waves in the ]001[ -direction described by 5.17  [2.6, 2.8]. Then, a maximal figure of 

acousto-optical merit 18
2 104.40M   s3/g is inherent in just normal light diffraction in the )110( -plane. 

 
            Now, the contribution of acousto-optical interaction should be estimated. The Bragg regime of light diffraction 
occurs when the angle of light incidence on the acoustic grating meets the corresponding Bragg condition and the 

inequality 1)Vn(fL2Q 22
D   for the Klein-Cook parameter Q  [2.9] is satisfied. Taking 532  nm, 

26.2n   (in 4PbMoO ), 0.1L   cm, and 60fD   MHz, one can estimate 04.4Q  . Hence, the regime of light 

scattering, which is rather close to the Bragg regime at least in a small-signal linear region, could be expected for the 
acoustic different-frequencies of about 60  MHz. Using Eq.(2.16), the contribution of acousto-optical interaction can 
be sufficiently accurate estimated from the first term of Eq.(2.15a) 
 

)2(PLMI 2
maxD

2
2

2
max  .                                          (2.18) 

 

With the maximally allowed level 6
maxD 105.4P   g/s3 45.0  W/cm2 obtained from Eq.(2.16), one can find 

3.0Imax  . This estimation makes it possible to consider the above-chosen level of DP  as more or less tolerable for 

an upper limit in lead molybdate under aforementioned condition given by Eq.(2.16). An undoubted merit of this 
characterization consists in practically convenient direct proportionality between the efficiency I  and the power 
density DP . At the second step, the contribution of acoustic wave mixing should be briefly analyzed. With this object 

in view, one can use Eq.(2.8) for estimating the acoustic pump power density 0PP  needed to reaching a pre-assigned 

peak level of the difference-frequency power density maxDP  within 13   at a given ratio 0PS PP . From the 

start, it can be easily shown that a peak magnitude peculiar to the coordinate dependence in Eq.(2.8) is close to unity, 

i.e.   1)1(x2exp)x2(exp1Max 2
P

2
P 
















   . Consequently, one can find 
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m

P

|1|

f
P

maxDS
0P 
 .                                                    (2.19) 

 

Let us consider an illustrative example for 4PbMoO  when %3I max   (which is quite natural for the spectrum 

analysis in a small-signal regime), so that Eq.(2.16) gives 5
maxD 104P   g/s3 40  mW/cm2. Taking 

81025.7m   s/g, 1.0 , 15.1 , and 0.1fS   GHz, one can find 7
0P 1050P   g/s3 = 50  W/cm 2 and 

0.5PS   W/cm 2. These data do not look unacceptable practically and can be improved with using more effective 

materials. 
 

2.5. CONCLUSION 
 
We have investigated both theoretically and experimentally the phenomenon of a co-directional collinear wave 
heterodyning, taken in the particular case of interaction the longitudinal acoustic waves of finite amplitudes. In so 
doing, the acousto-optical technique has been exploited. Possible applications of this phenomenon to the acousto-
optical spectrum analysis of the UHF radio-wave signals have been tested as well. At the beginning, the experimental 
modeling of the acoustics wave mixing process in solids via application of acousto-optical cell based on liquid 
material, namely, liquid ethanol, which makes possible the simplest option for realizing the corresponding cells with 
the needed parameters, has been examined. The presented results demonstrate the possibility of applying co-directional 
collinear interaction of the longitudinal acoustic waves to resolving one of the problems related to acousto-optical 
spectrum analysis of just the UHF radio-wave signals. Devices of this sort provide an improved frequency resolution in 
that bandwidth of the working frequencies, where conventional acousto-optical cells made of given materials cannot 
operate. The functional scheme of the devices under proposal differs from the scheme for spectrum analysis with the 
electrical heterodyning that it does not require a mixer for microwave signals or a powerful intermediate-frequency 
amplifier. Both the acoustic wave heterodyning and the amplification of signal waves at the difference frequencies 
occur in a single solid-state circuit using the energy from the acoustic pump. Furthermore, the required relative 
frequency bandwidths of both the piezoelectric transducers on a facet of a cell are considerably small, so that the 
fabrication of these transducers could be simplified. The proposed scheme of acousto-optic spectrum analyzer may 
prove to be the most effective at frequencies above 1 GHz or more. Consequently, the results of these studies should 
also be thought of as an experimental modelling for gigahertz-range devices, where the choice of materials for effective 
acousto-optic cells is rather limited because of the increased (in fact, directly proportional to the currier acoustic 
frequency squared) attenuation for acoustic waves. 
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3. PRACTICAL ESTIMATIONS AND PROOF-OF-PRINCIPLE EXPERIMENTAL STUDIES OF 
THE POTENTIALS PECULIAR TO OPTICAL SPECTRUM ANALYSIS WITH A NOVEL LEAD 

MOLYBDATE CRYSTALLINE ACOUSTO-OPTICAL CELL 
 

3.1. GENERAL REMARKS 
 
In a line with this, now we study potential possibilities related to using a collinear wave mixing in the specific case of a 
medium without any group-velocity dispersion while with strongly dispersive losses. Our approach allows realizing 
effective wave heterodyning, when the beneficial data in signal become to be converted from a relatively high-
frequency carrier wave to a difference-frequency wave. The accuracy of spectral as well as frequency measurements is 
physically determined by the uncertainty in the energy or momentum inherent in a photon localized in the interaction 
area [3.1]. Due to a rather strong dispersion of losses, the heterodyning leads to increasing the characteristic length and 
time of propagation (they both are associated with a clear optical aperture) for the converted signal in that medium and 
to improving significantly the accuracy of signal processing. In this context, we present our results in the real-time 
optical analysis of frequency spectra, belonging to analogue ultra-high frequency radio-wave signals, with considerably 
improved frequency resolution. These results are based on a two-cascade processing, i.e. on exploiting a pair of 
different wave processes one after the other sequentially in the single crystalline cell. This cell includes two resonant 
piezoelectric transducers, converting the input electronic signals into gigahertz-frequency elastic waves, with the 
corresponding electronic ports on its upper facet, clear optical aperture D, and an effective acoustic absorber on its 
bottom facet, see Fig. 3.1. 
 

 
 

Figure 3.1. Schematic arrangement of the interacting beams in a two-cascade cell. 
 
The first wave process represents mixing the longitudinal elastic waves of finite amplitudes in a compactly localized 
upper domain of a cell where relatively powerful pump of the frequency Pf  interacts with relatively weaker signal 

elastic wave of the frequency Sf . During just this nonlinear process a collinear wave heterodyning takes place 

providing the appearance of an elastic wave of the difference-frequency Df , which is able to propagate along a large-

aperture cell due to weaker manifestation of strongly dispersive losses at lower frequencies. The second wave process 
is the subsequent Bragg light scattering by the difference-frequency elastic wave in as possible linear regime, i.e. in the 
regime of a given acoustic field for the incident light beam. This process occurs within a clear aperture D lighted by a 
wide incident optical beam of the wavelength   and is able to realize optical spectrum analysis by itself. When, for 
example, the signal wave is rather intricate in behavior and consists of various frequencies, each individual spectral 
component from the difference-frequency elastic wave plays the role of a partial thick dynamic diffractive grating for 
the incident light beam. The length L  of acousto-optical interaction has to provide performing the Bragg regime of 
light scattering. 
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             In frames of the carried out studies, the technique of substantial approximations have been used to develop a 
theoretical description, which governs the difference-frequency elastic wave and adapts the corresponding expressions 
related to the light scattering. These findings make it possible first to estimate potential efficiencies for both the above-
mentioned wave processes in optically transparent medium with square-law nonlinearity and dispersive acoustic losses. 
Then, analyzing the frequency properties and physical limitations gives us an opportunity to formulate requirements to 
performance data of the acousto-optical cell as well as to acceptable values of the operating frequencies. After that, the 
progressed theory is used in our experimental studies aimed at improving the accuracy of a multi-channel parallel 
optical data processing by an order of magnitude. In so doing, the acousto-optical spectrum analysis of a gigahertz-
frequency range radio-wave signals with essentially improved frequency resolution is realized and investigated. During 
our proof-of-principle experiments a new type of the acousto-optical cell made of rather effective lead molybdate 
single crystal was exploited. These preliminary experimental data show that the elaborated approach, based 
algorithmically on a two-cascade processing, allows a direct multi-channel parallel optical analysis of spectra inherent 

in ultra-high-frequency radio-wave signals at relative accuracy of about 410 . 
 

3.2. POTENTIAL PERFORMANCES OF A NOVEL LEAD MOLYBDATE CRYSTALLINE 
ACOUSTO-OPTICAL CELL WITH 1  

 
In the first approximation, the normalized amplitude of the difference-frequency carrier acoustic wave passing along 
the optical aperture of a cell is given by Eq.(2.6), which can be rewritten as 
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Using Eq.(3.1), one can determine the point mx  associated with a maximum of the normalized amplitude distribution 

along the cell as  
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The magnitude of this maximum can be estimated as 
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It is seen from Eq.(3.3) and Fig.2.2 that )xx(a m
2

PS   is the decreasing function of  , see the solid line in Fig.3.2. 

However, such a dependence on   leads to a non-uniformity of distributing signals associated with various difference-

frequency components in a cell. To compensate this non-uniformity one can suggest to exploit the additionally needed 
pre-amplification )(G  , which is shown by dashed line in Fig.3.2 and can be calculated as  
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where 0  is an initially selected, minimal, and fixed value of the ratio  . 
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Figure 3.2. The plot of )(F   for magnitudes of   practically usable in the wave heterodyning. 

 

Decreasing the normalized intensity )x(a 2
PS  of the difference-frequency acoustic wave down to a level of 3 dB 

along the cell’s optical aperture at a point Dx  gives the equality )xx(a)21()xx(a mPSDPS    in terms of 

the amplitudes, so that 
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In fact, the value of Dx  determines the total length of acousto-optical cell with the collinear wave heterodyning. Now, 

an active part D  of the cell’s optical aperture available for optical processing can be found as 
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The plot of )(F   for values of   neighboring unity and capable to be practically usable in the wave heterodyning is 

presented in Fig.3.3. 
 

 
 

Figure 3.3. The plot of )(F   for magnitudes of   practically usable in the wave heterodyning. 
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Due to 2
P0P f115.0   (cm-1), the following expression for the pump frequency Pf  and for the difference frequency 

)1(ffff PSPD   appear 
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In the particular case of a lead molybdate (PbMoO4) crystal ( 150  dB/cm GHz2) with the active optical aperture 

2D  cm, one can obtain from Eqs.(3.7) the following diagrams, see Fig.3.4. 
 

 
 

Figure 3.4. Plots for the pump frequency Pf  (dashed line) and the difference frequency Df  (solid line) related to 

Eqs.(3.7) versus   for magnitudes of   practically usable in the wave heterodyning. 

 
These dependencies allow the following estimation for practical realization. Let us take the upper difference-frequency 
as 230fUD  MHz and the lower magnitude of   as 83.0L  , so that the pump frequency will be 1350fP  MHz 

and the lower signal frequency will be 1120fLS  MHz. Then, one can choose the bandwidth f  of analysis, for 

example, in the range of 110 MHz, which leads to the lower difference-frequency 120fLD  MHz, the upper signal 

frequency 1230fUS  MHz, and the upper magnitude 91.0U  . These estimations are conditioned by the relations 

 

a)  )1(ffff LPLSPUD  ,                       b)  )1(ffff UPUSPLD  ,                  (3.8) 

 

It is seen from Fig.1.2 that direct exploitation of similar lead molybdate cell with the active optical aperture 2D  cm 
at the signal frequencies of about 12001100  MHz is definitely impossible. Nevertheless, applying the collinear 

acoustic wave heterodyning allows to operate on these ultra-high carrier frequencies and to obtain the number of 
resolvable spots of about 610ffN  . The above-mentioned non-uniformity in the distributions of signals, 

associated with various difference-frequency components in the lead molybdate cell, are illustrated in Fig.3.5. 
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Figure 3.5. A non-uniformity in the distributions of various difference-frequency components in a 4PbMoO -cell. 

 
        Exploiting the modeling procedure discussed in sub-section 2.3 and the above-listed estimations, a novel solid-
state acousto-optical cell had been designed and used in the standard scheme of a prototype for the acousto-optical 
spectrum analyzer of ultra-high-frequency radio-signals, see Fig.3.6. This scheme includes rather powerful laser 
( 440  nm, the issuing optical power exceeds 100 mW), a two-prism beam shaper, large-aperture achromatic 
doublet lens, and a 3000-pixel CCD linear array photo-camera. A lead molybdate ( 4PbMoO ) single crystal of 25 mm 

in length, oriented along the [001]-axis for an acoustic beam along [100]-axis for an optical beam [2.5 – 2.7], was used 
in that cell. The cell completed with a pair of electronic input ports for the pump and signal on one of its facets as well 
as with acoustic absorber on the opposite facet. 
 

 
 

Figure 3.6. Schematic arrangement of a prototype for the acousto-optical spectrum analyzer. 
 
This crystalline material was chosen because of its high value of the relative acousto-optic figure of merit that can be 

characterized by a value of 18
2 103.36M   s3 /g for both possible eigen-states of light polarization in this tetragonal 

crystal and its rather high acoustic interaction efficiency for collinear longitudinal waves in the ]001[ -direction 

described by 5.17  [2.6]. As it was noted in section 1, the range of applicability for similar lead molybdate cell in 

conventional design is practically limited by frequencies of the order of 400300  MHz. The piezo-electric transducer 

with an interaction length of 10 mm, generating the signal wave with power density of about 100 mW/mm2, was made 

of a thin )36Y( o -cut lithium niobate, so that it excited purely longitudinal acoustic wave, with conversion losses of 

about 2 dB at its resonant frequency close to 1160  MHz. The single-frequency pumping longitudinal acoustic wave 
with the power density of up to 600 mW/mm2 was generated at a carrier frequency of approximately 1350  MHz, so 
that the case of ]93.0,80.0[  had been experimentally realized. During the experiments, we have placed a 

diaphragm in a few-millimeter vicinity of the piezo-electric transducers area (about %15  of the total aperture) to 
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minimize the effect of this area, where an increase in the power of difference frequency waves takes place. 
Consequently, the working optical aperture of a cell was slightly exceeding 2  cm. The bandwidth of that prototype 
was about 120  MHz. The efficiency of light scattering by an additional acoustic wave at the difference-frequency was 
slightly exceeding 1%. Figure 3.7 shows the digitized oscilloscope traces of amplitude-frequency distribution peculiar 
to that prototype with the acousto-optical cell based on the collinear wave heterodyning. The digitized trace of this 
distribution had been recorded by a multi-pixel CCD linear array photo-camera through connecting the input signal 
port of a cell at an ultra-high-frequency radio-wave sweep-generator and fulfilling the acoustic wave heterodyning in a 
lead molybdate crystal. For a signal at the resulting currier difference-frequency of about 230  MHz, the attenuation is 
close to 3  dB over the total cell aperture, while for a signal acoustic wave at the original frequency 1120  MHz the 
attenuation exceeds 36  dB along that aperture, which is perfectly unacceptable in practice. Within the second set of 
experimental tests, we examined the resolution of spectrum analyzer with the cell exploiting the acoustic wave 
heterodyning. The obtained data corresponds to a frequency resolution of about 200f   KHz and 600N  , see 

Fig.3.8. This digitised trace had been recorded in the focal plane of lens, see Fig.3.6, via applying just a single-
frequency excitation at the input signal port of a novel cell under consideration. 
 

                                             
 

Figure 3.7. The digitized oscilloscope trace of the amplitude-           Figure 3.8. The digitized profile of an individual 
   -frequency distribution inherent in the acousto-optical cell             resolvable spot peculiar to a 4PbMoO -cell with 

with collinear heterodyning exploiting the longitudinal elastic          the most uniform ( 83.0L  ) distribution of the 

         waves of a finite amplitude in 4PbMoO -crystal.                    difference-frequency wave along 7.3  cm aperture; 

                                                                                                                    horizontal lines are spaced by 5.2  dB. 
 

3.3. POTENTIAL PERFORMANCES OF A NOVEL LEAD MOLYBDATE CRYSTALLINE 
ACOUSTO-OPTICAL CELL WITH 1  

 

The normalized intensity   222)1(
PSPS B)x(a)x(J 

   of the difference-frequency acoustic wave passing along 

the cell’s optical aperture can be found from Eq.(2.6) in the following form [see an analogy in Eqs.(3.1) – (3.3) ] 
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From Eq.(3.9), as well as from the above-noted Eq.(3.1), one can find the point mx  associated with absolute maximum 

of the normalized intensity distribution inherent in the acoustic wave along the total cell’s optical aperture as 
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which coincides with Eq.(3.2). The magnitude of this maximum can be estimated at the point mx  as 
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It is seen from Eq.(3.11) that the normalized intensity )xx(J mPS   is the decreasing function of  , see the solid 

line in Fig.3.9. However, such a dependence on   leads to a non-uniformity of distributing signals associated with 

various difference-frequency components inside the cell. To compensate this non-uniformity one can suggest 
exploiting the additionally needed preamplification );(G 0 , which can be calculated as  
 

),xx(J4

),xx(J3
);(G
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0mPS
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
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,                                              (3.12) 

 

where 0  is initially selected and fixed value of the ratio  . This fixed 0  can be minimal or maximal, depending on 

the case 1  or 1  is chosen. An example of the needed preamplification );(G 0  with 17.10   is shown by 

the dashed line in Fig.3.9. Decreasing the normalized intensity )xx(J mPS   down to a level of 3 dB along the 

optical aperture at a point Dx  gives the equality )xx(J)21()xx(J mPSDPS   , so that one can find 
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Figure 3.9. Plots of the maximal intensity )xx(J mPS   and the preamplification )17.1;(G 0   

versus the parameter   for the magnitudes of   practically usable within the wave heterodyning. 

 
In fact, the magnitude of Dx  determines the total length of acousto-optical cell with the collinear wave heterodyning. 

Now, the really operating part D  of the cell’s optical aperture available for optical processing can be found as 
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where the amplitude decrement is given by 2
P0

1
P ])GHz(f[115.0)cm(   . Consequently, the following 

expressions for the pump frequency Pf  and for the difference frequency Df  (where )1(ffff PSPD   if 1  

or )1(ffff PPSD   if 1 ), appear 
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Now, let us direct our attention to the particular case of a lead molybdate crystalline cell ( 150  dB/cm GHz2) with 

practically available optical aperture 7.3D   cm and make a few estimations. At first, to provide higher operating 
frequencies together with the simplicity of realizing a low-frequency pump one can take an area of 1  with 

)1(ffff PPSD  . It could be chosen in spite of the facts that the efficiency of frequency conversion in an 

area of ]95.0,70.0[  exceeds a little bit the efficiency for ]30.1,05.1[  and one will be in need of slightly 

higher preamplification with 1 . Applying Eqs.(3.15) to a lead molybdate cell with 7.3D   cm and 1 , one can 

obtain the diagram shown in Fig.3.10. 
 

  
 

Figure 3.10. Plots for the pump frequency Pf  (dashed line) and the difference frequency Df  (solid line) 

related to Eqs.(3.15) versus   for magnitudes of   practically usable in the wave heterodyning. 

 
These dependencies allow the following estimations for practical realization. Let us take the upper difference-
frequency as 236fUD  MHz and the upper magnitude of   as 17.1U  , so that from Eq.(3.15a) the pump 

frequency will be 1388fP  MHz and the upper signal frequency will be 1624fUS  MHz. Then, one can choose the 

bandwidth f  of analysis, for example, in the range of 180 MHz, which leads to the lower difference-frequency 

56fLD  MHz restricted by the Bragg regime condition. Consequently, the lower signal frequency is 

1444fLS  MHz, and the lower magnitude of   is 04.1L  . These estimations are conditioned by the following 

relations 
 

a)  )1(ffff UPPUSUD  ,                       b)  )1(ffff LPPLSLD  .      (3.16) 

 

It should be noted that direct exploitation of similar lead molybdate cell with the active optical aperture 7.3D  cm at 
the signal frequencies of about 1000 MHz is definitely impossible, because the acoustic attenuation exceeds 55  dB 

along this aperture. Nevertheless, applying the collinear acoustic wave heterodyning allows us to operate on these 
gigahertz-range carrier frequencies. Non-uniformities in the distributions of signals are illustrated in figure 5, where 

1G   for 17.1U   and 6G  , as it follows from Eq.(3.15) and Fig.3.11 for 04.1L  . Using Eq.(3.10), one can 

estimate that 58.0xm  cm for 17.1U  and 94.0xm  cm for 04.1U   with 32.3P  cm-1 . Figure 6 shows 

that the really operating optical aperture D  lies between 4.0x  cm and 2.4x  cm for 17.1U  , resulting in at least 

8.3D  cm. Physical limit for potential frequency resolution of a cell is given by the value DVf  . 
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Figure 3.11. Non-uniformities in the distributions of signals associated 
with various difference-frequency acoustic wave components in the lead molybdate cell. 

 
As it has been mentioned above, a novel acousto-optic cell was made of a lead molybdate single crystal and completed 
with a pair of electronic input ports for the pump and signal on one of its facets as well as with acoustic absorber on the 
opposite facet. The piezoelectric transducer with an interaction length of 1.0 cm, generating the signal wave with 

power density of about 100 mW/mm2, was made of a thin )36Y( o -cut lithium niobate crystal, so that it excited 

purely longitudinal acoustic wave, with conversion losses of about 2 dB at its resonant frequency close to 1530  MHz. 
The single-frequency pumping longitudinal acoustic wave with the power density of up to 600 mW/mm2 was generated 
at a carrier frequency of approximately 1390  MHz, so that the case of ]20.1,04.1[  had been experimentally 

realized. During the experiments, we have placed a diaphragm in about 5 -millimeter vicinity of the piezoelectric 
transducers area (about 5.13 % of the total aperture) to minimize the effect of this area, where an increase in the power 
of difference frequency waves takes place. Consequently, the working optical aperture of a cell was a little bit longer 
than 37  mm. The bandwidth of that prototype was about 180  MHz. The efficiency of light scattering by an additional 
acoustic wave at the difference-frequency was slightly exceeding 1%. Fig.3.12 shows the digitized oscilloscope traces 
of amplitude-frequency distribution peculiar to that prototype with the acousto-optical cell based on the collinear wave 
heterodyning. The digitized trace of this distribution had been recorded by a multi-pixel CCD linear array photo-
camera through connecting the input signal port of a cell at an ultra-high-frequency radio-wave sweep-generator and 
fulfilling the acoustic wave heterodyning in a lead molybdate crystal. For a radio-wave signal, producing the dynamic 
acoustic grating on the resulting carrier difference-frequency of about 235  MHz, the attenuation is close to 3 dB over 
the total cell aperture. At the same time, for the signal acoustic waves at even the lower original frequency 1440  MHz 
the attenuation exceeds 100  dB along a 37  mm aperture, which is perfectly unacceptable in practice. Within the 
second set of our experimental tests, we examined the resolution of spectrum analyzer with the cell exploiting the 
collinear acoustic-wave heterodyning. In fact, the intensity distribution of an individual resolvable spot in the focal 
plane of the integrating lens had been considered. In so doing, the technique, which had long been in use, with very 
narrow slit diaphragm scanning over sufficiently sensitive photodetector and subsequent logarithmic amplifier was 
applied to our needs. Practically, this technique gives an opportunity to fix the continuous distribution of light intensity 
in the lobes of an individual spot really carefully in a rather wide dynamic range of about 25 dB [3.2]. One can see that 
the measured level of the first lobes lies at a level of about 13 dB with initially homogeneous lighting of the operating 
cell’s aperture, which is in good coincidence with the well-known theoretical prediction [3.3]. Figure 3.13 presents the 
digitized trace, which had been recorded in the focal plane of the integrating lens, see Fig.3.6, via applying just a 
single-frequency excitation at the input signal port of the proposed cell. In the case under consideration, physical limit 
of the frequency resolution is 98DV   KHz, while experimentally obtained value, affected by acoustic losses as well 

as by technical imperfectness of the integrating lens, corresponds to a frequency resolution of about 120f  KHz at a 

level of 10 dB and gives the number of resolvable spots or, what is the same, the number of parallel frequency 
channels 1500N  . By this is meant that the proposed technique for direct parallel optical spectrum analysis of 
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gigahertz-frequency range radio-wave signals provides at least 1500 -channel processing even within our proof-of-
principle experiment. As this takes place, the accuracy or the relative frequency resolution LSff  (where 

1444fLS  MHz) is less than 410  , which is practically unattainable for conventional direct acousto-optical methods 

of spectrum analysis. 
 

                                           
 

Figure 3.12. The digitized oscilloscope trace of the amplitude-           Figure 3.13. The digitized profile of an individual 
   -frequency distribution inherent in the acousto-optical cell                resolvable spot peculiar to a 4PbMoO -cell with 

with collinear heterodyning exploiting the longitudinal elastic             the most uniform ( 17.1U  ) distribution of the 

         waves of a finite amplitude in 4PbMoO -crystal.                       difference-frequency wave along 3.7 cm aperture; 

                                                                                                                        horizontal lines are spaced by 5.2  dB. 
 

3.4. BRIEF COMPARATIVE DISCUSSION 
 
At this step, it seems quite reasonable to compare operation characteristic of the proposed acousto-optical cell with the 
corresponding characteristics of an acceptable traditional high- frequency cell. Let us take a cell exploiting longitudinal 

acoustic wave along the X -axis of such a low-loss crystal as lithium niobate with 18
2 100.7M   s3/g, 15.0  

dB/(cm GHz2), and 5
L 1057.6V   cm/s. Each cell can be characterized in both frequency and amplitude domains. 

The best set of frequency characteristics for the chosen cell at the central frequency 5.1f0   GHz includes the 

frequency bandwidth 7502/ff 0   MHz, the upper signal frequency 1875fU   MHz, the optical aperture 

7.5)f/(]dB[3D 2
U0   cm associated with a 3 -dB level of acoustic losses at the frequency Uf , the frequency 

resolution 115D/Vf 0   KHz, the number of resolvable spots 6520f/fN  , and the relative accuracy of 

analysis 4
0 1077.0f/f  . The efficiency of this cell with 0.1L   cm and a given exciting acoustic wave power 

density 0P  can be estimated by )Lq(sinI 0
2

0  , where 0q  can be taken from Eq.(2.15b) at 532  nm. To make 

the comparison with the data in the end of section 2.4, let us take 03.0I0  , i.e. %3 . In this case, one can estimate 

173.0L/Iq 21
0   cm -1 and 7

2
222

0 1025.0)ML/()I2(P   g/s3 25.0  W/cm2. Thus, the traditional 

3LiNbO -cell looks at the first glance slightly preferable than the above-proposed one. Nevertheless, to make the 

correct conclusion one has to take into account a few following circumstances. First, a large optical aperture requires 
growing large enough boule of lithium niobate. It should be the mono-domained svilen-less single crystal exhibiting a 
high optical homogeneity and providing top-level conditions for propagation of both optical as well as UHF acoustic 
waves through a large-aperture cell. Practically, it is rather difficult to satisfy these requirements, but in the otherwise 
case, similar cell will have lost a significant part of its potential frequency resolution. Second, designing truly effective 
piezoelectric transducer with a %50  frequency bandwidth at a carrier frequency of about 5.1  GHz is not an ordinary 
task. The existing difficulties in technology of production as well as in subsequent acoustic and electronic matching of 
similar wide-band piezoelectric transducer can be resolved currently only within decreasing its efficiency or/and 
narrowing its bandwidth. This is why the above-noted potential frequency characteristics have to be considered as just 
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the limiting theoretical values. Third, the estimated efficiency for a lithium niobate cell cannot be applied directly to 
the comparison under consideration, because the proposed new cell involves two cascades of processing and provides 
an additional function, namely, the heterodyning, which needs naturally additional power consumption. Then, during 
this comparison one has to take into account that our experimentally tested lead-molybdate cell had not been really 
optimized, because the main purposes of this cell were to demonstrate a new principle of operation as well as to exhibit 
that it can be realized practically with more or less acceptable operation characteristics. Furthermore, in parallel with 
performing the cell’s optimization more effective acoustically and acousto-optically materials, such as 5KRS   [3.4], 
can be examined within the proposed technique in expecting much better performance data. Together with this the 
proposed technique of spectral analysis, which includes the developed cell with two piezoelectric transducers and the 
frequency-dependent preamplification, should be in principle compared with the simplest technique based on 
preliminary electronic mixing of the high-frequency radio-wave signals with further launching of the resulting acoustic 
wave at the difference frequency. However, this kind of comparison exceeds evidently the limits of this article as far 
as, on the one hand side, it is mostly related to comparing electronic rather than acousto-optical components of the 
functional scheme under consideration and, on the other hand side, one needs more practical experience of exploiting 
the proposed technique than he has at the moment to make such a comparison really qualitatively. 
 

3.5. CHARACTERIZING THE OPTICAL PART 
OF EXPERIMENTAL SET-UP AND SOME PRACTICAL ESTIMATIONS 

 
Exploiting the above-listed estimations, a novel acousto-optical cell had been designed and used in almost standard 
optical scheme for acousto-optical spectrum analysis of a gigahertz-frequency range radio-signals, see Fig.3.6. This 
scheme includes green-light laser ( 532  nm, the output optical power exceeds 100 mW), a four-prism beam 
expander (only two of them are shown), a rectangular selecting optical diaphragm, a single-crystal acousto-optical cell 
with acoustic absorber and two ultra-high-frequency electronic ports for the input signal and pump, a large-aperture 
achromatic doublet lens, and a 3000 -pixel CCD linear array photo-camera. A lead molybdate single crystal of 42  mm 
in total length, oriented as it had been described above, was used in that cell. The incident light was linearly polarized 
along the ]1,0,0[ -axis of the cell’s crystal. It provided, on the one hand side, the maximal transmission of the prism 

beam expander due to coinciding the plane of expanding laser beam with the corresponding vector of light polarization 
and, on the other hand, the maximal efficiency of acousto-optical interaction in a lead molybdate single crystal (see 
sections 3.2 and 3.3). 
 
             The size of an individual resolvable spot can be remarkably affected by a non-uniformity of light stream 
leaving the acousto-optical cell output facet. This non-uniformity governed by a combined distribution of the incident 
light field profile and the drooping distribution of the difference-frequency acoustic wave along cell’s optical aperture. 
Usually, profile of the incident light field is close to a Gaussian shape, because it is conditioned, first of all, by the 
initial profile of laser beam. Together with this, just a Gaussian profile is commonly used within possible apodization 
of the incident beam profile. In addition, the apodization is originally directed to suppressing the side lobes, which are 
peculiar to light distribution of each individual resolvable spot in a Fourier transform plane of the integrating lens. In so 
doing, the apodization is capable to increase the potential dynamic range of spectrum analysis. Reasoning from the 
assumption that the electric field profile inE  reaching the cell’s optical aperture has a Gaussian shape, one can write 

(in both physical and dimensionless variables) that 
 

])yy([expE])xx([expEE 2
00

2
010in  ,         2

inin EI  .                (3.17) 
 

where 1x  and D  are the physical coordinate across a beam and the physical cell’s optical aperture measured in 

centimeters, Dxy 1  is the normalized dimensionless coordinate, so that the coordinates 0x  and 0y  correspond to 

the center of distribution,   and 2D  are physical and dimensionless parameters of the Gaussian-shape function. 

 
          Generally, the drooping intensity distribution of the difference-frequency acoustic wave along cell’s optical 
aperture is characterized by Eq.(2.8) and it has to be taken into account in frames of our analysis. However in an area 
of the clear optical aperture mD xxD  , one can take only the reduced expression 



25 
 

])1(x[exp)x(a 2
P

)1(
PS   with ]x,x[x Dm . To have a chance of joining this formula with Eq.(3.17) one 

has to determine m1 xxx   and to normalize )x(a )1(
PS  by its magnitude just at the point mx . As a result, one can 

write 
 

]y[exp])1(x[expa D
2

1P
)N(
PS   ,             2)N(

PS
)N(
PS ]a[J    ,                (3.18) 

 

where the amplitude decrement 2
PD )1(D   describes a total value of losses all over the cell’s optical 

aperture D  for the difference-frequency acoustic wave; it can be expressed in decibels or in a dimensionless form, 

because ]cm/dB[115.0]cm[ P
1

P   . To illustrate a sense of this reasoning let us consider the following 

example. Taking 5.0y0   and formulating the condition )5.0y(I5.0)1y(I)0y(I ininin  , one can find 

that the needed dimensionless parameter of the Gaussian-shape function is 382.1 . Then, assuming that 

)0y(J5.0)1y(J )N(
PS

)N(
PS   , one can estimate 345.0D   in the worst case of 17.1U  . The plots 

corresponding to this example are presented in Fig.3.14. The total intensity of light field passing through the cell’s 
aperture can be estimated by the value 
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Figure 3.14. Intensity distributions for Gaussian profile of the incident light with 382.1  (bold line 1) 

as well as for the difference-frequency acoustic wave with 345.0D  , 17.1U   (solid line 2) 

along cell’s aperture. For the comparison, the dependence reflecting Eq.(3.18) is shown (dashed line 3). 
 
The shape of light field distribution )u(E  (the dimensionless coordinate u  is centered on a maximum of this 

distribution) peculiar to an individual resolvable spot in a Fourier-transform plane of the integrating lens can be 
estimated analytically as 
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which is real-valued in behavior. Using Eqs.(3.19) and (3.20), the normalized distribution )u(I  of light intensity 

peculiar to an individual resolvable spot in a Fourier-transform plane of the integrating lens can be written as 

)0u(E)u(E)u(E),,u(I 2
D   . Generally, LFDwu  , where w  is the physical spatial coordinate in the 

focal plane and LF  is the focal distance of the integrating lens. In the particular case of 0 , one can find 
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  .                               (3.21) 

 

Results of numerical simulations for ),,u(I D , based on Eqs.(3.19) - (3.21), with practically useful values of   

and D  are shown in Fig.3.15. It is seen from Fig.3.15 that increasing the amplitude decrement D  leads to growing 

of side lobes and minima of the normalized light intensity distribution inherent in each individual resolvable spot in the 
focal plane of the integrating lens. Moreover, the spatial width of the main lobe peculiar to each individual resolvable 
spot shows an increase due to the presence of losses, so that real magnitude of the frequency resolution f  is taking 

away from the limit DV . Together with this, increasing the parameter   provides suppressing side lobes and minima 

of light distributions, so that as usually the dynamic range could be increased. Then, one can see from Figs.3.15b and 
3.15c that for the magnitudes of   exceeding some value, which has been estimated by about 7.6 , the second side 

lobe dominates over the first one. This fact and a tendency to broadening the main lobe due to losses are illustrated in 
Fig.3.16 in the particular case of 345.0D  . 

 
             Now, let us estimate potential possibilities related to both the dynamic range and the width of an individual 
resolvable spot in a scheme of acousto-optical spectrometer with a co-directional collinear wave heterodyning. The 
most critical limitation for the dynamic range is related to the maximal level of side lobes. Figure 3.17 illustrates 
affecting the dynamic range by a maximal side lobe, so that one can clearly see that acoustic attenuation decreases the 
potential dynamic range, which grows by itself with escalating the parameter  . 

 

              
a.                                                                                             b. 
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c.                                                                                             d. 

 
Figure 3.15. The combined effect of both the incident light apodization and the acoustic beam attenuation 
on the normalized light intensity in the focal plane of the integrating lens: (a) is for 2 , (b) is 6 , 

(c) is for 7 , and (d) is for 10 ; here, various vertical scales are taken for each magnitude of  . 

 

 
 

Figure 3.16. The general plot of the light intensity distribution peculiar to an individual resolvable spot 
in a Fourier plane with 345.0D   and ]10,5[ . 

 

 
 

Figure 3.17. Width of the main lobe at a level of 0.405 and maximal levels of the side lobes, 
the first or second ones, versus the apodization parameter   with 345.0D  . 

 
Broadening the main lobe of an individual resolvable spot is characterized by the third curve in Fig.3.170, which 
reflects increasing its width at a level of 0.405 corresponding to the Rayleigh resolution criterion [3.5]. 
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3.6. CONCLUSION 
 
The presented data demonstrate both the possibility and the potential advantages of applying a co-directional collinear 
wave heterodyning to essential, about an order of magnitude, improvement of the frequency resolution within a multi-
channel parallel acousto-optical spectrum analysis of gigahertz-frequency range analogue radio-wave signals. In so 
doing, we have theoretically investigated the phenomenon of a co-directional collinear wave heterodyning, taken in the 
particular case of mixing the longitudinal acoustic waves of finite amplitudes. Then, an opportunity of implementing 
acousto-optical data processing with the wave heterodyning has been experimentally performed utilizing the specially 
designed acousto-optical cell made of a lead molybdate single crystal. Together with this, the methods for estimating 
the total efficiency of operation and optimizing aperture parameters for the cell of a new type have been developed. 
Moreover, the phenomenon of affecting the light distribution inherent in an individual resolvable spot by joint action of 
the incident light bean non-uniformity and the natural presence of acoustical losses along cell’s optical aperture has 
been estimated. The proposed technique exploits a two-cascade algorithm of processing and is intended for direct 
parallel and precise optical spectrum analysis and provides about 1500 -frequency-channels for processing analogue 
radio-wave signals in a gigahertz-frequency range with the accuracy or, what is the same, with the relative frequency 

resolution better than 410  , which is usually unattainable for conventional direct acousto-optical methods. The 
obtained results reflect fruitful character of modern approaches based on applying various non-linear phenomena to 
improving the performance data of optical processing and give an appropriate example of this kind. At the moment, a 
few practical advantages of the presented approach can be noted. First, the proposed device need not additional 
electronic equipment for mixing the signals and selecting the resulting currier frequency, because heterodyning can be 
performed directly in a cell and provides potentially the dynamic range of about 90  dB peculiar to wave processes in 
solids. Then, the approach under consideration decreases the required relative bandwidth of piezoelectric transducer 
from %10050   at the resulting frequency within a conventional cell to %1510   at the initial carrier frequency. 
Within our proof-of-principle experiment the acousto-optical cell with 2  piezoelectric transducers was used, but 
generally it is not necessary. Due to the relative bandwidth does not exceed %15 , potentially it is quite reasonable to 
exploit just only one transducer. Third, in the case of a spatially multi-channel arrangement of the acousto-optical cell, 
the identity of neighboring spatial channels to each other can be provided by adjusting the corresponding heterodynes. 
Finally, one should note that the number of isotropic or crystalline materials, which are appropriate for acousto-optical 
cells processing signals in a gigahertz-frequency range, is definitely restricted due to fast-growing influence of a 
square-law frequency dependence for the acoustic attenuation in solids. For instance, one can easily show [3.6, 3.7] 
that the above-discussed lead molybdate crystal cannot be used for creating a conventional acousto-optical cell 
operating with signals whose carrier frequency exceeds about 400300   MHz. Nevertheless, just this crystalline 
material had been exploited for the control over 5.1  GHz signals within these studies. Consequently, one can conclude 
that a two-cascade arrangement of a cell presented here allows extending the spectrum of acousto-optical materials 
being appropriate for direct processing of ultra-high-frequency analogue radio-wave signals. 
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4. POTENTIALS OF THE ACOUSTO-OPTICAL SPECTRUM ANALYSIS ON THE BASIS OF 
COLLINEAR ACOUSTIC WAVE HETERODYNING 

IN A LARGE-APERTURE KRS-5 CRYSTALLINE CELL 
 

The technique under consideration imposes specific requirements on the cell’s material, namely, a high optical quality 
of large-size crystalline boules, high-efficient acousto-optical and acoustic interactions, and low group velocity of 
acoustic waves together with square-low dispersion for linear acoustic losses. With these requirements in mind, we 
focus our attention on the solid solutions of thallium chalcogenides and take the TlBr-TlI (thallium bromine – thallium 
iodine) solution, which forms 5KRS   cubic-symmetry crystals with the mass-ratio %58  of TlBr to %42  of TlI. 
Analysis shows that the acousto-optical cell made of a 5KRS   crystal oriented along the ]111[ -axis and the 

corresponding longitudinal elastic mode for producing the dynamic diffractive grating can be exploited. With the 
acoustic velocity of about 92.1 mm/s and attenuation of approximately 10 dB/(cm GHz2), similar cell is capable to 

provide an optical aperture of about 0.5 cm and one of the highest figures of acousto-optical merit in solid states in the 
visible range. Such a cell is rather desirable for the application to direct 5000-channel parallel spectrum analysis with 

improved up to 510   relative frequency resolution. 
 

4.1. PRELIMINARY REMARKS 
 
The proposed approach makes possible providing effective wave heterodyning, when the beneficial data in signal 
become to be converted from a relatively high-frequency carrier wave to a difference-frequency wave. Because of 
rather strong square-law dispersion of linear acoustic losses, the heterodyning leads to increasing the characteristic 
length and time of propagation (they both are associated with a clear optical aperture) for the converted signal in that 
medium and to improving significantly the accuracy of signal processing as it follows from the uncertainty principle in 
quantum mechanics [4-6]. In this context, we consider an opportunity for real-time scale optical analysis of frequency 
spectra, belonging to analogue ultra-high frequency radio-wave signals, with significantly improved frequency 
resolution. This consideration is based on a two-cascade processing, i.e. on exploiting a pair of different wave 
processes one after the other sequentially in the single crystalline cell, which includes the piezoelectric transducer, 
converting the inputting electronic signals into gigahertz-frequency elastic waves, with two electronic ports on its 
upper facet, clear optical aperture D, and an effective acoustic absorber on its bottom facet, see Fig.4.1a. 
 

                         
 

                                                                     a.                                                                           b. 
 

Figure 4.1. Schematic arrangement of the interacting beams in a two-cascade acousto-optical cell (a) 
and the  illustrating spatial distributions for powers of the interacting acoustic waves (b). 

 
The first wave process represents mixing the longitudinal elastic waves of finite amplitudes in a compactly localized 
upper domain of a cell where relatively powerful pump of the frequency Pf  interacts with relatively weaker signal 
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elastic wave of the frequency Sf . During just this nonlinear process a collinear wave heterodyning takes place 

providing the appearance of an elastic wave of the difference-frequency Df , which is able to propagate along a large-

aperture cell due to weaker manifestation of strongly dispersive losses at lower frequencies, see Fig.4.1b. The second 
wave process is the subsequent Bragg light scattering by the difference-frequency elastic wave in as possible linear 
regime, i.e. in the regime of a given acoustic field for the incident light beam. This process occurs within a clear 
aperture D lighted by a wide incident optical beam of the wavelength   (in air) and is able to realize optical spectrum 
analysis by itself. When, for example, the signal wave is rather intricate in behavior and consists of various 
frequencies, each individual spectral component from the difference-frequency elastic wave plays the role of a partial 
thick dynamic diffractive grating for the incident light beam. The length L  of acousto-optical interaction has to 
provide performing the Bragg regime of light scattering. 
 
           Generally, the term “resolution” can be interpreted in slightly different from one another ways. One of these 
ways can be naturally related to the number N  of resolvable spots, because increasing the number N  undoubtedly 
means improving the resolution. Nevertheless, the resolution can be characterized from the other side as well if one 
will consider the absolute value of, for example, frequency resolution: as less is an individual resolvable frequency 
interval as more is the frequency resolution. Moreover, within designing a system (for instance, for the star radio-
astronomy) one can meet a specific situation when it is so desirable to improve just an absolute value of the frequency 
resolution that the penalty for that even in the form of decreasing the number N , when the bandwidth of processing is 
not fixed, becomes to be acceptable. In connection with this refining, we would like to say that just the last option is 
the case under our consideration. Namely, we aspire first of all to improving the frequency resolution, while reasonably 
large number N  serves us to be an illustration that it could be done algorithmically in a multi-channel parallel regime. 
Therefore, potentials peculiar to the acousto-optical spectrum analysis of a gigahertz-frequency range radio-wave 

signals with essentially improved relative value of the frequency resolution, which can be in the order of 510  in our 
case, is considered with exploiting a new type of the acousto-optical cell made of really effective 5KRS   cubic 
single crystal. The obtained estimations show that the elaborated approach, based algorithmically on a two-cascade 
processing, allows the direct 5000 -cannel parallel optical analysis of spectra inherent in ultra-high-frequency radio-
wave signals. In frames of the performed investigations, the efficiencies of both non-collinear acousto-optical and 
collinear acoustic interactions are analytically estimated. Moreover, analytic expression for the corresponding effective 
acoustic modulus of the third order in 5KRS   has been found for the first time in our knowledge. In so doing, 
contrary to our recently developed theoretical approach based on the technique of substantial approximations [4.4, 4.5], 
a regime of the coupled acoustic modes is considered, which provides more accurate analysis. These findings make it 
possible first to estimate the technical requirements to performance data of the acousto-optical cell as well as to 
acceptable values of the operating frequencies. At the end, previously proposed methodology for the experimental 
simulation [4.4] is practically applied and exploited within a specific example of the liquid-made cell to estimate 
performances of the parallel spectrum analysis with the new 5KRS  -crystal based acousto-optical cell. 
 

4.2. EFFICIENCY OF ACOUSTO-OPTIC INTERACTION IN A KRS-5 CUBIC CRYSTAL 
 
One can start from estimating the potential efficiency I  of Bragg light scattering by the longitudinal acoustic waves in 
a KRS-5 single crystal. At first, let us take the cell’s orientation shown in Fig.4.2. Such a selection has its origins in 
preliminary known data related to linear and nonlinear manifestations of optical and acoustical properties inherent in 
this crystal. To obtain the figure of acousto-optical merit 2M  inherent in the selected cut of a KRS-5 crystal first of all 

the effective photo-elastic constant effp  has to be found. For this purpose one has to take into account that a KRS-5 

single crystal belongs to the m3m -cubic symmetry group. This crystal allows existing pure longitudinal elastic waves 

with the wave vector K


 and the displacement vector muu


 , when these waves are passing along the 

crystallographic axis ]111[  , so that ]111[||m||K


. Each dynamic acoustic grating can be characterized by its 

deformation tensor of the second rank. Because of ]111[||K


 and ]111[||u


, one can write 

)1,1,1()31(|K|/Kq 


 and )1,1,1()31(u 


, so that the corresponding deformation tensor )L(  takes the 

form 
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Figure 4.2. Crystallographic orientations for the piezoelectric transducer and the crystalline material in a KRS-5-cell. 
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The tensor )L(  of the second rank with the components )L(
lk  )3,2,1l,k(   can be converted into a 6-dimension 

vector )2,2,2,1,1,1()31()L(   [4.7]. This expression for the deformation tensor makes it possible to estimate the 

velocity of the longitudinal wave. For this purpose one can use the tensor C  of elastic moduli of the second order. If 
now one will use the same procedure [4.7] and take the tensor C  of the fourth rank for the 5KRS   crystal in the 
form of a 6 x 6 matrix, its components C  will be non-zero only with 332211 CCC  , 665544 CCC  , and 

323123211312 CCCCCC  . Utilizing similar representation, one can find the corresponding effective 

elastic modulus of the second order 
 

 )L()L(
2 CC )C4C2C()31(C 441211

)L()L(   ,                             (4.2) 

 

which describes the velocity LV  inherent in the selected pure elastic longitudinal mode as  2L CV , where   is 

the material density. One can use 11
11 104.3C   dyne/cm2 , 11

12 103.1C   dyne/cm2 , 11
44 1058.0C   dyne/cm2 , 

and 37.7  g/cm3 peculiar to a 5KRS   crystal and estimate 5
L 1092.1V   cm/s. Together with this, one has to 

note that acoustic attenuation peculiar to this acoustic mode is not too low and is characterized by the factor 10  
dB/(cm GHz2) [4.8, 4.9]. 
 
          Now, one is ready to estimate the efficiency of acousto-optical interaction associated with the above selected 
longitudinal elastic wave. By this is meant that the photo-elastic tensor p  of the fourth rank should be taken and 

converted into the form of a 6 x 6 matrix with the components p . For the cubic 5KRS   crystal (symmetry group 

m3m ), matrix representation for the tensor p  gives the following non-zero components: 332211 ppp  , 

665544 ppp  , and 323123211312 pppppp  . Consequently, one can calculate the matrix product 

)p2,p2,p2,p2p,p2p,p2p()31(p 444444121112111211
)L(   and convert it back to the form of a standard 

tensor )p( )L(  of the second rank [4.7]. The effective photo-elastic constant can be written from the scalar form 
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where as before the vectors 0e


 and 1e


 describe the polarization states of incident and scattered light beams, 

respectively. Due to ]111[||K


, it is obvious that if the Bragg angles are omitted as small values, the wave vectors 0k


 

and 1k


 of the incident and scattered light beams, respectively, should lie in the )111( -plane to be orthogonal to K


. 

Moreover, one can put kkk 10


  when the Bragg angles are neglected. Due to optical isotropy of cubic 5KRS   

crystal, one can select, for example, ]011[||k


. In this particular case, one has an opportunity to consider the vectors 

0e


 and 1e


 belonging to )011( -plane, which includes ]110[ , ]111[ , and ]001[  axes; therewith the axes ]110[  and 

]001[  give us an orthogonal basis, because ]110[ ]001[ . In so doing, let us take at first the angles 1,0  as current 

angles between 1,0e


 and the ]001[ -axis. Consequently, one can easily obtain that 

 1,01,01,01,0 cos,2/sin,2/sine 


, so that 1,0e


]001[||  when 01,0  . Now, one can change the initial 

position for the vectors 1,0e


 via the substitution the angles 1,0  by the new angles 11,0  , where 

)31(arccos1  ; i.e. one can write 
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 .                             (4.4) 

 

After such a substitution, one will have finally obtained that 1,0e


]111[||  when 01,0  . As usually, two regimes of 

light scattering can be realized. At first, one can consider the normal regime of scattering when 01  . In this 

regime, 
 

 )(cos)p2p(])(2[sinp22)(sin)p2p2p(
3

1
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2
1211104410

2
441211

)n(
eff  .   (4.5) 

 

This formula can be simulated numerically with 21.0p11  , 22.0p12  , and 15.0p44  , see Fig.4.3a. The oscillating 

plot exhibits a maximum magnitude 417.0p )n(
maxeff   at k0  , },2,1,0,1,2,{k    and a minimum 

magnitude 117.0p )n(
mineff   at k)2(0  . The second regime is associated with the anomalous light scattering 

when )2(01  . This regime is characterized by the formula 

 

 ])(2[cos22])(2[sin
3

p
p 1010

44)an(
eff   .                                       (4.6) 

 

This regime provides its maxima 15.0p )an(
maxeff   with )2k()4(0  . The plots associated with these angular 

distributions for the effective photo-elastic constants in a 5KRS   single crystal are shown in Fig.4.3b. The maximal 
magnitude inherent in the corresponding figures of acousto-optical merit is related to the normal regime in a 5KRS   

single crystal and equals to 183
L

2)n(
maxeff

6
2 10930)V()p(nM   s3/g with 57.2n   at the wavelength 

671  nm. The performed calculations demonstrate that the normal regime of light scattering by the longitudinal 
elastic wave is a few times more efficient than the anomalous one. 
 
           The other side of estimating the efficiency of acousto-optic interaction is connected with choosing the regime of 
light scattering. The most efficient one is the Bragg regime, which is shown in fact in Fig.4.1a. It allows a 100% 
efficiency of light scattering and occurs with large enough length L  of interaction between light and acoustic waves 
when the dynamic acoustic diffractive grating is sufficiently thick. Such a regime can be realized only when the angle 
of light incidence on that acoustic grating meets the corresponding Bragg condition (which can be assumed to be 
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provided in advance) and the inequality 1)Vn(fL2Q 2
L

2
D   for the Klein-Cook factor Q  [4.10] is satisfied. 

Taking, for example, 671  nm, 0.1L   cm, and 5
L 1092.1V   cm/s, one can estimate 7Q   for 40fD   MHz. 

Thus, the Bragg regime of light scattering could be expected for the acoustic difference-frequencies at least exceeding 
40  MHz in a 5KRS   single crystal, so that the acoustic frequency 40fD   MHz can be considered as a lower limit 

for the Bragg regime of light scattering. 
 

    
 

                                                      a.                                                                                       b. 
 

Figure 4.3. Absolute dependences for the effective photo-elastic constants in a 5KRS   single crystal 

versus the angle 0 : normal light scattering (a) and anomalous light scattering (b). 

 
4.3. EFFICIENCY OF THE CO-DIRECTIONAL COLLINEAR ACOUSTIC WAVE 

HETERODYNING 
 
At this stage, effect of the second acoustic harmonic generation associated with the longitudinal elastic wave 
propagating along the ]111[ -axis in a 5KRS   single crystal is under consideration. It can be done using the Shapiro-

Thurston equation [4.11] reduced down to terms of the third order in its general form 
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~
  .                                     (4.8) 

 

These equations include all the components. In the above-chosen case of propagating pure longitudinal elastic mode 

along the crystallographic axis ]111[  with ]111[||m||K


 , see section 4.2, the directing cosines in  )3,2,1i(   should 

satisfy a pair of the following obvious conditions 321 nnn   and 1nnn 2
3

2
2

2
1  , so that 31ni  . Using 

Eqs.(4.7), (4.8), and after easy, but cumbersome algebraic calculations, one can obtain the following effective elastic 
modulus of the third order 
 

4412111554561441121231113 C36C18C9C24C16C12C6C2CC                   (4.9) 
 

and (exploiting, for example, the data from Ref.[4.12] ) conclude that the longitudinal elastic wave propagating along 
the ]111[ -axis is definitely capable of generating the second harmonic in a 5KRS   single crystal. 

 
              Now, one can introduce the new coordinate axis x  oriented along the ]111[  crystallographic axis of 

5KRS  , so that ]111[||m||x


 and Eq.(4.7) takes the form 
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 .                                                        (4.10) 

 

The first term in Eq.(4.10) can be approximately converted within quasi-linear linear form of )xu(Vtu L   

as )txu(Vtu 2
L

22  . Then, using the obvious relation 222 )xu()x/()xu()xu(2  , one 

can integrate Eq.(4.10) with respect to x . After that an additional phenomenological term uVL  can be included to 

take into account linear acoustic losses, which are physically characterized by the amplitude decrement ]cm[ 1  

reflecting usually just the square-law frequency dispersion of losses in solids. As a result, one can write 
 

2

LLL x

u
V

2
uV

x

u
V

t

u



















 ,                                                 (4.11) 

 

where 23
CC  ,  /CV 2L , and 3/)C4C2C(C 4412112   is the elastic modulus of the second order 

for ]111[||m||x


. A one-dimensional wave equation (4.11) for the complex amplitude of elastic wave is peculiar for 

characterizing a three-wave mixing in a medium with linear dispersive losses and square-law nonlinearity. Because of 
a square-law dispersion of acoustic losses, the complex amplitude u  can be taken in the form of a superposition of 
only a triplet of waves including the pump, the signal wave, and the difference-frequency wave, namely, 

DSP uuuu  , while the second harmonics of both the pump and the signal wave as well as their sum-frequency 

component can be omitted in this project of the chosen solution. Starting, for example, from the pump, one can write 

the corresponding complex amplitude as ])txk(i[exp)x(A])txk(i[exp)x(A)t,x(u PPPPPPP    and 

note its losses as P . Substituting this formula into the left hand side of Eq.(4.11), one can calculate 

 

])txk(i[exp
xd

Ad
A])txk(i[exp

xd

Ad
Au

x

u

t

u
V PP
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PPPP

P
PPP

PP1
L 




























 

 . 

(4.12) 
It is seen that the relations analogous to Eq.(4.12) can be obtained for the signal and difference-frequency waves. To 

construct the contribution  2xu   in the right hand side of Eq.(4.11) one has to estimate the summands. Applying 

the slowly varying amplitudes technique, one has to take into account the inequalities )x(Akxd)x(Ad jjj  , 

]D,S,P[j . Consequently, the following approximation appears 
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







 
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
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  ])txk(i[exp)x(A])txk(i[exp)x(Aki
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PPPPPPP
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






   ])txk(i[exp)x(A])txk(i[exp)x(Aki SSSSSSS  

2

DDDDDDD ])txk(i[exp)x(A])txk(i[exp)x(Aki 










   .                        (4.13) 

 

Now, one has to consider two different regimes of a three-wave mixing. The right hand sides of Eqs.(4.12) and (4.13) 
give 
 

1) DPS fff  : 

a)  PDSSS
S AAA

xd

Ad
  ,   b)  SDPPP

P AAA
xd

Ad   ,   c)  SPDDD
D AAA

xd

Ad   ;     (4.14) 



35 
 

 

2)  DSP fff  : 

a)  SDPPP
P AAA

xd

Ad
  ,   b)  PDSSS

S AAA
xd

Ad   ,   c)  PSDDD
D AAA

xd

Ad   .     (4.15) 

 

where DPS kk5.0  , DSP kk5.0  , and SPD kk5.0   are the coupling factors. At this step, one can 

take ])(i[expaA P,S,DP,S,DP,S,D   , where P,S,Da  and P,S,D  are the real-valued amplitudes and phases of 

non-optical waves. Let us consider, for example, Eqs.(4.14) governing the system in a regime of DPS fff   with 

1)ff(sign SP  . Dividing real and imaginary parts in Eqs.(4.14), one can find two groups of the real-valued 

equations 
 

a)   PDSPDSSS
S cosaaa

xd

ad
  ,       b)   PDSPSDDD

D cosaaa
xd

ad
  , 

c)   PDSSDPPP
P cosaaa
xd

ad
  ;                                                                                        (4.16) 

 

a)   PDSPDSS
S

sinaaa
xd

d



 ,                        b)   PDSPSDD

D
sinaaa

xd

d



 , 

c)   PDSSDPP
P

sinaaa
xd

d



 .                                                                                                 (4.17) 

 

Equations (4.16) and (4.17) can be analyzed with the natural for similar problems boundary conditions 0UP  , 

0US  , and 0UD  , where )0x(AU D,S,PD,S,P  . With these conditions, one can find from Eq.(4.16b) that 

  SPD
D UU0x
xd

ad
 . Here, the following quite natural approximation can be done; namely, let us put 

DSP a,aa   almost everywhere in an area of interaction. In this particular case, Eq.(4.16c) can be solved in a given 

field approximation as )x(expUa PPP  , while Eq.(4.17c) gives 0
xd

d P 


. Substituting these solutions into 

Eqs.(4.16) and (4.17) and dividing real and imaginary parts, one can obtain 
 

a)   cos)x(expUaa
xd

ad
PPDSSS

S  ,             b)   cos)x(expUaa
xd
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PPSDDD

D  ; 

c)  











S

D
S

D

S
DPP a

a

a

a
sin)x(expU

xd

d
 ,       d)  DPS   .                                         (4.18) 

 

From the first integral of Eqs.(4.18), with allowance for the boundary condition 0)0x(aD  , which is characteristic 

of wave heterodyning, one can find that 0xdd   and 0sin  , so that one can take, for example, 1cos  . 

Equations (4.15), associated with the regime DSP fff   with 1)ff(sign SP  , can be analyzed by similar way 

via substituting SS  . Consequently, Eqs.(4.18a) and (4.18b) give two following pairs of the combined 

ordinary differential equations of the first order 
 

a) )x(expUa)ff(signa
xd

ad
PPDSSPSS

S  ,    b) )x(expUaa
xd

ad
PPSDDD

D  .   (4.19) 
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Excluding Sa  from Eqs.(4.19), one can write a linearized version for the needed second order ordinary differential 

equation 
 

  0a)x2(expU)ff(sign)(
xd

ad
)(

xd

ad
DP

2
PDSSPSPD

D
DSP2

D
2

 .        (4.20) 

 

Due to the above-mentioned dispersion of losses included in the factors P , S , and P  , one can extract their 

square-law proportionalities to the corresponding carrier frequencies of acoustic waves 2
D,S,PD,S,P f~ and write 

 

a) ])ff(sign1[2 2
SPPDSP   ,        b) ])ff(sign1[2 SPPDSP   ,   (4.21) 

 

with 1ff PD  . Introducing the notations 2
SP )ff(signg  , and )ff(signh SP  , so that 

hg   due to the smallness of  , one can express the exact solution to Eq.(4.20) in terms of the Bessel functions as 
 

              xexpZCxexpZC)g1(xexpxa Ph12P1h1PD    ,              (4.22) 

 

where DSP
1

P U   is the normalized acoustic wave amplitude. Then,   JZ  when SP ff   and 

1)ff(sign SP  , while   IZ  with SP ff   and 1)ff(sign SP  ; for example, see [4.13]. Exploiting the 

above-mentioned boundary conditions for Da  and its spatial derivative, one can determine the constants 2,1C  of 

integration in Eq.(4.22) as 
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 ,                  (4.23) 

 

])(Z)ff(sign)(Z[)(Z])(Z)ff(sign)(Z[)(Z)h,(W )h2(SP)h()1h()h(SP)2h()h1(    

(4.24) 
 

Thus, Eqs.(4.22) – (4.24) represent the solution describing the spatial distribution for the difference-frequency acoustic 
wave along the acousto-optical cell exploiting collinear acoustic wave heterodyning. In the noted above particular 

cases, Eq.(4.24) can be simplified as )ff(sign)(sin)(4)h,(W SP
1    , so that one can write 

 

1) DPS fff  , 1)ff(sign SP  : 
 

 
       

])1(x[exp)(sin2

)x(expJ)(J)x(expJ)(JUU
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2

PP

P1)1(P1)1(SPD

PD
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











 ;   (4.25) 

 

2) DSP fff  , 1)ff(sign SP  : 
 

            
])1(x[exp)(sin2

xexpI)(IxexpI)(IUU
xa

2
PP

P1)1(P1)1(SPD
PD




 

 ;       (4.26) 

 

The amplitude distributions, which are inherent in the difference-frequency acoustic wave components and normalized 
by the factor )2/(UU PSPD  , for the same pairs of the normalized acoustic wave amplitudes   are presented in 

Figs.4.4 and 4.5. 
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                                      a.  5.0                                                                             a.  5.0  

 

    
                                     b.  0.1                                                                             b.  0.1  
 

      Figure 4.4. The normalized amplitudes for the difference-                  Figure 4.5. The normalized amplitudes for the difference- 
           frequency acoustic waves versus the product xP                            frequency acoustic waves versus the product xP  

           when DPS fff  .                                                                              when DSP fff  . 

 
4.4. ESTIMATING THE FREQUENCY POTENTIALS PECULIAR TO A MULTI-CHANNEL 

DIRECT OPTICAL SPECTRUM ANALYSIS WITH A KRS-5 CELL 
 
Potential frequency limitations can be analyzed within nonlinear acoustic mechanisms of collinear heterodyning. 
Without the loss of generality, let us take Eq.(4.25) for further analysis at length. This equation, related as before to the 
case of DPS fff  , can be rewritten with xz P  as 

 

a)     ,,zFza DD  ,              b) 
P

SPD
D 2

UU
F




  ,                                    (4.27) 

 

c)          
])1(z[exp)(sin

)z(expJ)(J)z(expJ)(J
,,z

2

1)1(1)1(







 . 

 

At this stage, the coordinate mz  of a maximum of the amplitude function ),,z(   has to be found. For this 

purpose, one has to analyze the condition 0]zd/),,z(d[ m  . The condition of existing a maximum for 

),,z(   takes the form 
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       ])z(exp[J)z(exp])z(exp[J)(J mmm1
2

)1(  
 

     0])z(exp[J)z(exp])z(exp[J)(J mmm1
2

)1(    .                  (4.28) 

 

This condition can be easily analyzed numerically within considering   and mz  as the independent and dependent 

variables, while   plays the role a discrete independent parameter. One can find from Eq.(4.28) that: 
 

a) 2124
m 3.1017.80405.0101.266.2)5.0,(z    ,                          (4.29) 

 

b) 2126
m 4.1126.80016.0100.6587.2)0.1,(z    , 

 

see Fig.4.6a. These formulas are rather important practically because they make it possible to estimate potential 
frequency limitations for optical spectrum analysis. 
 

      
 

                                           a.                                                                                                 b. 
 

Figure 4.6. The plots (a) determine the coordinate mz  as an approximate function of the frequency ratio   from 

numerical solution to Eq.(4.28), while curves (b) characterize the relative accuracy of approximate plots in Fig.4.6a. 
 
On the one hand side, substituting the obtained ),(zm   into Eq.(4.28) allows us, first, to estimate the accuracy of 

the performed approximations. Figure 4.6b illustrates the closeness of the derivative zd/],,),(z[d m   to zero 

in terms of its relative fail off from zero for two particular cases of 5.0  and 0.1 . One can see from Fig.4.6b 

that maximal value of an error does not exceed %3.0  within ]30.0;01.0[ . Then, Figs.4.4 and 4.5 exhibit a non-

uniformity of distributing signals associated with various difference-frequency acoustic components inside the cell, so 
that a larger non-uniformity is associated with the component of a higher value of  . Thus, one can take the upper-
difference frequency component and restrict itself by an upper value U  of the parameter  . Then, substituting the 

obtained ),(z Um   into ),,z(   makes it possible to formulate the requirement to the cell’s optical aperture. 

One can take it as follows: decreasing the normalized acoustic field distribution down to a level of 3 dB along the 

cell’s optical aperture at a point ),(z UD   gives the equality 

 

],,),(z[5.0],,),(z[ UUm
2

UUD
2                                            (4.30) 

 

in terms of the intensities. In fact, the value of ),(z UD   determines the total geometric length ),(x UD   of 

acousto-optical cell with the collinear wave heterodyning. Then, one can explain D,m
1

PD,m zx   and obtain 
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),(x),(xD UmUD  ,                                                            (4.31) 

 

where D  is the really operating part of the cell’s optical aperture available for parallel optical processing at given   

and some range of the parameter  . Nevertheless, it is seen from Figs.4.4 and 4.5 that the normalized intensity 

distributions ),,z(2   are the obviously decreasing functions of the parameter  . As a result, similar dependences 

on   lead to a non-uniformity of distributing signals associated with various difference-frequency components inside 
the cell. Moreover, this non-uniformity is as larger as higher is the corresponding parameter  , so that the lowest 
magnitude L  of the parameter   leads to almost uniform acoustic signal distribution along the cell’s optical aperture. 

Together with this, Figs.4.4 and 4.5 show that as higher is the parameter  , as lower is the absolute maximum of the 
corresponding dependence, and, consequently, the corresponding frequency components have to be adequately 
preamplified. Under these circumstances, one can suggest the following criterion for such a pre-amplification, namely, 
let as equalize various frequency components in a central vicinity of the above-noted operating part D  inherent in the 
cell’s optical aperture. In so doing, one can suggest re-normalizing maximal intensity determined by the expression 
 

],,),(z[
),(z

G
]G,,,),(z[ m

2

m
m

2
m 


                                       (4.32) 

 

with possible linear gain G , whose magnitude can be taken rather arbitrary. The corresponding distributions, both 
allowing U  up to 35.0  and L  down to 05.0 , are presented in Fig 4.7 in the particular case of, for instance, 4G  . 

This diagram illustrates the simplest (and definitely non-optimized) possibility of the above-noted equalizing the 
frequency components involved. 
 

 
 

Figure 4.7. Re-normalized maximal intensities ],,)(z[ m
2
m   versus the parameter   with 4G  : 

the dashed line is for 5.0 , while the solid line is for 0.1 . 

 
Then, one can consider the re-normalized spatial intensity distributions 
 

),,z(
)(z

G
),,z( 2

m

2
0 


                                                       (4.33) 

 

along the cell’s aperture. These distributions are depicted in Fig.4.8 in the same particular case of 4G   together with 
the magnitudes 17.0U   and 034.0L  , taken for example as well as in a view of the further consideration. 
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                                                          a.                                                                                              b. 
 

Figure 4.8. Re-normalized spatial intensity distributions ),,z(2
0   along the cell’s aperture 

with 4G   for various  : (a) is for 5.0  and (b) is for 0.1 . 

 
Taking into account Eq.(4.30), one can find from Fig.4.8 that the really operating part D  of the cell’s optical aperture 
available for parallel optical processing in Eq.(4.31) is practically independent on the magnitude of  . Very slight 

dependence on   manifests itself mainly in concrete localization of D  within total aperture of the cell. However, this 

dependence is rather weak as it follows from the data in Fig.4.8, so that potentially it could be neglected in practice. 
 
         At this point, an opportunity exists to simplify the process of determining the value of ),(x UD  . In so doing, 

let us rewrite Eq.(4.27b) as   21,,z  , where: 

 

a)      
])1(z[exp)(sin

)z(expJ)(J
,,z

2
1)1(

1



 

 , 

 

b)      
])1(z[exp)(sin

)z(expJ)(J
,,z

2

1)1(
2




 

 .                                      (4.34) 

 

Comparisons of these contributions to the right from the planes )(zm   in two chosen above cases of 5.0  and 

0.1  are presented in Fig.4.9. It is clearly seen from Fig.4.9 that 01   and 21   in those areas, so that 

one can motivatively take the reduced form of   ,,z  and put     ,,z,,z 2  within at least 

),(z2z m   in Eq.(4.27b) and take the reduced, but well-approximated form of Eq.(4.27a) 
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 ;                           (4.35) 

 

The corresponding contributions after substituting     ,,z,,z 2  in Eq.(4.33), i.e. after normalizing, are 

presented in Fig.4.10 with 17.0  in the cases of 5.0  and 0.1  under discussion. 
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a.                                                                                                             b. 
 

Figure 4.9. Comparing the contributions of the terms 1  and 2  from Eq.(4.34) to the right of the plane ),(zm   

with: (a) 5.0  and (b) 0.1 ; the 0 dB-levels are shown as well for a convenience. 

 

     
 

                                                  a. 5.0                                                                                   b. 0.1  
 

Figure 4.10. Coinciding the terms 2
0  and 2

2,0  obtained from Eqs.(4.33) and (4.34) to the right of the area 

),(z2 m   with 4G  , 17.0  and: (a) 5.0  and (b) 0.1 . The 0 dB and –3 dB levels are shown as well. 

 
         Now, let us direct our attention to the particular case of a KRS-5 crystalline cell with 100   dB/(cm GHz2) and 

practically operating optical aperture 0.5D   cm and make a few practical estimations. At first, to provide higher 
operating frequencies inherent in the cell under consideration together with the simplicity of realizing a low-frequency 
pump, it looks preferable to choose an area of DPS fff   and 1)ff(sign SP   related to Eq.(4.25) in spite of 

the fact that this area is more sensitive to variations of the parameter  , see Fig.4.4. Applying Eq.(4.35) and 
Figs.(4.10), one can find that the upper difference-frequency about 250f DU  MHz provides approximately a dB3 -

level of acoustic losses along the taken optical aperture 0.5D   cm of the cell. It should be noted at this step that the 
numerical estimations adduced here should be considered as rather simplified illustrations, while practically notable 
technical calculations have to be performed much more precisely, of course. Nevertheless, one can say that these 
estimations reflect the proposed principle of operation in the full measure. Due to the upper magnitude of   in this 
case is 17.0U  , as it follows also from Figs.4.10, and initial determination of the parameter   gives 

PUDU f/f  , one can find that the pump frequency will be 1470fP  MHz and the upper signal frequency will be 
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1720fUS  MHz. Then, one can choose the bandwidth f  of spectrum analysis, for example, in the range of 

200 MHz, which leads to the lower difference-frequency 50fLD  MHz restricted by the Bragg regime condition, see 

the corresponding estimation at the end of section 4.2. Consequently, the lower signal frequency is 1520fLS  MHz, 

and the lower magnitude of the parameter   is 034.0L  . These estimations are conditioned by the relations 

 

a)  UPPUSUD ffff  ,                       b)  LPPLSLD ffff  ,                           (4.36) 

 

It should be noted that direct exploitation of similar 5KRS   cell with the active optical aperture 0.5D  cm at the 
signal frequencies of already 1000 MHz is definitely impossible, because the acoustic attenuation is about 50  dB 

along this aperture. Nevertheless, applying the collinear acoustic wave heterodyning allows us to operate on these 
gigahertz-range carrier frequencies. The above-mentioned non-uniformities in the distributions of signals associated 
with various difference-frequency components in the 5KRS   cell under consideration are illustrated in Fig.4.8. 
Using Eq.(4.29) at the pump frequency 1470fP  MHz providing 485.2P  cm-1, one can estimate with 17.0U   

that 80.1zm   and 720.0xm   cm for 5.0  as well as 52.1zm   and 608.0xm  cm for 0.1 . Then, 

estimating these non-uniformities in the distributions of acoustical signals along the cell’s aperture at 17.0U   even 

graphically makes it possible to conclude from Figs.4.8 and 4.10 that one can obtain 2.14zD   and 71.5xD   cm for 

5.0  as well as 8.13zD   and 55.5xD  cm for 0.1 . At this point, it is worthwhile to make two refining 

remarks. First, the analysis should, naturally, include considering the behavior of another frequency components 
inherent in the complete spectrum of the difference-frequency signal, in particular, the component with 034.0L  . 

Nevertheless, one can see from Fig.4.8 (as well as from Figs.4.4 and 4.5) that total irregularity inherent in this lowest-
frequency component is practically insignificant even taking into account the appropriateness )(z)(z UmLm  . 

Second, some small part of the cell’s aperture placed to the left of )(z Um  , which exhibit more or less “acceptable” 

level of signal irregularity can be also exploited practically. Thus, the really operating optical aperture D , lying 
between )(z Um   and )(z UD   for 17.0U   at a level of 3 dB with the above-mentioned remarks, consists in 

approximately 0.5D  cm. 
 

4.5. ESTIMATING THE EFFICIENCY OF COLLINEAR WAVE HETERODYNING  
 
Now, the efficiency of collinear wave heterodyning in the chosen regime of a given pump intensity and coupling 
between signal and difference-frequency acoustic modes has to be estimated. Again, without the loss of generality, let 
us take Eq.(4.25) in the form of Eq.(4.27), which describes the case of DPS fff  , for further analysis. At this case, 

let us estimate the contributions involved in the term DF  from Eq.(4.27), which does not include any coordinate 

dependence contrary to the function   ,,z . One can start from the pump losses that are described by the factor 
2
P0P f

~ . Usually, the acoustic attenuation factor 0  is used in bibliography (see for instance, Ref.[4.8, 4.9] ) in 

the units of dB/(cm GHz2) , but here one needs it in the form of 0
~  (s2/cm) = 0

1810]10/)10ln([    [dB/(cm GHz2)] 

within estimating the efficiency of collinear wave heterodyning. Then, the factor D , introduced in Eqs.(4.14) and 

(4.15), takes the form SP
2

L
2

D ffV2   . Finally, the deformation tensor )L( , described initially by Eq.(4.1) in 

the normalized form, can be converted to the axes chosen in connection with orienting the coordinate axis x  as 

]111[||m||x


 in Eq.(4.10). In so doing, one can write qu)L( 
  for the longitudinal acoustic mode. After that, 

recovering the magnitudes of the vectors included into )L( , one explain the unique non-zero component of this tensor 

in dimensional form as jjj
)11(

j kU , where ]D,S,P[j  as before, see comments to Eq.(4.13). This 

dimensional form represents a scalar relation as well, so that it can be inverted as jjj kU  , where Ljj Vf2k  . 
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In its turn, the chosen component of deformations can be explained in terms of the corresponding acoustic power 

density jP  as )V(P2 3
Lj

2
j   [4.14]. Exploiting these relations, one can obtain from Eq.(4.27) that 

 

4
P

6
L

22
0

SP
22

2
D

fV
~

4

PP
F




  .                                                                 (4.37) 

 

Together with this, the left hand side of Eq.(4.27a) gives 
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Combining Eqs.(4.37) and (4.38), one can find the power density of the difference-frequency acoustic wave 
 

a)  













 ,,z

f

f
mPP4P 2

4
P

2
D

SP
2

D  ,         b) 
5
L

2
0

22

V
~

8
m




  .                           (4.39) 

 

         Now, one can estimate the total efficiency I  of Bragg light scattering by the difference-frequency acoustic wave. 
In the particular case of rather weak acoustic signals, when nonlinearity inherent in acousto-optical interaction can be 
omitted [4.14], one can use only a few terms from the corresponding expansion (see sub-section 2.4) and write 
 

a)   44222 Lq
3

1
Lq)Lq(sinI  ,                   b)  2PMq D2

1  .                         (4.40) 

 

Under natural condition 3Lq 22  , i.e. under inequality 

 

)LM(6P 2
2

22
D  ,                                                              (4.41) 

 
one may restrict himself by the first term in the right side of Eq.(4.40a) and rewrite Eq.(4.40a) as 

)2(PLMI 2
D

2
2

2  . Sometimes, see for instance below Eq.(44b), it is worthwhile to exploit the parameter 

mM)2( 2
2 , which combines characterization of both nonlinear acoustic and linear acousto-optic properties of 

material under consideration. The magnitude of I  determines the combined efficiency of the acousto-optical cell under 
consideration in terms of light scattering. This result makes it possible to characterize the contribution of acousto-
optical interaction exploiting Eq.(4.40a) in the form of 
 

)2(PLMI 2
maxD

2
2

2
max   .                                                      (4.42) 

 

With a maximally allowed level 5
maxD 105P   g/s3 50  mW/cm2, obtained from Eq.(4.41), one can find 

3.0Imax  . This estimation makes it possible to consider the above-chosen level of DP  as more or less tolerable for 

an upper limit in a 5KRS   single crystal under aforementioned condition given by Eq.(4.41). An undoubted merit of 
this characterization consists in practically convenient direct proportionality between the efficiency I  and the power 
density DP . 

 
          After that the contribution of acoustic wave mixing should be briefly analyzed. With this object in view, one can 
use Eqs.(4.25) and (4.26)for estimating the acoustic pump power density 0PP  needed to reaching a pre-assigned peak 

level of the difference-frequency power density maxDP  at a given ratio 0PS PP . From the start, it should be 

noted that a peak magnitude peculiar to the squared coordinate dependence 
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  in, for example, Eq.(4.32) can be estimated as 

1.0]G,,,),(z[ m
2
m   with 4G  , see Fig.4.7. Consequently, one can find 
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Let us consider the particular example related to a 5KRS   single crystal. When the required magnitude of maxI  is, 

for instance, equal to %3  (which is quite reasonable for the spectrum analysis in a small-signal linear regime), 

Eq.(4.42) gives 4
maxD 100.3P   g/s3 3  mW/cm2. Then, taking 11101.1m   s/g, 1.0 , 4G  , 15.0 , 

0.1 , and 5.1fP   GHz, one can estimate from Eq.(4.43) the needed value of the acoustic pump power density by 
7

0P 1083.0P   g/s3 = 83.0  W/cm 2 , which looks quite acceptable practically. 

 
4.6. PROOF-OF-PRINCIPAL EXPERIMENTAL MODELING. 

 
The obtained theoretical results related to the collinear acoustic wave heterodyning were examined experimentally via 
exploitation of the acousto-optic technique. The main attention was paid to the process of generating the difference-
frequency acoustic wave and the effect of heterodyning by itself. At this step, one has to say that the above-presented 
analytical calculations allow mathematically scaling the parameters exploited within the problem. By this is meant that 
principal physical opportunity exists for experimental simulation of the desirable collinear interaction between high-
frequency acoustic waves passing along the wave axes in anisotropic solid state through studying perfectly equivalent 
process at low frequencies in isotropic media with acceptable characteristics, namely, parameters of acoustic 
nonlinearity, acoustic attenuation, acoustic and acousto-optical figures of merit. In our particular case, one can perform 
experimental simulation of co-directional collinear acoustic wave heterodyning in a 5.1 -GHz frequency range in the 

5KRS   crystal through studying the same process in the acousto-optical cell exploiting the distillated water (H2O) at 
frequencies of about 100  MHz. Analysis of Eq.(4.39) shows that, if the original parameter   is saved during both the 

scaling and the experimental modeling, i.e. M  (where index “M” is related to the modeling process), one can 

write 
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The index “j” in Eq.(4.44a) represents a generalization for all the indices exploited above. Taking into account the 

properties of water: 0.1M   g/cm3, 33.1nM  , 8|| M  , 5
M,L 1049.1V   cm/s, 2400M,0   dB/(cm GHz2) , 

and 18
M,2 10126M   s3/g , one can find 16

M,0 1052.5
~   s2/cm , 6

M 1053.3m   s/g , and 9
M 1077.8   

s4/(g cm) . Using Eq.(4.44a), which gives the frequency factor 0645.0
~~

M,00  , and utilizing the data from 

section 4.4, which are related to Eq.(4.36) and illustrated by Fig.4.8, one can calculate for the modeling medium, i.e. 
for the distilled water, that 
 

a) 940.110f M,US   MHz ,       b) 045.98f M,LS   MHz ,       c) 815.94f M,P   MHz , 

 

d) 225.3f M,DL   MHz ,          e) 125.16f M,DU   MHz .                                                                (4.45) 
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General principle of the wave heterodyning and its experimental modeling are illustrated by Fig.4.11. The obtained 
magnitudes of the operating frequencies for liquid cell keep a pair of the previously chosen parameters 

034.1M,LL   and 17.1M,UU  . 

 

 
 

Figure 4.11. General principle of the wave heterodyning and its experimental modeling. 
 
The frequency M,DUf from Eq.(4.45e) makes it possible to exploit the results of section 4.4 for the modeling medium 

and to estimate potential clear aperture inherent in the water-based acousto-optical cell at a 3 dB-level of acoustic 

losses along this aperture as 0.5DM   cm. Together with this one has to estimate the Klein-Cook factor Q  for the 

liquid cell. Taking, for example, 671M   nm and 5.2LM   cm, one can estimate 4.0Q   for 225.3f M,DL   

MHz and 1.9Q   for 125.16f M,DU   MHz. Thus, the Bragg region of light scattering could be expected for the 

acoustic difference-frequencies, which are close to M,DUf , while for the acoustic difference-frequencies near M,DLf  

the transition region [4.8] of light scattering could be expected in this water-based cell. Nevertheless, both these 
options are acceptable for our purposes. In fact, they both give almost the same linear approximation, and just this 
approximation is desirable within a small-signal linear regime of spectral data processing being under consideration 
here. 
              In so doing the experimental set-up, whose optical part had been presented in Fig.3.6, has been arranged. The 
goals of our experiment did not touch the principal possibility of modeling the power density relations, which are 
described by Eq.(4.44b). This fact is conditioned by really large technical difference in designing between a liquid-
based acousto-optical cell and a solid-state one. In our opinion at the moment, similar modeling cannot give adequate 
data being practically useful to help in creating the ultra-high-frequency 5KRS   based cell. This is why at this step 
of modeling our attention was mainly concentrated on the physical principles of collinear acoustic wave heterodyning 
and the corresponding frequency relations. Exploiting the above-listed estimations, the specific liquid-based acousto-
optical cell of a new type had been designed and inserted in almost standard optical scheme for acousto-optical 
spectrum analysis. This scheme includes dark red-light laser ( 671M   nm, the output optical power about 40 mW), 

a four-prism beam expander (only two of them are shown), a rectangular selecting optical diaphragm, a liquid-based 
acousto-optical cell with acoustic absorber and two radio-wave frequency electronic ports for the input signal and 
pump (see Fig.4.12), a large-aperture achromatic doublet lens, and a 3000 -pixel CCD linear array photo-camera. A 
water-based liquid cell of about 0.6  cm in total length was lighted by the expanded optical beam being linearly 
polarized along the acoustic beam inside the cell. It provided, on the one hand side, the maximal transmission of the 
prism beam expander due to coinciding the plane of expanding laser beam with the corresponding vector of light 
polarization and, on the other hand, the maximal efficiency of acousto-optical interaction in water, because the 
effective photo-elastic constant equals to the maximum value 274.0p M,11  . The piezoelectric transducer with an 

interaction length of 5.2  cm was made of a thin )36Y( o -cut lithium niobate crystal, so that it excited purely 

longitudinal acoustic wave at its resonant frequency close to 103f M,0   MHz and within the total frequency 

bandwidth of 16fM   MHz (i.e. %5.15 ). The single-frequency pumping longitudinal acoustic wave with the power 
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density of up to 6.0  mW/mm2 was generated at the fixed carrier frequency of approximately 95  MHz, so that the case 
of ]18.1,04.1[  had been experimentally realized in frames of modeling. During the experiments, we have placed a 

diaphragm in about 8 -millimeter vicinity of the piezoelectric transducers area (about 13 % of the total 0.6  cm 
aperture) to minimize the effect of this area, where an increase in the power of difference frequency waves takes place. 
Consequently, the available optical aperture of a cell was exceeding 0.5  cm. The efficiency of light scattering by 
longitudinal acoustic wave at the difference-frequency was slightly exceeding %2 . Figure 4.13 shows the digitized 
oscilloscope trace of the light intensity distribution versus the difference-frequency inherent in the resulting acoustic 
wave, which was generated in water-based liquid cell realizing the algorithm of collinear wave heterodyning. This 
oscilloscope trace had been recorded by a multi-pixel CCD linear array photo-camera through connecting the input 
signal port of a cell at the radio-wave sweep-generator simulating the radio-wave signal. The scheme, connecting the 
sweep-generator with the cell’s piezoelectric transducer, included a two-section wide-band matching circuit of the 
lumped components together with a two-cascade resistance step-down transformer assembled out of micro-coaxial 
cables. The signal-like frequency was sweeping in the range of about 11198   MHz, so that the difference frequency 

was varied in the range of about 5.160.3   MHz. It should be noted that for radio-wave signals, producing the 

dynamic acoustic gratings on the resulting carrier difference-frequencies of about 250  MHz in the 5KRS   crystal 
and about 2.16  MHz in the distilled water, the attenuation is close to a 3  dB level over the corresponding total cell 

apertures. At the same time, for the signal acoustic waves at even the lower original frequencies of about 1520  MHz in 
5KRS   and about 98  MHz in water, the total attenuations exceed 110  dB along the corresponding apertures, which 

is perfectly unacceptable in practice. 
 

 
 

Figure 4.12. Water-based liquid acousto-optical cell with acoustic absorber 
and two radio-wave frequency electronic ports. 

 

 
 

Figure 4.13. The digitized oscilloscope trace reflecting the frequency distribution of the light intensity 
scattered by the acoustic wave with the difference frequency within the modeling experiment. 
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4.7. BRIEF COMPARATIVE DISCUSSION 
 
The above-obtained results make it possible to perform theoretical estimations for potential number of parallel 
frequency channels and frequency resolution of spectrum analysis. Potential frequency resolution f inherent in 

similar acousto-optical cell, operating in the regime of spectrum analysis, can be estimated from the following simple 
quantum mechanic consideration as DVf  . Just this value determines physical limit of the frequency resolution 

peculiar to an acousto-optical cell independently on the number of phonons taking part in a process of the Bragg light 

scattering. Taking into account the above listed values 5
L 1092.1V   cm/s and 0.5D   cm, one can find 4.38f   

KHz. The number of parallel frequency channels for spectrum analysis can be calculated as ffN  . In the case of 

200f   MHz, one can obtain 5210N  . Moreover, because the initial frequencies under analysis are lying in the 

range 17201520  MHz, one can conclude that the relative accuracy of data processing can be estimated at least by the 

ratio 0ff 51037.2  . Then, the data from section 4 show that, if the total efficiency of Bragg light scattering by 

the difference-frequency acoustic wave is chosen to be 03.0I0  , i.e. %3 , one should provide 7
0P 1083.0P   g/s3 

= 83.0  W/cm 2 and 6
S 1083.0P   g/s3 = 083.0  W/cm 2 due to 1.0  with 0.1L   cm, see section 4.5. 

 
           At this step, it seems quite reasonable to compare operation characteristic of the proposed KRS-5 acousto-
optical cell with the corresponding characteristics of the traditional high- frequency cell. Perhaps, the best option for 
this purpose is connected with a crystalline cell exploiting longitudinal acoustic waves along the ]100[ -axis of 

uniquely low-loss lithium niobate ( 3LiNbO ) single crystal with 18
2 100.7M   s3/g, 15.0  dB/(cm GHz2), and 

5
L 1057.6V   cm/s. Each cell can be characterized in both frequency and amplitude domains. The best set of 

frequency characteristics for the chosen cell at the central frequency 6.1f0   GHz (which is neighboring to the central 

frequency 1620f0   MHz obtained for 5KRS   crystalline cell) includes the frequency bandwidth 8002/ff 0   

MHz, the upper signal frequency 0.2fU   GHz, the optical aperture 0.5)f/(]dB[3D 2
U0   cm associated with a 

3 dB level of acoustic losses at the frequency Uf , the frequency resolution 4.131D/Vf 0   KHz, the number of 

resolvable spots 6010f/fN  , and the relative accuracy of analysis 5
0 102.8f/f  . The efficiency of this 

cell with 0.1L   cm and a given exciting acoustic wave power density 0P  can be estimated by )Lq(sinI 0
2

0  , 

where 0q  can be taken from Eq.(4.5b) at 671  nm. To make the comparison with the data in the end of section 4.2, 

let us take as before 03.0I0  , i.e. %3 . In this case, one can estimate 173.0L/Iq 21
0   cm – 1 and 

7
2

222
0 104.0)ML/()I2(P   g/s3 4.0  W/cm2. 

 
           The above-mentioned data make it possible to conclude that the proposed 5KRS   based cell, exploiting the 
collinear acoustic wave heterodyning, provides increasing both the frequency resolution and the relative accuracy of 
analysis by about 4.3  times in comparison with the traditional lithium niobate cell. Together with this the new 

5KRS   cell ranks below the traditional lithium niobate cell in the number of resolvable spots by %13 . Then, to 
make the correct decision one has to take into account a few following circumstances. First, a large optical aperture 
requires growing large enough boule of lithium niobate. It should be the mono-domained svilen-less single crystal 
exhibiting a high optical homogeneity and providing top-level conditions for propagation of both optical as well as 
UHF acoustic waves through a large-aperture cell. Practically, it is rather difficult to satisfy these requirements, but in 
the otherwise case, similar cell will have lost a significant part of its potential frequency resolution. Second, designing 
truly effective piezoelectric transducer with a %50  frequency bandwidth at a carrier frequency of about 6.1  GHz is 
not an ordinary task. The existing difficulties in technology of production as well as in subsequent acoustic and 
electronic matching of similar wide-band piezoelectric transducer can be resolved currently only within decreasing its 
efficiency or/and narrowing its bandwidth. This is why the above-noted potential frequency characteristics have to be 
considered as just the limiting theoretical values. Third, the estimated efficiency for a lithium niobate cell cannot be 
applied directly to the comparison under consideration, because the proposed new cell involves two cascades of 
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processing and provides an additional function, namely, the heterodyning, which needs naturally additional power 
consumption. 
 

4.8. CONCLUSION 
 
The presented data demonstrate both the possibility and the potential advantages of applying a co-directional collinear 
wave heterodyning to essential, about an order of magnitude or more, improvement of the frequency resolution within 
a multi-channel parallel acousto-optical spectrum analysis of gigahertz-frequency range analogue radio-wave signals. 
In so doing, we have theoretically investigated the phenomenon of a co-directional collinear wave heterodyning, taken 
in the particular case of mixing the longitudinal acoustic waves of finite amplitudes. Then, an opportunity of 
implementing acousto-optical data processing with the wave heterodyning has been experimentally modeled utilizing 
the specially designed acousto-optical cell based on the distilled water. Together with this, the methods for estimating 
the total efficiency of operation and optimizing aperture parameters for the cell of a new type have been developed. 
The proposed technique exploits a two-cascade algorithm of processing and is intended for direct parallel and precise 
optical spectrum analysis and provides more then 5000 -frequency-channels for processing analogue radio-wave 
signals in a gigahertz-frequency range with the accuracy or, what is the same, with the relative frequency resolution 

about 510  , which is usually unattainable for conventional direct acousto-optical methods. The obtained results reflect 
fruitful character of modern approaches based on applying various non-linear phenomena to improving the 
performance data of optical processing and give an appropriate example of this kind. At the moment, a few practical 
advantages of the presented approach can be noted. First, the proposed device need not additional electronic equipment 
for mixing the signals and selecting the resulting currier frequency, because heterodyning can be performed directly in 
a cell and provides potentially the dynamic range of about 90  dB peculiar to wave processes in solids. Then, the 
approach under consideration decreases the required relative bandwidth of piezoelectric transducer from %10050   at 

the resulting frequency within a conventional cell to %15 at the initial carrier frequency. Third, in the case of a 

spatially multi-channel arrangement of the acousto-optical cell, the identity of neighboring spatial channels to each 
other can be provided by adjusting the corresponding heterodynes. Finally, one should note that the number of 
isotropic or crystalline materials, which are appropriate for acousto-optical cells processing signals in a gigahertz-
frequency range, is definitely restricted due to fast-growing influence of square-law frequency dependence for the 
acoustic attenuation in solids. For instance, one can easily show that the above-discussed 5KRS   cubic crystal 
cannot be used for creating a conventional acousto-optical cell operating with signals whose carrier frequency exceeds 
about 500400   MHz. Nevertheless, just this crystalline material can be in principle exploited for the control over 

6.1f0   GHz signals. Consequently, one can conclude that a two-cascade arrangement of a cell presented here allows 

extending the spectrum of acousto-optical materials being appropriate for direct processing of ultra-high-frequency 
analogue radio-wave signals. 
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