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Abstract 
 

Basic performances of the acousto-optical cells, which can be potentially involved into creating the frontier 
acousto-optical systems for data processing such as the advanced spectrometers for the spectrum analysis of 
both optical and radio-wave signals with radically improved resolution or a novel triple-product acousto-
optical processor for modern astrophysical applications, are under consideration. During the presented 
analysis we restrict ourselves by the Bragg limit of light scattering into the first order. The attention is paid at 
first to determining the expected efficiency of a few acousto-optical crystalline materials and then mainly to 
estimating the time-bandwidth product of acousto-optical cells, because just the last parameter can be taken as 
the most general one for the characterization of performance data inherent in each individual cell. Functional 
capabilities peculiar to the cells operating over either normal or anomalous light scattering regime are under 
discussion. Evidently, the anomalous regime of light scattering promises better results. Both the theoretical 
estimations and the experimental data obtained for a large-aperture acousto-optical cell based on a tellurium 
dioxide crystal, exploiting the non-degenerated anomalous light scattering, gives rather high the time-
bandwidth product equal to about . 
 
Key words: spectrum analysis, acousto-optical cell, time-bandwidth product, crystalline material. 

 
1. Introduction 

 
Performance data of any optical system for a high-bit-rate data processing based on acousto-optical technique 
are mainly determined by parameters of each particular acousto-optical cell (AOC) exploited within the 
chosen schematic arrangement. Here, certain of basic properties peculiar to the AOCs, involved into creating 
the frontier acousto-optical systems for data processing such as the advanced spectrometers for the spectrum 
analysis of both optical and radio-wave signals with radically improved resolution or a novel triple-product 
acousto-optical processor for modern astrophysical applications, are under consideration. Because practical 
applications of these processors are oriented to investigations in extra-galactic astronomy as well as of extra-
solar planets, the algorithm of so-called space-and-time integrating will be realized to provide spectrum 
analysis of rather low-power signals in a wide frequency bandwidth with an improved spectral resolution. 
These circumstances dictate us uprated requirements to the AOCs due to be applied in the status of deflectors 
as one-dimensional input devices for a two-dimensional optical processing. Generally, information 
capabilities of the AOCs are determined by the time-bandwidth product (TBWP), which is defined as the 
product of the device time aperture and the frequency bandwidth inherent in a cell. Formally, the TBWP is 
equivalent to the number of resolvable spots, defined in its turn as the ratio of maximum deflection angle over 
the angular divergence of the diffraction-limited optical beam. In acousto-optical deflectors, the TBWP 
determines the frequency resolution (when they used in the space-integrating spectrum analyzers) or the 
processing gain (in the space-integrating correlators), or the number of parallel correlations (in the time-
integrating correlators). Rather accurate estimations for deflectors can be obtained using the procedure 
developed in Ref.[1.1], which takes into account a triplet of key factors: (a) available optical aperture, (b) the 
acoustic beam divergence conditioned by the piezoelectric transducer length, and (c) acceptable level of 
acoustic beam attenuation along optical aperture. Here, just this procedure is mainly exploited, but it should 
be noted that similar approach excludes such really important factors as the level of acoustic power density 
applied to various AOCs and the available light diffraction efficiency per each individual resolvable spot. In 
fact, these two factors are related to the problem of exhibiting potential acoustic and acousto-optical 
nonlinearitites within signal processing system. However, in our particular case of astrophysical applications 
one can expect relatively low levels of the input signals, so that, for instance, the diffraction efficiency will 
definitely not exceed . 
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2. Efficiency of a few selected crystalline acousto-optical materials 

operating in Bragg regime of the Normal light scattering 
 

2.1. THE BRAGG REGIME OF THE NORMAL LIGHT SCATTERING 
IN AN ACOUSTO-OPTICAL CELL 

 
One of the limiting regimes of light diffraction occurs with a large length  and at rather high frequency of 
the acoustic wave injected into a medium. In this case, the dynamic acoustic grating is rather thick, so that 
during the analysis of diffraction one has to take account of the phase relations between waves in different 
orders. Such a regime can be realized only when the angle of light incidence  on a thick dynamic acoustic 

grating meets the Bragg condition  and inequality  [2.1]. Usually, the 
Bragg regime includes the incident and just one scattered light modes as well as the acoustic mode, see 
Fig.2.1a, and during the presented analysis we restrict ourselves by the Bragg limit of light scattering into the 
first order. Moreover, the normal process of light scattering implies that the initial state of light polarization 
will not be changed within the process of interaction between optical and acoustical beams in spite of 
exploiting various crystalline materials in the acousto-optical cells under consideration. 
 

              
 
 

                                           a.                                                                                      b. 
 

Figure 2.1. Scattering light by a thick dynamic acoustic gratings (a) 
and the light intensities in various orders of light scattering in the Bragg limit (b). 

 
The light intensities in two orders of scattering are shown in Fig.2.1b, where  

[2.2],  is the acousto-optic figure of merit,  is the acoustic power density. This figure illustrates just the 
Bragg limits of light diffraction. One can see that the Bragg regime is preferable for practical applications due 
to an opportunity to realize a  efficiency of light scattering by the coherent acoustic phonons. 
 
            The conservation laws inherent in such interactions are  for the wave vectors (or the 

momenta ) and  for the angular frequencies (or the energies ). Usually within 

conventional acousto-optics,  Hz and  Hz, so that  and 

. Because  cm/s and  cm/s, we yield , , 

and . Thus, if the powers of light and ultrasound have the same order, one has much more 

(about ) phonons than photons in such an experiment. By this is meant that the acousto-optical interaction 
can be considered in an approximation of a given acoustic wave field. 
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2.2. EFFICIENCY OF LIGHT SCATTERING IN A LEAD MOLYBDATE CRYSTAL 

 
The acousto-optic figure of merit  describes the material properties relative to normal process of light 
scattering. It is given by [2.3] 
 

 ,                                                                (2.1) 

 
where  is the corresponding refractive index,  g/cm3 is the material density of a lead molybdate 
crystal ( ), and  is the corresponding effective photo-elastic constant. The main values  and 

 of the refractive indices inherent in a lead molybdate crystal are slightly dispersive, i.e.: , 
 at  nm; ,  at  nm; ,  at 

 nm; ,  at  nm; ,  at  nm; 
,  at  nm; and ,  at  nm. Now, 

however, the main attention should be paid to determining concrete magnitudes of both  and . In so 
doing, one has to consider the photo-elastic properties of lead molybdate single crystal. Generally, the 
dielectric impermeability tensor  becomes to be perturbed under action of mechanical deformations in a 
medium and takes the form , where the symmetrical tensor  of the second rank presents small 

admixture to the tensor . In so doing, one can write  or the same in components , 

because even the first approximation is quite enough for crystalline materials. Here,  is the tensor of the 
fourth rank for photo-elastic coefficients; its symmetry is , that is why the 
photo-elastic effect can be observed in media of an arbitrary symmetry, even in isotropic ones. Mechanical 
deformations are described in the same first approximation by the symmetric deformation tensor 
 

a)   ,                b)   ,                                         (2.2) 

 

where  is the unit vector of displacement in the acoustic wave. Due to  for the 

monochromatic plane acoustic wave with the wave vector , we yield . 

Practically, it is more convenient to operate by these tensors in matrix notations [2.4] (with the Greek letter 
indices) when  with ,  with  

,  with , and  with , so 

that . The quadratic form 
 

a)   ,                                b)                                 (2.3) 
 
describes the effective photo-elastic constant  of the scattering process, i.e. the efficiency of converting 

the initial state of light polarization, described by the unit vector  oriented along the corresponding 
electric induction vector  into the scattered state of light polarization, characterized by the unit vector 
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 oriented along the corresponding electric induction vector  due to the photo-elastic effect (or what 
is the same, the acousto-optical interaction) in a crystal. In the case of a -crystal, whose point 
symmetry group is 4/m, one can write [2.4] 
 

                                        (2.4) 

 
in the standard crystallographic axes. Then, let us assume that slow longitudinal acoustic wave is passing 
along the -axis in a  -crystal whose vector of displacement is oriented along the same -
axis. By this it means that . The corresponding normalized tensor of deformations is 
given by  or in matrix notations by . Performing the matrix multiplication 

and converting the product  to the conventional indices, one can obtain the admixtures  to the 

dielectric impermeability tensor  in the form 
 

.                                         (2.5) 
 
The matrix of admixtures  is a diagonal one, so that only normal light scattering will have place, i.e. 

. Using Eqs.(2.3) and (2.5), he effective photo-elastic constant can be written as 
 

 .                                                  (2.6) 

 

Due to , it is obvious that if the Bragg angles are omitted as small values, the wave vectors  and 

 of the incident and scattered light beams, respectively, should lie in the -plane to be orthogonal to 

. Moreover, one can put  when the Bragg angles are neglected, so that one may write 

, where the angle  as current angle between  and . The vector  

and axis  give us an orthogonal basis to explain the vector . Consequently, one can easily obtain that 

, so that  when . As a result, one yields 
 

.                                                           (2.7) 
 
This formula was simulated numerically with  and , see Ref.[2.5, 2.6]; the plot is 
shown in Fig.2.2. The availability of maxima for  depends radically on the magnitude of the refractive 
index as well. 
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Figure 2.2. Dependence for the effective photo-elastic constant in a  single crystal 
versus the rotation angle  inherent in the normal light scattering. 

 
 Due to  in a uniaxial crystal, the eigen-states of light polarization are naturally associated with the 
refractive indices  when  and  when . Because  in a  
single crystal, the problem needs additional estimations of maxima for . At the light wavelength  
nm, for example, this crystal has  and , so that, using the above-obtained data for 

, one can find  s3/g for  and  s3/g for . The 
performed calculations demonstrate that the normal regime of light scattering by the longitudinal elastic wave 
is rather efficient in the chosen crystal. 
 

2.3. EFFICIENCY OF LIGHT SCATTERING IN A TELLURIUM DIOXIDE  
CRYSTAL EXITED BY THE LONGITUDINAL ACOUSTIC MODE  

PASSING ALONG THE [001]-AXIS 
 

Characterizing the efficiency of light scattering by acoustic waves is connected again with estimating the 
factor , which describes both the material properties relative to the process and the acoustic power density. 
Generally, main values  and  of the refractive indices in optically anisotropic tellurium dioxide 
crystal are, for example, ,  at  nm and ,  at  
nm. Now, however, the main attention should be paid to determining concrete magnitudes of the needed 
effective photo-elastic constant  and the figure of acousto-optical merit  in a -based crystalline 
cell. In so doing, one has to consider the photo-elastic properties of this crystal using the approach described 
previously. In the case of a -crystal, whose point symmetry group is 422, one can write [2.4] that 
 

                                            (2.8) 
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in the standard crystallographic axes. Then, let us assume that the longitudinal acoustic wave is passing along 
the -axis in a -crystal whose vector of displacement is oriented along the same -axis. By 
this it means that . The corresponding normalized tensor of deformations is given by 

 or in matrix notations by . Performing the matrix multiplication and 

converting the product  to the conventional indices, one can obtain the admixtures  to the 

dielectric impermeability tensor  in the form 
 

.                                        (2.9) 
 

The matrix of admixtures  is a diagonal one, so that only normal light scattering will have place, i.e. 

. Using the conventional formula  and Eq.(2.9), the effective photo-elastic 
constant can be written as 
 

 .                           (2.10) 
 

Due to , it is obvious that if the Bragg angles are omitted as small values, the wave vectors  and 

 of the incident and scattered light beams, respectively, should lie in the -plane to be orthogonal to 

. Moreover, one can put  when the Bragg angles are neglected, so that one may write 

, where the angle  as current angle between  and . The vector  

and axis  give us an orthogonal basis to explain the vector . Consequently, one can easily obtain that 

, where  is the angle between  and , so that 

 when . As a result, one yields 
 

.                                                 (2.11) 
 
This formula can be simulated numerically with  and  for a -crystal [2.5, 2.6], 
see Fig.2.3. 
 
The oscillating plot exhibits a minimum magnitude with  at and a maximum 

magnitude  at . The magnitude inherent in the figure of acousto-optical merit 

is related to the normal regime of light scattering in a  single crystal and equals to 

. The availability of maxima for  depends radically on the magnitude of the 

refractive index as well.  
 
Due to our case corresponds to  in a uniaxial crystal, the eigen-states of light polarization are 

naturally associated with the refractive indices  when  and  as well as with  when 

 and . Because  in a  single crystal, the problem needs additional 
estimations of maxima for .  
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Figure 2.3. Dependence for the effective photo-elastic constant in a - single crystal 
versus the polarization rotation angle  inherent in the normal light scattering. 

 
For instance, at the light wavelength  nm, for example, this crystal has  and , 

so that, using the above-obtained data for , one can find  s3/g for  

(extraordinary light beams), and  s3/g for , i.e. for ordinary light beams 
whose polarization is orthogonal to the optical axis of this crystal. The performed calculations demonstrate 
that the normal regime of scattering the ordinary polarized light by the longitudinal elastic wave is rather 
efficient in a -single crystal. 
 

2.4. EFFICIENCY OF LIGHT SCATTERING  
IN A GALLIUM PHOSPHIDE SINGLE CRYSTAL 

 

A gallium phosphide ( ) single crystal has a cubic symmetry (point symmetry group is ) and the 
transparency range . Then,  g/cm3 is the material density of a  crystal,  is 

the effective photo-elastic constants for light scattering, respectively; the refractive index is, for example, 
 at  nm. In the case of a -crystal, whose point symmetry group is , one can write 

[2.4] in the standard crystallographic axes. Then, let us assume that the longitudinal acoustic wave is passing 
along the -axis in a – crystal whose vector of displacement is oriented along the same -axis. 

By this it means that .  
 

                                             (2.12) 

 
The corresponding normalized tensor of deformations is given by 

 or in matrix notations by . 
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Performing the matrix multiplication and converting the product  to the conventional indices, one can 

obtain the admixtures  to the dielectric impermeability tensor  in the form 
 

 

 .                   (2.13) 

 

The matrix of admixtures  is a non-diagonal one, and both normal and anomalous light scattering can be 
potentially expected. Using Eq.(2.13), the effective photo-elastic constant can be expressed as 
 

 .                     (2.14) 

 

Due to , it is obvious that if the Bragg angles are omitted as small values, the wave vectors  and 

 of the incident and scattered light beams, respectively, should lie in the -plane to be orthogonal to 

. Moreover, one can put  when the Bragg angles are neglected, so that one may write 

, where the angle  as current angle between  and . Obviously 

, so that , hence  and . Because of , one 

can find . Now, the vector  and the axis  give us an 

orthogonal basis to explain the light polarization vector . Naturally, one can require , 

so that , hence . Then, one can determine the angle  by the relation 

, so that  when . It leads to . Finally, because 

, one can find the components , , 
and . Using the substitution , one can obtain the components of the other 

vector , describing the light polarization, with the components: 

, , and . In the 

case of normal light scattering, i.e. with , Eq. (2.14) gives  
 

 .                             (2.15) 
 

Within the case of anomalous light scattering when, for example,  and , Eq. (2.14) leads to 
 

 .            (2.16) 

 
These formulas can be simulated numerically with ,  and  for 

-crystal [2.5, 2.6], see Fig.2.4. 
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a.                                                                                                    b. 
 

Figure 2.4. The effective photo-elastic constants in a  single crystal versus 
the angles  and  inherent in the normal (a) and anomalous (b) regimes of light scattering. 

 
The oscillating plot exhibits a maximum magnitude of normal light scattering connected with the effective 
photo-elastic constant  at  and . This value exceeds significantly the 

corresponding estimation for anomalous light scattering due to  at any angles. The 
magnitude inherent in the figure of acousto-optical merit is related to the normal regime of light scattering in 

a  single crystal and equals to . For the above-taken longitudinal acoustic 

wave, passing along the -axis in a – crystal with the displacement vector oriented along the same 

-axis, the acoustic wave velocity is . Consequently, one can estimate 

 s3/g. The performed calculations demonstrate that the normal regime of light scattering 
by the longitudinal elastic wave is rather efficient in the chosen crystal. Finally, estimating the Klein-Cook 
parameter:  with , , , and 

, it is possible to find that one need at least  to obtain . 
 

2.5. LINEAR ATTENUATION OF THE LONGITUDINAL ELASTIC WAVES 
AND ITS EFFECT ON THE EFFICIENCY OF LIGHT SCATTERING 

 
Generally, the efficiency of acousto-optic interaction is affected by acoustic losses, which always exist in 
condensed matters. In the approximation of linear attenuation for the elastic waves, longitudinal or shear, the 
coefficient  of linear losses had been introduced. One of the most important parameters in the theory of 
acoustic attenuation represents the ratio of the acoustic wavelength  to the averaged mean free pass  of 
thermal phonons in a crystal. Calling  the averaged temporal interval between collision of thermal phonons 
and  the frequency of elastic wave, one can consider two limiting cases. If  and, consequently, 

, this is meant that the attenuation of acoustic phonons is conditioned by their collisions with a 
lattice whose phonons are in a state of thermal equilibrium. This case has been considered by L.Landau and 
G.Rumer [2.7], and G.L.Slonimsky [2.8]. Usually, it corresponds to the low temperature area, i.e. to the 
absolute temperature range of , when the frequency of elastic wave is about . The opposite 
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case of  makes it possible to consider thermal phonons as particles propagating in a slowly varying 
potential field, caused by the acoustic wave. In fact, it means that the coherent elastic wave destroys an 
equilibrium distribution of thermal phonons, which become to be not governed by the equilibrium Planck 
distribution. Growing the entropy, needed for recovering the thermal equilibrium of these phonons, leads to 
attenuation of elastic energy. For the majority of crystals, this mechanism, revealed and described by 
A.Akhieser [2.9], can be observed at temperatures  and frequencies up to . The last case is 
very close to typical acousto-optic experimental situations. Evidently, the most compact and physically clear 
explanations related to this mechanism is done in Ref. [2.10], so that it is really worthwhile to apply just the 
Akhieser’s mechanism to characterization of attenuating elastic waves in acousto-optical crystals. The above-
mentioned coefficient  of linear losses can be introduced for both longitudinal and shear elastic waves more 
or less in the same manner. In these two cases the corresponding coefficients of linear losses have different 
values and slightly different determinations, but nevertheless they both exhibit the same frequency 
dependence in the range under consideration. This is why one can restrict him, for instance, by longitudinal 
elastic waves to explain all the needed peculiarities of affecting the light-scattering efficiency by acoustic 
losses. 
 
             For the longitudinal elastic waves one can use the following one-dimensional evolution scalar 
equation [2.11] 
 

                                                (2.17) 

 
including the factor of acoustic losses . This factor is determined in Eq. (2.17) as 

, where  and  represent coefficients for shear and bulk viscosities,  is the 
coefficient for thermal conductivity, while  and  are specific heat capacities at constant volume and 
pressure, respectively. This equation can be applied to describing longitudinal elastic waves in isotropic 
media and in the particular cases of wave propagation along the acoustic axes in crystalline materials as well, 
so that the case of acoustic beam oriented along the axis is perfectly acceptable for similar 
consideration. Potential solution to Eq. (2.17) can be taken in the form of , 
leading to the following Helmholtz equation 
 

                                                   (2.18) 

 
Substituting a standard trial function  in Eq. (2.18), one yields the quadratic algebraic characteristic 

equation  whose solutions are given by 
 

a) , 

b) ,                                c)                                                (2.19) 
 

in supposition that ; here  is the modulus of the wave vector  of the elastic wave. 

Thus, one can express  and then find  as 
 

.              (2.20) 
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This solution includes the two counter-propagating waves; each of them attenuates exponentially during its 
passing through a medium along the axis in opposite directions, so that for the positive direction of 
the axis  one can choose only 
 

.                                   (2.21) 
 
It is seen from Eq. (2.19c) that the factor  has a square-law dependence on the carrier frequency  of 
elastic wave in agreement with the Akhieser mechanism. This result is meant that amplitude of the 
longitudinal elastic wave decreases as , while the energy transferring by this wave and the 
corresponding power vary as . To normalize the frequency dependence the acousto-optical 

materials are usually characterized by the constant , where  is the 
frequency of the chosen coherent elastic mode, so that, for example, if one takes the longitudinal elastic wave 
in a tellurium dioxide single crystal oriented along axis, the corresponding acoustic attenuation will be 

characterized by a factor of  [2.5, 2.6]. 
 
Now, one can consider the effect of acoustic attenuation along an aperture of acousto-optical cell within its 
operation in the Bragg regime of light scattering. The Bragg regime of light scattering in a lossless medium 
had been characterized above by the equations in Section 2.1. Taking into account the attenuation of total 
energy in a volume of a deformed body, one can find both the acoustic power density and the modulation 
parameter  as 
 

a)   ,         b)   .           (2.22) 

 
Usually, during the spectrum analysis the partial magnitude of the parameter  for each individual spectral 

component of a radio-signal is really small, so that one can approximate  in the 
acousto-optical cell with linear acoustic losses. For the regime of a one-phonon light scattering, such an 
approximation can be successfully done in a vicinity of the point . In this case, the real-valued 
amplitude  of light field scattered into the first order, i.e. the issuing light amplitude at the output 
facet of acousto-optical cell, is directly proportional to the modulation parameter , so that one can obtain 
 

a) ,  b) ,  c) .  (2.23) 

 
If  is the physical optical aperture of a cell measured in centimeters, one can int roduce the normalized 
dimensionless coordinate  along the aperture with  as well as the dimensionless amplitude 
parameter  for the acoustic losses along that optical aperture, so that ; herein 

 for the amplitude parameter. Equation (2.23b) shows that the utilization for 
the incident light intensity can be characterized by the distribution of acoustic power along the optical 
aperture of a cell. Thus a relative portion of the optical power scattered by the attenuating acoustic beam can 
be characterized by 

 

 .                                      (2.24) 
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The corresponding plots, expressed as the function of amplitude parameter of total acoustic losses along c the 
cell’s optical aperture in relative units and in decibels, are presented in Fig.2.5.  
 

      
 
                                                   a.                                                                                b. 
 

Figure 2.5. Relative portion of the scattered of optical power versus the amplitude parameter 
of total acoustic losses along the cell’s optical aperture in relative units (a) and in decibels (b). 
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3. Estimating the time – bandwidth product of acousto-optical cells 

operating in the normal light scattering regime in some crystals 
 

The TBWP is one of the important parameters peculiar to an acousto-optical cell in signal processing. It 
characterizes either the degree of complexity inherent in admissible signal or performance data of optical 
system. The frequency bandwidth of a cell depends on the chosen regime of acousto-optical interaction light 
scattering. Assuming that  in the simplest case of just normal regime of a one-fold light scattering, 
the frequency bandwidth can be obtained in the form 
 

 .                                                             (3.1) 

 
Here,  is an averaged refractive index of a crystalline material,  is the central acoustic frequency. Then, 
the frequency resolution of acousto-optical cell is determined by the formula . However, the time 
of passing the acoustic wave through a cell (or the time delay) can be estimated as . Thus, 
the TBWP is given by 
 

,                                                        (3.2) 

 
where  is the number of resolvable spots. There are a few factors limiting the number of resolvable spots as 
a function of the frequency [3.1] The first of them is just Eq.(3.2), where one can assume  with 
the aperture  as an additional free parameter: 
 

 .                                                         (3.3) 

 
The acoustic beam divergence, as it is passing through the light beam, conditions the second geometrical 
limitation of the number  of resolvable spots. The condition, bounding the piezoelectric transducer length 
(or what is the same the initial length of acousto-optical interaction)  with the distance to the point of half 
power level in the near-field zone of acoustic wave, being practically equivalent to , is  
[3.2]. Then, the Bragg regime of a one-phonon light scattering is provided when the well-known Klein-Cook 
parameter  exceeds  [3.3]. Therefore, one can estimate that 

 with the fixed magnitude of  as the case requires choosing. Substituting two last 
expressions for  and  into Eq.(3.3), one yields 
 

 .                                                           (3.4) 

 
The third limitation is connected with the acoustic attenuation. It can also be represented as function of the 
central acoustic frequency . Let us use the factor  of acoustic attenuation expressed in 

[ ] . If the level of acoustic attenuation  per all the aperture is acceptable, the size of 

allowable aperture is equal to . Substituting this formula into Eq.(3.3), one yields 
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 .                                                             (3.5) 

 
Thus, the number  of resolvable elements (spots) or, what is the same, the TBWP is restricted by a triplet of 
the above-mentioned independent limitations. In the particular case of a one-phonon normal light scattering, 
one can take the following set of rather effective and available materials. 
 

3.1. TIME-BANDWIDTH PRODUCT OF THE ACOUSTO-OPTICAL CELLS 
BASED ON LEAD MOLYBDATE ( ) SINGLE CRYSTAL 

 
The values inherent in this crystalline material, when the longitudinal elastic mode produces the acoustic 
beam along the  axis of that crystal, are: , , , and 

. The numerical estimations have been realized for the apertures ; 
the attenuation factors along the full aperture , and the Klein-Cook parameters 

 and , see Fig.3.1. One can see that a lead molybdate acousto-optical cell with , 
, and  is capable to provide  resolvable spots in a one-phonon 

optimized anomalous light scattering regime at a frequency  of about . 
 

 
 

 
Figure 3.1. The combined diagram illustrating effect of a triplet of the restricting factors in a lead molybdate cell. 

The solid slowly growing lines are related to N1, the chosen apertures D are equal to 4, 5, 6, and 7 cm. 
The dashed line regards to N2 in the cases of Q = 2 π . and Q = 3 π . The solid hyperbolic-like falling curves illustrate N3 

and reflect contributions of the acoustic attenuation; the attenuation factors B are equal to 4, 5, and 6 dB along the 
aperture. 
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3.2. TIME-BANDWIDTH PRODUCT OF THE ACOUSTO-OPTICAL CELLS 

USING A TELLURIUM DIOXIDE CRYSTAL ( ) SINGLE CRYSTAL 
EXITED BY THE LONGITUDINAL ACOUSTIC MODE PASSING ALONG THE [001]-

AXIS 
 
Within a one-phonon light scattering in tellurium dioxide crystal, one can choose the normal process of 
acousto-optical interaction when the longitudinal elastic mode produces the acoustic beam along the  
axis of that crystal. In this case, which competes with previously estimated case based on exploiting a lead-
molybdate crystal based AOC, the following values: , , , and 

 are inherent in a  crystal. The needed numerical estimations have been done 
for the optical apertures ; the attenuation factors along the full aperture 

, and the Klein-Cook parameter . One can see in Fig.3.2 that, for 
instance, a tellurium dioxide AOC with , , and  is capable to provide 

 resolvable spots at , while with , , and  the 
same cell is capable to provide  resolvable spots at . 
 

 
 

Figure 3.2. The combined diagram illustrating effect of a triplet of the restricting factors in a tellurium dioxide cell. 
The solid slowly growing lines are related to N1, the chosen apertures D are equal to 4, 5, 6, and 7 cm. 

The dashed line regards to N2 in the case of Q = 3 π   and 4 π  . The solid hyperbolic-like falling curves illustrate N3 and  
reflect contributions of the acoustic attenuation; the attenuation factors B are equal to 4, 5, and 6 dB along the aperture. 
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3.3. TIME-BANDWIDTH PRODUCT OF THE ACOUSTO-OPTICAL CELLS 
BASED ON GALLIUM PHOSPHIDE ( ) SINGLE CRYSTAL 

 
The case of -crystal is connected with the normal process when the longitudinal elastic mode produces 
the acoustic beam along the  axis, so that the following values inherent in this crystalline material: 

, , , and . The needed numerical 
estimations have been found for the apertures ; the attenuation factors along the full 
aperture , and the Klein-Cook parameter , see Fig.3.3. One can see 
that, for example, a gallium phosphide acousto-optical cell with , , and 

 is capable to provide  resolvable spots at , while with 
, , and  is capable to provide  resolvable spots at 

, 
 

 
 

Figure 3.3. The combined diagram illustrating effect of a triplet of the restricting factors in a gallium phosphide cell. 
The solid slowly growing lines are related to N1, the chosen apertures D are equal to 3, 4, 5, 6, and 7 cm. 

The dashed line regards to N2 in the case of Q = 2 π   and 3 π  . The solid hyperbolic-like falling curves illustrate N3 and  
reflect contributions of the acoustic attenuation; the attenuation factors B are equal to 4, 5, and 6 dB along the aperture. 

 

          These estimations for a triplet of the most effective and widely used crystalline materials have 
demonstrated that in each individual case the number  of resolvable spots, which is equivalent to the 
TBWP, does not exceed the values about . With some reasonable restrictions, one can consider 
these magnitudes as the natural limitation conditioned by various peculiarities of physical processes inherent 
in the normal regime of light scattering. 
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4. Time-bandwidth product of the acousto-optical cells 
based on the non-degenerated anomalous light scattering in TeO2 crystal 

 

4.1. NON-DEGENERATED ANOMALOUS BRAGG LIGHT SCATTERING 
IN A CRYSTALLINE MATERIAL 

 
Within normal Bragg interaction, an exact Bragg matching occurs at one frequency. Available frequency 
bandwidth is achieved by momentum-matching the distribution of acoustic plane waves generated by the 
finite-length piezoelectric transducer. Wider bandwidth is achieved by reducing the length of that transducer 
to create a larger distribution of acoustic wave vectors. The utility of this design technique is limited because 
the efficiency of the deflector is proportional to the piezoelectric transducer length. Within anomalous light 
scattering in a birefringent medium, an acoustic mode is used, which couples an extraordinary optical mode to 
an ordinary optical mode. For this technique Bragg matching over a large frequency bandwidth is possible 
without resorting to unacceptable small transducer lengths and hence low efficiencies. The standard phase-
space representation of anomalous Bragg interaction is shown in Fig.4.1a for a positive uniaxial crystal. The 
refractive index ellipsoid consists for two surfaces, i.e. for two independent and polarized orthogonally to one 
another optical plane-wave states are allowed in the birefringent material. One state, the ordinary wave, is 
characterized by a directionally invariant main refractive index . The other state, extraordinary wave is 
characterized by a directionally variant refractive index . In fact, the optical normal surface of uniaxial 
crystal consists of a pair of the surfaces. One of them is a sphere of radius , while another is an 
ellipsoid of revolution. Within the standard approach to the non-degenerated anomalous light scattering in an 
anisotropic medium, the acoustic wave vector  is arranged to lie tangential to the optical normal surface of 
the birefringent crystal. Hence, this interaction geometry is often referred to “tangential phase matching”. 
With this scheme, the Bragg matching occurs over a larger frequency range than that available from normal 
interaction in an isotropic medium where the acoustic wave vector  bisects the optical normal surface. 
Additional frequency bandwidth is available by moving the acoustic wave vector parallel to itself away from 
the tangential condition [4.1], so that it lies on a line “optimal matching” constructed parallel to the tangent. 
Within this new arrangement with the same transducer plane, two acoustic wave vectors  and  
intersect the optical normal surface, as it is shown in Fig.4.1b.  
 

                           
 
                                               a.                                                                           b. 
 

Figure 4.1. Vector diagram for a non-degenerated anomalous light scattering: 
the standard (a) and a wide bandwidth (b) arrangements, Ref.[4.1]. 

 
Hence, exact Bragg matching is achieved at two frequencies instead of one. This fact results in a symmetric 
bandshape, peaked at frequencies nominally equidistant from the center tangential matching frequency. To 
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achieve an equal-ripple bandshape over a bandwidth , the optimal matching line is placed a distance 
 away from the tangential line, so that it bisects the angular divergence of acoustic wave vectors 

. Using geometrical arguments, the range of acoustic wave vectors within the frequency bandwidth 
 of the deflector  can be written as 

 

.                                    (4.1) 

 

Here, the term  is omitted, as it is about three orders of magnitude smaller than . The relation 
between an intermediate length  of the acoustic wave vector and the full angle of acoustic beam divergence 

 is , when . Using the above-noted expression for  and the usual 
formula , one can find from Eq.(4.1) that 
 

 ,                                                           (4.2) 

 
where the frequency bandwidth  is still not determined. Together with this, Eq.(3.1) gives 

. Comparing this expression with Eq.(4.2) with , one can obtain 
the ratio . For example, in widely used particular case of , the 
piezoelectric transducer can be about eight times longer. (This length, of course, is twice the length of the 
transducer required to achieve the same bandwidth when tangential matching condition is used). If visa verse 

, one can find 
 

,                                                           (4.3) 
 
so that a significant bandwidth advantage is possible with the optimized anomalous light scattering in 
comparison with normal one under condition of . 

 
4.2. ESTIMATING THE TIME – BANDWIDTH PRODUCT OF ACOUSTO-OPTICAL 

CELL OPERATING IN THE NON-DEGENERATED ANOMALOUS LIGHT 
SCATTERING REGIME 

 
From Eq.(4.1), one can express the frequency bandwidth  for anomalous light scattering as 
 

 ,                                                       (4.4) 
 
where  is the initial length of acousto-optical interaction. Then, Eq.(3.2) gives 
 

.                                    (4.5) 

 
The frequency dependence is absent, but now one has the contribution of the piezoelectric transducer length 

. Let us estimate the anomalous light scattering bandwidth using the above-noted approximation for the 
normal light scattering bandwidth by . One can find from Eq.(4.3) that 
 

a) ,                  b)  .                     (4.6) 
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Equation (4.6b) makes it possible to determine the border frequencies  and  inherent in this 
bandwidth as 
 

a) ,                     (4.7) 
 

b) . 
 
Broadly speaking, estimations associated with these formulas can lead to appearing technical problem of 
matching the piezoelectric transducer with electronic circuits in rather wide frequency bandwidth exceeding 
an octave. This aspect can be illustrated by the following numerical example. Within a one-phonon light 
scattering in tellurium dioxide ( ) crystal in the non-degenerated anomalous regime, one can choose the 
process exploiting the slow shear elastic mode along the  axis of that crystal, so that in this case 

, , , and . Using Eqs.(4.6) and (4.7), one can calculate 
 and , which lead to  and . The 

obtained set of characteristic frequencies promises rather low contribution from acoustic attenuation, but 
exhibits the relative frequency width , i.e. close to  octaves. However, for the taken set 
of material parameters, estimating the Klein-Cook parameter at the frequency  gives 

, which does not provide the Bragg regime of light scattering at 
. To avoid difficulties within a wide-band electronic matching and to increase the Klein-Cook parameter 

up to  or more the central carrier frequency has to be increased. Technically, such a step leads, in 
particular, to decreasing the relative frequency bandwidth and facilitates the process of wide-band electronic 
matching. This is why one has to increase the triplet of the characteristic frequencies , , and  up 
to , , and , but to save the previously obtained frequency bandwidth . Considering Klein-

Cook parameter as a criterion, one can take a new minimal frequency , which leads to 

, i.e. exhibits almost the border minimal frequency. With such a new , one can find the 
following new values  
 

a) ,                   b) .               (4.8) 
 

Due to the bandwidth  is usually wide enough one has to use the new border values , and  to 
estimate the effects of acoustic beam divergence and acoustic attenuation. As before, the acoustic beam 
divergence, as it is passing through the light beam, conditions the second geometrical limitation for the 
number  of resolvable spots. Using all the previously formulated arguments, one can write the modified 
formulas, which are similar to Eqs.(3.4) and (3.5), expressed in terms of a new central frequency , in 

particular of the border frequency , and the bandwidth  as 
 

 ,                       (4.9) 

 

 .                                (4.10) 
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Thus, the number  of resolvable spots or, what is the same, a value of the TBWP is again restricted by a 
triplet of the above-mentioned independent limitations. Using the above-taken set of data for a -cell 

with  and , one can find from Eqs.(4.5), (4.9), and (4.10) that 
 

a) , , , , and ; 
(4.11) 

b) , , , , and . 
 

One can see that now the Klein-Cook parameter  provides the Bragg regime of light scattering at the 

frequency , while the relative frequency width  is much smaller, so that technical 
problem of matching the piezoelectric transducer with electronic circuits in rather wide frequency bandwidth 
does not appear. As a result, one can expect that the TBWP will be able to reach of about: (a)  or (b) 

, as the case requires. 
 
             Nevertheless, from the viewpoint of increasing the dynamic range of a system the requirement for the 
Klein-Cook parameter  can be raised, sometimes even at the cost of involving an increased acoustic 
attenuation. Let us slightly modify the previous example and take , , and 

. With this in mind, one can find  (more than 2 times 

higher than before), , , , and . 
Consequently, one yields: , , and . In this case the TBWP will be able to 
reach approximately a -level at the higher central frequency . 
 

4.3. EXPERIMENTAL DATA 
 
Testing the optical system of an advanced prototype had been carried out with the Bragg cell, made of 
tellurium dioxide ( ) crystal (Brimrose Corp.), which has an active optical aperture of about  
mm. Within operating at the optical wavelength of  nm with linear state of the incident light polarization 
on the central acoustic frequency of about  MHz, this cell provides the deflection angle of about  angular 
degrees and allows a maximum input acoustic power of about  W. The acoustic wave velocity can be 
estimated by  cm/s. The experimental studies consisted in two parts. The first one included 
measuring the bandwidths of acousto-optical interaction in the Bragg regime of light scattering in the first 
order. General schematic arrangement of the corresponding set-up for these measurements is presented in 
Fig.4.2. 
 

The second part of our experiments was related to estimating possible resolution of the AOC under 
consideration. In fact, the intensity distributions of an individual spot in focal plane of the integrating lens for 
light scattering by a TeO2 –cell in the first order had been measured. In so doing, the experimental set-up was 
arranged as it is shown in Fig.4.3. Figure 4.4 shows the experimental plot for the frequency response inherent 
in the –cell.  
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Figure 4.2. General schematic arrangement for measuring the frequency bandwidth of a TeO2-cell. 
 

 
 

Figure 4.3. General schematic arrangement for measuring the intensity profile of an individual spot 
 

        
 
                                                        a.                                                                                        b. 
 

Figure 4.4. A  aperture -crystal based AO-cell from Brimrose Corp. (a) 
and the frequency response versus the input acoustic frequency applied at this AO-cell (b). 
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One can observe the characteristic variations of efficiency at a top of the experimental plot. This oscillation is 
motivated by some uncoupling of both active and reactive parts of the cell’s impedance at different 
frequencies. Each maximum of efficiency is potentially corresponding to better matching of impedance at the 
takes radio-wave frequency. Practically obtained non-uniformity of the frequency characteristic is equal to 
about  (i.e. less than  dB). Total experimental frequency bandwidth at a -level has been 
estimated by  MHz. 
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5. Conclusive remarks 
 
Than, the AOCs, exploiting lead molybdate crystals, so-called fast cut in tellurium-dioxide crystals, and 
gallium phosphide crystals, have been characterized and estimated from the points of views related to their 
acousto-optical parameters and the expected acoustic attenuation, which can potentially affect the shape of 
each individual resolvable spot at the output plane and, consequently, the dynamic range of processing. 
Moreover, the TBWP products of acousto-optical cells exploiting the normal light scattering in these 
materials have been characterized. From the above line of reasoning the AOC based on the specifically shifted 
cut of a tellurium dioxide single crystal has been considered as an optimal choice, and its TBWP has been 
analyzed theoretically and measured experimentally. In so doing, the model of estimating both the frequency 
bandwidth and the spectral resolution had been developed. The frequency bandwidth was precisely calculated 
including the contributions from terms in expansions related to optical anisotropy of this material as well as 
from really high acoustic anisotropy in the tellurium dioxide crystal leading to remarkable divergence for 
acoustic beams. The resolution was described using, in particular, corpuscular approach to this problem, 
which includes a look at the uncertainty principle. During the performed experiments, the tellurium dioxide 
AOC, produced with the specifically shifted crystalline cut providing the almost-shear acoustic wave velocity 
of , with the clear optical aperture of  operating within the radio-signal frequency 
range up to  had been used. As a result of the realized optimization, the frequency bandwidth of 

 had been achieved, so that experimental estimation for the obtained TBWP was equal to . 
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