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ABSTRACT 

 
The most significant problems of determining the dynamic range of new acousto-optical spectrometers and 
processors for astrophysical applications are under discussion. In so doing, two factors governing the dynamic 
range of these acousto-optical systems are chosen for the investigations. At first, the influence of the acoustic 
attenuation along large-aperture acousto-optical cells on the desired levels of lobes in a focal plane of the 
integrating lens as analyzed, and then potential capabilities of exploiting the incident light beam apodization 
for increasing the dynamic range of those acousto-optical systems are considered theoretically and within 
preliminary experiments. 
 
Key words: acousto-optics, linear acoustic waves, linear acoustic attenuation, dynamic range of optical 
system, crystalline acousto-optical cell, Gaussian profile, light beam apodization. 
 

1. INTRODUCTION 
 

Here, we consider one of the most important problems related to optimizing the performance data of new 
acousto-optical spectrometers for the analysis of both optical and radio-wave astronomical signals as well as 
to improving the capabilities of the triple product processors for astrophysical applications. The main 
attention is paid to estimating two factors governing the dynamic range of these acousto-optical systems. At 
the beginning, we determine the influence of the acoustic attenuation along large-aperture acousto-optical 
cells on the expected levels of lobes in a focal plane of the integrating lens and then describe capabilities of 
the incident light beam apodization for increasing the dynamic range of above-enumerated acousto-optical 
systems. In particular, these studies lie in a line with the program of the developing metrological equipment 
for Mexican Large Millimeter Telescope. At first, the Akhieser mechanism responsible for linear attenuation 
of both longitudinal and shear elastic waves in isotropic and anisotropic solids is analyzed in details. Similar 
analysis can be directly applied to crystalline materials as well in all the cases of passing elastic wave along 
the acoustic axis in crystals. After that, we estimate the influence of the acoustic attenuation along large-
aperture acousto-optical cells operating in a one-phonon Bragg light scattering regime. Finally, the combined 
effect of the acoustic attenuation and the incident light beam apodization is studied from the viewpoints of 
optimizing both the levels of side lobes and the minima inherent in light distribution of an individual 
resolvable spot in a focal plane of the integrating lens i.e., consequently, estimating potential limitations of the 
dynamic range.  
 
          It is well known that an appropriate apodization of the light beam within acousto-optical data 
processing makes it possible to increase the potential dynamic range of a system up to  and more. 
Customary, the Gaussian apodization is used when a light beam incidents on a rectangular uniform operative 
aperture of acousto-optical cell. However, modern acousto-optics exploits often rather high-frequency radio-
wave signals in a view of increasing the frequency bandwidth by itself or/and growing the time-bandwidth 
product inherent in a cell. Anyway, similar acousto-optical cells operate with such frequencies that acoustic 
losses become already pronounced, so that the effect of these losses along an aperture of a cell has to be taken 
into account. Typically, acceptable level of the acoustic losses accounts about  per cell’s aperture. 
By this it means that the expected non-uniformity of distributing the acoustic energy is now not negligible. To 
obtain really optimized profile of the incident light beam apodization the expected influence of acoustic losses 
ought to be analyzed and estimated. In connection with aforementioned non-uniformity or asymmetry, one 
can propose exploiting a quasi-Gaussian profile of the incident light beam reasonably shifted relative to the 
center of an aperture of the acousto-optical cell with appreciable acoustic losses. The corresponding 
theoretical estimations are performed as well. 
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2. LINEAR ACOUSTIC WAVES  
AND THEIR LINEAR ATTENUATION 

 
2.1. LINEAR ELASTIC WAVES IN SOLIDS 

 
Infinite isotropic solids as well as crystals, oriented along some symmetry axis, allow existing the elastic 
waves of two types. The first type, longitudinal elastic wave, is characterized by displacements of individual 
particles along the direction of propagation for a wave. The second one, shear elastic wave, exhibits the 
displacement of particles in a plane, which is orthogonal to the direction of wave’s propagation. In the most 
general case of anisotropic media, elastic waves can be neither longitudinal or shear in behavior, but here we 
will consider only specific directions in such media, namely, so-called acoustic axes whose physical 
properties are quite similar to the properties of isotropic media and allow their description in terms perfectly 
analogous to the description of elastic waves in isotropic media. Elastic motion in solids can be explained in 
terms of tensors characterizing the stresses and the deformations [2.1]. Components  of the stresses tensor 

 determine forces acting on an elemental area of a solid. With the assumed absence of volumetric momenta, 
the stresses tensor can be considered as a symmetric one, providing the symmetry . The 

deformations tensor  is governed by a pair of the coordinates  and  for the same point before 
and after deformation, which lead to the displacement vector . Generally, the 
displacement vector can include three contributions, namely, translations and rotations of a body as whole and 
local deformations. However, the relations between elastic waves and lattice properties need only the last 
contribution. That is why we will associate the displacement vector  with local deformations. 
Comparing the distances between a pair of points before and after deformation and using the relation 

, one can write ,  and consider the 

following quadratic form , where 
 

                                                              (2.1) 

 
are the components of the deformations tensor . It is seen from Eq.(2.1) that the tensor  is symmetric in 
behavior, because . For the further analysis we restrict ourselves by linear approximation and omit 
the last cross-term in Eq.(2.1). Relative variations of a volume connected with deformations are determined 

by a value of . Rewriting Eq.(2.1) as  , one can find that an 

arbitrary deformation can be represented as a sum of a simple shear and an all-directional compression. 

Actually, the first summand does not lead to varying the volume, because ; it 

describes a shear deformation. The second summand  characterizes a volumetric deformation. 
 
         Now, a matter equation should be taken into account. Such an equation introduces the functional 
connection between the stresses and the deformations in a solid. In the chosen above linear approximation, the 
most general form of similar equation is given by , where  are the elastic moduli 
whose number equals to 81. The requirement of symmetry for the tensors  and  together with the fact of 
existing the elastic potential reduce the number of elastic moduli to 21, which is a maximum number for 
crystals. In isotropic medium, the elastic moduli are independent on directions of the coordinate axes, so that 
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one arrives at a set of only 3 different non-zero moduli: , , and 
. As a result, the matter equation in isotropic medium can be written as 

. 
 
         To find the elastic motion equations one has to estimate forces acting in a medium. The full force  
acting on a volume  can be considered as a sum of all the forces acting on elemental volumes  of a 

medium. The components  of the force  can be explained through divergence of the stresses tensor as 
 

,                                                 (2.2) 

 

where  is an elemental area of a surface, and  is the component of unit normal to an elemental area  

of that surface. Let us apply the second Newton’s law, i.e. equate the force component  to the 
corresponding component of the acceleration multiplied by the matter density  of a medium, and write  
 

 .                                                             (2.3) 

 
Using the matter equation for isotropic medium and the linearized form of Eq.(2.1), one can rewrite Eq.(2.3) 
as: 

 .                                         (2.4) 

 

Now, we introduce the factors  and , then take into account the vector 

relations  and , and convert Eq.(2.4) into 

 

.                                                 (2.5) 

 

The vector  can be always represented as the sum , where  and . 

Due to  and , one can exploit the operator equality 

 and divide Eq.(5) into a pair of the following independent evolution equations 
 

a)   ,      ;           b)   ,                    (2.6) 

 
for the displacements  and  of the longitudinal and shear elastic waves, respectively. Here, the factors 

 and  play parts of the corresponding phase velocities of propagation. Thus, one can see that both 
longitudinal and shear elastic waves are governed by quite similar evolution equation, the wave equations, so 
that hereafter the index of wave’s type could be omitted. 
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2.2. LINEAR ACOUSTIC ATTENUATION 

 
One of the most important parameters in the theory of acoustic attenuation represents the ratio of the acoustic 
wavelength  to the averaged mean free pass  of thermal phonons in a crystal. Calling  the averaged 
temporal interval between collision of thermal phonons and  the frequency of elastic wave, one can 
consider two limiting cases. If  and, consequently, , this is meant that the attenuation of 
acoustic phonons is conditioned by their collisions with a lattice whose phonons are in a state of thermal 
equilibrium. This case was considered by L.Landau and G.Rumer [2.2], and G.L.Slonimsky [2.3]; usually, it 
corresponds to the low temperature area, i.e. to the absolute temperature range of  when the 
frequency of elastic wave is about . The opposite case of  makes it possible to consider 
thermal phonons as particles propagating in a slowly varying potential field, caused by the elastic wave. In 
fact, it means that the coherent elastic wave destroys an equilibrium distribution of thermal phonons, which 
become to be not governed by the equilibrium Planck distribution. Growing the entropy, needed for 
recovering the thermal equilibrium of these phonons, leads to attenuation of elastic energy. For the majority 
of crystals, this mechanism, revealed and described by A.Akhieser [2.4], can be observed at temperatures 

 and frequencies up to . The last case is very close to typical acousto-optic experimental 
situations, so that it is really worthwhile to apply just the Akhieser’s mechanism to characterization of the 
attenuating elastic waves in acousto-optical crystals.  
 
The interaction between the coherent elastic wave and the phonons of heat modes leads to increasing the 
number of phonons in some heat modes up to the value  [2.5], which differs on the equilibrium value . 
Let us follow the behavior of an individual mode (index 1) inherent in the coherent elastic wave, which 
includes  coherent phonons before the interaction. All the other modes, related to heat phonons, are in 

thermodynamic equilibrium with each other. After the temporal interval  the probability  appears that 

the number  will be decreased by unity due to the corresponding nonlinear elastic interactions in a system, 
i.e. due to colliding one of the coherent phonons with one of the heat ones. Figure 2.1 illustrates similar 
process when the number of coherent phonons becomes to be , while the numbers of heat mode 
phonons (indices 2 and 3) are now  and . At the same time, another phonon 

processes will aspire to recover that equilibrium. In particular, similar probability  exists that the  
 

 
 

Figure 2.1. Schematic representation for the phonon spectrum and the modes under consideration 
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number  will increase by one phonon, so that . The difference of these two probabilities 

 represents the probability of varying the number  from the equilibrium value . 
The velocity of such varying the number  can be estimated by 
 

a)                 or                b)  ,                      (2.7) 

 
because the equilibrium value  does not depend on time. It follows from Eq.(2.7a) that 

. Introducing , one can write 
 

a)      or    b)  ,     (2.8) 

 
where  is the energy absorbed by the heat phonon assembly or lost by the coherent elastic wave. 
Consequently, one can write that , where  has a meaning of the relaxation time. Of 
course, the last relation is phenomenological in behavior and it can be applied to practically an arbitrary 
system with losses. 
 
The energy loss of the coherent elastic wave can be characterized by the logarithmic decrement  describing 
the attenuation. For a system performing free harmonic oscillations with a small attenuation, such a decrement 
can be determined as , where  can be considered as energy loss for one period of oscillations 
and  is the total energy of oscillations stored for one period in a crystalline sample. Consequently, one can 
write 
 

,                                                           (2.9) 

 
where  is the resonant frequency inherent in this oscillating system with losses. Here, the logarithmic 
decrement  is measured in nepers. It is seen from Eqs.(2.2) and (2.3) that . Then, one can write 
the following standard relations for the coefficient  of linear losses related to the coherent elastic mode 
 

a) , 

b) ,                                    (2.10) 
 
where  is the velocity of the chosen coherent elastic mode. Now, we have to estimate the coefficient  of 
linear losses for elastic waves whose frequency does not exceed . 
 

2.3. THE AKHIESER’S MECHANISM OF LOSSES  
FOR THE COHERENT ELASTIC WAVE 

 
The presence of a coherent elastic mode in solid state leads to varying elastic properties of a medium and, 
consequently, the frequency of Debye’s phonons. For small distortions, the classic theory of elasticity is true, 
so that the variation of phonon frequency can be extended into a series in terms of powers for the 
deformations  and the rotations . In the first approximation relatively to these tensors, one can write 
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 ,                                      (2.11) 
 

where  is the phonon frequency in the absence of the coherent elastic wave,  are the 

Gruneisen factors. Broadly speaking, the factors  depend on . However, if the dispersion is negligibly 

small in a system, the factors  depend only on the direction of the wave vector  rather than its 
modulus. The coefficient  of linear losses for elastic waves is determined in terms of the quantity of heat 
scattered inside unit of volume per unit of time. In other words, one has to calculate the velocity of varying 
the entropy  of phonon gas multiplied by the absolute temperature . The entropy  of phonon is given by 
[2.6] 
 

 ,                      (2.12) 

 
where  is the Boltzmann constant. Direct differentiation gives the following expression for the dissipative 
function 
 

 .                               (2.13) 

 
Restricting ourselves by three-phonon processes only, let us consider phonon mode with the wave vector . 
The velocity of varying  due to the presence of coherent elastic wave under stationary conditions can 
be estimated via equating to zero a sum of the two temporal derivatives 
 

.                         (2.14) 

 

In the assumption that , we exploit the results of a three-phonon theory keeping only 
the contributions being linear in behavior relatively to the variations . In so doing, one can obtain 
 

                   (2.15) 

 

. 
Here,  is the matrix element of the corresponding phonon transition and  is the number of particles 
in the model under consideration. Then, rather small variation  can be expressed as 
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, where  is unknown value to be found. Using the last formula, one 
can immediately write 
 

.                  (2.16) 

 
That is why Eq.(2.15) can be rewritten as 
 

 

 

                        (2.17) 
 

 
 

 . 
 
Coming back to Eq.(2.13) and substituting , one can obtain 
 

 .               (2.18) 

 

Using Eq.(2.14), one can replace  by  from Eq.(2.17) in Eq.(2.18). In this 
case, the first summand of Eq.(2.18) equals zero, while the second summand in the approximation of 

 for small  with an accuracy of the second order terms in respect to  gives 
 

 

 .                                           (2.19) 
 
If the dissipative function, i.e. the left hand side of Eq.(2.19), is known, one can find the factor of elastic 
losses. In so doing, let us consider at first a contribution of the thermo-elastic effect and write 
 

a)   ,               b)  ,        (2.20) 

 
where  is the adiabatic thermal conductivity of a medium,  is the specific heat capacity at the constant 

volume,  is the adiabatic expansion factor,  are the corresponding elastic moduli, and  is the 

diagonal component of the deformation tensor. It follows from Eq.(2.20b) that  for the shear 
elastic waves, so that thermo-elasticity cannot contribute in the attenuation of shear waves. When temperature 

 depends on the point of estimation inside a medium only slightly, one can take the term  out of the 
integral in Eq.(2.20a), so that the velocity of energy dissipation due to thermo-elasticity can be estimated by 
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 .                                                 (2.21) 

 
For example, if the longitudinal elastic wave (see the index ) is passing along the axes, so that 

 and uz = u0 exp [ i ( qL z −ω L t )] , one can calculate a pair of the period average values as 
 

a)  ,        b)  ,    (2.22) 

 
where the time average energy  in solid state is equal to the twiced kinetic energy. Thus, the factor of 
elastic losses represents a ratio of the average velocity of energy dissipation to the twiced average energy 
flow, i.e. 
 

 ,                      (2.23) 

 

where  is the effective Gruneisen constant and  is the matter density. Due to  κ  , the coefficient  
of linear elastic losses is independent on the temperature in agreement with the experimental data at room 
temperature, but  has a square-law dependence on the cyclic  frequency of the longitudinal elastic 
wave. 
 
The shear elastic wave attenuation can be estimated through the consideration of viscosity. In this case, the 
dissipative function  includes time derivatives of the deformation tensor 

, where  is the tensor of viscosity. This tensor consists of only 

two coefficients  and  in isotropic medium, so that the dissipative function  takes the form 
 

 .                          (2.24) 

 
The velocity of energy dissipation due to viscosity can be estimated by 
 

 .               (2.25) 

 
In contrast with the thermo-elastic effect considered above, Eq.(2.25) includes both diagonal and non-
diagonal components of the deformation tensor. That is why using the approach, presented previously by 
Eqs.(2.22) and (2.23) for the thermo-elastic effect, one can determine the factors  of elastic losses, 
conditioned by the viscosity for both longitudinal and shear elastic waves (see the indices L and T, 
respectively) as 
 

a)   ,                         b)   .                     (2.26) 
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It is seen from Eq.(2.26) that as before the factor  has a square-law dependence on the frequency of elastic 
wave.  
 

2.4. EFFECT OF LINEAR ACOUSTIC ATTENUATION 
ALONG A DISTANCE OF ELASTIC WAVE PROPAGATION 

 
The effect of acoustic attenuation can be considered using the Hook low, which includes the tensor  of 
viscosity: 
 

 .                                                   (2.27) 

 

Here,  and  are the tensors of stresses and elastic modules as before. The propagation of high-frequency 
elastic (acoustic) waves with the amplitude  and the cyclic frequency  is described by the Christoffel 
equation 
 

,                                              (2.28) 
 

where , , and  is the component of the wave normal unit vector . 
In the case of relatively low acoustic attenuation, Eq.(2.28) allows separating real and imaginary parts as 
 

a) ,       b) .               (2.29) 

 

Thus, Eq.(2.29a) characterizes the phase velocities  of acoustic modes, while Eq.(2.29b) gives the factors 
of acoustic attenuation  for each acoustic mode via the relation 
 

 ,                                                           (2.30) 

 

where  is the corresponding eigen-value of the above introduced dissipation tensor . 
 
           The contribution from linear acoustic attenuation to the wave propagation process can be taken into 
account if Eq.(2.6) will be modified as [2.8] 
 

 ,                                               (2.31) 

 
where  is the factor of acoustic losses. The solution to Eq.(2.31) can be found in the form of 

. Substituting this project of solution into Eq.(2.31), we arrive at the 
Helmholtz equation 
 

.                                                 (2.32) 

 
Substituting a trial solution into Eq.(2.32), one can find the characteristic equation 

 whose solutions are 



 12 

 

,   ,        (2.33) 
 

with ; here  is the modulus of the wave vector  of the elastic wave. Thus, one can 

express  and then find  as 
 

.        (2.34) 
 
This solution includes the two counter-propagating waves; each of them attenuates exponentially during its 
passing through a medium in the corresponding direction. 
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3. ANALYSIS OF THE APODIZATION FOR LIGHT BEAMS 
BY THE OPTIMIZEDQUASI-GAUSSIAN PROFILES; 

APPLICATION TO THE ACOUSTO-OPTICAL CELLS 
WITH APPRECIABLE ACOUSTIC LOSSES 

 
3.1. INTRODUCTIVE REMARKS 

 
At really high acoustic frequencies, the divergence of acoustic beam can be omitted, so that the attenuation 
will play the dominating role in the expected non-uniformity of distributing the acoustic energy along the cell. 
Together with this, the effect of acoustic losses is significant due to obvious asymmetry and non-uniformity in 
distribution of the acoustic energy along optical aperture of a cell. Moreover, the appearing non-uniformity in 
this distribution is not the same within the frequency bandwidth  of a cell. The central frequency  is 

determined as . The ratio  of the highest frequency to the lowest one within a given frequency 
bandwidth is . Usually , and one yields . In its turn, the peak-ratio 
between two amplitude coefficients of the acoustic losses, corresponding to these pair of boundary 
frequencies within the bandwidth , is  due to square-low dependence of the acoustic 
losses on the frequency. Sometimes, however, a little bit wider frequency bandwidth with  and 

 is exploited, so that in this case  and, naturally, . Consequently, the expected non-
uniformity of distributing the acoustic energy cannot be already omitted. To find sufficiently optimized 
profile of the incident light beam apodization the expected effect of acoustic attenuation is analyzed and 
estimated. In a view of aforementioned asymmetry, one can propose exploiting a quasi-Gaussian profile of the 
incident light beam reasonably shifted relative to the center of an aperture of the acousto-optical cell with 
appreciable acoustic attenuation. 

 
       In signal processing, a window function (or an apodization function) is a mathematical function that is 
zero-valued outside of some chosen interval. For instance, a function that is constant inside the interval and 
zero elsewhere is called a rectangular window, which describes the shape of its graphical representation. 
When another function or a signal is multiplied by a window function, the product is also zero-valued outside 
the chosen interval. A more general definition of window functions does not require them to be identically 
zero outside an interval, as long as the product of the window multiplied by its argument is square integrable, 
that is, that the function goes sufficiently rapidly toward zero. In typical applications, the window functions 
used are non-negative smooth "bell-shaped" curves, though rectangle, triangle, and other generalized 
functions are sometimes used. In spectrum analysis, the Fourier transform of the function  is zero, 
except at frequencies . However, many other functions do not have convenient closed form transforms, 
and one might be interested in their spectral content only during a certain period. The Fourier transform can 
be applied on a finite interval of the function, or in general, the transform is applied to the product of the 
function and a window function, so that any window (including rectangular) affects the spectrum. Windowing 
of a simple function, like  causes its Fourier transform to develop non-zero values (called spectral 
leakage) at frequencies other than . The leakage tends to be worst (highest) near  and least at frequencies 
farthest from . If the signal under analysis is composed of two sinusoids of different frequencies, leakage 
can interfere with the ability to distinguish them spectrally. If their frequencies are dissimilar and one 
component is weaker, then leakage from the larger component can obscure the weaker’s presence. But if the 
frequencies are similar, leakage can render them unresolvable even when the sinusoids are of equal strength. 
The rectangular window has excellent resolution characteristics for signals of comparable strength, but it is a 
poor choice for signals of disparate amplitudes. This characteristic is sometimes described as low-dynamic-
range. At the other extreme of dynamic range are the windows with the poorest resolution. These high-
dynamic-range low-resolution windows are also poorest in terms of sensitivity; this is, if the input function 
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contains random noise close to the signal frequency, the response to noise, compared to the sinusoid, will be 
higher than with a higher-resolution window. In other words, the ability to find weak sinusoids amidst the 
noise is diminished by a high-dynamic-range window. High-dynamic-range windows are probably most often 
justified in wideband applications, where the spectrum being analyzed is expected to contain many different 
signals of various amplitudes. In between the extremes are moderate window, which are commonly used in 
narrowband applications. In summary, spectral analysis involves a tradeoff between resolving comparable 
strength signals with similar frequencies and resolving disparate strength signals with dissimilar frequencies. 
That tradeoff occurs when the window function is chosen. Let us consider a few examples of high- and 
moderate-resolution windows  and their Fourier transforms : 

1) The Dirichlet or rectangular window:           ,          ;               (3.1) 

2) The cosine window:                                     ,            ;           (3.2) 

3) The “raised cosine” wind    ,                (3.3) 

 

The last window, see Eqs.(3.3), includes at least two widely used particular cases. The first one is the Hann 
window, which represents the simplest “raised cosine” window with coefficients . In this case the 
ends of cosine function just touch zero, so that the side lobes roll off at about  per octave. The second 
case is connected with the Hamming window having  and . It was proposed to minimize the 
maximum (nearest) side lobe, giving it a height of about one-fifth that of the Hann window. Then, one can 
introduce the profile parameter  and take 
 

4) The Gaussian window: , .(3.4) 

 

The frequency response of a Gaussian is also a Gaussian (it is an eigen-function of the Fourier transform). 
Since the Gaussian function extends to infinity, it must either be truncated at the ends of the window, or itself 
windowed with another zero-ended window. Since the logarithm of a Gaussian produces a parabola, this can 
be used for exact quadratic interpolation in frequency estimation. The comparison of these windows is 
presented in Fig.3.1. One can see that rectangular window gives the best “frequency resolution”, while the 
others provide better dynamic range. Evidently, the most attractive window looks the Gaussian one, which 
exhibits a moderate “frequency resolution” and promises rather high dynamic range. Additionally, these 
characteristics can be varied by an adequate selection of the parameter . 
 

 
 

Figure 3.1. The normalized intensity distributions in the Fourier transform plane: 1 is for rectangular, 
2 is for the cosine, 3 is for the Hann, 4 is for the Hamming, and 5 is for the Gaussian  windows. 
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3.2. EFFECT OF ACOUSTIC ATTENUATION ALONG THE APERTURE 
OF BRAGG ACOUSTO-OPTICAL CELL 

 
            The acoustic attenuation in solids has been studied experimentally. It has been found that at room 
temperature the dominant mechanism of acoustic attenuation determined by the Akhieser loss caused by 
relaxation of the thermal phonon distribution toward equilibrium [3.1]. Woodruff and Ehrenreich [3.2] have 
derived a formula, which describes the acoustic attenuation as a function of the cyclic acoustic frequency  
and absolute temperature  and which expresses the attenuation  in nepers per unit time 

 ,                                                          (3.8) 

 

where  is the Gruneisen constant and  is the adiabatic thermal conductivity. It is seen from Eq.(3.8) 
that the acoustic attenuation  is proportional to the squared acoustic frequency. In practice, however, it has 
been found that for several widely used materials the acoustic attenuation varies as , where the 
factor  lies between  and , and it can depend on the frequency range as well as on the specific sample 
exploited. This is a notable point especially for high-frequency acousto-optic materials where acoustic 
attenuation may become a major factor of limitations. Usually, however, the acoustic attenuation is most often 
defined as , where  is the attenuation constant per unit length at the frequency , 

 is the frequency in , and the factor  is a constant, which is equal to  for most 

crystals of interest. Here, one can express, for example,  in  and  in . In 
this case, the acoustic attenuation  measured in nepers per second in Eq.(3.8), is expressed as 
 

 .                                                                (3.9) 

 

Then, we emphasize that practically the acoustic attenuation along a propagation path is often higher then 
predicted by the above-noted parameters  and . The additional losses may be attributed to acoustic 
diffraction losses, losses due to scattering from crystal impurities, acoustic beam walk-off, and acoustic 
harmonic losses because of acoustic nonlinearities. 
 
            The Bragg regime of light diffraction occurs with a large length  of interaction between light and 
elastic waves. In this case, the dynamic acoustic grating is rather thick, so during the analysis of diffraction 
one has to take into account the phase relations between waves in different orders. Such a regime can be 
realized only when the angle  of light incidence on a thick acoustic grating meets the Bragg conditions 

and  (here,  and  are the light and elastic wavelengths, respectively). Usually, the 
Bragg regime includes one incident and two scattered light modes as well as the acoustic mode. Such a 
regime represents so-called one-phonon Bragg light scattering, normal or anomalous. In this regime, the 
scattered light intensities  and  are governed by trigonometric function dependences in the forms [3.3] 
 

a)   ,        b)   ,     c)  ,       (3.10) 

 

where  is the coordinate almost along a direction of light propagation,  is the acousto-optic figure of 
merit and  is the acoustic power density. Taking into account the attenuation of total energy in a volume 
of a deformed body, one can find both the acoustic power density and the modulation parameter  as 
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a)   ,         b)   ,   (3.11) 
 

where  is amplitude of the elastic wave and  is the coordinate along a direction of ultrasound 
propagation. Usually, during the spectrum analysis the magnitude of the parameter  for each individual 
spectral component of a radio-signal is really small, so that one can approximate Eqs.(3.10b) and (3.10c) in 
the acousto-optical cell with linear acoustic losses. For the regime of a one-phonon light scattering, such an 
approximation can be successfully done in a vicinity of the point . In this case, the real-valued 
amplitude  of the scattered light field, i.e. the issuing light amplitude at the output facet of acousto-
optical cell, is directly proportional to the modulation parameter , so that one can obtain 
 

a)  ,   b)  ,   c) .   (3.12) 

 
3.3. GAUSSIAN APODIZATION OF THE INCOMING LIGHT FIELD DISTRIBUTION 

ALONG AN APERTURE OF THE ACOUSTO-OPTICAL CELL  
WITH ACOUSTIC LOSSES 

 
Now, we make an attempt to describe the effect of apodization for the incoming light beam on the potential 
dynamic range of acousto-optical spectrum analyzer. To take into account the contributions from the acoustic 
losses we shift the origin of the physical coordinate  across a beam so that the magnitude  will be 
associated with the plane of piezoelectric transducer in an acousto-optical cell. In fact, this means that we 
replace  by , where  is the physical cell’s aperture measured in centimeters. One can suppose 
that the electric field amplitude profile , inherent in the issuing beam of a gas laser and reaching the 
acousto-optical cell aperture, is usually close to the Gaussian shape [3.4], see Fig.3.2a. At this step, let us put 

 in that figure, so that one can write (in both real and dimensionless variables) that 
 

,   .  (3.13) 
 

Here,  is the normalized dimensionless coordinate along the aperture , so that , while  

and  are physical and dimensionless input profile parameters for the Gaussian function, whose 
variations with the input profile parameter  are depicted in Fig.3.2.b.  
 

    
                                  a.                                                                                           b. 
 

Figure 3.2. Optical arrangement of lighting the acousto-optical cell (a) and a role of the profile parameter β  (b). 
 
Taking into account the acoustic attenuation, one can find the magnitudes of the following light intensities 
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a)  ,          b)  .     (3.14) 

 (3.15) 

 

Here, the dimensionless amplitude parameter  describes now the total amplitude acoustic losses 

along the optical aperture of a cell, because . The ratio  represents 
the coefficient of utilization for the total incident light intensity . One can see from Eqs.(3.14) and (3.15) 
that the ratio  grows, while the absolute level  of light intensity decreases as the apodization 
parameter  grows, see Fig.3.3. 
 

    
                                             a.                                                                                        b. 
 

Figure 3.3. Plots of the available optical intensities: (a) the ratio  and (b) the absolute level  
 
The shape of light field distribution  peculiar to an individual resolvable spot in the Fourier-transform 
plane, i.e. in a focal plane of the integrating lens, where the spatial dimensionless coordinate  is centered on 
a maximum of that distribution, can be estimated analytically as 

 

a)  

,  (3.16) 

 

b)  . 

 

Using Eqs.(3.16), the normalized distribution  of light intensity peculiar to an individual resolvable spot 
in a focal plane of the integrating lens can be written as 
 

 .                                                        (3.17) 
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Generally, , where  is the physical spatial coordinate in the focal plane and  is the focal 
distance of the integrating lens. In the particular case of , Eq.(3.17) can be simplified as 
 

 .                            (3.18) 

 

Figure 3.4 illustrates the dependence of light intensity distributions in the Fourier transform plane using the 
profile parameter  as a parameter curve families for various magnitudes of the dimension-less loss factor 

. 
 

    
 

                 a.                                                                     b.  
 

   
 

               c.                                                                   d.  
 

Figure 3.4. Plots of the light intensity  for various  and . 
 

In particular, Fig.3.4a illustrates the tendencies of redistributions for light intensity profiles in the Fourier 
transform plane with varying the profile parameter  in a lossless regime. 
 

3.4. SHIFTED GAUSSIAN APODIZATION OF THE INCOMING LIGHT FIELD 
DISTRIBUTION ALONG AN APERTURE OF THE ACOUSTO-OPTICAL CELL  

WITH ACOUSTIC LOSSES 
 
Due to obvious asymmetry of the combined distribution connected with the incident Gaussian light intensity 
profile from a laser, which usually centered on the cell’s aperture, and the acoustic power monotonously 
decreasing along that aperture because of losses, one can suggest shifting the incident light beam to minimize 
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side lobes of an individual spot in a Fourier plane. In so doing, one can modify Eq. (3.13) via introducing an 
additional small dimensionless parameter  of a shift , see Fig.3.2a, as 
 

.                                                        (3.19) 
 

As a result one yields the following light intensities 
 

a)  , 

 

b)  ,        (3.20) 

 

c)  

 . 

 
The shape of light field distribution  peculiar to an individual resolvable spot in the Fourier-transform 
plane, i.e. in a focal plane of the integrating lens where the spatial dimensionless coordinate  is centered on 
a maximum of that distribution, can be estimated analytically as 

 

a)  

 
 

b) .   (3.21) 

 

which is real-valued in behavior. Using Eqs.(3.21), the normalized distribution  of light intensity 
peculiar to an individual resolvable spot in a focal plane of the integrating lens can be rewritten with 
Eq.(3.17). At first, it is seen from Eq.(3.17) with Eqs.(3.20) and (3.21) that the presence of a shift  does 
not perturbed the symmetry of light distribution inherent in an individual resolvable spot in a focal plane of 
the integrating lens. Than, one can demonstrate that the positive shift parameter  leads only to 
increasing the side lobes in comparison with the case of , see Fig.3.5. By contrast with this, various 
values of the shift parameter  make it possible both to suppress the side lobes as well as to provide 
higher contrast of diffractive pattern due to depressing the corresponding minima of light distribution. Figure 
3.6 illustrates the dependence of light intensity distributions in the Fourier transform plane using the negative 
shift parameter  as a parameter in curve families with  for the two particular cases of the amplitude 
acoustic attenuation  and . However, one can see that even 
maximal decreasing of the side lobes, obtained through realizing similar negative shift (with  for 
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 and  for ), does not exceed , i.e. is too 
insignificant. Together with this, the contrast, i.e. first minimum, can be improved from about  to 
about  and from about  to about , respectively. 

 

    
                                               a.                                                                                        b. 

 

Figure 3.5. Plots of the light intensity  for a curve family ,  in the particular cases: 

(a) ,  and (b)  and . 
 

    
                                                a.                                                                                      b. 

 

Figure 3.6. Plots of the light intensity  for a curve family ,  in the particular cases: 

(a) ,  and (b)  and . 
 
 



 21 

 
4. EXPERIMENTAL CHARACTERIZATION FOR THE 

APODIZATION OF A LIGHT BEAM 
BY VARIABLE GAUSSIAN PROFILES 

 
4.1. A MULTI-PRISM LIGHT BEAM EXPANDER 

 
Practically important factor determining the energy in optical scheme of acousto-optical spectrometer is 
related to matching the initial size of laser light beam with the optical aperture of a large-aperture acousto-
optical cell in the plane of light scattering. To realize a one-dimensional expanding of the laser beam together 
with its Gaussian apodization one can exploit a multi-prism beam expander. Such a device can be designed 
relatively simply and compact even with a large factor of expanding and, what is very important, can be done 
tunable in behavior. Using the well-known relation for the light refraction [4.1] by the first facet, i.e. the 
border between air and glass , where  is the refractive index of a glass, one can obtain from 
Fig.4.1 the factor of spatial beam expanding in the geometrical optics approximation 

 

a)  ,               b)   .                   (4.1) 

 
Due to the following simple relations for segments: ,  and 

, , where  and  are time intervals, one can, as usually, conclude that 
the segments  and  represent in Fig.4.1 a pair of the corresponding in-phase surfaces. In the 
simplest case, when all the glass prisms are identical to each other and the angles  of incidence are the 

same for all of them, one can write  and obtain the needed expanding. Involving, in particular, 

even number  of so-called Littrow prisms (i.e. the right-angle prisms ), the beam direction 
can be saved with an accuracy of some spatial parallel shift, see Fig.4.2. That is why the numbers  
will be taken for consideration here. 

 

                    
 

Figure 4.1. Light beam with a rectangular profile                    Figure 4.2. Passing the light beam with a rectangular profile 

 passes through an arbitrary sharp-angle prism.                           through a pair  of the Littrow prisms; . 
 
Now, one has to estimate the transmittance  of a multi-prism beam expander. For this purpose, one can 
adapt the well-known relations for transmittance during the refraction [4.1]. These relations are depending, of 
course, on the chosen linear state of light polarization, so that two independent on each other linear states can 
be recognized, namely, the linear state of polarization being orthogonal to the plane of incidence and the 
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linear state of polarization belonging the plane of incidence. With these two options, for a single prism with, 
naturally, two borders between air and a prism material one can write 

 

 ,                                   (4.2) 

 

 ,           (4.3) 

 

where  is the top angle of a prism,  and . One can show that 

 always and, consequently,  where  and 

. In the particular case of glass prisms with  and , the plots 
characterizing the transmittances  and  for  are depicted in Fig.4.3. The general 
view of a 4-prism light beam expander is shown in Fig.4.4. 

 

 
Figure 4.3. Comparison of the transmissions inherent in prism glass expanders with  and ; 

the solid lines are for , while the dashed lines are for . 
 

 
 

Figure 4.4. A four-prism beam expander. 
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The angle of light incidence on the input facet of the first prism is definitely large, about , so that the 
prism beam expander has different transmission for the components of light polarization oriented along the 
unit vectors  and , respectively. In fact, it plays a role of a filter, whose Jones matrix  can be written 
in the chosen axes as 
 

 ,                                       (4.4) 

 

where  are the transmission factors determined by properties of the beam expander. 

These factors can be estimated by the relations  and . The Jones 
matrix , whose eigen-values are just  and , describes the beam expander as a filter, which 
affects arriving elliptical state of polarization.  
 

4.2. PROPERTIES OF THE BEAM EXPANDER 
WITHIN OPERATING OVER ELLIPTICALLY POLARIZED LIGHT 

 
In the case of optically active crystal, when normal component of the gyration tensor is non-zero, both the 
propagating light waves are elliptically polarized. Their ellipses of polarizations have the same relations 
between the corresponding axes, but these ellipses are rotated relative each other through  and traced 
around in the opposite directions. These two light waves can be characterized by a pair of the following 
complex-valued electric induction vectors 
 

a) ,             b) ,                                 (4.5) 
 
which include a pair of the unit vectors  and,  as well as their joint ellipticity . The ends of real-valued 

vectors  and  (here, , which means that the second light wave, i.e. with the sub-
index , is passing faster than the first one) represent various ellipses. 
 
Here, a part of a scheme realizing the control over light polarization in the chosen fragment of optical system 
is briefly characterized. The corresponding schematic arrangement is shown in Fig.4.5; it includes only two 
components: a multi-prism one-dimensional beam expander and a specific acousto-optical cell made of a 
tellurium dioxide crystal. The problem under consideration is: “What should be the state of the initial light 
polarization, which incidents on the input beam expander aperture to obtain at the output of expander a pre-
assigned state of light polarization, which coincides with just the eigen-state of elliptic light polarization 
required at the input aperture of acousto-optical cell made of optically active tellurium dioxide crystal. 
 

 
 

Figure 4.5. Schematic arrangement of components taken for the control over light polarization. 
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Let us use slightly modified technique of Jones vectors and matrices to describe states of polarization in the 
above-noted optical scheme, see Fig. 4.5. First of all le tus fix the laboratory coordinate system 

 


X  e1 ;


Y  e2( )  and consider two above mentioned states of elliptic polarization with the given ellipticity. 

When the ellipses’s major axis is lying along the  

X  e1 - axis, the corresponding normalizad Jones vector 

electric induction vector  

D(1)  can be represented by  

p1 = ζ1
e1 + i ρ1

e2( ) , where the mormalizing constant is 

ζ1 = 1 + ρ1
2( )−1/2  with ρ1 ∈ −1,1[ ] , see [4.2]. When visa verse the ellipse’s major axis is lying along the 

 

Y  e2 - axis, the corresponding normalizad Jones vector electric induction vector  


D(2)  can be represented by 

 
p2 = ζ 2 iρ2

e1 +
e2( ) , where the normalizing constant is ζ 2 = 1 + ρ2

2( )−1/2  with ρ2 ∈ −1,1[ ]  as well.  

 
Now, one can suppose that, in spite of manifesting the optical activity, the axes determined by the eigen-state 
of elliptic light polarization coincide with crystallographic axes of tellurium dioxide single crystal installed in 
a cell, i.e. with a pair of axes  from an axis triplet shown in Fig.4.5. In this case, one could 
significantly simplify the analysis, because rotating ellipses inherent in the eigen-polarizations can be omitted. 
In so doing, let us take, for example, the particular case of  and consider this affecting for two 

orthogonal states of elliptic polarizations. For the unit-valued induction vector  one yields 
 

a)  .                    (4.6) 

 

A new ellipticity  keeps the sign of  due to real-valued inequality  and the 

amplitude  reflects losses. Thus, one can conclude that Eq.(4.6) gives a new 

induction vector, which is quite similar to  in structure; with the only difference that the values of both its 
ellipticity  and its amplitude  become smaller then ellipticity and amplitude of the vector . 

For the unit-valued induction vector  one arrives at the relation 
 

 ,                 (4.7) 

 

where  and . Here, two possibilities have to be analyzed. The 

first one appears if . In this case, Eq.(4.7) determines a new induction vector, which is similar to 

 in structure; with the difference that the modulus of its ellipticity  exceeds , while its amplitude 

decreases from initial unity to . The second possibility takes place with , so that 
Eq.(4.7) should be rewritten as 
 

 ,          (4.8) 
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where a new ellipticity  is opposite in sign to  and the amplitude factor 

 can include the sign of . At this point, one can see that Eq.(4.8) 

illustrates converting the vector  to the other induction vector, which has an additional phase 
shift by at least  (may be more due to the sign of ) and is similar to  in structure. 
Nevertheless, the direction of rotation inherent in each initial vector of induction will be conserved 
within all the cases described by Eqs.(4.6) – (4.8). 
 

4.3. PRACTICAL EXAMPLES FOR OPERATING OVER 
MUTUALLY CONJUGATED EIGEN-STATES OF ELLIPTIC POLARIZATION 

 
Let us take  and , which both are conditioned by practically exploited tellurium dioxide 
acousto-optical cell. The chosen factor of expanding means, see Fig.4.3, that  and 

, so that  and , i.e. . Now, two particular cases appear for the 
analysis in details. 
 
Case 1: Let us suppose that one has already obtained one of the pre-scripted elliptic eigen-states of 

polarization, whose Jones vector looks like: , where  is the complex-

valued coefficient, reflecting optical losses and phase shift produced by that filter, and  is the sign 
factor. To find the needed initial state of polarization applied at the input facet of beam expander one has to 

consider the process of shaping this eigen-state in the opposite direction, i.e. exploit the inverse matrix  

of amplitude coefficients to the matrix . Using Eq.(4.4) and ratio , where  is the 

matrix of algebraic complements, one can find that  and write 
 

 .                  (4.9) 

 

There are two options how to normalize the obtained Jones vector in the right hand side of Eq.(4.9). If one 

will factor out the term , he yields  with . 

However, this inequality is unacceptable, so that one should consider the other option for normalization and 

factor out the term ( ) in the right hand side of Eq.(4.9). As a result, one will arrive at the 
following initial state of polarization 
 

         (4.10) 

 
with  and , which has to be applied at the input facet of beam 

expander. To check this result one can consider the process of shaping this eigen-state in the directly, i.e. 
exploit the vector  and the matrix  as 
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 .             (4.11) 

 
There are two ways for the normalizing the Jones vector in the right hand side of Eq.(4.11). If one will factor 

out the term , he can find  with . However, this 

inequality is unacceptable, so that one should consider the other option for normalization and factor out the 
term ( ) in the right hand side of Eq.(4.11). Consequently, one will have found the following 
final state of elliptic polarization 
 

,   (4.12) 

 
which is perfectly similar to the above-mentioned pre-scripted state with  in the case 

no.1. 
 
Case 2: Now, in the same way as before, one can consider the already obtained pre-scripted elliptic eigen-
states of polarization at the output facet of the expander. Let its Jones vector is given by 

, where again  has a meaning of is the complex-valued coefficient, 

reflecting optical losses and phase shift produced by that filter for the other state of elliptic polarization. To 
determine the required initial state of polarization at the input facet of beam expander one can use the 
previous scheme, i.e. analyze appearing this eigen-state in the opposite direction via applying the inverse 

matrix . Using again  one will have 
 

 .            (4.13) 

 

If one will factor out the term  in the right hand side of Eq.(4.13), he yields 

 with , which is quite acceptable in this case 

in contrast to the previous one. That is why the required initial state of polarization is given by 
 

                (4.14) 

 
with the real-valued , which has to be directed to the input facet of beam expander. To check 

this result one can consider the process of shaping this eigen-state in the directly, i.e. exploit the vector  
and the matrix  as 
 

 .                      (4.15) 
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Factor out the term , one can find  with 

, which is desirable. Consequently, one will have found the following 
final state of elliptic polarization 
 

,             (4.16) 

 
which is perfectly the same as the above-taken pre-scripted state in the case no.2. 
 
These estimations can be illustrated by results of the corresponding experimental verifications using a four-
prism beam expander shown in Fig.4.4. In so doing, let us take, for example, the case no.2 for both the values 
of the parameter . Figure 4.6 is related to realizing experimentally the output eigen-state of elliptic 
clockwise rotating polarization with  and . To obtain such a result presented in Fig.4.6b, 
the input elliptic clockwise rotating polarization with  and  had been shaped, see Fig.4.6a. 
To realize the output eigen-state of elliptic counter-clockwise rotating polarization with  and 

, see Fig.4.7b, the input elliptic counter-clockwise rotating polarization with  and 
 had been formed, see Fig.4.7a 

 

     
a.                                                                                             b. 

 

Figure 4.6. Experimental data in the case no.2 with : (a)  and (b) . 
 

     
a.                                                                                                 b. 

 
Figure 4.7. Experimental data in the case no.2 with : (a)  and (b) . 
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4.4. AN OPPORTUNITY FOR GAUSSIAN APODIZATION BY A MULTI-PRISM 
EXPANDER 

 
Then, Eq.(4.1) means that initially in-phase beam with a Gaussian intensity profile, whose full width can be 
estimated at a given level (for instance, at a level of ), will be expanded by a suitable prism in the same 
proportion  on the given intensity level as well due to using an approximation of the 
geometrical optics, see Fig.4.8. 

 

         
 

a.                                                                                     b. 
 

Figure 4.8. An infinite Gaussian profile passing through a single Littrow prism (a) and an expander with a diaphragm (b). 
 

Equation (4.1) determines practically important dependence of  and  on the angle  of light 
incidence on the input facet of a beam expander. The plot describing the linear beam expansion by two sets 
including  equivalent Littrow prisms with  and  are presented in Fig.4.9. It is seen 

that the corresponding angles  of incidence become to be rather large for  lying for example, in a 
range of . 

 
Let the normalized initial light intensity distribution for Gaussian beam in physical coordinates is 
characterized by , so that an intensity level of  can be reached at , i.e. 

at . The full width of this beam at a level of  is equal to , while 

. If now this beam will be expanded by  times, one can write the output light 

intensity distribution  and then obtain , , and 

. After that one can take into account the diaphragm, whose window is equal to  in 

physical coordinates, and then introduce the normalized coordinates  and . In so 

doing, one yields  and , where  is the input 

factor and  is the apodization factor. One can see that  with  

providing an intensity level of .Then, one can explain the apodization factor as 
, where the ratio  represents the relative output 

diaphragm. Dependences of the apodization factor  on the linear expansion  for various magnitudes 

of the relative output diaphragm  are shown in Fig.4.10. It is seen that, when , every time one 
arrive s naturally at . 
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The illustrating experimental studies on expanding the laser beam with  and the output diaphragm 
with , providing the relative output diaphragm , had been carried out using a two-
prism beam expander  with tunable value , i.e. for various magnitudes of the apodization factor 

. The corresponding traces presenting the light distributions along the fixed window of the output 
diaphragm, obtained from a 3000 pixel CCD camera (LC1-USB, Thorlabs Inc.) are shown in Fig.4.11 in 
absolute units (linear scale; zero level is presented) as well as in the normalized relative units. The 
corresponding theoretical plots are depicted in Fig.4.12. 

 

                
 

Figure 4.9. Linear expansion  providing by two sets of            Figure 4.10. Apodization factor  versus the Bm  

        the prisms with , , and .                     for various relative output diaphragms .   
 

               
 

                                          a.                                                                                      b 
 

Figure 4.11. Experimental distributions for the transmitted light intensity along the fixed -window 
of the output diaphragm for various magnitudes of the apodization factor : 

(a) in absolute units (linear scale; zero level is presented) and (b) in the normalized relative units. 
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                                               a.                                                                                          b 
 

Figure 4.12. Theoretical plots for the transmitted light intensity along the fixed -window 
of the output diaphragm for various magnitudes of the apodization factor : 

(a) in absolute units (linear scale) and (b) in the normalized relative units. 
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5. CONCLUSION 
 
Two important aspects of optimizing the performance data peculiar to new acousto-optical spectrometers and 
processors for astrophysical applications have been investigated. At first, the attention has been paid to 
estimating the acoustic attenuation along the aperture of solid-state crystalline acousto-optical cells and its 
effect on the potential variations in levels of diffractive lobes in a focal plane of the integrating lens. Then, 
practical capabilities of the incident light beam apodization connected with improving the dynamic range of 
acousto-optical spectrometer as a whole have been studied here together with the contribution from acoustic 
attenuation in the chosen acousto-optical cell.  
 
          The obtained description governs the combined influence of these two effects. The results of our 
analysis have been presented via the set of numerical simulations. These data illustrate the developed 
approach and make it possible both to estimate the limitations and to optimize the potential dynamic range. In 
acousto-optic signal processing, typically acceptable level of the acoustic losses accounts about  per 
the total optical aperture of a cell. Thus, the effect of acoustic losses is significant due to obvious asymmetry 
and non-uniformity in distribution of the acoustic energy along that aperture. By this it means that the 
expected non-uniformity of distributing the acoustic energy should be analyzed. In terms of suppressing the 
side lobes, one has to try obtaining an optimized profile of the incident light beam apodization. Here, 
exploiting a quasi-Gaussian profile of the incident light beam reasonably shifted relative to the center of an 
aperture of the acousto-optical cell with appreciable acoustic losses has been proposed and estimated. It has 
been shown that the adequate shift allows improving the dynamic range. 
 
           An important step in characterizing new acousto-optical systems, based on large-aperture and highly 
effective acousto-optical cells operating in a one-phonon Bragg regime of light scattering, has been done. 
Rather precise control over the incident light polarization in the scheme together with a required expanding of 
the incident light beam have been studied, i.e. described analytically and then estimated experimentally. 
Moreover, one has demonstrated that the needed light-beam apodization, suppressing side lobes within 
registration of each individual resolvable spot and increasing the dynamic range of spectrometer, can be in 
principle realized practically. However, the accuracy of the achieved light distributions should be improved 
and potentially confirmed via direct measurements of side-lobes. 
 

6. ACKNOWLEDGMENTS 
 

This work had been financially supported by the CONACyT, Mexico (projects # 61237 and # 15149) as well 
as by the National Institute for Astrophysics, Optics & Electronics (INAOE), Mexico within the internal 
Acousto-Optical Spectrometer project. 
 

7. REFERENCES  
 
Chapter 2 
 
2.1 R.Truel, C.Elbaum, and B.B.Chick. Ultrasonic Methods in Solid State Physics. (Academic Press, New  
      York, 1969). 
2.2 L.D.Landau and G.Rumer. Absorption of sound in solids. Phys. Zs. Sovjetunion. Vol.11, 18-25(1937). 
2.3 G.A.Slonimsky. Soviet Physics: Journal of Experimental and Theoretical Physics. Vol.7, 1457 (1937). 
2.4 A.I.Akhieser. Soviet Physics: Journal of Experimental and Theoretical Physics. Vol.8, 1318 (1938). 
2.5 J.W.Tucker and V.W.Rampton.  Microwave  Ultrasonics in Solid  State  Physics. (North-Holland   
       Publishing  Co., Amsterdam, 1972). 
2.6 D. Ter Haar. Elements of Statistical Mechanics. (Holt,Rinehart & Winson, New-York, 1954). 
2.7 L.D.Landau and E.M.Lifshits. Theory of Elastisity, Vol.7. (Pergamon Press, Oxford-London, 1999). 
2.8 M.B.Vinogradova, O.V.Rudenko, and A.P.Sukhorukov. Theory of Waves. (Nauka, Moscow, 1979). 



 32 

 
Chapter 3 
3.1. A.I.Akhieser. Soviet Physics: Journal of Experimental and Theoretical Physics. Vol.8, 1318 (1938). 
3.2. T.O. Woodruff and H. Ehrenreich. “Absorption of sound in insulators.” Phys. Rev., V.123, pp.1553-1559 
       (1961). 
3.3. V.I.Balakshij,V.N.Parygin, L.E.Chirkov. [Physical Principles of Acousto-Optics]. (Radio i Svyaz, 
       Moscow, 1985). 
3.4. A.Yariv and P.Yeh. [Optical waves in crystals]. (John Willey & Sons, Inc., N.-Y., 1984) 
 
Chapter 4 
4.1. M.Born and E.Wolf. Principles of Optics. 3-d Ed. (Pergamon Press, 1970, Oxford – London), Chapter 1. 
4.2. Yu.I.Sirotin and M.P.Shaskolskaya. Fundamentals of Crystal Physics. (Mir Publishers. Moscow. 1982). 
 
 


