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Abstract

A procedure for finding periods in astronomical time series containing few observational data using 

simple mathematical operations is developed. Selecting data close to the maximum or minimum values 

of the time series differences among these values around the maximum or minimum are obtained to 

produce a set of intervals. Using a technique similar to the least common divisor and applying the 

maximum common denominator to the set of intervals approximate periods are found. The different 

ways to improve the periods found are presented.  The procedure is applied to a simulated random 

sinusoidal data set and also to some data from binary and pulsating variable stars to show how the 

procedure works.  The procedure is  simple to use for any type of data  spacing and with gaps and 

produces results in accordance with other methods.





1. Introduction

Time series data are ordered sequences of measurements and the analysis of time series is based on the 

assumption that successive values in the data represent consecutive measurements taken at equally or 

unequally spaced time intervals and with gaps. There are two main objectives of time series analysis: 

(a) identifying the nature of the phenomenon represented by the sequence of observations, and (b) 

predicting future values of the time series variables. Both of these objectives require that the pattern of 

observed  time  series  data  is  identified  and  more  or  less  formally  described.  Once  the  pattern  is 

established, we can interpret and integrate it with other data (i.e., use it in our theory of the investigated 

phenomenon). Regardless of the depth of our understanding and the validity of our interpretation of the 

phenomenon,  we  can  extrapolate  the  identified  pattern  to  predict  future  events.  Most  time  series 

patterns can be described in terms of two basic classes of components:  trend and seasonality.  The 

former represents a general systematic linear or nonlinear component that changes over time and does 

not repeat or at least does not repeat within the time range captured by our data. The latter may have a 

formally similar nature, however, it repeats itself in systematic intervals over time. Those two general 

classes of time series components may coexist in real-life data. The latter component can have periodic 

variations  that  is  necessary to  characterize  to  understand the phenomena at  hand.  The problem of 

finding periodicities in the time series of many types of observational and experimental data, and from 

a diversity  of  other  phenomena have  been studied  in  many papers  in  the past.  There exist  in  the 

astronomical and time series analysis a great number of methods and procedures to solve the problem 

of periodicities in the observations of many types of applications. Petri (1962) wrote at his time that no 

method exists to determine the correct period of a spectroscopy binary form observations taken many 

periods apart. Aitken (1963) gives some reference and recipes to find periods using plots of parts of the 

data  and reversing them with respect  to  a fixed points to  find close coincidences  and the interval 

between  two  point  is  equal  to  the  period.  The  need  for  precisely  determining  periods  of  cyclic 
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phenomena is well known and numerous methods have been produces for evenly spaced data. (Lafler 

and Kinman, 1965; Blackman and Tukey, 1959; Fahlman and Ulrych, 1982). Lately the attention is 

centered in phenomena observed at irregularly spaced intervals and with gaps (Gray and Desikachary, 

1973; Deeming, 1975; Lomb, 1976; Scargle, 1982). To help in the acquisition of new data in changing 

time series in general it is necessary to have an approximate period to select judiciously the times of 

further acquisition of new data in order to determine a better period. A review of several techniques for 

uncovering periodicities in variable and binary stars can be found in an article by Fullerton (1986). A 

simple procedure using the correlation between the time series and the remainders of the series with 

respect to the tentative period for equally distributed intervals is described by (Whittaker and Robinson, 

1944). There are several period search algorithms in the literature (Lafler and Kinman, 1965, Jurkevich, 

1971;  Marraco and Mussio,  1980),  Least  squares  methods (Barning,  1963;  Vaniĉek,  1971),  String 

Length  Statistics  (Dworetsky,  1983),  Fourier  methods  (Wehlau  and  Leung,  1964;  Gray  and 

Desikachary,  1973),  Periodogram  analysis  (Shuster,  1898,  Lomb  1976,  Scargle,  1982,  Press  and 

Teukolsky, 1988, Press and Rybicki, 1989), Fast Fourier methods for data unevenly spaced and with 

gaps (Deeming, 1975), and Spline methods (Akerlof et al., 1994). In this article we present a simple 

procedure  to  find  approximate  periods  in  astronomical  time  series  that  complements  the  methods 

mentioned before when the number of observations is small.

2. Procedure

This procedure can be used when one has few point of the time series and it is necessary to have an 

idea of the period in order to obtain further data to be able to get a better  value of the period as 

mentioned before. Taking values close to the maxima (minima) of a given observed or experimental 

series for the purposes, in the one hand to have few values for computational convenience and in the 

other hand to assure that the maxima are taken into account at least approximately, in order to define 
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differences among these data. With these differences, it is possible to find with a variant of the least 

common denominator  which  will  satisfy  the  time  intervals  between  these  observations.  Any such 

interval between the approximate maxima is related to the period. Each pair of corresponding phases 

gives a relation tl - tm = nP, where tl – tm is the interval, n is an integer, and P is the period. From those 

intervals one can find submultiples of them, and with the results one obtains a value approximately 

common to all of the intervals that will give the tentative period. This very approximate period is used 

in the next step of our procedure. The intervals found above are also used to find the common greatest 

divisor (CGD) between two such interval. With all the CGD's found before the average of them is 

calculated, because the points are close to but not necessarily in the maximum (minimum) of the series, 

and that result would represent the tentative period. Then from the given time series data one searches 

for the maximum (minimum) value of the amplitude and defining a small interval around the maximum 

(minimum) value that can include enough values to be able to find a good approximate period as was 

mentioned above. Then calculating the differences of the  values found before starting with the first 

with respect to the rest of the values and then with the second one with respect to the remaining values, 

except the second, and so on. With these intervals it is possible to find a tentative value for the period 

by dividing the first set of intervals by two as many times as necessary to obtain a set of numbers and 

then by three, and so on. The result of those divisions show the numbers that are similar in size to each  

other giving the tentative period. This is the approximate period that will be used later as the stoping 

parameter in the quasi Euclidean procedure used to find the CGD. From the intervals obtained from the 

differences between all the values with respect to the first one are obtained. The first difference is used 

with all the other differences in the process of finding the CGD in order to obtain a series of number 

that are used to find the mean of those number that becomes the approximate period. In the process to 

find the CGD to stop the process, one uses the greatest number found above, in the function for that 

calculation. The pseudo code of the Euclidean algorithm for integer numbers is given by the function,
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function gcd(a, b)
    while b ≠ 0
       t := b
       b := a mod b
       a := t
    return a

For real numbers the stoping factor is different from zero in the while statement and should be chosen 

judiciously to have the appropriate range, given by a similar technique to the least common divisor, 

values found before.

The best way to summarize the procedure is through a flow chart diagram that describes the different 

steps of the description given above.

Diagram 1. Summary of the procedure.
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3. Improvement of the Period

There are several way to improve the tentative period found above. With the value of the period found 

a phase diagram is plotted to see if it represents the observations correctly and changing the period 

slightly  to  one  can  appreciate  the  changes  in  the  diagram until  one  is  satisfied  with  the  plot,  for 

example when the minimum of the curve is close to half of the phase. We use an approximate least  

squares method (Bloomfield, 1976) to find a better period through a simple iteration procedure. Also, 

using more sophisticated method as the ones proposed by Lafler and Kinman (1965) (Jurkevich, 1971, 

Marraco and Mussio, 1980) one can find a better period, or using Spline (Akerlof, 1994), or Period04 

(Lenz and Breger, 2005).

4. Examples of the Procedure

4.1 Numerical Simulation: Sinusoidal

In this  section some analysis  are made of some time series with the purpose of showing how the 

procedure  is  applied  to  some numerical  simulations  and several  real  observations  of  some known 

binary and variable stars reported in the literature. The numerical simulation is made for a sinusoidal 

variation with a given period with random data generated using a gaussian distribution.

y = R sin (wt + φ) , (1)

with

w =
2 π

P
, (2)

where P is the period, φ is the phase and R is the amplitude.

We have used a period of 2.5 days and an amplitude of 1.0 for the sinusoidal variation. Following our 

procedure we can recuperate the period with out any problem, as we will show. The data close to the 

maximum value are seven and are given in Table 1.
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           1   31.61425      0.9996352    
           2   16.63571      0.9996378    
           3   1.614091      0.9996241    
           4   19.13149      0.9998671    
           5   54.11985      0.9999163    
           6   59.13433      0.9997246    
           7   84.12874      0.9999558    

            Table 1. Values close to the maxima of the time series.

The differences between the first value and the other six, and of the second value with the other five 

and so on are given in Table 2.

           1   14.97854    
           2   30.00016    
           3   12.48277    
           4   22.50560    
           5   27.52008    
           6   52.51449
    
           7   15.02162    
           8   2.495779    
           9   37.48414    
          10   42.49863    
          11   67.49303
    
          12   17.51740    
          13   52.50576    
          14   57.52024    
          15   82.51465
    
          16   34.98837    
          17   40.00285    
          18   64.99725
    
          19   5.014484    
          20   30.00889
    
          21   24.99440

          Table 2. Differences between the values forming groups of six, five, four, three, two, and one.
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Divide the first six numbers of Table 2 by two and then by three, then four, five, and so on, the same 

could be done with the other numbers to produce a list of numbers where some of them are almost  

equal. One way to carry out this process is with the first and second numbers of Table 2 that can be 

divided by two and then by three and so on and then the other numbers are divided with those results to 

find the number of times they are divisible and then divide the number by those factors giving Table 3,

   14.97854  30.00016  12.48277  22. 5056  27.520008  52.51449

     6               12             5                9              11               21

    2.49642    2.500013   2.496554  2.500622  2.501825  2.50069

 Table 3. The first six values of Table 2. in the first row, in the second row the factor, and in the third row the  

results. 

The greatest of these similar numbers in this case is around 2.5018. But at first sight one can see in  

Table 2 that the period could be around 2.495779. Applying the maximum common multiple with the 

pseudo Euclidean algorithm using the value of 2.5018 found in the last step multiplied by 0.8 as the 

stoping parameter to examine the results up to this quantity in order to have numbers of the order of 

2.5018 in this procedure, Table 4 is generated.

            1   2.523373       2.523373    
            2   2.539366       5.062738    
            3   2.562292       7.625031    
            4   2.598892       10.22392    
            5   2.542722       12.76664    
            6   2.495779       15.26242    
            7   2.543236       17.80566    
            8   2.566154       20.37181    
            9   2.602745       22.97456    
          10   2.542723       25.51728    
          11   2.590164       28.10745    
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          12   2.613091       30.72054    
          13   2.649681       33.37022    
          14   2.543236       35.91345    
          15   2.566154       38.47961    
          16   2.602753       41.08236    
          17   2.518705       43.60107    
          18   2.555319       46.15639    
          19   2.532393       48.68878

           Table 4. Results of the GCD in the second column and the sum in column three.
    

the average value using column three of Table 4, that is the sum of the number of the second column, 

divided by 19 is 2.562567. Plotting a phase diagram with this value for the period Figure 1 is obtained.

       Figure 1. Phase diagram for the sinusoidal with the period 2.562567

This phase diagram shows some scatter of the points around the theoretical curve which means that the 

period is close to the theoretical one but must be corrected. The period can be improved in several ways 

as was mentioned before.
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With the tentative period the method of minimum least  squares in its  simplest  formulation can be 

applied to find a better period (Bloomfield, 1976). For a three-parameter model, following the notation 

of Bloomfield, given by

x i = μ + A cos(wt i) + B sin (wt i) + ϵi , (3)

where xi and ti denote the ith values of the observations, w is the frequency and ϵi is the residual. The 

approximate solution of the equations of the estimates of least squares for the model are

μ̃ = x̄ =
∑ x i

n
, (4)

Ã = 2∑ (x i − x̄ )cos(wt i) , (5)

B̃ = ∑ ( xi + x̄)sin(wt i) . (6)

To find R and φ, the amplitude and phase we solve the above equations with

A = −R sin(φ ) (7)

and

B = −R cos(φ ) , (8)

therefore

R = √A2
+ B2 (9)

and

φ = arctan(−
B
A

) . (10)

In  this  equations  the  frequency  w  is  regarded  as  known.  The  method  is  extended  to  include  the 

estimation of w following a simple iteration procedure starting with the approximate value found in the 

first part of the procedure presented in this article and defining the sum of squares of the residuals as
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e =
n
2

R2 (11)

to carry out the iterations over frequency for all the equations given above by

wn+ 1 = wn+ e×10−(3) . (12)

The criteria for stopping the iterations is the value found for the approximate period.  Our procedures 

gives good results with respect to the theoretical period of 2.5.

4.2  Analysis of Some Observations

4.2.1  Binaries Stars

The analysis of three binary stars of different periods is presented to show the procedure for these type 

of time series.

4.2.1.1  26 Aquilae

This binary star has high orbital eccentricity where the primary component is of type G8 III-IV. There 

are fifty-one spectroscopic observations covering a 20 years interval. Figure 2 shows the plot of the 51 

radial velocities listed by Franklin (1952)
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Figure 2. Observational Radial Velocity Curve for 26 Aquilae.

The data close to the maximum value are six and are given in table 5.

    1  22951.695  -11.100
    2  30908.668  -10.030
    3  32015.820  -10.740
    4  32036.832   -9.070
    5  33372.023  -10.870
    6  33397.984  -10.720

     Table 5. Values close to the maxima of the time series.

The differences between the first value and the other five, and of the second value with the other four 

and so on are given in table 5.

           1           1   7956.973    
           1           2   9064.125    
           1           3   9085.137    
           1           4   10420.33    
           1           5   10446.29    

           1           6   1107.152    
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           1           7   1128.164    
           1           8   2463.355    
           1           9   2489.316    

           1          10   21.01172    
           1          11   1356.203    
           1          12   1382.164    

           1          13   1335.191    
           1          14   1361.152    

           1          15   25.96094

            Table 6. Differences between the values forming groups of five, four, three, two, and one.

Divide the first five numbers of Table 6 using the same procedure as before, the same could be done 

with the other numbers to produce a list of numbers where some of them are almost equal.

   7956.973  9064.125  9085.133  10420.33 10446.29

     30             34             34             39            39

     265.23      266.592    267.21      267.19     267.85

     Table 7. The first five values of Table 6. in the first row, in the second row the factor, and in the third row  

the results.

The greatest of the similar numbers in this case is around 267.85. Applying the maximum common 

multiple  with  the  pseudo  Euclidean  algorithm  using  the  value  of  267.85  found  in  the  last  step 

multiplied by 0.8 as the stoping parameter to have numbers of the order of 267.85 in this procedure,  

Table 8 is generated. 

           2           1   279.5273       279.5273    
           2           2   395.0742       674.6016    
           2           3   281.9219       956.5234    
           2           4   307.8828       1264.406    
           2           5   279.5273       1543.934    

12



           2           6   300.5391       1844.473    
           2           7   394.2930       2238.766    
           2           8   213.3477       2452.113    
           2           9   21.01172       2473.125    
           2          10   321.6719       2794.797    
           2          11   347.6328       3142.430    
           2          12   300.6602       3443.090    
           2          13   326.6211       3769.711    
           2          14   25.96094       3795.672

           Table 8. Results of the GCD in the second column and the sum in column three.    

the average value using column three of Table 8, that is the sum of the number of the second column, 

divided by 14 is 271.1194. Plotting a phase diagram with this value for the period Figure 3 is obtained.

Figure 3. Phase Diagram for 26 Aquilae for the radial velocities.

This phase diagram shows some scatter of the points with a well defined curve which means that the 

period is close to the theoretical one and must be corrected. The period can be improved in several 
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ways as was mentioned before. With the curve fitting method one finds a period of 266.995 days and 

the period given by Franklin and Wolfe et al. is 266.544 and 266.7 by Spline.

4.2.1.2  HD145425

This binary star located in Serpens Caput with magnitude 9.5 and spectral type K0 with forty-six radial  

velocities observed (Griffin, 1994). Table 4 show the plot of the forty-six radial velocities.

Figure 4. Observational Radial Velocities Data for HD145425.

The data close to the maximum value are eight and are given in Table 9.

    1  43905.238   12.600
    2  45536.922   13.400
    3  46113.531   12.600
    4  46665.859   12.800
    5  46670.840   13.000
    6  47264.121   15.000
    7  48293.219   12.800
    8  48847.879   13.000
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     Table 9. Values close to the maxima of the time series.

           1           1   1631.684    
           1           2   2208.293    
           1           3   2760.621    
           1           4   2765.602    
           1           5   3358.883    
           1           6   4387.980    
           1           7   4942.641    

           1           8   576.6094    
           1           9   1128.938    
           1          10   1133.918    
           1          11   1727.199    
           1          12   2756.297    
           1          13   3310.957    

           1          14   552.3281    
           1          15   557.3086    
           1          16   1150.590    
           1          17   2179.688    
           1          18   2734.348    

           1          19   4.980469    
           1          20   598.2617    
           1          21   1627.359    
           1          22   2182.020    

           1          23   593.2812    
           1          24   1622.379    
           1          25   2177.039    

           1          26   1029.098    
           1          27   1583.758    

           1          28   554.6602

            Table 10. Differences between the values forming groups of seven, six,five,....., and one.

Divide the first seven numbers of Table 10 using the same procedure as before, the same could be done  

with the other numbers to produce a list of numbers where some of them are almost equal.
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   1631.684  2208.293  2760.621  2765.602  3388.883  4387.98  4942.641

     3               4             5                5               6               8             9

    543.895    552.073  552.124    553.120    564.813    548.5       549.142

     Table 11. The first nine values of Table 10. in the first row, in the second row the factor, and in the third  

row the results.

The greatest of the similar numbers in this case is around 564.813. But at first sight one can see in the  
Table 11 that the period could be around 552.3281. Applying the maximum common multiple with the 
pseudo Euclidean algorithm using the value of 564.813 found in the last step multiplied by 0.7 as the 
stoping parameter to have numbers of the order of 564.813 in this procedure, Table 11 is generated.    

           2           1   478.4648       478.4648    
           2           2   368.2969       846.7617    
           2           3   373.2773       1220.039    
           2           4   488.0938       1708.133    
           2           5   560.2617       2268.395    
           2           6   636.4570       2904.852    
           2           7   576.6094       3481.461    
           2           8   650.4727       4131.934    
           2           9   655.4531       4787.387    
           2          10   770.2695       5557.656    
           2          11   363.9727       5921.629    
           2          12   440.1680       6361.797    
           2          13   552.3281       6914.125    
           2          14   557.3086       7471.434    
           2          15   672.1250       8143.559    
           2          16   744.2930       8887.852    
           2          17   820.4883       9708.340    
           2          18   358.9336       10067.27    
           2          19   598.2617       10665.54    
           2          20   550.5586       11216.09    
           2          21   387.3516       11603.45    
           2          22   593.2812       12196.73    
           2          23   545.5781       12742.30    
           2          24   382.3711       13124.68    
           2          25   670.1641       13794.84    
           2          26   506.9570       14301.80    
           2          27   554.6602       14856.46

           Table 12. Results of the GCD in the second column and the sum in column three.    
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the average value using column three of Table 12, that is the sum of the number of the second column,  

divided by 27 is 550.2391. Plotting a phase diagram with this value for the period Figure 5 is obtained.

    

 Figure 5. Phase Diagram for HD145425.

This  phase  diagram shows  some  scatter  of  the  points  and  must  be  corrected.  The  period  can  be 

improved using the curve fitting method giving 550.963 and 550.134 with Spline. The value given by 

Griffin is 549.9.

4.2.1.3   HD217792 

This  spectroscopic  binary  star  of  magnitude  V =  6.10  and spectral  type  F0V has  fifty-two radial 

velocity observations ( Bopp, Evans, and Laing, 1970) plotted in Figure 6.
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Figure 6. Observed Radial Velocities Data for HD217792.

The data close to the maximum value are 14 and are given in table 13.

    1 19334.660  -20.000
    2 19678.699  -19.000
    3 22262.350  -17.000
    4 22918.471  -19.000
    5 22933.430  -21.000
    6 22949.340  -19.000
    7 22953.330  -20.000
    8 22967.330  -17.000
    9 23761.301  -15.000
   10 37578.352  -15.100
   11 37580.344  -14.400
   12 37588.336  -15.000
   13 37927.305  -14.600
   14 38782.227  -16.400

    Table 13. Values close to the maxima of the time series.

           1           1   344.0391    
           1           2   2927.689    
           1           3   3583.811    
           1           4   3598.770    
           1           5   3614.680    
           1           6   3618.670    
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           1           7   3632.670    
           1           8   4426.641    
           1           9   18243.69    
           1          10   18245.68    
           1          11   18253.68    
           1          12   18592.64    
           1          13   19447.57    

           1          14   2583.650    
           1          15   3239.771    
           1          16   3254.730    
           1          17   3270.641    
           1          18   3274.631    
           1          19   3288.631    
           1          20   4082.602    
           1          21   17899.65    
           1          22   17901.64    
           1          23   17909.64    
           1          24   18248.61    
           1          25   19103.53    

           1          26   656.1211    
           1          27   671.0801    
           1          28   686.9902    
           1          29   690.9805    
           1          30   704.9805    
           1          31   1498.951    
           1          32   15316.00    
           1          33   15317.99    
           1          34   15325.99    
           1          35   15664.96    
           1          36   16519.88    

           1          37   14.95898    
           1          38   30.86914    
           1          39   34.85938    
           1          40   48.85938    
           1          41   842.8301    
           1          42   14659.88    
           1          43   14661.87    
           1          44   14669.87    
           1          45   15008.83    
           1          46   15863.76    

           1          47   15.91016    
           1          48   19.90039    
           1          49   33.90039    
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           1          50   827.8711    
           1          51   14644.92    
           1          52   14646.91    
           1          53   14654.91    
           1          54   14993.88    
           1          55   15848.80    

           1          56   3.990234    
           1          57   17.99023    
           1          58   811.9609    
           1          59   14629.01    
           1          60   14631.00    
           1          61   14639.00    
           1          62   14977.96    
           1          63   15832.89    

           1          64   14.00000    
           1          65   807.9707    
           1          66   14625.02    
           1          67   14627.01    
           1          68   14635.01    
           1          69   14973.97    
           1          70   15828.90    

           1          71   793.9707    
           1          72   14611.02    
           1          73   14613.01    
           1          74   14621.01    
           1          75   14959.97    
           1          76   15814.90    

           1          77   13817.05    
           1          78   13819.04    
           1          79   13827.04    
           1          80   14166.00    
           1          81   15020.93    

           1          82   1.992188    
           1          83   9.984375    
           1          84   348.9531    
           1          85   1203.875    

           1          86   7.992188    
           1          87   346.9609    
           1          88   1201.883    

           1          89   338.9688    
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           1          90   1193.891    

           1          91   854.9219

            Table 14. Differences between the values forming groups of thirteen,....., and one.

Divide the first 13 numbers of Table 14 using the same procedure as before, the same could be done  

with the other numbers to produce a list of numbers where some of them are almost equal.

   344.0391  2927.689  3583.811  3398.77  3614.68  3618.67  3632.67  4726.641  18243.69  18245.68

    2                16            20             19            20           20           20           26              102           102

    172.02      182.98       179.191    178.883  180.734  189.934  181.634  181.794     178.86      178.88 

  18253.68  18592.64  19447.57

    102           104           109

    178.958    178.754    178.418

     Table 15. The first thirteen values of Table 14. in the first row, in the second row the factor, and in the 

third row the results.

The greatest of the similar numbers in this case is around 181.794. Applying the maximum common 
multiple  with  the  pseudo  Euclidean  algorithm  using  the  value  of  181.794  found  in  the  last  step 
multiplied by 0.8 as the stoping parameter to have numbers of the order of 181.794 in this procedure,  
Table 16 is generated.    

           2           1   168.6621       168.6621    
           2           2   210.5684       379.2305    
           2           3   225.5273       604.7578    
           2           4   241.4375       846.1953    
           2           5   245.4277       1091.623    
           2           6   259.4277       1351.051    
           2           7   210.0879       1561.139    
           2           8   196.8457       1757.984    
           2           9   198.8379       1956.822    
           2          10   206.8301       2163.652    
           2          11   208.4746       2372.127    
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           2          12   220.0859       2592.213    
           2          13   222.3809       2814.594    
           2          14   203.8535       3018.447    
           2          15   218.8125       3237.260    
           2          16   234.7227       3471.982    
           2          17   238.7129       3710.695    
           2          18   252.7129       3963.408    
           2          19   203.3730       4166.781    
           2          20   190.1309       4356.912    
           2          21   192.1230       4549.035    
           2          22   200.1152       4749.150    
           2          23   201.7598       4950.910    
           2          24   213.3711       5164.281    
           2          25   150.1348       5314.416    
           2          26   165.0938       5479.510    
           2          27   181.0039       5660.514    
           2          28   184.9941       5845.508    
           2          29   198.9941       6044.502    
           2          30   149.6543       6194.156    
           2          31   136.4121       6330.568    
           2          32   138.4043       6468.973    
           2          33   146.3965       6615.369    
           2          34   148.0410       6763.410    
           2          35   159.6523       6923.062    
           2          36   138.7441       7061.807    
           2          37   30.86914       7092.676    
           2          38   34.85938       7127.535    
           2          39   48.85938       7176.395    
           2          40   149.1094       7325.504    
           2          41   230.4902       7555.994    
           2          42   232.4824       7788.477    
           2          43   240.4746       8028.951    
           2          44   163.2109       8192.162    
           2          45   185.6680       8377.830    
           2          46   15.91016       8393.740    
           2          47   19.90039       8413.641    
           2          48   33.90039       8447.541    
           2          49   272.8945       8720.436    
           2          50   215.5312       8935.967    
           2          51   217.5234       9153.490    
           2          52   225.5156       9379.006    
           2          53   148.2520       9527.258    
           2          54   170.7090       9697.967    
           2          55   134.7539       9832.721    
           2          56   17.99023       9850.711    
           2          57   138.1914       9988.902    
           2          58   210.3438       10199.25    
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           2          59   212.3359       10411.58    
           2          60   220.3281       10631.91    
           2          61   155.0352       10786.95    
           2          62   201.4336       10988.38    
           2          63   14.00000       11002.38    
           2          64   268.9551       11271.33    
           2          65   206.3535       11477.69    
           2          66   208.3457       11686.03    
           2          67   216.3379       11902.37    
           2          68   151.0449       12053.42    
           2          69   197.4434       12250.86    
           2          70   254.9551       12505.81    
           2          71   192.3535       12698.17    
           2          72   194.3457       12892.51    
           2          73   202.3379       13094.85    
           2          74   137.0449       13231.90    
           2          75   183.4434       13415.34    
           2          76   206.9062       13622.25    
           2          77   208.8984       13831.14    
           2          78   216.8906       14048.04    
           2          79   151.5977       14199.63    
           2          80   197.9961       14397.63    
           2          81   1.992188       14399.62    
           2          82   9.984375       14409.61    
           2          83   214.1992       14623.80    
           2          84   260.5977       14884.40    
           2          85   7.992188       14892.39    
           2          86   212.2070       15104.60    
           2          87   258.6055       15363.21    
           2          88   204.2148       15567.42    
           2          89   250.6133       15818.04    
           2          90   181.1523       15999.19

           Table 16. Results of the GCD in the second column and the sum in column three.    

the average value using column three of Table 16, that is the sum of the number of the second column,  

divided by 90 is 177.7688. Plotting a phase diagram with this value for the period Figure 7 is obtained. 
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Figure 7. Phase Diagram for HD217792.

This phase diagram shows some scatter of the points which means that the period is not that far from 

the best period and must be corrected. The period can be improved giving 178.053 with the curve 

fitting method and 178.316 with Spline. The value give Bopp et al. is 178.3177.

4.3   Variables  Stars

4.3.1 BK Centaurus

This classical Cepheid has 49 radial velocity observations that show a beat period.
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Figure 8. Visual Light Curve for BK Centaurus.

The data close to the maximum value are 12 and are given in table 17.

    1  8832.520    0.788
    2  8841.580    0.782
    3  8857.380    0.724
    4  8861.360    0.783
    5  8861.480    0.785
    6  8870.390    0.783
    7  8877.380    0.825
    8  8877.430    0.731
    9  8883.320    0.721
   10  8886.400    0.760
   11  8908.200    0.731
   12  8950.240    0.741

    Table 17. Values close to the maxima of the time series.

           1           1   9.060547    
           1           2   24.86035    
           1           3   28.84082    
           1           4   28.96094    
           1           5   37.87012    
           1           6   44.86035    
           1           7   44.91016    
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           1           8   50.80078    
           1           9   53.88086    
           1          10   75.68066    
           1          11   117.7207    

           1          12   15.79980    
           1          13   19.78027    
           1          14   19.90039    
           1          15   28.80957    
           1          16   35.79980    
           1          17   35.84961    
           1          18   41.74023    
           1          19   44.82031    
           1          20   66.62012    
           1          21   108.6602    

           1          22   3.980469    
           1          23   4.100586    
           1          24   13.00977    
           1          25   20.00000    
           1          26   20.04980    
           1          27   25.94043    
           1          28   29.02051    
           1          29   50.82031    
           1          30   92.86035    

           1          31  0.1201172    
           1          32   9.029297    
           1          33   16.01953    
           1          34   16.06934    
           1          35   21.95996    
           1          36   25.04004    
           1          37   46.83984    
           1          38   88.87988    

           1          39   8.909180    
           1          40   15.89941    
           1          41   15.94922    
           1          42   21.83984    
           1          43   24.91992    
           1          44   46.71973    
           1          45   88.75977    

           1          46   6.990234    
           1          47   7.040039    
           1          48   12.93066    
           1          49   16.01074    
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           1          50   37.81055    
           1          51   79.85059    

           1          52  4.9804688E-02
           1          53   5.940430    
           1          54   9.020508    
           1          55   30.82031    
           1          56   72.86035    

           1          57   5.890625    
           1          58   8.970703    
           1          59   30.77051    
           1          60   72.81055    

           1          61   3.080078    
           1          62   24.87988    
           1          63   66.91992    

           1          64   21.79980    
           1          65   63.83984    

           1          66   42.04004

            Table 18. Differences between the values forming groups of eleven,....., and one.

Divide the first 11 numbers of Table 18 using the same procedure as before, the same could be done 

with the other numbers to produce a list of numbers where some of them are almost equal.

  9.060547  24.86035  28.84082  28.96094  37.87012  44.86035  44.91016  50.80078  53.88086   

   3                  8               9               9               12             15             15             17             18

  3.02018      3.10754    3.20454     3.21788     3.14584    2.99069    2.99401    2.98828    2.99338

  75.68066  117.7207

    25                39

   3.02723      3.01845

    Table 19. The first thirteen values of Table 14. in the first row, in the second row the factor, and in the  

third row the results.
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The greatest of the similar numbers in this case is around 3.218. Applying the maximum common 
multiple with the pseudo Euclidean algorithm using the value of 3.218 found in the last step multiplied 
by 0.8 as the stoping parameter to have numbers of the order of 3.0 in this procedure, Table 20 is 
generated.

           2           1   2.096680       2.096680    
           2           2   3.306641       5.403320    
           2           3   3.426758       8.830078    
           2           4   3.050781       11.88086    
           2           5   3.077148       14.95801    
           2           6   3.126953       18.08496    
           2           7   2.053711       20.13867    
           2           8   2.812500       22.95117    
           2           9   3.720703       26.67188    
           2          10   3.977539       30.64941    
           2          11   4.193359       34.84277    
           2          12   3.531250       38.37402    
           2          13   3.651367       42.02539    
           2          14   3.275391       45.30078    
           2          15   3.301758       48.60254    
           2          16   3.351562       51.95410    
           2          17   2.278320       54.23242    
           2          18   3.037109       57.26953    
           2          19   3.945312       61.21484    
           2          20   4.202148       65.41699    
           2          21   3.980469       69.39746    
           2          22   4.100586       73.49805    
           2          23   3.724609       77.22266    
           2          24   3.750977       80.97363    
           2          25   3.800781       84.77441    
           2          26   2.727539       87.50195    
           2          27   3.486328       90.98828    
           2          28   2.073242       93.06152    
           2          29   2.330078       95.39160    
           2          30   2.081055       97.47266    
           2          31   2.786133       100.2588    
           2          32   3.533203       103.7920    
           2          33   3.583008       107.3750    
           2          34   3.230469       110.6055    
           2          35   2.148438       112.7539    
           2          36   3.137695       115.8916    
           2          37   3.556641       119.4482    
           2          38   2.666016       122.1143    
           2          39   3.413086       125.5273    
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           2          40   3.462891       128.9902    
           2          41   3.110352       132.1006    
           2          42   2.028320       134.1289    
           2          43   3.017578       137.1465    
           2          44   3.436523       140.5830    
           2          45   2.828125       143.4111    
           2          46   2.877930       146.2891    
           2          47   2.525391       148.8145    
           2          48   3.524414       152.3389    
           2          49   2.432617       154.7715    
           2          50   2.851562       157.6230    
           2          51   2.031250       159.6543    
           2          52   3.909180       163.5635    
           2          53   2.926758       166.4902    
           2          54   2.382812       168.8730    
           2          55   3.797852       172.6709    
           2          56   3.859375       176.5303    
           2          57   2.876953       179.4072    
           2          58   2.333008       181.7402    
           2          59   3.748047       185.4883    
           2          60   3.080078       188.5684    
           2          61   2.536133       191.1045    
           2          62   3.951172       195.0557    
           2          63   3.518555       198.5742    
           2          64   2.902344       201.4766    
           2          65   3.446289       204.9229

            Table 20. Results of the GCD in the second column and the sum in column three.

the average value using column three of Table 20, that is the sum of the number of the second column,  

divided by 65 is 3.152659. Plotting a phase diagram with this value for the period Figure 9 is obtained.
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Figure 9. Phase Diagram Curve for BK Centaurus. 

This  phase  diagram shows  some  scatter  of  the  points  and  must  be  corrected.  The  period  can  be 

improved in several ways giving 3.17389 by Leotta-Janin, 3.218 with the curve fitting method and 

3.166 with Spline.

5. Comparisons with Other Methods 

This simple procedure produces approximate periods using elementary mathematical operations as are 

the analogues of the least common divisor and the greatest common divisor, hence can not be compared 

with more elaborated methods, but even so one can find approximate periodicities in unevenly spaced 

data containing gaps for few data points of the observational series.  With the approximate periods 

found one can use any of the other methods to improve these tentative periods as we have done with 

the curve fitting by the approximate least squares method. The results for the cases considered in this 

article compare well with the results obtained with other methods.  An also one can consider it is a 
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complement to some of the other methods because the period found could be used as the starting search 

for periodicities for those methods.

6. Conclusion and Commentaries

The procedure for finding period for few observational data uses the values close to the maximum of 

the  observational  time  series  to  apply  something  like  the  least  common  divisor  to  find  an 

approximation of the period that can be used in a procedure similar to de Euclid’s procedure to find the 

greatest common divisor but with a stoping parameter different from zero that can be obtained form the 

approximate  period  found  before  multiplied  by  a  small  fraction  to  produce  values  close  to  the 

approximate period. As the points close to the maximum are approximations to the maxima (minima) 

of the series and can fall in either side of the maximum, therefore it is necessary to take an average of  

the values found with the GCD to obtain a value close to the true period. This value can be improved in 

different ways as mentioned previously. We use the curve fitting method by least squares with a three-

parameter  model  iteratively.  The  procedure  produces  results  good  enough  for  predicting  in  an 

approximate way the periods necessary for forecasting the evolution of a observed time series with the 

purpose  of  aiding  in  choosing  the  future  observational  times  of  the  phenomena  under  study.  The 

procedure  produces  results  in  agreement  with  the  results  produced  by  other  more  sophisticated 

methods.
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