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ABSTRACT 
 

Both a high level of developing the spatially spot-like and one-dimensional input devices and the 

flexibility of a design inherent in two-dimensional optical systems with similar modulating 

components make it possible to realize various opto-electronic processing systems with an 

improved productivity. This is why a one-dimension acousto-optic technique can be successfully 

involved into developing an extremely high-bit-rate data processor based on the algorithm of triple 

product correlations. Practically, triple product correlations originate within an optical scheme 

including the modulated light source, representing the first input port, and two wide-aperture 

acousto-optical cells forming two other input ports. Due to specifically constructed lens system, 

initially modulated light beam is crossing sequentially the apertures of acousto-optical cells oriented 

at right angle to each other. Finally, a CCD-matrix integrates the received optical signal with 

respect to time and registers the resulting triple product correlations. In a view of arranging similar 

acousto-optical processor for modeling triple product correlations, potential performances of the 

progressed design for similar processor are estimated as well. 

 

         This triple product acousto-optical processor is oriented to studies in the extra-galactic 

astronomy as well as to searching the extra-solar planets, so that algorithm of the space-and-time 

integrating is desirable for a wideband spectrum analysis with an improved resolution. It includes 

D1 -acousto-optic cells as the input devices for a D2 -optical data processing. The importance of this 

algorithm is based on exploiting the chirp Z transform technique providing a D2 -Fourier 

transform of the input signals. The system produces the folded spectrum, accumulating advantages 

of both space and time integrating. Its frequency bandwidth is practically equal to the bandwidth of 

transducers inherent in acousto-optical cells. Then, similar processor is able to provide really high 

frequency resolution, which is practically equal to the reciprocal of the CCD-matrix photo-detector 

integration time. Here, the current state of designing the triple product acousto-optical processor in 

frames of the astrophysical instrumentation is presented. 

 

 

Key words: acousto-optics, data processing, triple product processor, space-and-time integrating, 

schematic arrangement, astrophysical instrumentation. 
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1. INTRODUCTION: A TWO-DIMENSIONAL SIGNAL PROCESSING 

BASED ON SPATIALLY ONE-DIMENSIONAL INPUT DEVICES 
 

Spectrum analysis is the most widely used in physical sciences technique for obtaining the 

information about unknown signals. In so doing, the Fourier transform algorithm, which appears 

perfectly naturally in optical systems with coherent lighting, plays the central role in spectrum 

analysis. Periodical signals produce the light scattering in rather definite directions that can be 

found easily in the Fourier domain in comparison with space or time domains, because the energy 

of each individual frequency component is concentrated in a particular point on the Fourier plane. 

Consequently, the matrix of photo-detectors, placed into the Fourier plane, will be able to detect a 

spectrum and to convert it into electronic signal for the following processing. The main expected 

advantage from creating optical Fourier-processors is the ability of a thin lens to produce a 
D2 Fourier transform of an input signal, which that signal should be highly coherent as, for 

instance, laser radiation. In this case, the calculation of a D2 Fourier transform performs 

completely parallel for various points “just literally” with the light velocity ( ns/m3.0 ). It is 

equivalent to the bit-rate about 15
104   mathematical operations per second for the D2 data 

massive of 256256  pixels in optical system of cm30  in length exploiting about mW20  laser 

source. In fact, this estimation is based on a number of multiplication and summarizing operations 

needed for carrying out the corresponding electronic procedure within the well-known Fast-Fourier-

Transform algorithm. Just this estimation for the speed of operations inherent in optical data 

processing supported and supports now the practical interest in designing similar systems. 

 

         One can consider a one-dimensional analyzer for the instant spectrum of power. Within this 

device, every moment of time the Fourier transform is calculating only for a part of a signal, which 

is currently placed inside of an acousto-optical cell. Due to similar calculations will be finished as 

soon as light will have passed through a plane of the Fourier transform, one can consider these 

calculations like instantly performed ones. Then, the word “power” means that the matrix of photo-

detectors is able to separate only the intensity of light, and this light intensity is directly 

proportional to a portion of the ultra-high-frequency radio-wave power in the input electronic 

signal. Optical spectrum analyzers can be divided into a pair of really large groups depending on the 

variable chosen for the Fourier transform. In fact, there are two options: to chose space or time 

variable for the following transform. Of course, one can combine them to realize a hybrid system 

for spectrum analysis. 

 

         Generally, the systems for optical information processing have an advantage to be a three-

dimensional in their nature, so that the directions of propagating the corresponding light flows can 

be usually considered as optical axes. During the propagation of light through each of similar 

systems the modulations of light flow by the input data and the other optical transformations can be 

performed to obtain the desirable issuing light distribution at the output plane of that system. 

Usually, various modulators, lenses, and other components for optical data processing are located in 

the planes being orthogonal to optical axis, so that a two-dimension arrangement makes it possible 

to carry out a large amount of parallel operations and, in so doing, to realize potentially ultra-high 

productivity of computations. Together with this, during the last years a lot of two-dimensional 

architectures for optical data processing has been progressed, wherein various one-dimensional 

input devices have been exploited, while the these systems as a whole have been designed in a 
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three-dimension space. Realizing two-dimensional optical processors with one-dimensional input 

devices is not so easy, as a rule; nevertheless, similar systems exhibit a high level of flexibility. As a 

result, rather large amount of high-quality one-dimensional input devices has been created and 

inserted into optical systems for two-dimensional data processing in a view of creating high-bit-rate 

and adaptable optical processors. One of the most important arguments for applying one-

dimensional input devices in two-dimensional processing is based on relatively high level of their 

development. The most wide-spread of them are, for example, linear arrays of semiconductor light 

sources like laser diodes or light emission diodes (LEDs); then, one can call a row of electro-optic, 

acousto-optic, and magneto-optic cells; various CCD linear arrays, etc. It should be noted that 

modern semiconductor light sources allow effective and ultra-high frequency (up to Hz10
1 0 ) 

external amplitude modulation, while one-dimensional Bragg acousto-optical cells (AOCs) provide 

effective conversion of electrical signal into optical ones in a wide (up to a few gigahertz) frequency 

bandwidth with time-bandwidth product (i.e. a product of the frequency bandwidth and the aperture 

transit time) exceeding 3
10 . Rather small sizes of similar input devices and modern technique of 

designing the needed optical lenses give real opportunity for constructing ultra-high-productive and 

compact optical systems for parallel data processing. Moreover, both relatively low levels of the 

needed electric power and not high prices inherent in these components lead potentially to realizing 

compact optical processors of low power consumption as well as of low cost. 
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2. A TRIPLE-PRODUCT ACOUSTO-OPTICAL PROCESSOR 

 
In this article, an extremely adaptable optical architecture of an acousto-optical triple-product 

processor, which had been initially suggested in Ref.[2.1, 2.2] and whose general schematic 

arrangement is presented in Fig.2.1, will be discussed. 

 

 
 

a. General schematic arrangement of optical components. 

 

 
 

b. Front view. 

 

 
 

c. Top view. 
 

Figure 2.1. Schematic arrangement for a triple-product acousto-optical processor. 

 

The laser diode or LED, for example, can be used as a point light source whose radiation is 

modulated in time by the initial electronic signal )t(0 . The vertically oriented acousto-optic cell 

AOC-1 realizes a modulation by the first additional electronic signal )t(1 . This cell is lighted by 

the optical beam from a point source through the spherical lens 1L  and the cylindrical lens 2L . The 

light beam, scattered by the AOC-1, is modulated by the product )V/xt()t( 1110  . In a view 

of lighting the AOC-2, which is placed horizontally, the output light beam after the AOC-1 is 
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broadened horizontally and focused vertically by the spherical lens 3L . Let the second additional 

electronic signal, which is applied to the AOC-2, is )t(2 . As a result, the light beam, scattered by 

the AOC-1, is modulated by the product )V/xt()V/xt()t( 2221110  . The obtained 

product includes in fact two time delays 111 V/xt   and 222 V/xt  , where 2,1x  and 2,1V  are 

physical spatial coordinates along the corresponding acousto-optical cells and the acoustic wave 

velocities, respectively. These time delays 1t  and 2t  must satisfy the inequality 1t(0  , T)t2  , 

where the aperture transit time T  of the modern acousto-optical cells can be equal to about 

s5010  . The cylindrical lens 4L  and the spherical lens 5L  shape the image of the AOC-2 at the 

output plane in horizontal direction, while the spherical lenses 3L  and 5L  give the image of the 

AOC-1 at the output plane in vertical direction. A two-dimensional matrix of photo-detectors is 

placed in the output plane, so that charges )t,t(g 21  collected by each individual pixel under acting 

the light during the time iT  at a point )t,x(  are proportional to 
 

 

iT

222111021 td)V/xt()V/xt()t()t,t(g ,                            (2.1) 

 

where iT  is the time of integration, which is limited by the detector and could be about ms1  or 

more; the time delays 1t  and 2t  represent a pair of the coordinates in the output focal plane, i.e. in a 

plane of the CCD matrix photo-detector. Such a system represents a triple-product processor. Two 

additional views, depicted in Figs.2b and 2c, show that this processor consists of a pair of the two 

one-dimensional correlators operating simultaneously in two mutually orthogonal planes. However, 

the system does not simply collect two one-dimensional conversions; the final result appears within 

a joint two-dimensional processing of all the input signals. This architecture always calculates 

Eq.(2.1), but it exhibits really high flexibility, because all the three input signals are given initially 

as electronic signals, so that this processor can be easily re-oriented from fulfilling one algorithm to 

another in the frames of completely the same optical resources simply by varying the input 

electronic signals )t(j  with )2,1,0j(  . 
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3. SPATIALLY ONE-DIMENSIONAL  

ACOUSTO-OPTICAL INPUT DEVICES 

 
In the case of exploiting spatially one-dimensional AOC as an input device, the data can be 

introduced in a sequential regime. If the signal applied to similar AOC is modulated by the time 

function )t(f , the light scattered by this cell will be modulated by the function )V/xt(f  , where 

x  is the coordinate of acoustic wave propagation and V  is the acoustic wave velocity. 

Consequently, at each instant of time t  the scattered light is modulated proportionally to the input 

electric signal with respect to the spatial coordinate x ; and together with this light is modulated by 

the input electric signal at each individual value of the coordinate x  with respect to the time t . 

Such a doubled modulation can be important within designing dynamic optical processors, because 

in the last case the AOC can be exploited as the input devices and as the delay lines. In reality, the 

modulation provided by AOC is much more complicated process. The scattered light has Doppler 

frequency shift relative to the initial central frequency, and finite size of the AOC’s aperture always 

restricts the spatial length of an area wherein the modulation of light beam can be fulfilled. Then, 

the proportionality between the depth of light modulation and the applied electric signal is true only 

when diffraction efficiency of the AOC does not exceed a few percents. Additionally, the 

modulating properties of AOC operating in Bragg regime are essentially depending on the angle of 

light incidence on a cell. All these factors should be taken into account during the design of 

practical systems. 

 

            The AOC can be efficiently used as a point modulator as well, because it can provide pure 

amplitude modulation for the light beam entirely. Within such an application of the AOC, one can 

imagine that the AOC’s aperture is going to zero, so that space-time signal )V/xt(f   is 

degenerated into the time function )t(f . If, for example, the AOC is lighted by a conic optical 

beam focused near the piezo-electric transducer, the scattered optical beam represents almost the 

same cone modulated with respect to time by the function )t(f . The bandwidth of modulation is 

inversely-proportional to the acoustic transit time through an individual focal spot. For example, 

with the focal spot size of about m4   and typical acoustic wave velocity s/cm104
5 , the acoustic 

transit time through that focal spot has the order of ns1 . It should be noted that with growing the 

Klein-Cook parameter [3.1], which is accompanied by increasing the diffraction efficiency of AOC, 

the output light cone assumes an elliptic shape due to appearing wave mismatch. Nevertheless, this 

estimation is rather close to allowable time of direct electronic amplitude modulation for the laser 

diodes or LEDs. However, sometimes these light sources exhibit the radiation with too low time 

coherence under action of high-bit-rate modulation. This is why just the AOCs can be efficiently 

exploited as point modulators providing a wideband time modulation of light beam as a whole. 

 

            Nevertheless, efficiency of exploiting the third dimension in a three-coordinate space has the 

decisive significance, because just this property gives potential advantages to optical systems in 

comparison with the other ones. Consequently, an important question appears: is a two-dimensional 

data processing system capable of providing rather high productivity under exploitation of just one-

dimensional input devices? The adequate answer looks like this: if a one-dimensional input device 

is involved, some part of functional possibilities of parallel processing becomes to be lost, because 

instead of about 6
10  resolvable spots of data, provided usually by a spatially two-dimensional light 

modulator, now only 3
10  spots can be realized. However, the losses in parallelism can be 
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successfully compensated by very wide frequency bandwidth of already existing one-dimensional 

input devices. Let us consider a few estimations. The aperture transit time T  of the AOC can be 

undoubtedly about s30  (see below) or even more up to ms1.0 . The frequency bandwidth f  of 

similar AOC is usually about MHz50  or more. Consequently, the time-bandwidth product can be 

definitely estimated as 3
10fTN  , which represents the number of potentially achievable 

resolvable spots. This product is almost independent on concrete magnitudes of both T  and f , 

because it is mainly conditioned by fundamental acousto-optical relations. The direct comparisons 

of different processors are not always possible, but some estimation can be done. For example, if 

the AOC with the product fTN   is lighted by the modulated beam from a single-channel 

source and the frequency bandwidth of this external modulation is taken equal to f  as well, one 

yields Nf   of multiplications per second, because during each time interval f/1  one can realize 

N  multiplications. In the case, when a pair of similar AOC is located sequentially, the triple-

product processor will perform 2
Nf   multiplications per second. As a result, using the above-

mentioned estimations for the aperture transit time and the frequency bandwidth for the AOC, one 

can expect the final bit-rate about 1514
10

  multiplications per second. Thus, one can conclude that 

involving one-dimensional input devices with really wide frequency bandwidth in two-dimensional 

optical systems provides potentially creating the prototypes of rather high-bit-rate optical 

processors. 
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4. GENERAL SCHEMES FOR THE SPACE INTEGRATION 

AND THE TIME INTEGRATION SPECTRUM ANALYZERS 
 

4.1. BASIC SPECTRUM ANALYZER WITH THE SPACE INTEGRATION 
 

One of the ways for electronic spectrum analysis of a radio-wave signal consists in scanning the 

frequency range of interest sequentially using the super heterodyne receiver. In so doing, the 

receiver measures the energy in a narrow band near the central frequency. If the goal is to increase 

the sensitivity of that receiver, one can make narrower the frequency band, but the speed of 

scanning will be suppressed in the last case. When the “electro-magnetic” situation is more or less 

stable and all the signals are issued by continuous-wave sources, the probability of finding the 

desirable signal is rather high. However, sources of signals are, let say, “exotic” and give, for 

example, jumps in frequency domain, the probability of finding a pre-scripted source will be 

decreasing very fast. To grow the probability of finding the processing can be organized in a 

parallel manner with the needed number of narrow-band filters, see Fig.4.1. Similar systems had 

been called as panoramic receivers due to their parallelism providing a simultaneous parallel 

operation with really large number of such filters. The outputs of these filters are connected with 

square-law detectors, so that the output signals from detectors are directly proportional to the input 

signal power at each individual frequency of analysis. After that, this power is integrated within the 

time interval correlated with bandwidth of the corresponding filter. Technical problems of realizing 

for similar system include at least two factors. At first, the central frequencies are strongly 

individual in each frequency channel of processing; consequently, each filter has to be produced 

individually. Then, if now the radio-wave signal belongs to an ultra-high-frequency range, the 

design of filters became too complicated, so that the system as a whole will require large energy 

consumption and will be rather cumbersome. 

 

 
 

Figure 4.1. Structural scheme for the parallel electronic spectrum analyzer. 

 

          Finally, one can consider a typical acousto-optical spectrum analyzer, see Fig.4.2. these 

systems had been realized with, for example, two options, looking as the extreme options: on the 

one hand side, the frequency bandwidth is about MHz50 , the processing time is about s30 , and 

the number of parallel channels 2000, while on the other hand side, the frequency bandwidth is 

about GHz0.1 , the processing time is about s0.1  , and the number of parallel channels 1000.  
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Figure 4.2. Optical layout from structural scheme for the acousto-optic spectrum analyzer. 

 

Performance data inherent in the majority of similar systems lee usually between these extreme 

cases with more or less the same time-bandwidth product 15001000 . Acousto-optical spectrum 

analyzer includes the laser source of monochromatic light, which is directed to the AOC through the 

lens 1L  or another collimating optics in such a way that the needed angular requirements are 

satisfied. In its turn, the AOC is excited by a wide-frequency signal correlated with those angular 

requirements. The integrating lens 2L  converts the angular spectrum into the linear one and focuses 

plane waves in an amount of spots lying in its focal plane. The photo-detector is represented by a 

multi-pixel CCD-linear array, which shapes a discrete video-signal. The number of pixels exceeds 

usually the time-bandwidth product by 32  times to provide the needed discreteness of a spectrum 

under analysis. Due to each doublet or maybe triplet of pixels is equivalent to a single frequency 

channel, the CCD-linear arrays have usually from 1024 to 4096 pixels, and the expected number of 

frequency channels can be really large, the advantages of acousto-optical spectrum analyzers can be 

easily estimated. Natural parallelism inherent in the optical system illustrates potential superiority 

of the acousto-optics in comparison with electronics in this area. 

 

        During the operation of acousto-optical spectrum analyzer lighting the AOC is realized almost 

perpendicular to its input optical facet, and together with this the piezoelectric transducer of that 

AOPC is exited by an external electronic signal )t(f , so that the light wave signal at the output 

facet can be finally represented as )t,z(f . The lens 2L  realizes the Fourier transform )t,w(F  in 

the plane 2P , where  
 

zd)zwi2(exp)t,z(f)t,w(F  




,                                           (4.1) 

 

where the space frequency w  is connected with the physical coordinate   in the plane 2P  and the 

focal distance F  of the integrating lens 2L  as )F/(w  . In practice, the integration limits are 

limited by aperture of the AOC. Because of integration in Eq.(4.1) is performed with respect of the 

space coordinate at the input plane of a cell, one can say that this analyzed belongs to a group of 

architectures with the space integrating. 

 

4.1.1. FREQUENCY RESOLUTION 

 

The ability to resolve signals in frequency domain is oriented on fixing the gap of a pre-scripted 

depth between two frequencies in the Fourier domain. Moreover, the roots of similar ability are 

connected with the Rayleigh criterion for resolution within determining the angular distance 
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between stars using a telescope. The Rayleigh criterion is based on the uniformity of lighting the 

telescope aperture, so that light intensity in the image plane is described by the squared sinc-

function. In so doing, the gap of a dB1 depth can be obtained with a peak magnitude for the one 

frequency component coincides with the first zero for the neighboring frequency component. The 

gap of such a depth is well seen visually as well as on a photo-film. Applying the Rayleigh criterion 

to the acousto-optical spectrum analyzer, one can find that spatial distance   between two 

neighboring frequency component in the focal plane of the integrating lens 2L  can be estimated as 

VFfD/F  , where F  is the focal distance of the lens 2L , D  is the aperture of the AOC, 

V  is the acoustic velocity, and f  is the frequency resolution. These equalities give us 

)timetransit/(1D/Vf  . If one needs to require dB32  depth of that gap, the frequency 

resolution will be reasonably changed. Moreover, one can apply various techniques for the incident 

light apodization to detect definitely weak signals. However, the suppressing of side lobes can be 

achieved by the expense of the corresponding demerit in the frequency resolution. 

 

4.1.2. SPUR-FREE DYNAMIC RANGE AND INTERMODULATIONS 

 

Potential nonlinearity of the transfer function peculiar to the AOC leads to appearing harmonic 

distortions and parasitic frequency components inside the frequency band. The level of these 

intermodulations is characterized by the spur-free dynamic range (SFDR), which can be determined 

as a ratio of the light intensity related to intermodulations to the intensity of a signal at the true 

frequencies, as it is shown in Fig.4.3 for a three-tone case. To protect a given SFDR, usually one 

has to restrict the diffraction efficiency of light scattering for each individual frequency component 

in a signal by the value SFDR3f  . 

 

 
 

Figure 4.3. Illustration for the spur-free dynamic range (SFDR). 

 

Thus, if, for instance, the SFDR about dB50  is needed, one can find that 009.0f  , which is close 

enough to approximately %1 efficiency for an individual frequency component. 

 

4.2. SPECTRUM ANALYZER WITH THE TIME INTEGRATION 
 

The chirp Z transform is a method, which is often exploited for performing the Fourier transform 

in systems where only the time variable is known. The chirp Z transform is based on the fact that 
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the factor )F/(z2   in the kernel of Fourier transform is equal to ])F/()z(z[
222  . 

The equivalent way for explaining the Fourier-transform determined by Eq.(4.1) gives 
 

zd])F/()z(i[exp}])F/(zi[exp)t,z(f{])F/(i[exp)t,w(F
222  





.    (4.2) 

 

This formula demonstrates that at first the optical signal )t,z(f  at the output facet is multiplied by 

the factor ])F/(zi[exp
2  . Then, the Fresnel transform of the obtained product is fulfilled, and 

finally the result of integration is multiplied by the factor ])F/(i[exp
2   to compensate a square-

law phase factor. The Fresnel transform in optics means that a light beam with some space 

distribution is propagating at a distance F  in free space; in principle, it is a physical phenomenon 

accompanied by a dispersion when the angle of light dispersion is linearly depending on both time 

and space frequencies at the input. Figure 4.4 represents a configuration for an optical system 

capable of the chirp Z transform, and one can see its analogy with the Fourier-transform system 

depicted in Fig.4.2; their difference consist in only positions of lenses. The lens 1L  lights an 

external electronic signal )t(f  by coherent light beam, providing its pre-multiplication by the factor 

])F/(zi[exp
2  . The resulting beam propagation in free space realizes the operation of integral 

convolution, while the lens 2L  gives us the needed post-multiplication. 

 

 
 

Figure 4.4. Optical scheme for the chirp Z transform. 

 

        Application of the chirp Z transform to various system architectures provides their 

significant flexibility relative to both the frequency resolution and the frequency bandwidth for 

analysis and makes it possible to design spectrum analyzers with the time integration, which have 

considerably improved frequency resolution.  

If, for instance, one has a three input-port architecture with the point light source and a pair of the 

AOCs, both the AOCs should be mapped on the image plane. In this case, the first AOC has to be 

exited by the chirped signal )ta(cos
2  during the time interval Tk , while the second AOC has to 

be exited by the same-chirped signal )ta(cos
2  in such a way that acoustic wave is passing in 

opposite direction through the second cell. Together with this, the point light source is electronically 
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modulated by a time-dependent signal )t(s , whose spectrum should be analyzed. In this case, light 

intensity in the image plane includes, in particular, the following combinational term 
 

td)V/utai(exp)t(s)V/uf2(cos)u(g

Tk

0

S3   ,                              (4.3) 

 

where non-significant constants are omitted. One can see that Eq.(4.3) represents the desirable 

Fourier transform of a time-dependent signal )t(s  with an arbitrary time interval Tk  of 

integration. Just this fact exhibits a reason, which provides approximately the k times higher 

frequency resolution in a regime of the time integration in comparison with the spectrum analyzer 

based on the space integration. The presence of the space carrier frequency )V/uf2(cos S  gives 

the reliable opportunity to separate the desirable combinational term )u(g3  from the other signals 

in a system. 

 

          Here the frequency variable has the mathematical form V/uw2v  , and the bandwidth for 

analysis is TwV  . Due to the number of resolvable spots is fTN  , a new magnitude of the 

bandwidth for analysis will be determined by k/fV  . One can obviously see that both values 

  and V  depend on the velocity of frequency variation a  within the frequency chirp. Therefore, 

the bandwidth for analysis as well as the frequency resolution can be varied electronically 

controlling the velocity of frequency variation a  within the frequency chirp and the factor k  of 

time integrating. It is seen that grows of the factor k  in a view of increasing the frequency 

resolution f  leads to decreasing a new magnitude of the frequency bandwidth V . 

 

         Let us consider a numerical example and suppose that one has the AOC with the frequency 

bandwidth MHz100  and the transit time about s10 , so that the time-bandwidth product is about 

1000fT  . Using this AOC in the architecture with the space integration, one could realize 

kHz100f   in the frequency bandwidth MHz100f  . If now one need create the spectrum 

analyzer with the time integration providing the frequency resolution kHz1f  , one can request 

the time integrating factor as 100)s10/()ms1(k  . The overlapping frequency range now is 

narrowed down to MHz1V  , while the velocity of frequency variation within the frequency 

chirp, which will be in need to achieve the required time of integration, is characterized by the 

magnitude s/GHz10a
11 . 
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5. MOTIVATION: GENERAL SCHEME 

FOR THE SPACE-AND-TIME-INTEGRATING 

SPECTRUM ANALYZER 
 

It is well known that two-dimensional input devices can operate with patterns consisting of about 
6

10  resolvable spots, while the time-bandwidth product of one-dimensional input devices cannot 

exceed about 3
10

4
10 . In principle, this difficulty can be resolved through the division of 

calculations on sequentional intermediate stages, associated with performances of one-dimensional 

input devices, and the exploitation of an external electronic memory for collecting intermediate data 

and assembling the final results. Such an approach is quite realistic, but it could give the lost of all 

the advantages peculiar to optical data processing. An alternative approach can eliminate involving 

an external electronic memory due to the use of specific photo-detector as a device for both 

memorizing intermediate data and producing the final results. In more details, intermediate data of 

calculations can be obtained exploiting the space-integrating in optical system, while collecting 

intermediate data and shaping the final results can be provided via time-integrating by the CCD 

matrix photo-detector. By this it means that one spatial variable and time create a two-dimensional 

space, wherein the initial pattern can be represented and processed on the basis of the space-and-

time-integrating algorithm. Thus, the goal for designing the time-and space-integrating processor is 

connected with the possibility of replacing two-dimensional input devices by one-dimensional ones. 

 

           The technique of signal processing based on the space-and-time-integrating had been 

proposed for the spectrum analysis of one-dimensional signals [5.1, 5.2]. In principle, the analysis 

of one-dimensional signals can be provided by one-dimensional acousto-optical analyzer with only 

the space- or only the time-integrating. However, these analyzers have the performances 

supplementing with one another. The space-integrating gives a wide frequency bandwidth together 

with relatively low frequency resolution, while the time-integrating provides a high resolution for 

spectrum components accompanied by comparably narrow frequency bandwidth. A two-

dimensional processor combining the advantages from both space- and time- integrating makes it 

possible to obtain the analysis with wide bandwidth as well as with high resolution simultaneously. 

A scheme of the space-and-time integrating spectrum analyzer exploiting a pair of the acousto-

optical cells (AOCs) is shown in Fig.5.1. The triple product acousto-optical processor under design 

is intended for investigations in the extra-galactic astronomy as well as for exploring the extra-solar 

planets, which both need the algorithm of the space-and-time integrating providing rather wideband 

studies with an uprated spectral resolution. This processor includes a pair of mutually orthogonally 

oriented wide-aperture D1 -acousto-optic cells as the input devices for a D2 -optical spectrum 

analysis. Significance of this approach is conditioned by the usage of so-called chirp Z transform 

technique realizing a D2 -Fourier transform of the input signal )t(s . That technique involves two 

frequency-chirp signals whose parameters )V2/(xkx   and )V2/(yky   represent the frequency 

variables along the output axes x  and y  ( V  is the acoustic velocity). If the factor xk  is chosen so 

that f)V2/(Dkx   is the bandwidth of the signal )t(s , the spectrum of )t(s  will be registered 

and shown along the axis x  with relatively low resolution similar to the conventional space-

integrating spectrum analysis. Its resolution is characterized by the value M/f  inherent in the 

performances of a MM -pixel CCD-matrix. 
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Figure 5.1. Spectrum analyzer with the space-and-time integrating [5.3]. 

 

If the time function )t(f  is applied to the AOC as a signal, in the output focal plane of the last 

integrating lens, which produces the Fourier transform at a focal distance F , one can find a 

distribution of light amplitudes modulated by the function 
 

  xd)xui2(exp)V/xt(f)t,u(g

X

  )xuVi2(exp)VuX(csin)Vu(F               (5.1) 

 

where X  is the linear size of optical aperture inherent in the AOC, )F(/xu 1   is the spatial 

frequency, 1x  is the spatial coordinate in the output focal plane of the last integrating lens, and the 

sign   means the convolution. It is seen that spatial modulation of light in the output focal plane 

corresponds to a Fourier transform )Vu(F  of the time function )t(f , smoothed due to its 

convolution with the function )VuX(csin  or x/)xsin(  conditioned by a finite size of the AOC’s 

optical aperture. As a result, the frequency resolution is determined by a width of the main lobe of 

x/)xsin( , which is equal to )x/V(  Hz. Together with this, the light amplitude at the output has 

sinusoidal time modulation as well at each point in spatial-frequency plane. Moreover, the 

frequency of time modulation is directly proportional to the spatial frequency u . Taking into 

account all the light components, which are incidencing at a resolvable spot n the spatial frequency 

domain (with the space-frequency width X/F ) , the spectrum width of the time modulation of 

light is equal only to )X/V( , i.e. to the frequency resolution of space-integrating processor. 

Consequently, this time-modulated light beam can be used as the input signal for the time-

integrating processor, operating within the chirp Z transform algorithm along an orthogonal 

direction, see Fig.5.1. In so doing, one can have shaped a spectrum of a narrow-band time signal 

with a high resolution in the points located inside each individual resolvable spot of the space-

integrating processor. Together with this, all partial resolvable spots identified with a low resolution 

can be simultaneously processed by multi-channel time-integrating processor described above, see 

Fig.5.2. The bandwidth within time modulation of light in the frames of each individual resolvable 

spot related to spatial frequency is quantitatively equal to )X/v( , but the central frequency of time 

modulation in each position is equal to )X/Vn( , where n  is a whole number, which grows 

proportionally to particular location of a resolvable spot of the space-integrating processor. The 
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signals from all the frequency resolvable spots should be converted at video-frequencies before than 

they will be simultaneously processed by multi-channel time-integrating processor. 
 

 
 

Figure 5.2. Multi-channel spectrum analyzer with the time-integrating [5.3]. 

 

To fulfill this requirement one can use a pulsed light source with the pulse repetition frequency 

)X/V( . When individual pulses are short enough, the time modulation of light source can be 

approximated by a sum of the Dirac delta functions 
 

 

m m

]t)X/Vmi([exp)X/V(~])V/X(mt[  .                              (5.2) 

 

At the output of space-integrating system, the light amplitude is modulated by a product of 

functions described by Eqs.(5.1) and (5.2). Then, Eq.(5.2) shows that periodic pulse sequence of 

light words includes all harmonic components of the main time frequency )X/v( . This is why the 

modulating function with the central frequency )X/vn(  will be mixed with the thn  harmonic of 

a signal from the source of radiation on the thn  element of resolution, so that as a result video-

signals will be shaped on a photo-detector. Due to similar process takes place with all the values of 

n , these video-signals will be produced for each individual element of resolution as well. Thus, a 

multi-channel processor with the time-integrating realizes the Fourier transform with a high 

resolution relative the obtained video-signals within each channel and averages (down to the zero 

level) all high-frequency components. Finally, the folded spectrum of the signal )t(f  is formed at 

the output two-dimensional matrix of photo-detectors in a system with the time-integrating. 
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6. BRIEF DESCRIPTION OF POTENTIAL ADVANTAGES 

PECULIAR TO THE SPACE-AND-TIME INTEGRATING 

PROCESSOR 
 

Let us apply the algorithm of so-called chirp–Z–transform technique to the signal )t(s . In so doing, 

one can take, for example: 21 VVV  , )tkitki(exp)t(s)t(
2

2
2

10  , )tki(exp)t(
2

11  , 

and )tki(exp)t(
2

22  . As a result the output function will have the form: 

 

 

iT

21
2

2
2

1 td]t)V/y(ki2t)V/x(ki2[exp)t(s])V/y(ki)V/x(ki[exp)y,x(g .  (6.1) 

 

Without the square-law phase term, the function )y,x(g  can be considered as the Fourier-transform 

of the signal )t(s , which has been calculated using the algorithm of chirp–Z–transform with respect 

to both the space coordinates. The values )V2/(xk1   and )V2/(xk 2   manifest themselves as 

the frequency variables along the axes x  and y , respectively, so that spectrum of the signal )t(s  

will be displayed along the coordinates x  and y . Maximal frequencies for the spectrum inherent in 

the signal )t(s  and presented along the axes x  and y  are equal to )V2/(Dk1   and )V2/(Dk2  , 

where D  is the apertures of both the AOCs. If the factor 1k  is chosen in such a way that 

f)V2/(Dk1   for the signal )t(s , the complete frequency spectrum of this signal will be 

represented along the axis x  with relatively low frequency resolution corresponding to the 

conventional space-integrating spectrum analysis. This estimation is conditioned by the fact that 

resolution is determined by the ratio of the frequency bandwidth f  to the number M  of pixels 

peculiar to the taken MM   CCD-matrix along the axis x , i.e. the frequency resolution is 

characterized by the value M/f . If together with this the factor 2k  is selected as M/k1 , one has 

arrived at the case when only a M/1 -part of a spectrum will be depicted along the axis y  for each 

individual position along the axis x . As a result, the frequency resolution along the axis y  becomes 

to be equal to the value 2
M/f . These estimations are true under condition that the time of 

integration iT  exceeds f/M
2  . By the way, such a combination of the transformation along the 

axis x  with relatively low resolution in a wide frequency bandwidth with the transformation along 

the axis y  with a high frequency resolution, but in a narrow frequency bandwidth represents a two-

dimensional folded spectrum or a two-dimensional raster for recording 2
M  counts of one-

dimensional Fourier-images of the signal )t(s . Shaping a one-dimensional spectrum along a pair of 

space coordinates within this architecture makes it possible to display up to 2
M  spectrum 

components, because the matrix of photo-detectors has just 2
M  pixels. Thus, this technique 

provides potentially a high frequency resolution together with rather wide frequency bandwidth of 

the spectrum analysis. Finally, this processor produces the resultant folded spectrum, which is 

subject to electronic post-processing. Generally, this technique accumulates principal advantages of 

both space and time integrating acousto-optical processors. In particular, with the typical value 
3

10M   similar system exhibits rather wide frequency bandwidth f , which is practically equal to 



 19 

bandwidth of the input piezoelectric transducers of acousto-optical cells. The magnitude of f  can 

be estimated from MHz30  to about GHz1 . Together with this similar system is able to provide a 

high frequency resolution f , which is practically equal to the reciprocal of the CCD-matrix photo-

detector integration time iT/1 . Within optimal choosing of both the integration time iT  and the 

above-noted factors 2,1k  inherent in a pair of the frequency-chirp signals, one can vary the needed 

frequency resolution f  from about Hz10  to KHz10 .  
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7. GENERAL SCHEMATIC ARRANGEMENT  

AND CURRENT DESIGN 
 

One of the allowable practical realizations of the above-characterized optical scheme for the triple-

product acousto-optical processor, i.e. for a spectrum analyzer with the space-and-time integrating, 

depicted in Fig.5.1, is presented as a simplified prototype in Figs.7.1 and 7.2.  
 

 
 

Figure 7.1. Layout of the simplified optical scheme for the acousto-optical triple-product processor. 
 

 
 

Figure 7.2. Potential simplified design of a prototype for the triple-product acousto-optical processor. 
 

The designed arrangement is localized on a 13 feet optical breadboard and based on specifically 

selected and optimized set of two-inch spherical and cylindrical lenses. The solid-state laser, 

allowing an external amplitude modulation with the frequency up to MHz250  can be potentially 

chosen as a point source of light due to its light output is arranged through a connector with a span 

of the single mode optical fiber.  
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8. PRELIMINARY CHARACTERIZATION  

OF SELECTED POTENTIAL COMPONENTS 
 

The selected optical and mechanical components make it possible to use of highly effective and 

specially designed wide-aperture AOCs. For this purpose, in particular, one can consider such 

spatially one-channel tellurium dioxide ( 2TeO ) crystalline AOC as the cell TED.30–75–50–633 

(Brimrose Corp.). It has the transit time s30T  , the optical aperture mm213 , the frequency 

bandwidth MHz50   at the carrier frequency MHz75 , so that the time-bandwidth product is about 

1500, see Table 8.1. The AOC based on 2TeO  -crystal (Brimrose Corp.) is presented in Fig.8.3.  

 

                      
 

Table 8.1. Parameters of the AOC .              Figure 8.3. A 2TeO -crystal based  

TED.30–75–50–633                                          AOC (Brimrose Corp.). 
 

The CCD matrix camera DCU224 (Thorlabs) can be potentially considered as the time-integrating 

multi-pixel (more than pixels10
6 ) photo-detector due to its high dynamic range, which allows 

imaging a wide range of light intensities. This camera is presented in Fig.8.4, while its 

performances are illustrated by Table 8.2. 

 

                                     
Figure 8.4. The CCD matrix .                                            Table 8.2. Parameters of the CCD matrix 

Thorlabs DCU224C                                                                  shown in Fig.8.4.
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8.1. LENS CHARACTERIZATION 
 

8.1.1. SURFACE FLATNESS 

 

Often the design of an optical system requires evaluation of the intensity in the diffraction pattern 

near the Gaussian focus. This is a very difficult and tedious calculation when aberrations must be 

considered. Previously, Born and Wolf [8.1] have reported analytical results for the three-

dimensional diffraction pattern near the Gaussian focus associated with each individual primary 

aberration, but to obtain an analytical result for a perfectly general aberration would be hopelessly 

lengthy. Another possible approach is to avoid the analytical methods and evaluate the wave front 

distortion with standard ray-tracing techniques and then ingress the Fraunhoffer diffraction integral 

by employing numerical methods with the aid of a computer. Later, other one had found that the 

beam intensity at the Gaussian image point is not seriously degraded by other primary aberrations if 

the maximum wave front deviation remained less than a quarter wavelength. This result became 

known as Rayleigh’s quarter wavelength rule. Maréchal further developed the idea of relating the 

intensity degradation at the Gaussian image to the wave front distortion. By assuming a uniformly 

illuminated aperture, he was able to calculate the ratio of the peak far-field intensity for a system 

with aberrations of the same system without aberration. This ratio can be defined as j , so that the 

Maréchal’s result takes the form 
 

2
2

)(
2

1j 











  .                                                           (8.1) 

 

Here,   is the light wavelength and 2
)(  is the mean square deviation of the wave front from the 

reference sphere. Actually, this result for j  is an approximate evaluation of the Strehl definition, 

valid for small aberrations, but one shall refer to it as the intensity degradation, or the Maréchal 

intensity criterion. As a comparison with the Rayleigh quarter-wavelength rule, one can find that for 

14/|)|
2   a degradation less than %20 . Equation (8.1) permits us to calculate directly the 

relative peak intensity in the far-field diffraction pattern if the wave front deformation is not too 

severe, to set tolerances on the individual surface errors, and to determine which surface or 

aberration is the primary contributor to the intensity degradation. The current software in optics, 

such as Zemax and OSLO, use the measurement in the root-mean-square value of the flatness. This 

technique involves measuring a substantial amount of the optic's surface at many points and then 

calculating the standard deviation of the surface from an ideal form. Similar measurement has direct 

mathematical implications: for instance, it is possible to calculate the Strehl ratio from it. 

Practically, the Strehl ratio is a very good indication on how much power one gets at the image 

plane of the optical system versus what power one will get from an ideal aberration-free system.  

Once the Strehl ratio has been calculated, the quality of the optical system may be ascertained using 

the Maréchal criterion. The Maréchal criterion states that a system is regarded as well corrected if 

the Strehl ratio is greater than or equal to 0.8 , which corresponds to a root-mean-square wave front 

error  / 14 . For example, an optical system introducing a  / 3  root-mean-square deformation will 

have his actual power at focus reduced to approximately 3%  of its theoretical power. The reason 

for this drop in power at the focus is that some interferences are created in the focus with different 

rays arriving with a different phase. 
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The point-spread function (PSF) is a functional form identical to that of the image generated by    

pulse input. It’s the impulse response of the system whether optically perfect or not. In a well-

corrected system, the PSF is the Airy irradiance distribution function centered on the Gaussian 

image point (see later Fig.8.2). In addition to this, it is possible to estimate the theoretical 

Fraunhoffer diffraction pattern in a system without aberrations 
 

I ( ) 
2 J1 (k a  sin)

k a  sin











2

,                                                       (8.2) 

 

where sin  r / z . One can write the intensity of the Fraunhoffer diffraction pattern for a circular 

aperture as 
 

I( r ) 
A

 z








2

2
J1(k  r / z)

(k  r / z)











2

,                                                   (8.3) 

 

where A    2 ; then,   is the radius of aperture, r  is the radius coordinate in the observational 

plane, k  is the wave number, z  is the focal length, and J1  is the Bessel function. For a rectangular 

aperture the Fraunhoffer diffraction pattern is given, of course, by 
 

I(x, y) 
A

 z








2

sin c
2 2x x

 z







sin c

2
2y y

 z







 .                                    (8.4) 

 

Rather often the term “diffraction limited” is used in practice. This term implies that the physical 

effects of light diffraction rather than imperfections in either the design or fabrication limit the 

performances of an optical system. There are many ways of determining an optical system as the 

“diffraction limited” one using such characteristics as, for example, the Strehl ratio, root-mean-

square OPD, standard deviation, maximum slope error, and others. Nevertheless, it is possible for a 

system to be considered diffraction limited by one method and not diffraction limited by another 

method. In connection with the said before, the Maréchal criterion states that, if the Strehl ratio 

exceeds 8.0 , a lens system may be described as the “diffraction limited” system. 

 

          In a view of the needed lens characterization, the comparison of various adequate spherical 

and cylindrical lenses from the most known manufactures of optical components has been carried 

out. To estimate the quality of each individual lens the software OSLO or/and Zemax, whose 

purpose is the synthesis, analysis, and optimization of lenses, have been exploited. With these 

programs, it is possible to choose a desirable lens in a given catalogue and to simulate their optical 

aberrations. They also allow us to estimate the Strehl ratio at a given light wavelength. For our 

purposes, the lenses of two inches in diameter for spherical lenses and two inches square for 

cylindrical lenses have been selected. The considered wavelength was nm587  (the green-helium 

line). Performing the simulation with these programs made it possible to compare the diffraction 

pattern for both cylindrical and spherical lenses with the corresponding ideal theoretical lenses 

using Eqs.(8.3) or/and (8.4) as the case requires. 

 

           Now, let us consider some details of these estimations. Figure 8.1 shows the patterns of rays 

directing on the image plane form a single-point object in the case of using the “geometrical 
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approximation” which ignores the wave nature of light. The line represents the ray trace that 

collimate in a single point.  

 

 
 

Figure 8.1. Ray traces of a cylindrical lens obtained with the software OSLO. 

 
Figures 8.2 – 8.5 represent the PSF and demonstrate the profiles resulting irradiance distribution in 

the image plane. Figure 8.2 illustrates the optical scheme of theoretical behavior for the point spread 

function, when the light passes thought a lens, and then the distribution of the electric field intensity 

is produced by the effect of just far-field Fraunhoffer diffraction. Due to the presence of an axial 

symmetry, the central maximum corresponds to the circular nucleus of high irradiance dominated 

Airy disc; this fact is shown in Fig. 8.3.  

 

           Figure 8.4 depicts the distribution of light in the focal point. This picture is usually called the 

spot diagram. There are three shapes in the figure (triangular, square, and circle); each one 

represents an individual wavelength (blue, red, or green). A circle in the middle part corresponds to 

the first minimum of the Airy disc, which represents light intensity in the image of a perfect lens 

with the same aperture, but in monochromatic light at the central wavelength.  

 

In Fig.8.5, the number of the scale on the right: 0.9949  is the Strehl ratio, the intensity at the central 

peak of the image of a point source normalized to that of the Airy diffraction pattern of an ideal 

lens. Its possible to see that at the Strehl ratio exceed 0.8 , one can assume that the lens exhibits the 

diffraction pattern.  
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Figure 8.2. The point-spread function (PSF): the irradiance produced 

by the optical system with an input point source  

 

 
 

Figure 8.3. Point spread function (PSF) of a spherical lens, 

diameter of mm8.50 , focal length of mm250 .  
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Figure 8.4. Spot diagram for a spherical lens with an aperture of mm20 , 

Diameter mm8.50 , focal length mm250  and central wavelength equal to nm5876 . 

 

 
 

Figure 8.5. Point-spread function (PSF) reflecting the Strehl ratio 

equal to 9949.0  for the Thorlabs spherical lens  

 

The following tables 8.1 – 8.3 give the Strehl ratio for various lenses from the catalogues of various 

companies. For all the cases the spherical lenses were considered for two inches in diameter and 

focal length varying in each table. Only the lenses, whose Strehl ratios are rather close to unity, 
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have been chosen for our analysis. The goal of this analysis consists in finding the best lenses for 

the system under design. Then, each table corresponds to an individual focal length.  

 
Company Lens Strehl ratio, OSLO Spot width Strehl ratio,Zemax Spot width 

Thorlabs AC508-250-A 0.9463 1.0567 0.991275 1.0088 

Newport PAC088 0.9899 1.01022 0.992112 1.0079 

JML DBL14170/100 0.9948 1.0052 0.928246 1.20737 

Linos G322311000 0.99436 1.00564 0.953530 1.048734 
 

Table 8.1. Comparative table of different spherical lenses with the focal length F mm250 . 

 

Company Lens Strehl ratio, OSLO Spot width Strehl ratio,Zemax Spot width 

Thorlabs AC508-300-A 0.996326 1.03807 0.984867 1.015365 

Newport PAC089 0.990888 1.009195 0.820735 1.2184201 

JML DBL14195 0.994827 1.005189 0.915545 1.0922456 

Ross LAOC269 0.992602 1.007453 0.91386 1.094259 
 

Table 8.2. Comparative table of different spherical lens with the focal length F mm300 . 

 

Company Lens Strehl ratio, OSLO Spot width Strehl ratio,Zemax Spot width 

Thorlabs AC508-500-A 0.994665 1.005363 0.984616 1.015624 

Newport PAC091 0.9971 1.00289 0.996042 1.003973 

JML DBL14235 0.99549 1.00451 0.998083 1.001921 

Ross LAOC271 0.99581 1.004192 0.998083 1.001921 
 

Table 8.3. Comparative table of different spherical lens with the focal length F  mm500 . 

 

8.1.2. FINAL SELECTION OF THE LENSES 

 

Finally for the above-chosen wavelength and two inches of diameter one had estimated the best lens 

for the above-mentioned tables and comparing with the theoretical estimations using Eqs.(8.2) and 

(8.3). The final selection of the lenses is as follow. 

 

Company Type Part Description Quantity 

Thorlabs Spherical lens AC508-250-A D=2”, F=250mm 2 

Thorlabs Spherical lens AC508-150-A D=2”, F=150mm 1 

Newport Cylindrical lens CKX300 50.8 x 50.8 mm, 

F = 300 mm 

2 

Newport Right angle prism BRP-50.8-A 50.8 mm 2 

Newport Linear polarizing 

glass filter 

LPGF-2 D = 50mm,  

 400 - 700 nm 

2 

 

Table 8.4. The final selection of the components. 

 

Figures 8.6 and 8.7 show the comparison between the diffraction patterns obtained theoretically 

with equations and simulated using OSLO curves, for both spherical and cylindrical lenses.  

 

One can observe from Fig. 8.7 that the spherical lenses have good quality, i.e. really small optical 

arerrations, because the numerically simulated profiles for all the compared lenses are quite similar 

to the theoretical curves. By contrast with them, the cylindrical lenses have more aberrations; they 
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are very different from the theoretical plot, for example, within identifying the position of the first 

zero in light distribution. 
 

 
 

Figure 8.6. Comparison between the PSF and the Fraunhoffer diffraction pattern in the cylindrical lenses: 

the continuous line corresponds to the theoretical Fraunhoffer diffraction, while 

the dashed line is for the Thorlabs lens and the dotted line is for the Linos company lens. 

 

 
 

Figure 8.7. Comparison between the PSF and the Fraunhoffer diffraction pattern in the spherical lenses. 

The continuous line corresponds to the theoretical Fraunhoffer diffraction, while 

the dashed line is for the CVI Melles Griot lens,  

and the dotted line is for the Newport company lens. 
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10. CONCLUSIVE REMARKS 
 

The current state of designing the triple product acousto-optical processor in frames of the 

instrumentation for various astrophysical applications has been presented. The above-presented 

general consideration of a few key aspects related to creating an acousto-optical scheme of triple 

product processor reflects an indispensable step to practical design of similar processor. A 

reasonable part of this analysis is devoted to practical design of the schematic arrangement of this 

processor based currently on a two-inch optics and wide-aperture spatially one-channel AOCs made 

of the tellurium dioxide ( 2TeO ) crystal. The layout of simplified optical scheme has been 

demonstrated, and general schematic arrangements of the triple-product acousto-optical processor 

as well as the principle characterizations for a few key components, such as the crystalline AOCs, 

specifically oriented CCD-matrix as well as specially selected and additionally estimated spherical 

and cylindrical lenses have been presented and briefly discussed. 
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