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Abstract
Picosecond optical guiding-center solitons of the first order, peculiar for the cubic Ginzburg–Landau systems, are
considered as the sync-signal carriers, being attractive for the transmission through optical fiber network. At first, we
analyze the model, governed by the complex cubic Ginzburg–Landau equation in a reduced form, and present an
approximate analytical description for the evolution of the main parameters inherent in guiding-center solitons. Then,
these soliton-like pulses are compared with fundamental solitons adiabatically perturbed by low losses in optical fiber,
being also potentially suitable to be the sync-signal carriers. This comparison suggests a conclusion that guiding-center
solitons have considerable advantages in applying as lock-on signals from the viewpoints of energy consumption and ease
of implementation. Interferometric technique of measuring time intervals with the help of train-average field strength
correlation functions to a sub-picosecond accuracy is developed in the event of arriving the optical soliton-like pulses at a
high repetition rate. Such an advantage of this technique as the ability of operating on the trains of low-power picosecond
optical pulses, in particular, guiding-center solitons in single-mode fibers is revealed. Results of trial experiments with the
mock-up, implemented as optical part of the sync-network for a short base radio-interferometer, are presented.
r 2006 Elsevier GmbH. All rights reserved.
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1. Introduction

At present, the majority of data processing systems uses
the lock-on signals, since the asynchronous systems as
well as the self-timed data-flow networks have not been
adequately developed. Naturally, the delta-function pulse
is an ideal lock-on signal, but in practice, it can be realized
only approximately. That is why general requirements to
the lock-on signals have to be satisfied in the synchro-
e front matter r 2006 Elsevier GmbH. All rights reserved.
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nously processing system with an arbitrary arrangement.
These signals should be precisely determined in the time
scale compared with a temporal interval, corresponding to
the cutoff frequency in data flow, or to the jitter time
conditioned by any internal instabilities or external
perturbations. In digital processors, the sync-signals
should be much shorter than the time peculiar to the
simplest logic operation or than the repetition period for
such operations. Consequently, the requirements to both
the duration and the repetition period of lock-on signals
increase by growth of the informative capacity, speed of
operation, or processing accuracy in a system. In recent
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years, aforementioned problems had been extended to
optics due to the progress in optical information
technologies. Certain of these problems may be resolved
by looking at the technique based on the application of
ultrashort optical pulses, which are able to play the part of
delta-function like pulses under certain conditions. There-
fore, we consider some aspects of implementing an all-
optical sync-network using ultrashort optical pulses as the
lock-on signal carriers. Various approaches can be applied
to establish the clock time in synchronously processing
system. For instance, in a lengthy-span optical fiber
transmission system with the pulse-code modulation, the
lock-on signals, which are impressed onto binary format
on the transmitter end, are recovered on the receiver end
by extracting the clock frequency. On the contrary, a
special purpose sync-network is usually included into the
digital data processing system. Bearing the implementa-
tion of just optical processing system in mind, one ought
to set aside the simplest case when identical optical lock-
on signals are one-directionally distributed from the
source all over the processing system, and this source
represents a separate unit. Evidently, to pass optical lock-
on signals with a minimal pulse width at a maximal
repetition frequency and to distribute them all over the
system without any revisions in the architecture of
processing systems the fiber technique is the most
promising. In order to make the best use of a modern
fiber technique, the preference should be given to the lock-
on signals in the form of picosecond solitons being
capable of passing through single-mode low-loss fibers at
the repetition rate up to 1011Hz. As this takes place, the
accuracy of the synchronization is ultimately restricted by
an error in determining the energetic center of a sync-
pulse. Such an error is no more than the sync-pulse width,
so the application of soliton regime to transmitting the
lock-on signals through single-mode fibers is an essential
prerequisite to create the processing system with a
picosecond accuracy of synchronization. Naturally, with
the use of solitons in a fiber, the precision of synchroniza-
tion will be increased resulting in a subject of much
current interest in connection with operating a modern
radio-interferometer, whose angular resolution should be
high enough, but the base has to be short.

For the first time, the guiding-center solitons were
studied theoretically by Hasegawa and Kodama [1–3] as
well as by Blow and Doran [4]. They considered that the
behavior of pulses is analogous to the motion of a charged
particle in an inhomogeneous magnetic field, where even if
the instantaneous position of the particle oscillates rapidly
at the gyrofrequency, the center of the oscillatory motion,
called the guiding center, moves smoothly. Such an
analogy led to a new theory of pulse propagation in the
presence of periodic perturbations with a period much
shorter than the dispersion distance. Originally, the area
of existence for such solitary waves was estimated by the
condition G� 1, where G is the ratio of the dispersion
distance to the loss distance. Then, Shcherbakov et al.
[5–7] discovered and investigated, both theoretically and
experimentally, that originating and developing the
guiding-center solitons is possible when GX1. Later on,
Shcherbakov and Kosarsky [8,9] used a specially devel-
oped technique of computer simulation to classify areas of
shaping bright solitary waves of the first order in systems
of the complex cubic Ginzburg–Landau equation and to
demonstrate it amply clear that the area of existence for
picosecond guiding-center solitons in single-mode fibers
can be enlarged in the region Go1. The intention of
exploiting picosecond guiding-center solitons in an effort
of synchronization had required impressive additional
analyses. In response to that, approximate analytical
description of the main parameters, reflecting the evolu-
tions of the guiding-center solitons of the first order, has
been developed in the paper presented. Keeping in hands
similar results, it was necessary to select the best-suited
carrier for sync-signals. For this purpose, two types of
optical solitary waves, namely, fundamental optical
solitons adiabatically perturbed by losses and guiding-
center solitons, which both can be potentially exploited as
the signal carriers in a fiber network for synchronization,
are compared with each other from the viewpoint of the
energy consumption. It is shown that the guiding-center
soliton offers the advantage of less energetic sync-signal
carrier over another soliton-like pulses. In addition, it
turns out easily to generate sync-signals in the form of
guiding-center solitons, all other factors being equal, for
instance, the accuracy of synchronization, because they
are considerably wider initially.

In Section 2, the problem of precise synchronization
for a short base radio-interferometer with the sync-
network, based on picosecond optical solitons in single-
mode fibers, is considered. Section 3 is concerned with
the theoretical description of developing the guiding-
center solitons in low-loss single-mode fibers. Section 4
is devoted to comparison guiding-center solitons with
fundamental optical solitons in fibers from the view-
point of transmitting the sync-signals. Features inherent
in the chosen optical interferometric technique of
measuring the temporal intervals are analyzed in Section
5. Both the schematic arrangement and the results,
obtained during the trial experiments with a specially
created mock-up representing an optical part of the
sync-network for a radio-interferometer, are presented
in Section 6. Section 7 lists a few conclusive remarks.
2. General consideration of the problem

Let us consider the concrete scheme for a precise
synchronization of a two-antenna short base radio-inter-
ferometer, which consists of two observing posts and the
central processing unit, see Fig. 1. The problems of
establishing the clock time in a system and determining
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Fig. 1. General scheme of a precise synchronization for a two-

antenna radio-interferometer.
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the clock skew between two posts may be reduced to the
precise collation of local time scales using the lock-on
signals. For example, from the standpoint of radio-
astronomy, the key value under observation therewith is
the geometric time-delay t1 ¼ c�1 L � sin y, where c is
the light velocity, y is the angle of wave front arrival, L is
the base length.

To calculate the geometric time-delay, being in a state
of constant flux, the data about some wave front,
scanning the observing posts, should be transmitted to
the central processing unit. The data signals are passed
by two different channels and, consequently, the
temporal mismatch of data signals in these channels t

contains: the geometric time-delay t1, the difference t2 ¼

c�1ðl1n1 � l2n2Þ in the traveling time (here l1;2 and n1;2

are the geometric lengths and refractive indexes of
transmitting fiber channels), and an occasional time-
delay t3 conditioned by external perturbations, so we get

t ¼ t1 þ t2 þ t3. (2.1)

The lock-on signals are generated by the central
processing unit and then they are concurrently directed
to either observing post by different channels, being just
those channels, which are used for the transmission of
data signals. Later, after a passage over the observing
posts, these lock-on signals come back at the central
processing unit. The clock skew between the energetic
centers of channel passed sync-pulses is given by tC ¼

2ðt2 þ t3Þ. Thus, the magnitude of tC could be used to find
the geometric time-delay t1 ¼ t� tC=2. Such a solution of
the sync-problem is rather steady in relation to casual
perturbations having influence over the magnitude of t3.
The sync-accuracy is determined by the accuracy of
measuring the clock skew between the energetic centers of
sync-pulses and also by originating casual variations in
the shape, spectrum and group velocity of pulses in both
the transmitting channels. Fortunately, just fundamental
solitons inherent in Ginzburg–Landau systems are the
most tolerant to variations of this kind, because temporal
locations of their energetic centers are practically insensi-
tive to similar perturbations of pulses. The principal
measurable value is the clock skew tC between the
energetic centers of ultrashort optical sync-pulses passed
in parallel through two different fiber channels. Initially,
one ultrashort optical pulse is injected into two channels –
just two fibers, and then the soliton signals arrive at the
ports of registration after the times t1 and t2, respectively,
given by

t1;2 ¼ c�1 l1;2 n1;2 þ d t1;2, (2.2)

where dt1,2 are the time-delays conditioned by external
perturbations. The clock skew between these pulses can be
written as

tC ¼ t1 � t2 ¼ c�1ðl1n1 � l2n2Þ þ d t1 � d t2. (2.3)

In this scheme, the clock skew appears as a temporal shift
between two picosecond optical pulses corresponding to a
common initial optical pulse, so that pulse stirring is not
available. However, this brings up the problem of
supervising, that is to say, estimating the clock skew
between the energetic centers of sync-pulses with a
picosecond accuracy, suggesting that one is in need of
accomplishing the photon-to-electron conversion with the
time constant lying in a sub-picosecond range. Never-
theless, this difficulty can be successfully get over if the
lock-on signal source generates an uninterrupted train of
picosecond optical pulses at a sufficiently high repetition
rate. To keep picosecond accuracy the train-average clock
skew can be measured as a temporal shift between two
pulse trains via shaping all-optically the second-order
correlation function of these trains. The optical scheme,
measuring the train-average clock skew, as a whole
represents an all-fiber Mach-Zehnder interferometer, and
the performances of this scheme are conditioned by the
properties of such an interferometer. The proper train-
average clock skew between pulse trains passing through
two parallel channels, one of which contains the tunable
time-delay under control, is measured by two beam sliding
Michelson interferometer. With a high repetition rate of
sync-pulses the use of sliding interferometer provides the
procedure of sampling to form the cross-correlation
function all-optically and to maintain an exactly scaled
conversion from the analysis of ultrafast phenomena at
optical frequencies to the analysis of these processes with
a speed of operation being accessible for electronics. Just
temporal sliding in the Michelson interferometer realizes
an all-optical sampling procedure in detecting the
correlation function in such a way that all the further
processing can be made electronically. Generally, to detect
the correlation function at a sub-picosecond time resolu-
tion both the nonlinear second harmonic generation
technique and the proper interferometric one are success-
fully used. With the nonlinear technique, when the
response time of nonlinear crystal is less than 10 fs, the
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photodetector integrates the signal being linearly propor-
tional to the intensity of the second harmonic light wave,
so any information about the phase of light wave is fallen.
However, the efficiency of the second harmonic genera-
tion is too small at low level of pulses generated by such
sources as, for example, mode-locked semiconductor
lasers, hindering the processing of correlation function
and sending us in search of the other way. Consequently,
it is expedient to look at the proper interferometric
technique, which is suited to processing the pulse signals
accessible for semiconductor laser sources. At the same
time, the interferometric technique is sensitive to the phase
characteristics of light wave, in particular to its time
coherence. The uniqueness in the results of measurements
can be achieved only if the detected light represents a faint
background together with a train of transform-limited
pulses with a smooth envelope. Such is indeed the case
when the picosecond optical solitons in single-mode fibers
can be successfully used as the lock-on signals.
3. Developing bright picosecond guiding-center

solitons in optical fiber

Evolution of bright solitary waves in the media with a
weakly focusing cubic-law nonlinearity, anomalous
dispersion of the group velocity, and the losses g is
described by the complex cubic Ginzburg–Landau
equation in a reduced form [10,11]

i
qA

qz
�

1

2

q2A
qt2
� Aj j2Aþ iGA ¼ 0. (3.1)

Here A is the field amplitude normalized to the
amplitude of a fundamental soliton in the case of
g ¼ 0. The normalized independent variables z and t
are connected with the propagation distance x and the
retarded time t in tracking coordinate system as z ¼

xZ�1D and t ¼ tt�10 ; where ZD ¼ t20 k2j j is the dispersion
distance, k2 is the dispersion coefficient (k2o0 in the
anomalous dispersion region), and t0 is the initial width
of solitary wave, determined by the level of sech1 ¼ 0:65.
Because of the losses, the dynamics of developing the
bright pulse is conditioned by the factor G ¼ gZD. The
reduction of the complex cubic Ginzburg–Landau
equation to Eq. (3.1) lies in the fact that both the
spectral filtering and the nonlinear absorption processes
are neglected, so the coefficients in the second and third
terms are real-valued in Eq. (3.1). We assume that
initially the solitary waves do not have the frequency
chirp b and satisfy the following boundary conditions

A z ¼ 0; tð Þ ¼ a0sechðtÞ b z ¼ 0; tð Þ ¼ 0. (3.2)

Here the normalized initial amplitude a0 determines an
initial excess of the pulse amplitude over the magnitude
of A0 for corresponding fundamental soliton. Having in
mind the only solitary waves of the first order, we restrict
ourselves to considering the interval 1:0 � a0 � 1:5 [12].

We take the project of solution to Eq. (3.1) as a
product Aðz; tÞ¼hðz; tÞQðz; tÞ, where hðzÞ ¼ a0 expð�GzÞ

and a0 ¼ hðz ¼ 0Þ. In so doing, the complex function
Qðz; tÞ has to satisfy the following partial differential
equation

i
qQ

qz
�

1

2

q2Q
qt2
� h2 zð Þ Q

�� ��2Q ¼ 0. (3.3)

The constant a0 is taken so that the condition
Z�1A

RZA

0
h2 zð Þdz ¼ 1 is true along distances z � ZA [1]

and, consequently, a2
0 ¼ 2GZA 1� exp �2GZAð Þ½ �

�1; and
a0 � 1. Then, we will search a solution Qðz; tÞ to
Eq. (3.3) as the sum of two quadrature components
Q z; tð Þ ¼ q z; tð Þ þ ip z; tð Þ½ �exp ij z; tð Þ½ �, whereas the first
component, namely, q z; tð Þ exp ij z; tð Þ½ � will be chosen in
the form of one-soliton solution to the cubic Schrödin-
ger equation [3,11]

q z; tð Þ exp ij z; tð Þ½ � ¼ Z sec h Z t� kzð Þ½ �

� exp �ikt�
iz

2
Z2 � k2
� �� �

. ð3:4Þ

Here, Z determines both the amplitude and the width for
fundamental soliton, k describes the frequency shift. The
first component, expressed by Eq. (3.4), represents the
guiding center of a pulse. The second component may be
taken in the form p z; tð Þ 	 R0 zð Þq3 z; tð Þ, with the function

R0 zð Þ ¼ zþ a2
0 2Gð Þ�1 exp �2Gzð Þ � 1½ �, (3.5)

satisfying the condition Z�1A

RZA

0
R0 zð Þdz ¼ 0. Thus, the

complex amplitude of solitary pulse can be expressed as

A z; tð Þ ¼ a0 exp �Gzð Þq z; tð Þ

� 1þ iR0 zð Þq2 z; tð Þ
� �

exp ij z; tð Þ½ �. ð3:6Þ

At this stage, we obtain a possibility to describe spatial
distributions of both the amplitude and the frequency
chirp in the field Aðz; tÞ. Because q z; t ¼ kzð Þ 
 1, spatial
distribution for the peak amplitude APðzÞ ¼ Aðz; t ¼ kzÞ

of guiding-center soliton of the first order (Z ¼ 1) is
determined by the modulus of Eq. (3.6)

AP zð Þ ¼ a0 exp �Gzð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

0 zð Þ

q
(3.7)

The phase term in Eq. (3.6) makes it possible to find
spatial distribution for the frequency chirp b(z) of the
same guiding-center soliton. The phase jðz; tÞ of funda-
mental soliton has no effect on the frequency chirp, so

b zð Þ ¼
d2

dt2
arctg R0 zð Þq2 z; tð Þ

� �
 �� 

t¼kz

¼
�2R0 zð Þ

1þ R2
0 zð Þ

.

(3.8)

Each of Eqs. (3.7) and (3.8) includes three parameters: a0,
G, and ZA, which are not independent from one another.
Figs. 2a and 2b show spatial distributions for the peak
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Fig. 2. Spatial distributions for the normalized peak amplitude

(a), frequency chirp (b), and normalized pulse width (c) of

guiding-center solitons with a0 ¼ 1.4: lines 1 are for G ¼ 0.2;

lines 2 are for G ¼ 0.4, and lines 3 are for G ¼ 0.8.
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amplitude AP(z) and the frequency chirp b(z) with a0 ¼

1:4 and a set of G, corresponding to various ZA.
To estimate spatial distribution for the pulse width of

guiding-center solitons of the first order we apply the
method of the phase plane. For this purpose the project of
solution in the form of Aðz; tÞ ¼ Hðz; tÞ exp½i ¼ Yðz; tÞ�
can be substituted into Eq. (3.1), where Yðz; tÞ is the
complete phase of a guiding-center soliton in Eq. (3.6).
Extracting the real part of the appeared equation and
using approximation of the order of 0 R4

0

� �
, we obtain

1

2

qH

qt

� 
2

þP H ; zð Þ ¼ 0, (3.9a)

P H; zð Þ ¼ �
Z2H2

2
þ a�20 exp 2Gzð Þ

H4

2

� a�40 R2
0 zð Þ exp 4Gzð Þ

2H6

3
�

H8

2

� 

ð3:9bÞ

Here, Eq. (3.9b) describes the potential function PðH; zÞ
for some particle with the mass of unity. Spatial
distribution for the pulse width T(x, z) at some pre-
assigned level x of the amplitude function H(z, t) is
determined by the following integral relation

Tðx; zÞ ¼
Z APðzÞ

xAPðzÞ

dHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2PðH; zÞ

p : (3.10)

The function AP(z), see Eq. (3.7), determines the line,
corresponding to maxima of pulse amplitudes and
satisfying the condition P(A0, z) ¼ 0. Selecting xE0.65
in Eq. (3.10), one can obtain T(0.65,z)
1/Z. Spatial
distributions for the width of guiding-center solitons are
shown in Fig. 2c. Eq. (3.10) makes possible describing,
with accuracy of the order of R2

0 zð Þ, the primal property of
guiding-center solitons of the first order to recover the
width tp to its initial value t0 on passing through the
distance Lmin of peak compression to the return distance
LR [5–7]. It is seen from Fig. 1, that the area of
applicability for the used approximations is restricted by
some function F(a0,G,z) [8,9].

Such a solution can be compared with bright
fundamental solitons adiabatically perturbed by low
losses. An approximate expression for the complex
amplitude of this solitary pulse is given by [3,11]

A z; tð Þ ¼ aP expð�2GzÞ sec h
t
t0

expð�2GzÞ

� �

� exp �iGt2 þ
i

8G
exp �4Gzð Þ � 1½ �

� �
. ð3:11Þ

Eq. (3.11) presents an approximate analytical descrip-
tion for evolutions of the peak amplitude, the pulse
width, and the frequency chirp inherent in fundamental
soliton, adiabatically perturbed by low losses in a fiber.
Evolutions of the peak amplitude AP ¼ apexp(�2Gz)
and the pulse width tP ¼ t0exp(2Gz) follow from Eq.
(3.11). An are of the applicability for Eq. (3.11) can be
determined by

t2o
exp �4Gzð Þ

4G2
. (3.12)

When Gz51, the exponent may be estimated as unity in
Eq. (3.12), so we arrive at inequality tj jo 2Gð Þ�1. Thus,
Eq. (3.11) describes adequately the behavior of a
solution to Eq. (3.1) in some temporal range being
symmetrical relative to the center of a pulse. The
magnitude of this range is in inverse-proportion to G
with Gz51. As pulse is passing, the effect of spatial
coordinate dependence increases in Eq. (3.12) and the
temporal range becomes to be narrower. Therefore, the
smaller is the parameter G, the greater spatial-temporal
range allows the solution obtained. For instance, in
temporal range �5rtr5, containing the main part of
energy for a sech-like optical pulse, one can obtain the
restriction Go0:1.
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Fig. 3. The peculiarities inherent in developing the width for

two types of soliton-like pulses of the first order as the carriers

of sync-signals: line 1 is for the picosecond fundamental soliton

adiabatically perturbed by low optical losses; line 2 is for the

guiding-center soliton.

A.S. Shcherbakov et al. / Optik 118 (2007) 221–231226
4. The advantages in applying guiding-center

solitons as sync-signal carriers

Usually, the guiding-center solitons are associated
with transmitting the digital data [3,7]. This paragraph is
connected with the application of guiding-center soli-
tons to the problem of creating lengthy fiber networks
for a precise synchronization. Evidently, the preference
should be given to the sync-signal carriers in the form of
picosecond solitons being capable of passing through
single-mode low-loss fibers at a short repetition period.
The phenomenon of the self-phase modulation is
capable of compensating a dispersive broadening of
ultrashort pulse in the anomalous dispersion region of
single-mode fiber and thereby of shaping a stable carrier
in the form of ‘‘bright’’ picosecond optical soliton.
Unfortunately, as it was mentioned above, the evolution
of optical soliton in a fiber is also conditioned by the
optical losses whose action is defined by the factor G,
which represents the ratio of the dispersion distance ZD

to the loss distance g�1. If the factor G ¼ 0, the initial
balance between dispersion and nonlinearity gives rise to
the fundamental soliton when the initial energy of such a
pulse is Ef ¼ 2k2(st0)

�1, where s ¼ 2.7 rad/W/km in
standard single-mode silica fiber. When G51, a funda-
mental soliton cannot exist in an ideal sense, because the
optical losses induce adiabatical perturbation due to
broadening on the soliton pulse as t(x) ¼ t0 exp(2gx),
see Eq. (3.11). In the case of Gr1 or G41, to realize the
soliton-like regime of pulse propagation in a lossy fiber
the initial energy of a pulse should be made larger than
the energy of a fundamental soliton in the same but
lossless fiber. Thus, we arrive at an opportunity to apply
optical guiding-center solitons in a fiber that can be
lengthy and lossy, to data processing as ultrashort
carriers of information, in particular, as sync-signal
carriers for precise synchronization. The initial energy of
optical guiding-center soliton is Eg ¼ a2

0Ef , where a2
0

describes the above-mentioned excess of the optical
pulse energy over the energy of an ideal fundamental
soliton with the same initial width t0. During its
propagation, the guiding-center soliton exhibits self-
compression up to the propagation distance Lmin and
return of its own width to the initial value t0 followed by
broadening a pulse, see Fig. 2c.

From the viewpoint of achieving the maximal accuracy
of synchronization, associated with the minimal magni-
tude of the width tS of sync-pulse arriving at the point if
indication, the potential designer of fiber network has
two scopes for doing. The first scope is in using
adiabatically perturbed fundamental soliton [3] whose
initial width is determined as t0 ¼ tS exp(�2gL0), where
L0 is the arm length. The second one is in exploiting the
guiding-center soliton with t0 ¼ tS as a sync-signal
carrier. The relation between the initial energies Ef and
Eg is the governing factor in deciding between adiabati-
cally perturbed fundamental soliton and guiding-center
soliton whose width are the same at the distance
associated with the arm length L0, see Fig. 3.

The guiding-center soliton is initially less energetic
than fundamental soliton, i.e. EgoEf, when the condi-
tion L04LA ¼ g�1ln a0 is true. For typical magnitudes
a0 ¼ 1.4 and g ¼ 0.5 dB/km one can obtain LA ¼

5.84 km. In this case L0 ¼ LR ¼ 18.3 km, and the
potential designer can use either the adiabatically
perturbed fundamental soliton with the initial width
t1(x ¼ 0) ¼ 1 ps and the initial energy Ef ¼ 1.42 pJ or
the guiding-center soliton with t2(x ¼ 0) ¼ 8 ps and
Eg ¼ 0.34 pJ to obtain the same sync-pulse with
tS ¼ 8 ps at the point of indication, that leads to the
accuracy of synchronization at the range of 16 ps. As
this takes place, the initial energy of a sync-pulse in the
guiding-center soliton regime turns out to be more than
four times less than the energy of a sync-pulse using the
adiabatically perturbed fundamental soliton regime.
Then, the initial width of guiding center soliton is eight
times more than the same value of adiabatically
perturbed fundamental soliton. By this is meant that
sync-pulses in the form of guiding-center solitons can be
shaped easily with one and the same accuracy of
synchronization. Thus, the guiding-center soliton is
both energetically and technologically the best-suited
sync-signal carrier for a fiber network under considera-
tion. Consequently, we may conclude that the exploita-
tion of guiding-center solitons as sync-pulses has an
advantage in creating a medium-base fiber networks for
a precise synchronization. Technically well-grounded
parameters of both the sync-signal carrier and the
single-mode fiber arm can be chosen using spatial
dependencies of the amplitude and width for guiding-
center solitons, presented in Fig. 2. It is clearly seen from
Fig. 2a and c, that the primary self-compression stage is
accompanied by the increase in the amplitude only when
the factor G is small. In the other cases the monotonous
lowering of the amplitude is observed. It follows from
Eq. (3.6) that spatial–temporal distribution for the
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Fig. 4. Spatio-temporal distribution for the amplitude of

guiding-center soliton with a0 ¼ 1.4 and G ¼ 0.4; the set of

curves correspond to the sequence: z ¼ 0,1,2,3,4, and 5 in

order of decreasing the pulse amplitude.
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amplitude of guiding-center soliton can be expressed as

A0 z; tð Þ ¼ a0 exp �Gzð Þ sec h tð Þ

� 1þ R2
0 zð Þ sec h4 tð Þ

� �1=2
. ð4:1Þ

Fig. 4 shows additionally that both the maximum in
amplitude distribution and the spatial-temporal shape of
envelope for a guiding-center soliton sync-pulse, whose
parameters a0 ¼ 1.4 and G ¼ 0.4 are taken for example,
has no any temporal shift while a pulse is passing
through fiber arm. This fact demonstrates pictorially the
possibility of exploiting picosecond optical guiding-
center solitons as the carriers of sync-signals.

5. Technique of measuring the train-average

clock skew

There are two groups of effects restricting the accuracy
of interferometric technique on measuring the train-
average clock skew between two soliton trains in fiber
channels of the sync-network. The first group, including
the amplitude and phase noise of pulse source together
with the frequency chirp of an individual soliton pulse, is
conditioned by intrinsic properties of interferometrically
measured correlation function. The second group contains
such factors as the noise of photodetector, number of
samples, etc., appearing due to the processes of sampling
and measuring. Let us briefly consider both the groups of
effects starting from the first one. The amplitude noise is
able to reduce the accuracy of determining the temporal
parameters for individual pulses via processing the cross-
correlation function obtained from the interference of a
pair of single pulses, because this error depends on the
ratio of the isolated pulse energy to the variance of
random amplitude fluctuations. Optical sampling proce-
dure of forming the correlation function, shaped by
uninterrupted train of picosecond pulses, makes it
possible to fulfill the train-average measurements with a
desired accuracy, because large fluctuations are excluded.
The phase noise has effect on the contrast of interfero-
grams. This effect depends on the current time-delay in
sliding interferometer, so when the time-delay is equal to
zero or, what is the same – the instance of overlapping
totally the corresponding individual optical pulses with
each other, associated with the center of interferogram,
any influence of the phase noise is absent. Thus, the effect
of phase fluctuations on measuring the energetic center of
interferometrically detected cross-correlation function is
reduced to a minimum.

A combined output signal of sliding interferometer is
proportional to the energy arriving at a photo-detector,
if only the time of integration far exceeds the pulse
width. Consequently, the second-order field strength
correlation function, separated from a combined output
signal, is given by

IðtÞ ¼ Z
Z þ1
�1

Eðtþ tÞ þ EðtÞ
�� ��2 dt, (5.1)

where Z is the factor, reflecting the properties of a
photodetector whose time response may be, in its own
turn, much greater than the pulse width; E(t) is the
optical field strength. The correlation function of a
continuous wave radiation with the Gaussian statistics
of amplitude fluctuations has the form

IðtÞ ¼ 2Z
ffiffiffi
p
p

tC 1þ exp
�t2

4t2C

� 

� cosðo0tÞ

� �
, (5.2)

where tC is the interval of time coherence; here
tC ¼ tAC

� ffiffiffi
2
p

, in this case the correlation function width
tAC is determined at the amplitude level of 1=

ffiffiffi
e
p

relative
to a maximum of I(t) in Eq. (5.2). Soliton-like optical
pulse in a fiber has the given sech-like shape of envelope
and it can be described as

EðtÞ ¼ sech
t

tp

� 

� exp ijðtÞ½ � � expð�io0tÞ; � (5.3)

where o0 is the optical carrier frequency; tp is the pulse
width at the amplitude level of sech(1) ¼ 0.65;
j(t) ¼ 0.5Q(t/tp)

2, here Q ¼ const is the factor of linear
frequency chirp. Substituting Eq. (5.3) into Eq. (5.1),
one can obtain the following approximated result:

IðtÞ ¼ 4tpZ 1þ
t
tP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

q� 
(

� sh
t
tp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

q� 
� ��1
cosðo0tÞ

)
. ð5:4Þ

The estimation of Eq. (5.4) shows that the proper pulse
width of a sech-like pulse and the width tA of its
correlation function are approximately related as

tp 	 2�3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

q
tA, (5.5)

where tA is determined at the amplitude level of 0.65
relative to a maximum of I(t) in Eq. (5.4). It is clearly seen
from Eq. (5.4) that the presence of a linear chirp, i.e. Q 6¼ 0,
does not deform a symmetry of the shape of interferome-
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trically measured correlation function envelope, conse-
quently the linear frequency chirp has no effect on the
accuracy of calculating the energetic center of the field
strength correlation function. Going to the correlation
function for two pulse trains, we yield the same, but a train-
average picture, which looks rather suitable.

The second group of effects restricting the accuracy of
estimating the clock skew is associated with the processes
of sampling and measuring. In sampling, an interfer-
ometrically designed field strength correlation function is
represented by a sequence of samples taken at equal time
intervals, so a desired accuracy of such a representation
can be achieved only if the sampling frequency will be
high enough. In particular, to recover an original optical
signal, corresponding to all-optically shaped correlation
function uniquely, the minimal sampling frequency
should be not less than twiced maximal frequency
inherent in the spectrum of that original signal. The
procedure of discrete sampling makes it possible to come
from problematical handing of the light frequencies to
the operation with relatively low radio-frequencies, being
suitable to conventional electronic processing. The
registered electronic signal fits the optical correlation
function in question adequately under certain conditions
of detection. Usually, building a sinusoidal time-delay
into one of its arms brings about the sliding in Michelson
interferometer. The time-delay t is varied with arm
length due to the displacement x(t) of sliding element as

t ¼ c�1xðtÞ xðtÞ ¼ x0 sinð2pftÞ (5.6)

where x0 and f are the amplitude and frequency of sliding,
respectively. The correlation function in question should
be well precisely within the linear segment of a sinusoid:
sinð2pftÞ 	 2pft. Suggesting that 2pft

�� �� � a0, let us
introduce the relative error d ¼ a�10 ða0 � sin a0Þ, which
determines a peak-to-peak displacement inside this linear
segment as xL ¼ 2x0sin a0. For instance, one can put
d ¼ 0.045, that is better than 5% in accuracy, hence
a0 ¼ p/6 and xL ¼ x0. The twiced full spatial length 4CtP
of optical pulse should be therewith less than xL, restricting
the minimal magnitude of the amplitude of spatial sliding
as (x0)min42CtP/sina0. However, each period of sliding
includes two linear segments rather than one. This fact
leads to shaping two secularly symmetrical correlation
functions on photo-detector, one of which is practically
useless. That is why the possibility exists of considering the
only correlation function with increasing the time-delay,
and to do this let us approximate the unidirectional
sinusoidal displacement of sliding element within the linear
segment in the following locally equivalent saw tooth form

xðtÞ ¼
2xm

p

X1
n¼1

�1ð Þnþ1

n
sin ð2pnftÞ. (5.7)

The maximal amplitude xm of equivalent saw tooth sliding
can be estimated from a simple proportion: (xL/
2a0) ¼ (xm/p) as xm 	 px0, because the time derivative
of Eq. (5.7) is constant and positive within the segment
(�p;+p). The frequency of sliding can be expressed as
f 	 V=ð2px0Þ, where V is the velocity of linear sliding. To
reconstruct the proper correlation function without the
loss in accuracy so-called noise of time quantization has to
be taken into account, so the number m of photo-samples
over one half-period of a light wave, i.e. over l0/2, should
be chosen as: m4 1þ S=N

� �2h i1=2
, where S/N is the

signal-to-noise ratio. In practice, an intrinsic noise of
optical signal is much less than the noise in electronic
detection system whose level essentially governs the
resulting ratio S/N. Nevertheless, the noise in detection
system allows us to display the optical correlation function
with a desired accuracy, corresponding to the given
magnitude of the ratio S/N, such that S=N � 1 and
there is the reason to put mX(S/N). Since each photo-
sample is connected with the arrival of an individual pair
of optical pulses at photodetector, the number m can be
determined as the ratio between the time of sliding the
path l0/2 and the repetition period of optical pulses:
m ¼ l0f R=ð2V Þ, where fR is the repetition frequency of
optical pulses. As a result, one can find an upper limit fB
on the frequency of sliding

f B ¼
l0 f R

4px0

S

N

� 
�1
. (5.8)

Thus, when fr fB, the inequality mZ(S/N) is true. During
the process of measuring all-optically shaped correlation
functions, see Eqs. (5.2) and (5.4), their electronic
representations have the radio-wave carrier frequency fE

instead of the optical one 2pð Þ�1o0. At any magnitude of
fE, the photo-detector time response should be sufficiently
fast, i.e. its bandwidth should be rather wide to include fE

in order for such measurements to be made in their true
values. To determine the magnitude of fE we take into
consideration that smooth electronic representation is
actually some envelope for a lot of maxima (and minima)
inherent in a radio-wave pulse with carrier frequency fE. In
such a picture, each following maximum is derived every
time the path difference between the arms of sliding
interferometer is varied over l0. Expressing the velocity V

of sliding in units of l0 per second, we arrive at the
relation: fE ¼ V/l0, so the time scale for electronic
representation depends on the velocity V. To compensate
this effect and to estimate the true time parameters of an
original correlation function the time scale coefficient has
to be introduced as kT ¼ 2p f E

� ��1o0 ¼ 2p x0fð Þ
�1c. As

this takes place, there is good reason to believe that the
electronic representation is directly proportional to the
optical correlation function with the time scale coefficient
kT, and consequently, it fits this function adequately with a
desired accuracy. Finally, we consider the case, when an
additional time-delay 7Dt, i.e. in fact the clock skew tC,
see Eq. (2.3), is inserted into one of the interferometer’s
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Fig. 5. Schematic arrangement of an all-optical sync-network
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arms, using aforementioned time-delay under control. The
above-chosen approximation for the unidirectional dis-
placement, see Eq. (5.7), with a positive time derivative
leads to the following form of the second-order field
strength correlation function

Iðt� DtÞ ¼ Z
Z þ1
�1

Eðt� DtÞ þ Eðtþ tÞ
�� ��2 dt; (5.9)

which is shifted in time for the value of Dt relative to the
starting position with Dt ¼ 0 instead of Eq. (5.1). The
magnitude of Dt is limited by the inequality 2cDtrxL, i.e.
by the boundaries of linear sliding. Naturally, the elec-
tronic representation of this correlation function, scaled in
time, is also shifted, but for the value of electronically
displayed clock skew DtE, which has the form:
7DtE ¼7Dt � kT. The sign of electronically displayed
clock skew is uniquely determined by the corresponding
sign of initially introduced time-delay due to Eq. (5.7).
These combined things give a possibility of measuring
interferometrically the train-average clock skew.
(one of two arms is shown).

Mechanically sliding
time-delay line

Solition
input 2

Solition
input 1

Half-silvered
mirror

Photodetector

χL

Fig. 6. Optical scheme of the sliding Michelson interferometer

under consideration (all the additional time-delay lines are

excluded).
6. Schematic arrangement and experimental

results

The following all-optical scheme, being the key part
of sync-network under consideration, has been extracted
and experimentally simulated on a mock-up, see Fig. 5.
The source of the lock-on signals generates uninter-
rupted train of identical powerful picosecond pulses at
the wavelength lS. Taken alone, an individual pulse
from that train is transmitted by optical isolator and
then is divided by a 3-dB Y-coupler in two equal
portions each of them passes at the input plug of
corresponding fiber channel. Initially, each partial pulse,
owing to its own parameters, is capable of shaping the
fundamental guiding-center optical soliton in a fiber of
either transmitting channel, on subtraction of losses due
to their distribution. Just this picosecond optical soliton
represents the lock-on signal, propagating to the
observing post with the opto-electronic converter for
received data signals, then being effectively reflected by
spectrally selective mirror, coming back in soliton
regime and, finally, arriving at one of two input ports
of sliding Michelson interferometer, upon the second
distribution by the wave division demultiplexer and
spectrally insensible Y-coupler associated with the
corresponding channel. A sinusoidal time-delay is built
into one of the arms of sliding interferometer, see Fig. 6,
whose other arm is equipped by two time-delay lines,
which are not shown. One of these delay lines is
manually controlled with the accuracy down to
70.05 ps to calibrate the mock-up, whereas the other
one is controlled electronically to simulate the action of
external perturbations. As a result, the sliding inter-
ferometer detects the train-average clock skew following
which the local processor calculates its value. Opto-
electronic converters transform electronic data signals
from antennas to optical data signals at the carrier
wavelength lD. Spectrally selective mirrors in either
channel have both the reflectivity at the wavelength lS
and the transmissivity at the wavelength lD enlarged to
a maximum, so the sync-pulses are reflected without
destroying an adiabatically perturbed soliton regime of
their propagation and, in their own turn, all the optical
data signals pass into fiber channels through these
mirrors with little or no changes. The optical isolator
keeps therewith a cavity of pulse generator from the
passage of the reflected sync-pulses. Consequently, the
optical data signals have the only way at the input ports
of the central processor, which determines true values of
data taking into account repeatedly calculated train-
average clock skew.

During the experiment the picosecond optical soliton
sync-pulses are shaped in single-mode fiber arms by
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Fig. 7. The digitized oscilloscope traces of the cross-correla-

tion functions: (a) at the center of the calibrated scale, (b)

shifted by tCE�50 ps, and (c) shifted by tCE+30ps from the

center.
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semiconductor laser source based on single-mode In-
GaAsP-heterostructure with an external fiber cavity,
operating in the active mode-locking regime on the
wavelength of 1320 or 1550nm [13,14]. In the beginning,
the time coherence for semiconductor lasers has been
estimated in a continuous wave regime of radiation when
the auto-correlation function has a smooth envelope, see
Eq. (5.2). Experimentally obtained auto-correlation trace
with tACE15ps, corresponding to this case, gives a
possibility to estimate the interval tC of time coherence,
which comprised about 10ps for heterostructures as were
used. In the regime of active mode-locking, these
semiconductor lasers generate slightly chirped, but soli-
ton-in-fiber deriving pulses, whose width lies in the range
from 2 to 4ps and repetition frequency can be varied
between 400 and 1150MHz. Applying the formulae, listed
in Section 5, the following set of performances for sliding
may be selected with major reserve for experimental
realization: d ¼ 0.045,x0 ¼ xL ¼ 30mm, f ¼ 1Hz, and (S/
N) ¼ 10 to provide the range of temporal sliding up to 100
ps, resulting in kT ¼ 1.6� 109. The calibration of this
mock-up lies in locating the starting position with the help
of manually controlled time-delay line. The fineness of
control over the length in each fiber arm is accurate to
better than 0.01mm, corresponding to the time interval of
0.05ps in silica fiber. The last value does not have effect on
the accuracy of measuring the train-average clock skew,
because it is much less than the interval of time coherence.
The temporal range of measuring the train-average clock
skew tC is determined by the complete path length xL of
linear sliding. When uninterrupted trains of optical soliton
lock-on signals are applied at either input of sliding
Michelson interferometer, the cross-correlation function
trace is registered at the center of scale, i.e. at the starting
position, for lack of any external perturbations in the
calibrated scheme, see Fig. 7a. The repetition period of
displaying such a trace is determined by the magnitude of f

restricting, among other things, permissible characteristic
times of varying any external perturbations, which may be
tolerated via interferometric correlation technique of
measurements using the procedure of sampling. In order
for trial experiments with the optical scheme calibrated in
advance, an additional time-delay Dt has been brought in
one of the transmitting fiber channels with the help of
electronically controlled time-delay line to simulate the
action of external perturbations. When the magnitude of
Dt is varied, in particular occasionally, the cross-correla-
tion function trace becomes shifted across the time scale
relative to the starting position as it is shown in Fig. 7b
and c. It is clearly seen that the amplitude, width and shape
of envelope as well of the cross-correlation function trace,
on shifting, remain unchanged. We have defined that the
measured values of the train-average clock skew tC exhibit
an accuracy of 7 0.1ps, when the total magnitude of
linear sliding lies in the temporal range of 7 50ps, so the
resolution up to 500 points has been achieved.
7. Conclusion

The distribution of lock-on signals can be arranged using
the spatial optical interconnections as well as the index-
guiding structures. On the one hand, the spatial inter-
connections may be made with the help of focusing or
defocusing design. The spatially defocused interconnections
have rather low efficiency, because only a small part of light
arrives at photodetectors. At the same time, the necessity of
both collimating the light into focal spots as small as the
wavelength of light and aligning strongly this pattern is the
main disadvantage for the spatially focused interconnec-
tions. On the other hand, the index-guiding structures can
be based on the integrated optic waveguides or on the
optical fibers. The difficulty of applying the integrated optic
waveguides is conditioned by the complexity of constructing
a long-haul and branched optical network as well as by
their own properties, including insertion losses and optical
damage. In particular, dispersion and losses inherent in a
waveguide impede the passage and distribution of ultrashort
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optical lock-on signals through a similar network. That is
why, to pass the lock-on signals with the minimal duration
and to distribute these signals all over the processing system
the optical fiber technique is the most suitable. The use of
ultrashort soliton pulses in fibers as the optical lock-on
signals allow us to achieve a sub-picosecond accuracy of
synchronization at the repetition rate up to 100GHz and,
consequently, to increase the informative capabilities of the
processing system without any revisions in its architecture.
Evidently, it does not make up any difficulties in
distributing the optical soliton lock-on signals over the
branched fiber sync-network. Moreover, it is rather reason-
able to assume that semiconductor laser generator of
uninterrupted train, including picosecond sync-pulses, is
quite suitable just for optical fiber network.

To apply picosecond optical solitons to the problem of
precise synchronization we have analyzed the model,
described by the complex cubic Ginzburg–Landau equation
in a reduced form, and presented approximate analytical
description for the evolution of such main parameters as the
amplitude, width, and frequency chirp for guiding-center
solitons in optical fibers. Key physical aspects of imple-
menting a novel all-optical synchronization technique,
based on picosecond guiding-center solitons as the ultra-
short optical carriers of sync-signals passing through silica
long-haul single-mode fibers, have been briefly discussed.
Our attempt to similar application has its origins in the two
above theoretically established circumstances. First, the
property of a guiding-center soliton to return of its own
width to the initial value that can be put into operation to
chose the fiber arm length, and second, the maximum in
amplitude distribution of guiding-center soliton sync-pulse
has no temporal shift while a pulse is passing through a
fiber arm. Two types of soliton-like pulses, being potentially
suitable to be the sync-signal carriers, have been compared
with each other. The analysis of the relation between the
initial energies of these pulses has shown that the guiding-
center soliton has an advantage over the adiabatically
perturbed fundamental soliton as the sync-signal carrier in a
medium-base fiber network. Moreover, evidently the
exploitation of guiding-center solitons will be technologi-
cally easily, because they are wider initially and that
corresponding fundamental solitons can be generated easily.

The potentialities inherent in optical interferometric
technique of measuring precisely time intervals with the
help of the second-order field strength correlation functions
averaged over a train have been analyzed. Such a technique
has the advantage that it is capable of operating on low-
power picosecond optical pulse trains, for example,
picosecond guiding-center solitons in single-mode fibers,
generated by semiconductor laser sources, to a sub-
picosecond accuracy. The schematic arrangement of the
soliton sync-network, oriented to the radio-interferometer
with a high angular resolution and a short base, has been
proposed. Some results of successfully fulfilled trial experi-
ments with a specially designed mock-up for an optical part
of similar soliton sync-network have been considered. In
particular, observational data on transmitting the picose-
cond soliton lock-on signals and the evidence on processing
the train-average clock skew have been presented.
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