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Abstract 

 

Quantum frequency up-conversion (QFC) of non-classical states of light allows the 

integration of different quantum systems working at different energies. This process takes 

advantage of telecommunication wavelengths photons for optical fiber transmission of 

quantum information, and near visible wavelengths for data manipulation and storage. 

The key objective of QFC is to guarantee that the input photon number probability 

distribution is maintained after the conversion process.  With this, we will be able to 

efficiently study the single-photon emission properties of epitaxial InAs/GaAs quantum 

dots embedded in a photonic crystal nanocavities without the problems that inefficient IR 

wavelengths detectors imply. The up-conversion process consists on combining two 

optical fields, in a nonlinear medium, to generate a third field that is equal to the two inputs 

frequency sum. To fulfill the momentum conservation, required by this process, we need 

to compensate the wave vector mismatch between the output and input beams. This is 

achieved by using a grating in the nonlinear medium, a process named quasi-phase 

matching (QPM). In this work we use a Zinc doped periodically poled LiNbO3 (Zn:PPLN 

WG) waveguide as the nonlinear material. To achieve the quantum frequency conversion 

of a semiconductor quantum dot (QD) single photons emission, embedded in a photonic 

crystal nanocavity, we started by characterizing the performance of the PPLN-WG in the 

optical power macro-regime. Signal photons, produced by an 1175nm laser, simulating 

our QD emission line, are combined with pump photons, produced by a C-band laser, 

with a dichroic mirror before entering the PPLN waveguide. In order to achieve the phase 

matched wavelength in the PPLN, its temperature must be finely tuned. The signal 

coming out of the PPLN waveguide is filtered and analyzed. 

 

Resumen 

 

La conversión cuántica de frecuencia (QFC) de estados de luz no clásicos permite la 

integración de diferentes sistemas cuánticos trabajando a diferentes energías. Este 

proceso toma ventaja de los fotones en la banda de telecomunicaciones para transmitir 

información cuántica a través de fibras ópticas y de los fotones en el visible para 
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manipular y almacenar la información. El objetivo principal de la QFC es garantizar que 

la distribución de probabilidad de los fotones de entrada se mantenga después del 

proceso de conversión. Con esto, será posible estudiar eficientemente la propiedad de 

emisión de fotones individuales de puntos cuánticos epitaxiales de InAs/GaAs embebidos 

en nanocavidades de cristales fotónicos sin tener los problemas de detección que 

presentan los detectores de avalancha en el infrarrojo. El proceso de conversión consiste 

en combinar dos campos ópticos en un medio no lineal para generar un tercer campo 

con una frecuencia igual a la suma de la de los campos de entrada. Para lograr la 

conservación de momento requerida por este proceso, se necesita compensar la el 

desfase entre vectores de onda de los campos de entrada y salida. Esto se logra usando 

una rejilla en el medio no lineal, este proceso se llama quasi-phase matching (QPM). En 

este trabajo usamos una guía de onda de LiNbO3 dopada con Zinc polarizada 

periódicamente (Zn:PPLN WG) como el material no lineal. Para lograr la QFC de la 

emisión de puntos cuánticos comenzamos por caracterizar el rendimiento de la PPLN-

WG con potencias de luz en el macro régimen. Fotones de señal, producidos por un láser 

a 1175nm que simulan la línea de emisión de los puntos cuánticos, son combinados con 

fotones de bombeo producidos por un láser a 1550nm mediante un espejo dicroico antes 

de hacerlos incidir en la PPLN-WG.  
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1. Introduction 

 

Since the conception of the quantum key distribution (QKD) by Bennet & 

Brassard  in 1984 (Bennet & Brassard, 1984), we have realized that quantum networks 

provide opportunities and challenges across a range of intellectual and technical 

frontiers, including quantum computation, communication and metrology (Zoller, et al., 

2005). To achieve quantum networks composed of many elements and channels, we 

require new scientific capabilities for generating and characterizing quantum coherence 

and entanglement. A fundamental piece to this endeavor are quantum interfaces, which 

convert quantum states from one physical system to those of another in a reversible 

manner, this is where our work is situated. Such quantum connectivity in networks can 

be achieved by the optical interactions of single photons and atoms, allowing the 

distribution of entanglement across the network and the teleportation of quantum states 

between the different elements and devices (Kimble, 2008). The preeminent obstacle to 

the development of quantum information technology is the difficulty of transmitting 

quantum information over noisy and lossy quantum communication channels, 

recovering and refreshing the quantum information that is received and then storing it in 

a reliable quantum memory (Shapiro, 2002). 

  The objective of quantum information processing (QIP) is to use quantum 

superposition states to transmit, store, and process information. In classical 

communication, information is transferred and encoded in pulses of light. The pulses 

are detected by photodetectors, transformed into electrical current pulses, amplified by 

electronics, and sent to computers, phones, etc. This transformation of light into 

electrical signals forms a classical light-matter interface. In QIP simple classical 

detection of light is inadequate for recording into memory, because it destroys the 

quantum state by adding extra noise to it. Instead of direct transformation of light pulses 

into electrical pulses, as in classical communication, quantum state transfer of qubits 

has to be developed in QIP (Zoller, et al., 2005). The additional structure in the qubit 

leads to extraordinary computational and communications abilities that do not exist with 
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classical hardware. It is unlikely that future quantum information processors and 

communication systems will be composed of units based on a single type of physical 

system such as a particular kind of atomic ensemble, trapped ion, semiconductor, or 

superconductor. Instead, hybrid networks are expected to emerge, in which different 

types of physical systems play different roles (O'Brien, Furusawa, & Vučković, 2009). 

These systems will include computational nodes containing atoms or superconductors, 

for example that act as quantum memories or processors. To communicate quantum 

information, each node will absorb and emit photons at its own natural resonance 

frequency and line shape. This diversity of possible nodes creates a challenge: how to 

convert a single photon from one frequency to another and alter its wavepacket shape 

to fit optimally with different systems. In other words, it is like if two types of quantum 

nodes were speaking a different language and a translating device was needed to get 

the message from one to the other. Hence a quantum interface has to be developed.  

Figure 1-1 illustrates this notion of interface (Raymer & Srinivasan, 2012).  

In conclusion, an interface between quantum information carriers (quantum 

states of light) and quantum information storage and processors (atoms, ions, solid 

state) is an integral part of a full-scale quantum information system. It is obvious that 

long lived entanglement shared over a long distance requires transfer of entanglement 

from light (the long distance carrier) to atoms (the long lived objects). Such transfer can 

only be done via a special light-atoms quantum interface. The eventual goal is to spread 

quantum-state entanglement throughout a large network of memories or processors. 

(Zoller, et al., 2005). 

1.1 Quantum communications 

Quantum communication is the art of transferring a quantum state from one 

place to another. The basic motivation is that quantum states code quantum 

information, called qubits, and that quantum information allows tasks to be performed 

far much efficiently than using classical information. The field of quantum 

communication has established itself over recent years due to its driving force, QKD, 

and to the fascinating process of quantum teleportation. It will be an important part of 
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physics in the decades to come, with great challenges in quantum memories and 

repeaters for worldwide applications (Gisin & Thew, 2007). 

 

Figure 1-1. Future quantum information communication system. In it, a pair of quantum frequency 
conversion (QFC) devices connect a quantum dot operating at photon frequency ω1 to an atomic vapor 
operating at frequency ω2 through an optical fiber that optimally transmits light at frequency ω3. After 
Raymer & Srinivasan (2012). 

As described in the previous paragraph, quantum communication requires the 

transfer of quantum states (Tittel & Weihs, 2001), or quantum bits of information 

(qubits), from one place to another. Fundamentally, this allows the distribution of 

entanglement and the demonstration of quantum non-locality over significant distances 

(Resch, et al., 2005). Within the context of applications, quantum cryptography offers a 

provably secure way to establish a confidential key between distant partners. Photons 

represent the natural flying qubit carriers for quantum communication, and the presence 

of telecommunications optical fibres makes the wavelengths of 1,310 nm and 1,550 nm 

particularly suitable for distribution over long distances. However, qubits encoded into 

alkaline atoms that absorb and emit at wavelengths around 800nm have been 

considered for the storage and processing of quantum information (Blinov, Moehring, 

Duan, & Monroe, 2004). Also in recent years, antibunched streams of photons produced 

by semiconductor quantum dots (QD) embedded in photonic crystal nanocavities have 

been observed, showing that quantum information tasks are achievable in solid-state 

cavity QED (Hennessy, et al., 2007). Hence, future quantum information networks made 

of telecommunications channels and different types of nodes will require interfaces that 

enable qubit transfers between these useful wavelengths, while preserving quantum 

coherence and entanglement. Superposition of quantum states and entanglement are 

the fundamental resources of quantum communication and quantum information 
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processing (Tittel & Weihs, 2001). The most appropriate carrier for QIP and associated 

encoding observable depend on the specific task. Photons have been proved suitable to 

transmit quantum information, and atoms or ions to store and process it. Depending on 

the quantum communication channel, the wavelength of the photonic carrier is also 

important. The use of telecommunications wavelengths (1,310 and 1,550 nm) is 

particularly advantageous when employing optical fibers, while free space transmission 

is mostly based on shorter wavelengths. Future realizations of quantum networks, 

containing elementary quantum processors and memories, connected by 

communication channels, require quantum interfaces capable of transferring qubit 

states from one type of carrier to another. This demands the reversible mapping 

between photons and atoms, which also includes the mapping between photons of 

different wavelengths. However, as opposed to the reproduction of classical information 

between different media, it is not possible to merely measure the properties of a given 

quantum system and replicate them accordingly, as a result of the no-cloning theorem 

(Wootters & Zurek, 1982). Nevertheless, it is possible to resort to a transfer of the 

quantum information based on an interaction that maintains the coherence properties of 

the initial quantum system. (Tanzilli, et al., 2005) 

1.2 Quantum frequency conversion 

One of the solution for the identified quantum interface problem of the previous 

paragraphs is the Quantum Frequency Conversion (QFC) experimental scheme, 

proposed by Kumar in 1990 (Kumar, 1990), in which the quantum states of two light 

beams of different frequencies can be interchanged. In his seminal paper Kumar shows 

that, in effect, it is possible to change the frequency of an input light beam while 

maintaining its quantum state. This scheme is based on the three-wave mixing 

processes that happen in materials with optical nonlinearities. Most phenomena in 

nonlinear optics are based on parametric oscillations, which occur in any oscillatory 

system whose parameters vary periodically in time. The parameter to be varied is 

typically the medium’s electric susceptibility, the proportionality factor relating a driving 

field at a specific frequency to the induced electric dipole density. If strong light fields 

cause the dipoles to oscillate, then energy can be redistributed between optical modes 

of various frequencies. The dominant effect in this process is usually governed by the 
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second-order susceptibility χ(2) in noncentrosymmetric (lacking a center of symmetry) 

media such as lithium niobate or gallium arsenide crystals. Weak light of a given 

frequency ω1 can be converted to ω2 using the second-order nonlinear optical 

response. In this case a strong laser field—the pump—modulates the medium’s 

susceptibility at frequency ωp, which leads to light generation at the sum and difference 

frequencies ω2 = ω1 ± ωp. A frequency increase is called up-conversion; a decrease, 

down-conversion. Quantum frequency conversion (QFC), is the process of changing the 

frequency of a quantum state of light—for example, a single-photon state—without 

changing its other state properties in an uncontrolled way. Of particular importance is 

that photon momentum must be conserved in the course of QFC, or, in the jargon of the 

field, phase matching must be ensured. (Raymer & Srinivasan, 2012). Figure 1-2 shows 

an example of a device that enables an increase in the frequency of a single photon 

(up-conversion) as we will see in Section 2.1.4. 

 

Figure 1-2. Schematic diagram of QFC by means of Quasi-phase matching in an optically nonlinear material. 
The up-conversion is governed by the second-order susceptibility χ(2) of the material. A strong pump laser at 
frequency ωp, converts input photon pulses at ω1 to output pulses at ω2 = ω1 + ωp. A uniform material would 
not satisfy phase matching, because  k2 ≠ k1 + kp. Thus the illustrated device uses quasi-phase matching 
(QPM); as shown below the device in the panel, a spatially periodic change (with period Λ) in the material 
properties of the nonlinear medium compensates for the momentum mismatch, after (Raymer & Srinivasan, 
2012). 

In the other hand, single-photon detection at wavelengths in the fiber-optic 

communications band is important for quantum-optics applications, such as quantum 

cryptography (Bourennane, Karlsson, Pena Ciscar, & Mathés, 2001). High detection 

efficiency near 1.55 μm permits compatibility with existing fiber-optics technology in 

which fiber losses are minimized. Current detection devices operating at these 

wavelengths cannot deliver the performance needed to implement, for example, QKD 
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over distances longer than a few tens of kilometers because of limitations imposed by 

high dark counts and low detection efficiencies in two of the more prominent devices 

currently used, which are InGaAs–InP avalanche photodiodes (APDs) and solid-state 

photomultipliers (Bourennane, et al., 1999). In contrast, single-photon detection in the 

near-infrared (NIR; 600–800 nm) can be performed efficiently with silicon APDs. One 

can take advantage of these detectors if efficient conversion from 1.55 mm to the NIR is 

available. Frequency upconversion of weak signals is possible by sum-frequency 

generation (SFG) with a stronger pump wave as described in the previous paragraph. 

Single-photon detection of 1.55-mm photons by means of frequency upconversion in a 

waveguide of periodically poled lithium niobate (PPLN) was recently demonstrated. It 

offers the convenience of nonresonant single-pass operation and moderate pump 

power requirement. For efficient conversion in nonlinear optical frequency mixing, high 

field intensities and long interaction lengths are necessary, both of which can be 

achieved simultaneously in a guided-wave structure (Roussev, Langrock, Kurz, & Fejer, 

2004).  

1.3 Objectives and outline of this thesis 

The main objective of this thesis is to up-convert single photons emitting at a 

wavelength of 1180nm produced by a quantum dot (QD) embedded in photonic crystal 

(PC) nanocavity to a wavelength of 670nm in the visible range. We want to achieve this 

quantum frequency up-conversion to characterize our single photon source with Silicon 

single-photon detectors in the visible that perform better than infrared single photon 

detectors. Moreover we want to overcome spectral distinguishability common to 

inhomogeneously broadened solid-state quantum emitters by converting spectrally 

separated QD transition to the same wavelength.  To achieve our objective, we can 

divide the work in three stages: 

1) Characterization of the periodically poled lithium niobate waveguide (PPLN-WG) 

nonlinear device in the macro-regime. 

2) Demonstrate and characterize the quantum frequency up-conversion of 

attenuated laser pulses, simulating a single photon source. 
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3) Demonstrate and characterize the quantum frequency up-conversion of single 

photons emitted from a QD in a PC nanocavity. 

It is worth reminding that, due to the time limitations of a M.Sc. project, the 

experiments done in this thesis only cover the first stage of the whole project, the 

characterization of the PPLN-WG.  

We will begin in Chapter 2 by explaining the theoretical nonlinear and quantum 

optics foundations for this work. Then in Chapter 3 I proceed to describe the optical 

properties of our PPLN-WG device. Finally, in Chapter 4 every aspect of the experiment 

is detailed and the obtained results are explained.  
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2. Theoretical Background 

In this chapter we describe the theoretical foundations to understand the 

experiments done in this work. Because this work lies in the border of nonlinear and 

quantum optics we need to know some concepts about both fields. Section 2.1 explains 

the process of frequency conversion and the techniques to achieve it. Section 2.2 

presents an introduction to the quantum description of light, needed to explain the 

frequency conversion of quantum states of light. 

2.1 Nonlinear Optics 

Nonlinear optics is the study of phenomena that occur when the presence of light 

in a material modifies its optical properties. This modification is typically achieved with 

laser light. These phenomena are “nonlinear” because they occur when the response of 

a material to an applied optical field depends in a nonlinear manner on the strength of 

the optical field. For our work, the nonlinear material is the lithium niobate. 

In order to describe precisely what an optical nonlinearity means we will first 

consider how the dipole moment per unit volume, or polarization P(t), of a material 

depends on the strength of an applied optical field E(t).The reason why the polarization 

plays a key role in the description of nonlinear optical phenomena is that a time-varying 

polarization can act as the source of new components of the electromagnetic field. For 

this section we follow the treatment given by (Boyd, 2007). 

2.1.1 Nonlinear Polarization 

When an external electric field E is applied to a dielectric medium a polarization 

P is induced. In the case of linear optics, the induced polarization can be often 

described by the relationship 

𝑃𝑖 = 𝜖0[χ𝑖𝑗
(1)

𝐸𝑗 + χ𝑖𝑗𝑘
(2)

𝐸𝑗𝐸𝑘 + χ𝑖𝑗𝑘𝑙
(3)

𝐸𝑗𝐸𝑘𝐸𝑙 + ⋯ ],      (2.1.1) 
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where the 𝜒(𝑛)are tensors of rank n+1 known as the nth-order susceptibilities and 𝜖0 is 

the permittivity of free space. When electric fields and/or higher-order susceptibilities 

become large, the nonlinear terms Pi
(NL) = Pi

(2) + Pi
(3) + ... come into play. Then, 

nonlinear optical effects can be observed. Physical processes that occur as a result of 

the second-order polarization 𝑷(2) tend to be distinct from those that occur as a result of 

the third-order polarization 𝑷(3). The first two polarization terms read: 

𝑃𝑖
(1) = 𝜖0 ∑ ∑ χ𝑖𝑗

(1)(𝜔𝑛)𝑛𝑗𝑘 𝐸𝑗(𝜔𝑛)𝑒−𝑖𝜔𝑛𝑡,      (2.1.2) 

𝑃𝑖
(2) = 𝜖0 ∑ ∑ χ𝑖𝑗𝑘

(2)(𝜔𝑛 + 𝜔𝑚 ; 𝜔𝑛, 𝜔𝑚)(𝑛𝑚)𝑗𝑘 𝐸𝑗(𝜔𝑛)𝐸𝑘(𝜔𝑚)𝑒−𝑖(𝜔𝑛+𝜔𝑚)𝑡.  (2.1.3) 

There a number of nonlinear optical processes that can occur. In this thesis we 

will focus particularly in second-order nonlinear effects. From Eq. (2.1.3) we can see 

that the second-order nonlinear polarization is responsible for three-wave mixing 

processes, this is the circumstance in which the optical field incident upon a second-

order nonlinear medium consists of two distinct frequency components, which we 

represent in the form 

𝑬(𝑡) = 𝐄1𝑒−𝑖𝜔1𝑡 + 𝐄2𝑒−𝑖𝜔2𝑡 + c. c.       (2.1.4) 

 Then, plugging (2.1.4) into (2.1.3) we find that the nonlinear polarization is given 

by 

𝑷(2) = 𝜖0χ𝑖𝑗𝑘
(2)

[𝐄1
2𝑒−2𝑖𝜔1𝑡 + 𝐄2

2𝑒−2𝑖𝜔2𝑡 + 2𝐄1𝐄2𝑒−𝑖(𝜔1+𝜔2)𝑡 + 2𝐄1𝐄2
∗𝑒−𝑖(𝜔1−𝜔2)𝑡 + c. c. ] +

              2𝜖0χ𝑖𝑗𝑘
(2)[𝐄1𝐄1

∗ + 𝐄2𝐄2
∗].       (2.1.5) 

We now see that in Eq. (2.1.5) we have the terms  

𝜖0χ(2)𝐄1
2𝑒−2𝑖𝜔1𝑡 + 𝑐. 𝑐  second harmonic generation (SHG) of 𝜔1, 

𝜖0χ(2)𝐄2
2𝑒−2𝑖𝜔2𝑡 + 𝑐. 𝑐  second harmonic generation (SHG) of 𝜔2,   

2𝜖0χ(2)𝐄1𝐄2𝑒−𝑖(𝜔1+𝜔2)𝑡 + 𝑐. 𝑐. sum frequency generation (SFG),  (2.1.6) 

2𝜖0χ(2)𝐄1𝐄2
∗𝑒−𝑖(𝜔1−𝜔2)𝑡 + 𝑐. 𝑐. difference frequency generation (DFG), and 

2𝜖0χ(2)[𝐄1𝐄1
∗ + 𝐄2𝐄2

∗]𝑒0  optical rectification (OR). 
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Here we have labeled each term by the name of the physical process it describes. We 

see from (2.1.6) that four different nonzero frequency components are present in the 

nonlinear polarization. The nonlinear polarization can efficiently produce an output 

signal only if a certain phase-matching condition (discussed in Section 2.1.3) is 

satisfied, and usually this condition cannot be satisfied for more than one frequency 

component of the nonlinear polarization. That is why no more than one of the frequency 

components in (2.1.5) will be present with any appreciable intensity in the radiation 

generated by the nonlinear optical interaction. In this work we are interested in the 

process of sum frequency generation, SFG. 

 The process of SFG is depicted in Figure 2-1 where in part (a) the input fields are 

at frequencies 𝜔1and 𝜔2. Due to the nonlinearities in the atomic response of the 

material, each atom develops an oscillating dipole moment which contains a component 

at frequency 𝜔1 + 𝜔2. A single atom would radiate at this frequency in the form of a 

dipole radiation patter as shown in (b). However, any material sample contains an 

enormous number of atomic dipoles, each of them oscillates with a phase determined 

by the phase of the incident fields. If the relative phasing of these dipoles is correct, the 

field radiated by each dipole will add constructively in the forward direction as illustrated 

in part (c). 

 For the most general case, the second-order nonlinear susceptibilities     

χ𝑖𝑗𝑘
(2)(𝜔𝑛 + 𝜔𝑚 ; 𝜔𝑛, 𝜔𝑚) depend on three frequencies. But now, for simplicity we will 

assume that they are frequency independent. Instead of the second order nonlinear 

susceptibility, it is common to use the nonlinear coefficient 𝐝 ≡ 𝑑𝑖𝑗𝑘 given by the relation 

𝑑𝑖𝑗𝑘 = χ𝑖𝑗𝑘
(2)

/2.    

2.1.2 Coupled-Wave Equations for Sum-Frequency Generation 

To begin let us assume the configuration shown in Figure 2-2, where the applied 

waves fall onto the nonlinear medium at normal incidence. We consider the wave 

equation for an optically nonlinear, isotropic, lossless, and dispersive material 

∇2𝑬𝑛 −
𝜖(1)(𝜔𝑛)

𝑐𝟐

𝜕2𝑬𝑛

𝜕𝑡2 =
1

𝜖0𝑐𝟐

𝜕2𝑷𝑛
𝑁𝐿

𝜕𝑡2                                                     (2.1.7) 
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Where 𝜖(1) is the real, frequency-dependent dielectric tensor. This wave equation can 

be used to describe specific nonlinear interactions and must hold for each frequency 

component of the field. We propose the solution to this equation as a plane wave at 

frequency 𝜔3 propagating in the +z direction in the form 

�̃�3(𝑧, 𝑡) = 𝐸3𝑒−𝑖𝜔3𝑡+c. c. = 𝐴3𝑒𝑖𝑘3𝑧𝑒−𝑖𝜔3𝑡 + c. c.,     (2.1.8) 

where 

𝑘3 =
𝑛3𝜔3

𝑐
, 𝑛3

2 = 𝜖(1)(𝜔3).       (2.1.9) 

 

 

Figure 2-1. Sum-frequency generation process. After (Boyd, 2007). 
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Figure 2-2 Sum-frequency generation configuration. After (Boyd, 2007). 

We expect that the solution of (2.1.7) will be of the form of (2.1.8) with 𝐴𝑖 taken to be a 

function of z. The nonlinear source term appearing in Eq. (2.1.7) is represented as 

�̃�3(𝑧, 𝑡) = 𝑃3𝑒−𝑖𝜔3𝑡 + c. c = 4ϵ0𝑑eff𝐸1𝐸2𝑒−𝑖𝜔3𝑡 + c. c = 4ϵ0𝑑eff𝐴1𝐴2𝑒𝑖(𝑘1+𝑘2)𝑧𝑒−𝑖𝜔3𝑡 + c. c.  

(2.1.10) 

where 𝑑eff can be calculated from the d tensor if the propagation and polarization 

directions of all three fields are known and the Kleinman’s symmetry condition is valid.  

 Now, we plug Eqs. (2.1.8) and (2.1.10) into the wave equation (2.1.7). After doing 

some calculation and taking into account the slowly varying amplitude approximation, 

we obtain the coupled-amplitude equation 

𝑑𝐴3

𝑑𝑧
=

2𝑖𝑑eff𝜔3
2

𝑘3𝑐2
𝐴1𝐴2𝑒𝑖∆𝑘𝑧        (2.1.11) 

where we have introduced the quantity 

∆𝑘 = 𝑘1 + 𝑘2 − 𝑘3,          (2.1.12) 

which is called the wavevector (or momentum) mismatch. Equation (2.1.11) shows how 

the amplitude of the 𝜔3wave varies as a consequence of its coupling to the 𝜔1 and 𝜔2 

waves. We must also take into consideration the spatial variation of the 𝜔1 and 𝜔2fields, 

so we can find two additional coupled-amplitude equations for them by repeating the 

derivation given above for 𝜔3. 
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𝑑𝐴1

𝑑𝑧
=

2𝑖𝑑eff𝜔1
2

𝑘1𝑐2 𝐴3A2
∗ 𝑒−𝑖∆𝑘𝑧 ,        (2.1.13) 

𝑑𝐴2

𝑑𝑧
=

2𝑖𝑑eff𝜔2
2

𝑘2𝑐2
𝐴3A1

∗ 𝑒−𝑖∆𝑘𝑧.        (2.1.14) 

2.1.3 Phase-matching 

From Eq. (2.1.11) and by assuming that the amplitudes 𝐴1and 𝐴2 are constants, we 

note that, for the special case  

∆𝑘 = 0,          (2.1.15) 

the amplitude 𝐴3 of the sum-frequency wave increases linearly with z. This special case 

is known as the condition for perfect phase matching. When the condition (2.1.15) is 

fulfilled the individual atomic dipoles that constitute the sample are properly phased so 

that the field emitted by each dipole adds coherently in the forward direction. 

 When the condition (2.1.15) is not satisfied, the intensity of the emitted radiation 

is smaller than for the case of ∆𝑘 = 0. The amplitude of the sum-frequency field at the 

exit of the nonlinear medium is given by integrating Eq. (2.1.11) from z = 0 to z = L, 

being L the length of the crystal, 

𝐴3(𝐿) =
2𝑖𝑑eff𝜔3

2

𝑘3𝑐2 𝐴1𝐴2 ∫ 𝑒𝑖∆𝑘𝑧𝐿

0
𝑑𝑧 =

2𝑖𝑑eff𝜔3
2𝐴1𝐴2

𝑘3𝑐2 (
𝑒𝑖∆𝑘𝐿−1

𝑖∆𝑘
).    (2.1.16) 

The intensity for our definition of field amplitude is given by the time-averaged Poynting 

vector given by 

𝐼𝑖 = 2𝑛𝑖𝜖0𝑐|𝐴𝑖|
2,   𝑖 = 1,2,3.        (2.1.17) 

We thus obtain for our sum-frequency wave an expression that can be written in terms 

of the incident fields yielding 

𝐼3 =
8𝑛3𝜖0𝑑eff

2  𝜔3
4|𝐴1|2|𝐴2|2

𝑘3𝑐2 |
𝑒𝑖∆𝑘𝐿−1

∆𝑘
|

2

=
8𝑑eff

2  𝜔3
2𝐼1𝐼2

𝑛1𝑛2𝑛3𝜖0𝑐2 𝐿2sinc2 (
∆𝑘𝐿

2
).   (2.1.18) 

The effect of the wavevector mismatch is included entirely in the factor sinc2(∆𝑘𝐿/2). 

This is the phase mismatch factor and it is plotted in Figure 2-3. As it can be noted in 
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Figure 2-3, the efficiency of the three-wave mixing process decreases as |∆𝑘|𝐿 

increases. This happens because if L is greater than approximately 1 / Δk, the output 

wave can get out of phase with its driving polarization and the power from the ω3 wave 

can flow back to the input waves. 

 In order to achieve an efficient three-wave mixing process, momentum and 

energy conservation must be fulfilled. Since the linear momentum for photons is given 

by  �⃗� = ℏ�⃗⃗�, Eq. (2.1.15) represents the conservation of momentum in the photon 

picture. The energy conservation in nonlinear optical process of SFG is expressed by 

the relation 

𝜔3 = 𝜔1 + 𝜔2.          (2.1.19) 

 

Figure 2-3. Effects of the wavevector mismatch on the efficiency of 
sum-frequency generation. After (Boyd, 2007). 

Experimentally, it is not easy to satisfy Eq. (2.1.15) and Eq. (2.1.19) 

simultaneously because of the material’s normal dispersion where the refractive index is 

an increasing function of frequency. As a result the condition for perfect phase matching 

with collinear beams  

𝑛1𝜔1

𝑐
+

𝑛2𝜔2

𝑐
=

𝑛3𝜔3

𝑐
,          (2.1.20) 
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where 𝜔3 = 𝜔1 + 𝜔2, cannot be achieved. To show this for the case of sum-frequency 

generation we rewrite Eq. (2.1.26) as 

𝑛3 =
𝑛1𝜔1

𝜔3
+

𝑛2𝜔2

𝜔3
.         (2.1.21) 

We now express the refractive index difference 𝑛3 − 𝑛2as 

𝑛3 − 𝑛2 =
𝑛1𝜔1+𝑛2𝜔2−𝑛2𝜔3

𝜔3
=

𝑛1𝜔1−𝑛2𝜔1

𝜔3
= (𝑛1 − 𝑛2)

𝜔1

𝜔3
.    (2.1.22) 

For normal dispersion, n3 must be greater than n2, and hence the left hand of this 

equation must be positive. However, n2 must also be greater than n1, showing that the 

right hand must be negative, which demonstrates that Eq. (2.1.22) cannot possess a 

solution.  

In principle, it is possible to achieve the phase-matching condition by making use 

of anomalous dispersion, which occurs in spectral regions with strong absorption that 

are not desirable in practical devices. To achieve ∆𝑘 = 0 anyway, a number of 

phasematching techniques have been developed (Suhara & Fujimura, 2003). The two 

most common methods in nonlinear optical devices are the birefringent phasematching 

(BPM) and quasi-phasematching (QPM). BPM makes use of the birefringence in many 

nonlinear crystals to satisfy the phasematching condition. QPM is based on a periodic 

modulation of the nonlinear coefficient deff. In the next section we will explain the QPM 

method because it is the method used in this thesis to achieve the phasematching 

condition. 

2.1.4 Quasi-phase-matching 

In the previous section we found that the phase-matching condition has to be 

achieved to get an efficient generation of new frequency components in any nonlinear 

optical interaction. One of the techniques to achieve this condition is known as quasi-

phase-matching (QPM), the idea of QPM is showed in Figure 2-4, which shows a single 

crystal of nonlinear optical material (a) and a periodically poled material (b). A 

periodically poled material is a structure that has been fabricated in such a manner that 

the orientation of one of the crystalline axes, often the c axis of a ferroelectric material, 

is inverted periodically as a function of position within the material. An inversion in the 
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direction of the c axis has the consequence of inverting the sign of the nonlinear 

coupling coefficient 𝑑eff. This periodic alternation of the sign of 𝑑eff can compensate for 

a nonzero wavevector mismatch ∆𝑘. It is assumed that the period Λ of the alternation of 

the crystalline axis has been set equal to twice the coherent buildup length Lcoh of the 

nonlinear interaction. Then, each time the field amplitude of the generated wave is 

about to begin to decrease as a consequence of the wavevector mismatch, a reversal of 

the sign of deff occurs which allows the field amplitude to continue to grow 

monotonically. This effect is illustrated in Figure 2-5. Curve (a) shows that for the case 

of a perfectly matched interaction, the field strength of the generated wave grows 

linearly with the propagation distance. QPM is illustrated in curve (b). Without 

phasematching, the refractive indices at the input and at the SFG frequency are not 

equal. As a consequence, the waves at both frequencies travel through the crystal with 

different velocities. This is the situation shown in curve (c) where the field amplitude of 

the generated wave oscillates with propagation distance due to the presence of the 

wavevector mismatch. Initially, the SFG power increases. But soon, after a certain 

length called the coherence length Lcoh, the wavelets have run out of phase and start to 

cancel out each other via destructive interference. As a consequence, the SFG power 

decreases again and is zero at z = 2 Lcoh (Zaske, 2013). An important factor to take into 

account is that for a constant wavelength satisfying the QPM condition, a shift of the 

device temperature ΔT gives rise to a phase mismatch that depends on the thermal 

expansion coefficient of the crystal (Suhara & Fujimura, 2003). 

A number of different approaches have been proposed for the fabrication of QPM 

structures. A particulary promising approach, and the one used in this work, originated 

with Yamada et al. (1993), is the use of a static electric field to invert the orientation of 

the ferroelectric domains in a thin sample of lithium niobate.  
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Figure 2-4. Schematic representation of a second-order nonlinear material in 
the form of (a) a homogeneous single crystal and (b) a periodically poled 
material in which the positive c axis alternates in orientation with period Λ. 
After (Boyd, 2007). 

 

Figure 2-5. Comparison of the spatial variation of the field amplitude of the generated wave in a nonlinear 
optical interaction for three different phase marching conditions. Curve (a) assumes that the phase-matching 
condition is perfectly satisfied. Curve (c) assumes that the wavevector mismatch Δk is nonzero, and 
consequently the field amplitude of the generated wave oscillates periodically with distance. Curve (b) 
assumes the case of a quasi-phase-matched interaction, in which the orientation of the positive c axis is 
periodically modulated with a period of twice the coherent buildup length Lcoh, in order to compensate for the 
influence of wavevector mismatch. In this case the field amplitude grows monotonically with propagation 
distance, although less rapidly than in the case of a perfectly phase-matched interaction. After (Boyd, 2007). 
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2.2 Quantum description of light 

Most of nonlinear optics experiments are performed with laser light and it is often 

sufficient to use plane waves to model the electromagnetic fields. But the wave picture 

of electromagnetic fields is purely classical and cannot explain all of the phenomena we 

aim to investigate in this work. Because we want to up-convert the frequency of single 

photons, we have to consider the particle character of light rather than its wave-like 

properties. For this section we follow the work by Zaske (2013) and Loudon (2000). 

2.2.1 Photon number states 

The photon number states or Fock states |𝑛〉 are the basic states of the quantum 

theory of light. They describe a single mode of the electromagnetic field occupied by n 

photons. To begin we present the Hamiltonian of the quantum mechanical harmonic 

oscillator in the form 

�̂� =
1

2
ℏ𝜔(�̂��̂�† + �̂�†�̂�) = ℏ𝜔 (�̂��̂�† +

1

2
)       (2.2.1) 

where �̂� and �̂�† are called the destruction and creation operators. These operators have 

the properties 

�̂�|𝑛〉 = √𝑛|𝑛 − 1〉,          (2.2.2) 

�̂�†|𝑛〉 = √𝑛 + 1|𝑛 + 1〉,         (2.2.3) 

[�̂�, �̂�†] = �̂��̂�† − �̂�†�̂� = 1.         (2.2.4) 

Taking into account the analogy of the Hamiltonian in Eq. (2.2.1) with the 

electromagnetic field energy we can apply the formalism of the quantum mechanical 

harmonic oscillator for light fields. Applying Eq. (2.2.1) to a Fock state we obtain the 

eigenvalue equation 

�̂�|𝑛〉 = ℏ𝜔 (�̂��̂�† +
1

2
) |𝑛〉 = ℏ𝜔 (�̂� +

1

2
) |𝑛〉 = 𝐸𝑛|𝑛〉    (2.2.5) 

where the states |𝑛〉 are simultaneous eigenstates of the Hamiltonian �̂� and where we 

have introduced the number operator �̂� defined as �̂� = �̂�†�̂�, which has the property 
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�̂�|𝑛〉 = 𝑛|𝑛〉. From Eq. (2.2.5) we can see that 𝐸𝑛 = ℏ𝜔 (𝑛 +
1

2
) is the energy of a field 

mode containing n quanta. 

2.2.2 Coherent states. 

A coherent state, is constructed as a linear superposition of photon number 

states and it is represented by (Glauber, 1963) 

|∝〉 = 𝑒−
1

2
|𝛼|2

∑
𝛼𝑛

√𝑛!
∞
𝑛=0 |𝑛〉,         (2.2.6) 

where α is the complex amplitude of the coherent state. The expectation value for the 

number operator is related to α via 

〈�̂�〉 = ⟨𝛼|�̂�|𝛼⟩ = |𝛼|2.          (2.2.7) 

 

The coherent states are important because their properties are the ones that 

most closely resemble those of a classical electromagnetic wave. A single-mode laser 

operated well above threshold generates a coherent state excitation.  

2.2.3 Different types of light 

For the experiments proposed in this work, which lay in the regime of very low 

optical power and quantum optics, we need single-photon detectors that work differently 

from normal optical intensity detectors like photodiodes. Single-photon detectors 

produce a voltage pulse every time a photon event is registered and offer the possibility 

to investigate the photon statistics in a light beam. Three different classes of light can be 

distinguished by means of the statistical properties of the intensity fluctuations recorded 

by single-photon detectors as we can see in Figure 2-6. 
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Figure 2-6. Schematic representation of time series of photocounts for light beams that are (a) bunched, (b) 
random, and (c) antibunched. After (Loudon, 2000). 

Figure 2-6(a) shows a schematic representation of the occurrence of 

photocounts as a function of the time for chaotic light, this light cannot carry a coherent 

signal and its phase is completely uncertain. The clusters of counts, associated with the 

photon bunches in the incident light beam, are clearly visible. It can be shown that the 

photon number probabilities for chaotic light follow the geometric or Planck distribution 

𝑃(𝑛) =
〈𝑛〉𝑛

(1+〈𝑛〉)1+𝑛,          (2.2.8) 

Illustrated in Figure 2-7 (a). The size of the fluctuation in photon number is characterized 

by the photon-number variance relation to the mean, defined as 

(∆𝑛)2 = 〈𝑛〉2 + 〈𝑛〉.          (2.2.9) 

Coherent light has no intensity fluctuations in the classical picture and it has no 

photon bunches in the quantum picture. Figure 2-6(b) shows the random succession of 

photocounts produced by coherent light. For a coherent state described by Eq. (2.2.6), 

the probability of finding n photons in the mode is governed by the Poisson distribution 

which is characteristic for random processes as 

𝑃(𝑛) = |⟨𝑛|𝛼⟩|2 = exp(−|𝛼|2)
|𝛼|2𝑛

𝑛!
= 𝑒−〈𝑛〉 〈𝑛〉𝑛

𝑛!
.      (2.2.10) 
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The variance of the Poisson distribution is given by Eq. (2.2.11) and its form is 

illustrated in Figure 2-7 (b). 

(∆𝑛)2 = |𝛼|2 = 〈𝑛〉.          (2.2.11) 

Figure 2-6 (c) shows a succession of photocounts in which the frequency of 

occurrence of closely-spaced events is less than the frequency of events with larger 

spacings. A photocount pattern of this form is associated with the so called antibunched 

light. Such light is generated by sources in which emissions of successive photons are 

more likely to occur with longer time separations than at shorter time intervals.  

One can consider a perfectly coherent light source with a Poissonian photon 

number distribution as a reference for other light sources. Based on this we can classify 

the different kinds of light intensity fluctutation by means of their root-mean-square 

deviation of their photon probabilty distribution as it can be seen in Table 2-1. 

 

 

 

(a) (b) 

Figure 2-7. The (a) Planck and (b) Poission photon number probability distributions for three different values of photon mean 
numbers. After (Loudon, 2000). 
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All classical light sources generate super-Poissonian or Poissonian light, and this 

is why the sub-Poissionan light is also called as non-classical light. An ideal non-

classical single-photon source generates photons that are represented by a Fock state 

which has Δn = 0. By `ideal' we mean that a single photon can be emitted on-demand 

with a probability of one at any time specified by the user, the probability for emission of 

two or more photons at the same time is zero, and photons which are subsequently 

generated should be indistinguishable. Another desirable feature would be that the 

repetition rate can be made almost arbitrarily fast. In practice, the ideal case cannot yet 

be completely achieved due to technical limitations (Lounis & Orrit, 2005). 

2.2.4 Degree of second order coherence. 

To decide whether a light field is non-classical, poissonian or super-poissonian, 

we could measure its photon counting statistics but this is very difficult technically 

because photon counter are not photon number resolvable and have certain death 

times. Instead, one usually measures the degree of second order coherence. For a 

stationary light field it is defined by 

𝑔(2)(𝜏) =
〈�̂�†(𝑡)�̂�†(𝑡+𝜏)�̂�(𝑡)�̂�(𝑡+𝜏)〉

〈�̂�†(𝑡)�̂�(𝑡)〉2        (2.2.12) 

 The classification of light by its photon statistics that we have introduced before 

can also be written in terms of the value 𝑔(2)(𝜏 = 0), as can be seen in  

Table 2-2. In general, light sources that produce states which satisfy 1 −
1

〈𝑛〉
≤ 𝑔(2)(0) <

1 are called to be nonclassical, the situation     𝑔(2)(0) ≥ 𝑔(2)(𝜏 ≠ 0) is known as photon 

nn  nn  nn 

Table 2-1 
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bunching, and the situation 𝑔(2)(0) ≤ 𝑔(2)(𝜏 ≠ 0) is known as photon antibunching (Fox, 

2006). 

This is experimentally measured with the Hanbury-Brown-Twiss (HBT) 

Interferometer in the quantum picture of light, which is shown in Figure 2-8. (a) Hanbury 

Brown-Twiss (HBT) experiment with a photon stream incident on the beam splitter. (b) Typical 

results of such an experiment for bunched light. After .(a) (Hanbury Brown & Twiss, 1956). A 

stream of photons is incident on a 50:50 beam splitter, and is divided equally between 

the two output ports. The photons impinge on the detectors and the resulting output 

pulses are fed into an electronic counter/timer. The counter/timer records the time that 

elapses between the pulses from D1 and D2, while simultaneously counting the number 

of pulses at each input. The results are typically presented as a histogram, as shown in 

Figure 2-8(b). The histogram displays the number of events that are registered at each 

value of the time τ between the start and stop pulses. Hence the results of the HBT 

experiment give a direct measure of the second order correlation function in the photon 

interpretation of light (Fox, 2006). 

 

Figure 2-8. (a) Hanbury Brown-Twiss (HBT) experiment with a photon stream incident on the 
beam splitter. (b) Typical results of such an experiment for bunched light. After (Fox, 2006). 
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Figure 2-9. Second-order correlation function for two possible forms of antibunched light. After (Fox, 2006). 

Table 2-2 
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3. Nonlinear Optical Waveguide 

In this chapter a description of the nonlinear device used in our experiments is 

presented. First, the characteristics of the nonlinear material, lithium niobate, as well as 

its properties for the nonlinear process we are interested in are showed. Then the 

periodically poled lithium niobate waveguide device is described from a theoretical point 

of view, ending with its use for SFG. 

3.1 Lithium Niobate 

Lithium niobate (LiNbO3) is centrally important in integrated and guided-wave optics 

and one of the most widely used electro-optic materials. It is a human-made dielectric 

material that does not exist in nature. It was first discovered to be ferroelectric in 1949 

(Matthias & Remeika, 1949). 

3.1.1 Crystal Structure 

Lithium niobate’s structure at temperatures below its ferroelectric Curie temperature 

(around 1210°C) consists of planar sheets of oxygen atoms in a distorted hexagonal 

close-packed configuration. The octahedral interstices formed in this structure are one 

third filled by lithium atoms, one-third filled by niobium atoms, and one-third vacant as 

seen in Figure 3-1. It belongs to the broad class of displacement ferroelectric materials. 

 The LiNbO3 crystal is a member of the trigonal crystal system. It exhibits three-

fold rotation symmetry about its c axis and mirror symmetry about three planes that are 

60° apart and intersect forming a three-fold rotation axis. These two symmetry 

operations classify LiNbO3 as a member of the 3m point group and R3c space group. 

The conventional hexagonal unit cell in LiNbO3 contains six formula weights and the c 

axis is defined as the axis about which the crystal exhibits three-fold rotation symmetry. 

The coordinate system used to describe the physical tensor properties of lithium niobate 

is a Cartesian x, y, z system. The accepted convention for relating the hexagonal axes 

to the x, y, z principal axes is that the z axis is chosen to be parallel to the c axis.  

3.1.2 Ferroelectricity and Electric Field Poling 

The shift of Li+ and Nb- ions with respect to the oxygen octahedral at room 

temperature is the reason for the ferroelectricity in lithium niobate. It causes permanent 
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electric dipole moments in each unit cell. If all Li+ ions are shifted in the same direction 

within a certain volume of the crystal (a domain), the microscopic electric dipoles all 

point in the same direction and a macroscopic spontaneous polarization Ps is observed. 

A periodic modulation of the nonlinear coefficient deff for QPM in lithium niobate is 

achieved by periodic poling techniques. This techniques consist on applying external 

electric fields to a single domain crystal to induce a periodic domain structure with 

alternating directions (parallel and antiparallel to the initial +c direction) of Ps (Miller, 

1998). A domain with a flipped direction of Ps is equivalent to a mirrored part of the 

crystal with respect to a fixed frame. Thus, the d31 and d33 tensor elements change their 

sign in that region. This is the foundation for the fabrication of QPM crystal via electric 

field poling (Zaske, 2013). 

 

Figure 3-1. Positions of the lithium atoms and niobium atoms with 
respect to the oxygen octahedra in the ferroelectric phase (T < Tc) of 

lithium niobate, after (Weis & Gaylord, 1985). 

3.1.3 Doping 

Usually, the composition of lithium niobate single crystals is not perfectly stoichiometric. 

A small fraction of Li+ ions is substituted by Nb- ions such that the ratio of Li+ ions to Nb- 

ions is not exactly 1 as expected from the chemical formula. In the congruent 

composition of lithium niobate this ratio is 0.946 and this material exhibits and effect 
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known as photorefractive damage (Ashkin, et al., 1966). This refers to optically-induced 

inhomogeneities in the refractive index which are observed when the material is 

illuminated with strong laser radiation in the visible, the complex mechanism for this 

effect involves several effects. It is associated with the non-perfect stoichiometry of the 

crystal as Nb- ions on Li+ sites can act as traps for electrons which help to form local 

electric field in the crystal and lead to fluctuations of the refractive index via the linear 

electro-optic effect (Weis & Gaylord, 1985). The effects produced by the photorefractive 

damage can be severely detrimental in nonlinear optical processes and can be strongly 

suppressed by doping the crystal with MgO or ZnO or having a stoichiometric 

composition (Furukawa, et al., 2000). In this work we work with a congruent lithium 

niobate crystal doped with ZnO. 

3.1.4 Linear and nonlinear optical properties 

The transparency range of lithium niobate spans from wavelengths around 

0.35μm to 4μm. It is a birefringent material with one optical axis and its birefringence 

∆𝑛 = 𝑛𝑒 − 𝑛𝑜 is negative in the transparency range. In lithium niobate, phase-matching 

can be achieved by means of the birefringence of the material or by QPM. To know the 

dependence of the refractive indices on the wavelength and temperature numerous 

Sellmeier equations can be found in the literature (Jundt, 1997).  

Taking into account symmetry properties of the 3m point group, the matrix for d 

in Section 2.1.1 reads as 

𝒅 = (
0 0 0

−𝑑22 𝑑22 0
𝑑31 𝑑31 𝑑33

    
0 𝑑31 −𝑑22

𝑑31 0 0
0 0 0

).      (3.1.1) 

Numeric values for the three non-vanishing tensor elements d31, d22, and d33 for 

congruent lithium niobate can be found in Table 3-1. In this thesis we work with ZnO 

doped congruent lithium niobate and the doping has no large impact on the values of 

the nonlinear coefficients. These values are normally obtained from SHG experiments 

and the d33 is the largest and is only accessible via QPM. The light propagation in our 

experiment is along the z axis of the laboratory frame of reference, which is different 

from the crystal coordinate system as illustrated in Figure 3-2 (Zaske, 2013). 
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Figure 3-2. Three wave mixing in a QPM crystal. The laboratory frame is 
denoted by the lower case letters (x, y, z) while the capital letters (X, Y, 
Z) indicate the crystal coordinate system of lithium niobate. after (Zaske, 
2013). 

 

Table 3-1. Second-order nonlinear-optical coefficients of CLN (pm/V). 

Crystal λ* (μm) d33 d22 d31 Reference 

Congruent 

LiNbO3 (CLN) 

1.313 19.5  3.2 

 (Shoji, 

Kondo, 

Kitamoto, 

Shirane, & 

Ito, 1997) 

1.15 25  4.1 

(Shoji, 

Kondo, 

Kitamoto, 

Shirane, & 

Ito, 1997) 

0.852 25.7  4.8 

(Shoji, 

Kondo, 

Kitamoto, 

Shirane, & 

Ito, 1997) 

1.064 27.2 2.1 4.4 

(Miller, 

Nordland, & 

Bridenbaugh, 

1971) 
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3.2 Waveguide based quasi-phase-matched frequency converter 

One way of enhancing the efficiency of nonlinear processes is to use an optical 

waveguide (WG) to confine light fields within a small spatial volume in two dimensions 

and to increase the interaction length. For a given power, the intensity increases if the 

mode volume becomes smaller.  We can understand this from the coupled mode 

equations introduced in Section 2.1.2 and the fact that |𝐴𝑚(𝑧)|2 is proportional to the 

field intensities. 

The most common examples of optical WGs are the optical fibers made of SiO2. 

In this thesis we use WGs made of Zn-doped PPLN with a rectangular cross-section. 

This material was chosen because of its high nonlinear d33 coefficient and its immunity 

against photorefractive damage, as seen in the previous section. In Figure 3-3 the 

geometry of a rectangular dielectric waveguide for deriving the theoretical framework in 

this thesis is shown. The materials on all four sides of the rectangular core are allowed 

to be different. An exact analytical treatment of this problem is not possible and 

approximate solutions by numerical methods as accurate as desired have been 

obtained. Here we follow the treatment from Marcuse (1974) that presents an 

approximate analytical approach that was developed originally by Marcatili (1969). This 

method only works for modes far from the cutoff frequency, which is the lowest 

frequency for which a mode can propagate thorugh the WG. There are two types of 

modes that the waveguide can support. One type, the 𝐸𝑝𝑞
𝑥  modes, is polarized 

predominantly in the x direction while the other type, 𝐸𝑝𝑞
𝑦

, is polarized predominantly in 

the y direction. 

From Marcuse (1974) it is possible to express the transverse field components in 

terms of the longitudinal components, with the time and z dependence (𝑒−𝑖(𝜔𝑡−𝛽𝑧)) we 

obtain 
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Figure 3-3. Schematic of the five dielectric regions of a rectangular 
dielectric waveguide. The field in the shaded regions is ignored in the 

approximation, after (Marcuse, 1974). 

𝐸𝑥 = − (
𝑖

𝐾𝑗
2) [(𝛽

𝜕𝐸𝑧

𝜕𝑥
) + (𝜔𝜇0

𝜕𝐻𝑧

𝜕𝑦
)],       (3.2.1) 

𝐸𝑦 = − (
𝑖

𝐾𝑗
2) [(𝛽

𝜕𝐸𝑧

𝜕𝑦
) − (𝜔𝜇0

𝜕𝐻𝑧

𝜕𝑥
)],       (3.2.2) 

𝐻𝑥 = − (
𝑖

𝐾𝑗
2) [(𝛽

𝜕𝐻𝑧

𝜕𝑥
) − (𝜔𝜀0𝑛𝑗

2 𝜕𝐸𝑧

𝜕𝑦
)],      (3.2.3) 

𝐻𝑦 = − (
𝑖

𝐾𝑗
2) [(𝛽

𝜕𝐻𝑧

𝜕𝑦
) + (𝜔𝜀0𝑛𝑗

2 𝜕𝐸𝑧

𝜕𝑥
)],      (3.2.4) 

the parameter 𝐾𝑗 is defined by 𝐾𝑗 = (𝑛𝑗
2𝑘2 − 𝛽2)

1/2
 and 𝑛𝑗  (𝑗 = 1, … , 5) is the refractive 

index for each region from 1 – 5. β is the propagation constant, an effective 

wavenumber for a mode propagating in the WG while 𝑘2 = 𝜔2𝜇0𝜀0 = 2𝜋/𝜆 is the 

wavenumber in free space. The longitudinal components 𝐸𝑧 and 𝐻𝑧 must satisfy the 

reduced wave equation 

(
𝜕2𝜓

𝜕𝑥2 ) + (
𝜕2𝜓

𝜕𝑦2) + 𝐾𝑗
2𝜓 = 0.        (3.2.5) 

The following set of field component satisfies the reduced wave equation and 

relations (3.2.1)-(3.2.4) and describes a 𝐸𝑝𝑞
𝑥  mode in region 1. The time and z 

dependence are omitted for brevity throughout: 
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𝐸𝑧 = 𝐴 cos 𝜅𝑥(𝑥 + 𝜉) cos 𝜅𝑦(𝑦 + 𝜂)       (3.2.6) 

𝐻𝑧 = −𝐴 (
𝜀0

𝜇0
)

1

2
𝑛1

2 (
𝜅𝑦

𝜅𝑥
) (

𝑘

𝛽
) sin 𝜅𝑥(𝑥 + 𝜉) sin 𝜅𝑦(𝑦 + 𝜂)    (3.2.7) 

𝐸𝑥 = (
𝑖𝐴

𝜅𝑥𝛽
) (𝑛1

2𝑘2 − 𝜅𝑥
2) sin 𝜅𝑥(𝑥 + 𝜉) cos 𝜅𝑦(𝑦 + 𝜂)    (3.2.8) 

𝐸𝑦 = −𝑖𝐴 (
𝜅𝑦

𝛽
) cos 𝜅𝑥(𝑥 + 𝜉) sin 𝜅𝑦(𝑦 + 𝜂)      (3.2.9) 

𝐻𝑥 = 0          (3.2.10) 

𝐻𝑦 = 𝑖𝐴 (
𝜀0

𝜇0
)

1

2
𝑛1

2 (
𝑘

𝜅𝑥
) sin 𝜅𝑥(𝑥 + 𝜉) cos 𝜅𝑦(𝑦 + 𝜂).    (3.2.11) 

We are interested on 𝐸𝑝𝑞
𝑥  modes because this are the ones important for the 

work described in this thesis. To use practically Eqs. (3.2.6)-(3.2.11) and the other sets 

of functions for regions 1-4, numeric values for 𝜅𝑥, 𝜅𝑦, 𝜉, 𝜂, 𝛽 must be calculated and 

are completely determined by the refractive indices of the five regions and the height d 

and width b of the WG. 𝜅𝑥 and 𝜅𝑦 are found by numerically solving the eigenvalue 

equations  

tan 𝜅𝑥 𝑑 =
𝑛1

2𝜅𝑥(𝑛3
2𝛾2+𝑛2

2𝛾3)

𝑛3
2𝑛2

2𝜅𝑥
2−𝑛1

4𝛾2𝛾3
         (3.2.12) 

tan 𝜅𝑦 𝑏 =
𝜅𝑦(𝛾4+𝛾5)

𝜅𝑦
2−𝛾4𝛾5

,         (3.2.13) 

where 

𝛾2 = [(𝑛1
2 − 𝑛2

2) 𝑘2 − 𝜅𝑥
2]

1

2       (3.2.14) 

𝛾3 = [(𝑛1
2 − 𝑛3

2) 𝑘2 − 𝜅𝑥
2]

1

2       (3.2.15) 

𝛾4 = [(𝑛1
2 − 𝑛4

2) 𝑘2 − 𝜅𝑦
2]

1

2       (3.2.16) 

𝛾5 = [(𝑛1
2 − 𝑛5

2) 𝑘2 − 𝜅𝑦
2]

1

2.       (3.2.17) 

Once we have 𝜅𝑥 and 𝜅𝑦we found 𝜉and 𝜂 from 

tan 𝜅𝑥 𝜉 = −(𝑛3
2/𝑛1

2)(𝜅𝑥/𝛾3)       (3.2.18) 

tan 𝜅𝑦 𝜂 = −𝛾5/𝜅𝑦.         (3.2.19) 

The propagation constant of a specific mode is obtained from 
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𝛽 = [𝑛1
2𝑘2 − (𝜅𝑥

2 + 𝜅𝑦
2)]

1/2
.        (3.2.20) 

 The power carried by the mode through the WG is obtained by integrating the z 

component of the time averaged power flow vector (Poynting vector): 

𝑆𝑧 = 𝐒 ∙ 𝐧 =
1

2
Re(𝐄 × 𝐇∗) ∙ 𝐞𝑧,        (3.2.21) 

where n and 𝐞𝑧 are unit vectors, over the infinite transverse cross section of the 

waveguide 

𝑃 = ∬ 𝑆𝑧 𝑑𝑥𝑑𝑦.          (3.2.22) 

The type of WG used in this work is called Ridge Waveguide and it is shown in 

Figure 3-4 (a). And Figures 3-4 (b-c) show examples of the intensity distribution in the 

xy plane for the fundamental WG modes. 

 

Figure 3-4. (a) Schematic of the Zn:PPLN Ridge Waveguide, after (Zaske, 2013). (b-c) Intensity distribution for 

the fundamental WG modes for our work’s 9.4μm x 11.4μm LN WG. (b) 𝑬𝟎𝟎
𝒙  mode for λ = 1175nm, (c) 𝑬𝟎𝟎

𝒙  mode 
for λ = 670nm. Bright areas correspond to high intensity. 

3.2.1 SFG in Ridge Waveguides. 

This section combines what we saw in Section 2.1 about three-wave mixing due 

to optical nonlinearities and what we saw in the previous one about field confinement in 

a WG. Here we describe SFG in lithium niobate ridge WGs. We follow the derivation 

made by Zaske (2013) and Suhara & Fujimura (2003). First, let us consider three 

electric field modes 
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𝐄𝑚(𝐫, 𝑡) = 𝐴𝑚(𝑧)ℇ𝑚(𝑥, 𝑦)𝑒𝑖(𝜔𝑚𝑡−𝛽𝑚𝑧) + 𝑐. 𝑐.   (𝑚 = 1,2,3)    (3.2.23) 

at frequencies 𝜔1, 𝜔2 and 𝜔3 propagating in the WG. The product of the scalar function 

𝐴𝑚(𝑧) with the vector field ℇ𝑚(𝑥, 𝑦) represents the field amplitudes. The evolution of 

power at 𝜔𝑚 along the WG is described by 𝐴𝑚(𝑧) and only depends on z. The power in 

Watts is given by 𝑃𝑚 = |𝐴𝑚(𝑧)|2. The normalized transverse intensity distribution is 

described by ℇ𝑚(𝑥, 𝑦). ℇ𝑚(𝑥, 𝑦) is obtained from Marcatili’s approximation by 

multiplication with a normalization factor 𝐶𝑚: 

ℇ𝑚(𝑥, 𝑦) = 𝐶𝑚𝐄𝑚(𝑥, 𝑦),         (3.2.24) 

where 

𝐶𝑚 = [
1

2
∬ Re(𝐄𝑚 × 𝐇𝑚

∗ ) ∙ 𝐞𝑧 𝑑𝑥𝑑𝑦]
−1/2

.       (3.2.25) 

From Suhara & Fujimura (2003) and with the above definitions, the coupled mode 

equations governing three-wave mixing processes in WGs are given by 

𝜕𝐴1

𝜕𝑧
= −∝1 𝐴1 − 𝑖𝜅1𝐴2

∗ 𝐴3𝑒−𝑖Δ𝛽𝑧,        (3.2.26) 

𝜕𝐴2

𝜕𝑧
= −∝2 𝐴2 − 𝑖𝜅2𝐴1

∗ 𝐴3𝑒−𝑖Δ𝛽𝑧,        (3.2.27) 

𝜕𝐴3

𝜕𝑧
= −∝3 𝐴3 − 𝑖𝜅3𝐴1𝐴2𝑒+𝑖Δ𝛽𝑧.        (3.2.28) 

Three important changes were made to this equations in comparison to the relations 

(2.1.17)-(2.1.20) for the interaction of plane waves. The −∝𝑚 𝐴𝑚 terms were added to 

account for WG attenuation. The wavevector mismatch  Δ𝑘 was replaced by Δ𝛽 

because the wave is now propagating in a WG. And the coupling constants 𝜅1, 𝜅2, and 

𝜅3 are different from those in (2.1.17)-(2.1.20) and depend on the spatial overlap of the 

three interacting modes given by the following integrals 

𝜅1 =
𝜔1𝜖0

2
∬ ℇ1

∗(𝑥, 𝑦) 𝑑𝑄ℇ3(𝑥, 𝑦)ℇ2
∗ (𝑥, 𝑦)𝑑𝑥𝑑𝑦,      (3.2.29) 

𝜅2 =
𝜔2𝜖0

2
∬ ℇ2

∗ (𝑥, 𝑦) 𝑑𝑄ℇ3(𝑥, 𝑦)ℇ1
∗(𝑥, 𝑦)𝑑𝑥𝑑𝑦,     (3.2.30) 
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𝜅3 =
𝜔3𝜖0

2
∬ ℇ3

∗ (𝑥, 𝑦) 𝑑𝑄ℇ2(𝑥, 𝑦)ℇ1(𝑥, 𝑦)𝑑𝑥𝑑𝑦.      (3.2.31) 

Where 𝑑𝑄 is the nonlinear coefficient for the q-th order of the Fourier series that 

describes de nonlinear coefficient alternation in a QPM material. These coupling 

constants obey the next relation, that shows the conservation of total power, 

𝜅1

𝜔1
=

𝜅2

𝜔2
=

𝜅3
∗

𝜔3
 .          (3.2.32) 

For the case of QPM in LN, the integrals (3.2.29)-(3.2.31) are simplified when we 

assume that only the three fundamental WG modes (pq = 00) interact. For this case, 

Equation (3.2.28) becomes 

𝜅1 =
𝜔1𝜖0𝑑𝑄

2
∬ ℇ1𝑥

∗ (𝑥, 𝑦) 𝑑𝑄ℇ3𝑥(𝑥, 𝑦)ℇ2𝑥
∗ (𝑥, 𝑦)𝑑𝑥𝑑𝑦    (3.2.33) 

=
𝜔1𝜖0𝑑𝑄

2
𝐶1𝐶2𝐶3 ∬ 𝐸1𝑥

∗ (𝑥, 𝑦) 𝑑𝑄𝐸3𝑥(𝑥, 𝑦)𝐸2𝑥
∗ (𝑥, 𝑦)𝑑𝑥𝑑𝑦,     (3.2.34) 

where (3.2.24) was used for the second equation. 

By numerically solving the previous equations Zaske, in his work, set the 

theoretical basis for QFC and concluded that (Zaske, 2013): 

 In the absence of losses, a complete conversion of the telecom field to a visible 

input field is possible in a LN ridge WG. The required WG length to reach 

maximum conversion efficiency is on the order of several ten mm if moderate 

pump powers (100mW order of magnitude) are applied. In this work we refer to 

conversion efficiency as the total power of converted photons divided by the total 

input power of signal photons. 
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4. Frequency up-conversion of laser pulses 

In this section we describe the experiments of frequency up-conversion done for this 

thesis. The main objective is to up-convert single photons at a wavelength of 1180nm 

emitted from a quantum dot (QD) embedded in photonic crystal (PC) nanocavity to a 

wavelength of 670nm in the visible range. As described in Section 1.3, the objective can 

be divided in three stages:  

4) Characterization of the periodically poled lithium niobate waveguide (PPLN-WG) 

nonlinear device in the macro-regime. 

5) Demonstrate and characterize the quantum frequency up-conversion of 

attenuated laser pulses, simulating a single photon source. 

6) Demonstrate and characterize the quantum frequency up-conversion of single 

photons emitted from a QD in a PC nanocavity. 

It is worth reminding that, due to the time limitations of a M.Sc. project, the 

experiments done in this thesis only cover the first stage of the whole project, the 

characterization of the PPLN-WG.  

4.1 Experimental design 

4.1.1 Optical Setup 

The optical setup for our experiments is shown in Figure 4-1. As our signal laser, 

a tunable diode laser (New Focus TLB-6700 Velocity 1165-1185nm) was used. To 

guide the 1175 nm signal light to the experiment, its free-space laser output was 

coupled into a single mode optical fiber by aligning the beam parallel to the optical table 

with two mirrors (1 & 2, Newport 10Q20BB.2) and focusing it into the fiber with an 

aspheric lens (Thorlabs C560TME-C, f = 13.86mm). The pump 1560 nm signal is 

generated with a tunable laser (Santec TSL-150, 1535-1565nm). Its fiber coupled output 

goes through a fiber polarization controller and then it is feeded into an erbium doped 

fiber amplifier (Amonics) to generate the strong pump field. The 1560 nm pump and 

1175 nm signal fields are combined on a dichroic mirror (Thorlabs DMSP1500) and 

coupled into the PPLN WG by an aspheric lens (Thorlabs C220TME-C, f = 11.00mm). 

The details about the PPLN WG are covered in Section 4.1.2. We have to take into 
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account that the two wavelengths, λs and λp, have a spectral separation of 375 nm and, 

because of the chromatic aberration of the lens, the coupling into the PPLN WG with 

this single aspheric lens is not optimum, see Section 4.2.2. The converted light is 

collected by an aspheric lens (Thorlabs A220TM-B, f = 11.00mm) that collimates it and 

sends it to a pair of mirrors for alignment. The last stage of the experiment is the filtering 

and data collection. The filtering is needed because at the output of the PPLN WG there 

is still some remnant pump and signal fields and we are only interested in the up-

converted light. The filtering is achieved by using two prisms (Thorlabs PS858) for 

spatially separating the interest wavelength from unwanted ones. The data is measured 

with an optical power meter (Newport 2936-R) with a silicon detector (Newport 918D-

SL-OD1R). It is very important to pay special attention to propagation losses in the 

optical setup. The light coupling from free space propagation into optical fiber and vice 

versa has to be carefully done to maximize the light transmission. Specifically, coupling 

light into the PPLN WG requires hyper fine adjustment of the PPLN WG chip position 

with respect to the input pump and signal fields to assure mode overlapping inside the 

WG chip and thus, the maximum conversion efficiency. The fine adjustment is achieved 

with a tens of nanometer resolution x, y, and z position stage (Thorlabs MAX312D). In 

this experiment we achieved a coupling efficiency from Lens 3-PPLN WG-Lens 4 of 

40% for the 1550nm pump field and of 95% for the 1175nm signal. Another important 

loss mechanism is the filtering of the light coming from the PPLN WG chip output. It 

turns out that the dispersion prisms reflect a considerable amount of light depending on 

the light polarization so this has to be taken into account. In addition, the polarization 

from the input fields in the PPLN WG chip has to have the same polarization in order to 

maximize the conversion efficiency, this is achieved by adjusting the polarization of 

each input field with the half wave plate (for the signal field) and with the fiber 

polarization controller (for the pump field). 

 As seen in Section 1.2.1.4, the PPLN WG chip’s temperature has to be precisely 

controlled to obtain the optimum phase-matching condition. To achieve this, the chip’s 

temperature is set by controlling the current flowing through a thermoelectric cooler 

(TEC) located in the bottom of the chip housing structure, in direct contact with its metal 

base. The temperature has to be controlled with a precision of 0.5C as measured in 
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4.2, this was achieved with a temperature controller (Thorlabs TED 200 C). We used a 

thermistor (Thorlabs TH10K) in direct contact with the chip housing as the temperature 

sensor. 

 

Figure 4-1. Optical setup of the QFC experiment. 

4.1.2 PPLN Waveguide Chip 

For this up-conversion experiment a PPLN-WG chip (NTT Electronics, (NTT Electronics 

Corp., Japan, 2013)) designed for a SFG wavelength of 670nm (pump: 1175nm, 

1558.9nm) is used. The chip consists on twelve ridged weveguides arranged in six 

groups as shown in Figure 4-2 (A). Each of the groups has a different poling period that 

allows for different wavelengths tuning by choosing a certain WG, as shown in  

Table 4-1. The poling process consists on depositing an array of metallic electrodes with 

the desired poling period in the surface of the nonlinear crystal. Then, a considerable 

electric field (in the order of 106 V/cm) is applied to change the orientation of the 

ferroelectric domains under the electrodes. For more details on the fabrication process 

see (Myers, et al., 1995). The size of the waveguide chip is 40mm long, 4mm wide and 

0.5mm thick and picture of it mounted in the translation stage can be seen in Figure 4-3. 

For this experiment the WG1 of group 2 was used with a phase-matching temperature 

of 53.5C. 
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Figure 4-2 Dimensions and layout of the (A) top view and (B) cross-section of 
the waveguide chip. After (NTT Electronics Corp., Japan, 2013). 

4.2 Up-conversion from 1180nm to 670nm. Experimental Results 

In this experiments we evaluated the performance of the PPLN WG chip as a frequency 

converter with macroscopic light power levels (mW). To evaluate the utility of quasi-

phase-matched devices for practical applications, it is important to establish tolerances 

for variations in temperature, wavelength, etc. by evaluating their effects on the 

efficiency of the device (Fejer, Magel, Jundt, & Byer, 1992). We will describe the 

performance and conversion efficiency of the converter showing also its phase-

matching acceptance and temperature bandwidths. For this section we follow the 

procedures described in the work by Zaske (2013) and Albota (2006). 
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Table 4-1. Waveguide data. 

Group 
Poling 

period (μm) 

Thickness 

(μm) 
WG Width (μm) 

Estimated Phase-

matching temperature 

(C) 

G1 13.125 

9.4 

WG1 11.9 65 

WG2 12.4 70 

G2 13.150 
WG1 11.9 54 

WG2 12.4 59 

G3 13.175 
WG1 11.9 43 

WG2 12.4 47 

G4 13.200 
WG1 11.9 34 

WG2 12.4 39 

G5 13.225 
WG1 11.9 24 

WG2 12.4 28 

G6 13.250 
WG1 11.9 13 

WG2 12.4 17 

 

 

Figure 4-3. Photograph of the PPLN WG chip mounted on the translation stage. The focusing and collecting 

lenses are also shown. 
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4.2.1 Performance of the frequency converter 

As seen in section 1.2.1.3, for a device of total length L containing uniform periods, the 

phase-matching factor in the expression for the power conversion efficiency is 

sinc2(ΔkL/2). We may use the fact that this factor goes to 1/2 when ΔkL/2 = 0.4429π to 

find the FWHM acceptance bandwidth for several quantities (like the temperature of the 

crystal, the input wavelengths, the poling period …) which affect Δk when they are 

varied. Within this acceptance bandwidth the up-conversion process happens efficiently. 

(Fejer, Magel, Jundt, & Byer, 1992).  The signal wavelength acceptance bandwidth 

ΔλSFG was experimentally obtained as follows: by fixing the pump wavelength (1558.9 

nm) at a 150mW power, we measure the power of the up-converted light with a Si 

photodetector at the output of the PPLN WG while varying the wavelength of the signal 

laser in 0.1nm steps around 1170 nm, at a fixed power of 1.2mW. The obtained result is 

plotted in Figure 4-4 where the data is normalized with respect to the central maximum. 

By fitting the plot to a sinc2 function we find that the bandwidth is ΔλSFG = 0.39 nm 

(FWHM). As we can see, the fit reproduces the data very well around the central 

maximum but there are notable discrepancies in the tails. These indicate that the 

phase-mismatch is not constant along the propagation direction because of 

inhomogeneities of the crystal like imperfect waveguides or temperature variations in 

the structures (Nash, Boyd, Sargent III, & Bridenbaugh, 1970). We also calculated the 

theoretical signal acceptance bandwidth for a 40mm crystal with the Sellmeier 

coefficients from Zelmon, Smaill, & Jundt (1997) that can be compared with the 

experimental results in Figure 4-5. The theoretical acceptance bandwith is ΔλTSFG = 0.28 

nm which is narrower than the experimental result we obtained. In Figure 4-5 we also 

normalized the measured data area to match the area under the ideal theoretical Sinc2 

curve. With this normalization, the maximum of the measured data is just 0.7 of what 

theory predicts. This means that the maximum intensity of the converted light that can 

be expected is less than the ideal theoretical case by a factor of 0.7 (Nash, Boyd, 

Sargent III, & Bridenbaugh, 1970). 
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Figure 4-4. SFG acceptance bandwidth for the 40mm long PPLN-WG. The data are normalized with respect to 
the central maximum. 

Similarly, the temperature acceptance bandwidth ΔTSFG was also measured. This 

was achieved by choosing an operation point of the converter and setting the pump and 

the signal fields to fixed values, for then to slowly change the temperature of the crystal 

by means of the external temperature controller. We found a ΔTSFG = 1.06°C from a 

sinc2 fit. Figure 4-6 shows the measured curve normalized to its maximum which 

happens in 53.4°C with λP = 1560.775 nm and λS = 1174.9 nm. We can see that, as in 

Figure 4-4, the measured data and the sinc2 fit match very well in the central lobe, with 

discrepancies in the function tails. The ΔTSFG = 1.06°C bandwidth is large enough to be 

accurately controlled by our instrument which has a temperature control resolution of 

0.01°C. 

0.39 nm 
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Figure 4-5. Same measured data as in the previous picture but now with different normalization to 
compare against the theoretical result. The curve is normalized to have the same area as the 
perfect curve predicted by theory. 

 

Figure 4-6. Measured temperature acceptance bandwidth and sinc2 fit. 

1.06°C 
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 We also measured the sum-frequency generation efficiency by means of the 

input power of the signal and pump fields at the optimum operation point found 

previously. From the plot shown in Figure 4-7 we can see that the converter reaches a 

maximum conversion efficiency of around 40% with signal powers greater than 100μW, 

with an acceptable fixed pump power of 170mW. Now, by fixing the signal field power at 

111μW and ramp up the pump power up to 700mw, we achieve conversion efficiencies 

of almost 70% as shown in Figure 4-8. We have to remember and take into account the 

not so perfect coupling of both input fields into the waveguide and that for achieving the 

maximum desired efficiency the optical system has to be as perfectly aligned as 

possible to assure the minimum losses and the maximum mode overlap in the 

waveguide. 

 

Figure 4-7. Conversion Efficiency varying the signal field power with a fixed pump power of 170mW, λP = 

1560.775 nm and    λS = 1174.9 nm. 
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4.2.2 Summary and discussion 

In this chapter we achieved the frequency up-conversion from an 1180nm laser 

light source to a wavelength of 670nm in the visible. We chose this wavelengths for 

efficiently detecting the infrared emission of an epitaxial InAs/GaAs quantum dot 

embedded in a photonic crystal nanocavity with a Silicon APD in the visible, but for the 

experiments done in this thesis we worked with a laser in the miliwatts regime as a 

source. First, we introduced the experimental setup for achieving the frequency 

conversion and described the PPLN WG chip, which is the fundamental device for this 

experiment. Next, we tested the performance of the setup by obtaining its signal 

wavelength and temperature acceptance bandwidths. We also measured the converted 

light power in function of the input light fields and obtained the frequency conversion 

efficiency of the device. The low coupling efficiency of the 1550nm pump field into the 

PPLN-WG can be improved by using two lenses in a telescope array as suggested by 

Zaske (2013). The telescope he proposes consists of two plano-convex lenses, the 

optimum distance between them can be calculated from the requirement that the two 

light beams must have the same focus point at the input of the waveguide. 

 

Figure 4-8. Conversion Efficiency varying the pump field power with a fixed signal 
power of 0.111mW, λP = 1560.775 nm and    λS = 1174.9 nm. 
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The immediate next stage of this experiment is to emulate a single photon source 

with attenuated pulses from the signal field laser and study the performance of the 

device. This can be achieved using a pulse picker and an attenuator in front of our 

source laser. It is also important to inverstigate the signal to noise ratio (SNR) of the 

converter, as well as the possible noise sources of the nonlinear processess that take 

place in the WG and how to overcome them. 
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5. Summary and Future Prospects 

In this work we gave the first step to obtain light fields from the infrared converted 

to the visible spectral range with the aim to achieve single photon frequency conversion. 

We mainly studied the performance of the up-conversion process in a PPLN-WG to 

characterize it and set the basis for experiments in the single photon level. The 

motivation of this work is to develop an IR-to-visible photonic interface for single 

photons emitted by semiconductor QDs. Specifically, we want to achieve this quantum 

frequency up-conversion to characterize the solid state semiconductor single photon 

sources developed in Dr. Badolato’s group, with Silicon single-photon detectors in the 

visible that perform better than infrared single photon detectors. Moreover we want to 

overcome spectral distinguishability common to inhomogeneously broadened solid-state 

quantum emitters by converting spectrally separated QD transition to the same 

wavelength for its application in future on-chip photonic devices for quantum information 

processing. After achieving the three stages proposed in Section 1.3 of this work, we 

will be to efficienctly study the single-photon emission properties of epitaxial InAs/GaAs 

quantum dots embedded in a photonic crystal nanocavities without the problems that 

inefficient IR wavelengths detectors imply. This up-conversion interface together with 

devices that implement the complementary down-conversion process have the potential 

to connect different elements of future quantum networks. 

We achieved frequency up-conversion of light fields from λs = 1180nm to            

λc = 670nm in the visible mW range. We measured a maximum process efficiency of 

68%, which is quite efficient for this macro-regime. The obtained input signal and 

temperature acceptance bandwidths of our device give a very good insight of the 

conditions under it can efficiently work to achieve the maximum conversion of input 

photons.  During the experimental realization of this work we encountered some 

technical challenges. In section 4.2 we discussed several approaches to overcome this 

challenges and achieve and even higher conversion efficiency. 

This work leads for a future integrated on-chip single photon source with 

frequency conversion stage that overcomes the source spectral distinguishability for 

quantum communication applications. 
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