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We discuss a class of phase computer-generated holograms for the encoding of arbitrary scalar complex fields.
We describe two holograms of this class that allow high quality reconstruction of the encoded field, even if they
are implemented with a low-resolution pixelated phase modulator. In addition, we show that one of these ho-
lograms can be appropriately implemented with a phase modulator limited by a reduced phase depth. © 2007
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1. INTRODUCTION

The generation of complex scalar optical fields with am-
plitude and phase spatial modulations that are indepen-
dently specified is an important task in contemporary op-
tics. A practical and versatile method for generating these
arbitrary complex fields is based on the use of computer-
generated holograms (CGHs) [1-12]. In particular, the
use of phase CGHs is especially convenient because of
their relatively high efficiency [6-11]. It is important to
distinguish cell-oriented and point-oriented holograms for
encoding complex fields. In general, point-oriented ap-
proaches [6,9-12] are more convenient when holograms
are implemented with low-resolution pixelated modula-
tors.

When a pixelated spatial light modulator (SLM) is em-
ployed to implement a CGH, the quality of the recon-
structed field can be seriously affected by noise originat-
ing in high-order diffraction field contributions. Here we
discuss a class of phase CGH’s that encode arbitrary sca-
lar complex fields. We show that two of the CGHs that be-
long to this class provide appropriate reconstruction of
the encoded fields, even if they are implemented with a
low-resolution pixelated phase SLM. The good perfor-
mance of these CGHs is enabled by a significant reduction
in the relative intensity of the high-order diffraction field
contributions that share the spatial frequency domain of
the encoded field. One of the proposed holograms can be
implemented with a phase SLM that provides a reduced
phase range (close to 7rad). We report the experimental
implementation of this last hologram by means of a trans-
lucent, twisted, nematic liquid-crystal (LC) SLM.

The content is organized as follows. In Section 2 we
present the theory of our proposal. In Section 3 we evalu-
ate and compare the performance of the discussed holo-
grams when a pixelated SLM is employed for their imple-
mentation. In Section 4 we report the experimental
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realization of one of the discussed holograms, and in Sec-
tion 5 we present remarks and conclusions.

2. THEORETICAL FORMULATION

Our purpose is to generate an arbitrary complex optical
field whose amplitude and phase modulations are inde-
pendently specified. This complex field can be expressed
as

s(x,y) = a(x,y)explid(x,y)], (1)

where the amplitude a(x,y) and the phase ¢(x,y) take
values in the intervals [0,1] and [-7, 7], respectively. The
complex amplitude values of the function s(x,y) belong to
the set of complex numbers with modulus equal to or
smaller than one, which is denoted as (g. Our aim is to
encode the complex field s(x,y) by means of a phase trans-
mittance CGH. In general, a CGH that encodes the arbi-
trary complex modulation s(x,y) has a constrained com-
plex transmittance with values in a subset of Qg. In the
case of phase CGHs, this subset is formed by the complex
points of unity modulus. The transmittance of a phase
CGH, expressed as a function explicitly dependent on the
amplitude and the phase of the encoded field, is given by

h(x,y) = explila, $)], (2)

where ¢(®,a) is the CGH phase modulation.

The explicit dependence of the amplitude a and the
phase ¢ on the spatial coordinates (x,y) has been omitted
in Eq. (2). Our purpose is to establish phase functions
with the form of Eq. (2) that provide the appropriate en-
coding of the complex field s(x,y). A fruitful method to de-
termine appropriate forms of the hologram phase modu-
lation /(¢,a) is based on the representation of 2 (x,y) by a
Fourier series in the domain of ¢. Developing this Fourier
series, the CGH transmittance can be expressed as
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h(x,y)= >, ho(xy), (3)
q:-:x:
where
Ry(x,y) =% expliqg¢), (4)

¢t = (2m"! f expli(p,a)lexp(-igp)de.  (5)

In Eq. (5) it is noted that after integration in the vari-
able ¢, the resulting coefficients cZ remain explicitly de-
pendent on the amplitude a. Therefore, the coefficients ¢
are implicitly dependent on the coordinates (x,y). The sig-
nal s(x,y) is recovered from the first-order term %(x,y) in
the series of Eq. (3) if the identity

ci=Aa (6)

is fulfilled for a positive constant A. This identity is re-
ferred to as the signal encoding condition.

Sufficient and necessary conditions to fulfill Eq. (6) are
given by the following equations:

J Sin[lp(d):a) - d’]dd): 0, (7)

J cos[ i p,a) — pldp = 27Aa. (8)

Equations (7) and (8) provide a useful basis for deter-
mination of appropriate CGHs. The phase functions
(¢p,a) that obey these equations define a specific class of
phase CGHs. It is noted that the maximum of the integral
in Eq. (8) is 27. Thus, the maximum possible value of the
constant A in the encoding condition [Eq. (6)] is one. This
result provides a limit to the efficiency of the CGHs that
belong to this class. In the remaining discussion we focus
our attention on functions ¥(¢,a) with odd symmetry in
the variable ¢. The symmetry of such functions ensures
the fulfillment of Eq. (7).

A. Phase CGH of Type 1

As first example we consider a CGH that is essentially
equivalent to a synthetic hologram already found in optics
literature [9]. The phase modulation of this hologram can
be expressed as

U ,a)=fla)é, )

where the factor f(a) remains undetermined for the mo-
ment. The gth-order Fourier series coefficient for this
CGH computed with Eq. (5) is

¢g = sinclq - fla)], (10)

where sinc(é)= (wé)~!sin(7é). If fla) is obtained from the
relation

sinc[1-fla)]=a, (11)

then the encoding condition [Eq. (6)] is fulfilled with A
=1. For the complete definition of the CGH, the function
f(a) is numerically inverted from Eq. (11). The computed
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values of f(a) versus a are shown in Fig. 1 (solid curve).

Next we analyze two additional phase functions y{(¢,a)
that, to the best of our knowledge, correspond to phase
CGHs that are reported here for the first time.

B. CGH of Type 2
Another phase modulation (¢,a), with odd symmetry in
¢, is given by

W $,a) = ¢+ fla)sin(¢). (12)

The phase CGH transmittance in this case is h(x,y)
=exp(ip)explif(a)sin(p)]. The Fourier series in the vari-
able ¢ for this phase transmittance can be directly found
by using the Jacobi—Anger identity [13]. According to this
identity, the second phase factor in the CGH transmit-
tance h(x,y) is given by

explifia)sin(p)]= >, J,[fl@)lexpim¢),  (13)

m=-%

where JJ,, denotes an integer-order Bessel function. Con-
sidering this relationship it is readily proved that the new
CGH transmittance A(x,y) is expressed by the Fourier se-
ries defined in Eqgs. (3) and (4) with coefficients

¢4 =, lfl@)]. (14)

According to Eq. (14), the encoding condition [Eq. (6)] is
valid (with A=1) if f(a) is obtained from the relation

Jolfla)]=a. (15)

Equation (15) can be fulfilled for every value of a in the
interval [0,1] by taking the appropriate value of f(a) in
the domain [0,x,], where x,=2.4048 is the first positive
root of the Bessel function Jy(x). The resulting function
f(a), numerically generated from Eq. (15), is plotted in
Fig. 1 (dashed curve).

C. CGH of Type 3
The second new CGH that we propose is associated with
the phase modulation

W ¢,a) =fla)sin(¢). (16)

Although this CGH phase function is similar to the func-
tion in Eq. (12), it presents special features that justify its
discussion. To obtain the Fourier series and correspond-
ing coefficients for this CGH we employ again the Jacobi—
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Fig. 1. Function f(a) versus a for the CGHs of types 1 (solid
curve), 2 (dashed curve), and 3 (dotted curve).
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Anger identity [Eq. (13)]. The resulting gth-order coeffi-
cient in this Fourier series is

= [f@), (1

and the encoding condition is fulfilled if f(a) is inverted
from the relation

J1lfla)]=Aa. (18)

The maximum value of A for which Eq. (18) can be ful-
filled is A=0.5819, which corresponds to the maximum
value of the first-order Bessel function J;(x), which occurs
in turn at x=x;=1.84.

The function f(a) obtained by numerical inversion from
Eq. (18) adopts values in the interval [0,x;] [see Fig. 1
(dotted curve)]. It is interesting to note, considering the
limit values of f(a) and Eq. (16), that this CGH can be
implemented with phase modulation in a reduced domain
[-fom,fom] with f,=0.586. The phase range of the re-
quired modulator in this case is A¢p=2fym=1.177.

A further reduction in this phase range can be attained
by adopting a smaller value of A in Eq. (18). An advantage
of this reduced phase domain is that it can be easily ob-
tained with conventional LC SLMs employing relatively
long wavelengths, e.g., in the near-infrared domain. This
type of illumination is appropriate for manipulation of liv-
ing cells with optical tweezers [14—16]. It will be shown in
Section 3, that in spite of the phase range reduction in the
CGH defined by Eq. (16), it allows the accurate encoding
of complex fields.

D. Modification of the Hologram by a Phase Carrier

We assume that the reconstruction of the encoded field is
performed by spatial filtering in the hologram Fourier
spectrum plane. The optical setup for reconstruction is
schematically represented in Fig. 2. It is assumed that
the CGH is placed at the back focal plane of the first lens
(L1). The Fourier transform of the field transmitted by
the CGH is formed at the spatial filter plane. In general,
the CGH spectrum is formed by the signal term and non-
signal or high-order spectrum field contributions. For re-
construction of the encoded field with high signal-to-noise
ratio (SNR) a minimal overlapping is desired between the
signal and the high-order terms in the CGH spectrum.
Under this condition, a spatial filter pupil can be em-
ployed to transmit the light corresponding to the Fourier
spectrum of the encoded field. The encoded field itself is

Output plane

Spatial filter

Fig. 2. Double-Fourier transform optical setup for the genera-
tion of scalar complex fields employing a CGH.
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generated by the second Fourier transforming lens (L.2) at
the output plane of the setup.

Next we discuss a modification of the CGH defined in
Eq. (2) that enables the isolation of signal from noise in
the CGH Fourier spectrum domain. The Fourier spectrum
of the encoded field s(x,y) is denoted by S(u,v), where
(u,v) represent the spatial frequency coordinates associ-
ated with the spatial coordinates (x,y). If we assume that
the Fourier spectrum S(u,v) is centered on the Fourier
plane axis (u,v)=(0,0), then the spectra for the different
terms A, (x,y) in the hologram Fourier expansion [Eq. (3)]
are also centered on this axis. Thus, the encoded field can
not be recovered by spatial filtering from the CGH defined
in Eq. (2).

To achieve the spatial isolation of the encoded field, the
above definition of the CGH is modified by adding the car-
rier phase modulation 27(ugx+vyy) with spatial frequen-
cies (u(,vg) to the phase of the encoded field. The modified
CGH transmittance h.(x,y)=expli(P+2m(upx+vqy),a)]
can be expressed by the Fourier series

0

h(x,y) = > hy(x,y)expli2m(quex +quey)].  (19)

gmos
The Fourier spectrum of this modified CGH is given by

H,(u,v)= >, H,(u-qug,v -quy), (20)

q=-»

where H,(u,v) is the Fourier transform of 2,(x,y) [defined
by Eq. (4)]. The structure of the CGH Fourier transform
formed by laterally shifted copies of the Fourier spectra
H,(u,v) allows the spatial isolation of the encoded field,
whose Fourier spectrum appears as Hq(u—-ug,v—-vg). The
distribution of the CGH spectra terms H,(u-qug,v—qvg)
when ug=v, is schematically represented in Fig. 3. The
zeroth-order Hy(u,v) appears at the center of this figure.

The Fourier spectrum in Eq. (20) corresponds to a CGH
implemented with a phase modulator free of spatial quan-
tization. Accurate implementation of CGHs without spa-
tial quantization allows an efficient isolation of the en-

lst order

Fig. 3. Schematic spatial distribution of the CGH spectra terms
H,(u-qug,v-qu,) when uy=v,.
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coded field from nonsignal diffraction orders of the CGH,
enabling reconstruction with a high SNR. A requirement
(common to all the CGH types) for obtaining an accept-
able SNR is that at least one of the hologram carrier fre-
quencies (uq,vq) be larger than the bandwidth of the en-
coded field s(x,y). On the other hand, if a CGH is
implemented with a low-resolution pixelated SLM, the re-
constructed signal term can be significantly affected by
high-order diffraction contributions. In general, the noise
level in the reconstructed field introduced by the high-
order diffraction terms is highly dependent on the CGH
type. In Section 3 we prove that the two new proposed
CGHs (of types 2 and 3) can generate the encoded com-
plex field with high SNR even if they are implemented
with a pixelated SLM.

An alternate method of attempting the separation of
signal from noise is based on the addition of a quadratic
phase carrier (see, e.g., [17]) to the phase of the encoded
field. If the resulting CGH is illuminated by a plane wave,
the Fourier transforms of the different terms A,(x,y) of
the CGH Fourier series are generated at different planes
in the Fresnel domain of the CGH. A drawback of this
method is that part of the high-order noise field contribu-
tions appear in a diluted form at the plane where the Fou-
rier transform of the encoded signal is obtained.

3. IMPLEMENTATION OF PHASE
HOLOGRAMS WITH A PIXELATED SLM

Let us assume that the CGHs are implemented with a
pixelated phase SLM. For simplicity we assume that the
SLM pixel pitch & is the same in the horizontal and the
vertical axes and that the pixels are squares of side b.
Thus, the Fourier spectrum of the pixelated CGH is given
by

o ©

H,(u,v) = E(u,v) E 2 H (u -nAu,v —mAu),

n=—© m=-%

(21)

where Awu=1/6x is the SLM bandwidth, E(u,v)
=b2sinc(bu)sinc(bv) is the Fourier transform of the
square pixel, and H,(x,v) is the Fourier spectrum of the
continuous CGH given by Eq. (20). According to Eq. (21),
the Fourier spectrum of the pixelated CGH is formed by
the superposition of laterally shifted replicas of the spec-
trum H_.(u,v) modulated by the pixel Fourier transform
E(u,v). The spectrum function H{(u-uqy,v-vy) that ap-
pears at the term H.(u,v) of the series in Eq. (21) is
equivalent to the signal spectrum S(u—-ug,v-vg). The dis-
tortion of the signal spectrum due to the factor E(u,v) can
be avoided by an appropriate prefiltering of the encoded
field [12]. This process consists in replacing the original
encoded field s(x,y) by a modified field s'(x,y) that is de-
fined by its Fourier transform S’(u,v) obtained from the
relation S'(u-ug,v-ve)=Su-ugy,v-ve)E Yu,v). The
function E~!(u,v) is appropriately defined in the domain
of S(u-ugy,v-vg) since the carrier frequencies (u(,v,) are
always chosen in such a way that S(u—-uq,v-vg) is envel-
oped by a nonzero sector of E(u,v). This prefiltering is ap-
plied to the complex fields that are holographically en-
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coded below either by numerical simulations or
experimentally.

An inconvenient consequence of the pixelated structure
of the CGH is that the domain of the signal spectrum
term Hi(u-ug,v-vg) that is centered at the spatial fre-
quency coordinates (ug,vo) may also contain high-order
spectrum contributions H, that are members of several of
the spectrum replicas H,(u —nAu,v—-mAu). To analyze the
relative significance of the high-order spectrum terms H,
sharing the signal spectrum region, let us assume that
the carrier spatial frequencies are ug=vy=(P/Q)Au with
relative prime integers P and @. In this case, it is not dif-
ficult to prove that the spectra contributions that appear
centered at the signal spatial frequencies (u(,u,) are
Hggi(u—ug,v-up) for any arbitrary integer number R.
The signal term in this set of spectra contributions corre-
sponds to R=0.

To prove this result, we first note that for the assumed
carrier frequencies uy=vo=(P/Q)Au, the spectra terms H,
in Eq. (20) take the form H,(u—-qu,,v-qug). This means
that all the terms H, in H.(u,v) are centered at the axis
u=v in the CGH Fourier spectrum domain. As a particu-
lar case, the signal spectrum term H;(u—-uqy,v—ug) is also
centered at the coordinates (ug,up). Another important
observation is that the only terms H.(u—nAu,v-mAu) in
Eq. (21) that contain spectra functions H, placed at the
axis u=v are those with indices n=m. Considering the re-
lation uy=v¢=(P/Q)Au, the term H.(u-nAu,v-nAu) can
be expressed as

H,.(u-nAu,v -nAu)= > H[u - (nQ/P+q)uy,v

g=—o>
- (nQ/P +q)u,). (22)

It can be directly verified that the functions H, in Eq.
(22) that appear centered at coordinates (u(,uq) are those
corresponding to the combination of indices n=-RP and
g=QR+1 for any integer R. This proves that the Fourier
spectrum of the pixelated CGH contains the terms
Hgpyi(u—uy,v-ug) for any integer R that are centered at
the coordinates (ug,ug). It must be emphasized that in
this collection of spectra terms the spectrum of the en-
coded field corresponds to R=0.

To obtain a high SNR, the high-order contributions
Hggi(u—-ug,v-uy) (with R+#0) must be negligible com-
pared with the signal spectrum H(u-uq,v—ug). Consid-
ering Eq. (4), it is clear that the power of the spectrum
term Hgp,1(u,v) is proportional to the squared modulus
of the coefficient cp, ;. It is interesting to note that coef-
ficients cZ for the CGHs of types 2 and 3 defined in Egs.
(14) and (17) in terms of Bessel functions tend rapidly to
zero when |g| is increased. Thus, it is expected that (for a
moderately large @) these CGHs will enable reconstruc-
tion of the encoded field with relatively high SNR.

The significance of noise contribution Hgg,1(u—ug,v
—uy) in relation to the signal term H{(u—-ug,v—1u() can be
measured by the ratio p=|cfp,,[*/[c{|?. As an example let
us assume P=1 and @=6 (i.e., up=vo=Au/6). In this case,
the dependence of log(p) (for R=1 and 2) on the amplitude
a for the different CGH types is shown in Fig. 4. The
lower values of log(p) for the CGH of types 2 and 3 are
evident.
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Fig. 4. Function log(p) versus a, where p=|chp,,|*/|c{|* (for @
=6) for the CGHs of types (a) 1, (b) 2, and (c) 3. The values of
index R are 1 (solid curve) and 2 (dashed curve).

The parameter p=|ctr,;|*/|c{|* is useful to evaluate the
quality of CGHs without requiring knowledge of the en-
coded complex function s(x,y). Lower values of p corre-
spond to CGHs with higher immunity to the high-order
noise terms that are transmitted in the CGH plane. The
SNR provides another measure of the CGH performance.
Contrasting with the parameter p, the SNR, which is em-
ployed below for evaluation of different CGHs, is explic-
itly dependent on the form of the encoded field s(x,y). It
must be emphasized that low-order nonsignal spectrum
field contributions (of order g # @R +1) also present repli-
cas due to the SLM sampling. However none of these
spectrum replicas appears centered on the signal frequen-
cies (uq,ug). On the other hand, the low-order nonsignal
spectrum field contributions (e.g., of orders 0 or 2) can
partially overlap the signal spectrum. However, this influ-
ence can be minimized either by increasing the carrier
frequencies (ug,uq) or by reducing the bandwidth of the
encoded signal. This control is possible because in general
a reduction of the encoded signal bandwidth also reduces
the bandwidth of the high-order CGH terms.

To illustrate the performance of pixelated CGHs we em-
ploy these holograms to encode Laguerre—Gauss beams.
These beams are expressed in polar coordinates (r, 6) as

u(r,0) = C(\2r/wo) 'L (2r¥wl)exp(- r2/wd)exp(il 6).
(23)

In Eq. (23) Llfl denotes an associated Laguerre polyno-
mial, w, is the beam waist radius, p is the radial mode
index, [/ is the phase singularity charge, and C is a nor-
malization constant. For the first numerical simulation
the waist radius is wy=400x (recall that dx is the SLM
pixel pitch), the beam indices are (p,/)=(1,1), and the
beam support is a circle of radius R=1288x. The phase tilt
added to the phase of the encoded field has spatial fre-
quencies uy=vy=Au/6. We designed the CGHs of types 1,
2, and 3 to encode the Laguerre—Gauss beam with such
parameters.

The phase distributions for the designed CGHs of types
2 and 3 are displayed in Fig. 5. On the other hand, Fig. 6
shows the spectrum modulus of the encoded beam defined
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Fig. 5. Phase distributions of CGHs of (a) type 2 and (b) type 3
that encode a Laguerre—Gauss beam of indices (p,/)=(1,1).

by Eq. (23) and the moduli of the signal spectra obtained
with the pixelated CGHs. It is noted that the signal spec-
tra for the CGHs of types 2 and 3 [Fig. 6(b) and 6(c)] are
quite similar to the spectrum of the encoded beam [Fig.

(@) (b)

(d)

Fig. 6. (a) Spectrum modulus of a complex Laguerre—Gauss
beam with indices (p,/)=(1,1), and signal spectrum modules ob-
tained with CGHs of types (b) 2, (c) 3, and (d) 1 that encode this
beam.
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Fig. 7. Function log(SNR) versus the normalized waist wg/dx
for CGHs of types 1 (circles), 2 (squares), and 3 (triangles) de-
signed to encode a Laguerre—Gauss beam of indices (p,l)=(2,2).

6(a)]. On the other hand, the modulus of the signal spec-
trum for the CGH of type 1 displayed in Fig. 6(d) shows
significant distortions.

We computed the SNR of the reconstructed beams em-
ploying a conventional definition of this parameter [12]
and obtaining the values of 50, 3.5 X 102, and 3.6 X 10° for
the CGHs of types 1, 2, and 3, respectively. This SNR is
given by the power of the encoded field s(x,y) normalized
by the power of the error in the reconstructed signal. This
error is expressed as s(x,y)— Bs,(x,y), where s,(x,y) is the
reconstructed signal that includes noise distortions due to
high-order diffraction terms, and B is a constant that is
determined to minimize the error power.

Starting with the parameters of the CGHs employed in
the first simulation, we performed other numerical simu-
lations changing the indices (p,/), the spatial frequency of
the encoded beam, and the carrier spatial frequencies
(ug,vq), finding that the higher SNR values are provided
by the CGHs of types 2 and 3. An example of these addi-
tional results in Fig. 7 displays the logarithm of the SNR
provided by CGHs designed to encode a Laguerre—Gauss
beam of indices (p,l)=(2,2) with variable ratio wg/dx.
The superior SNR provided by CGHs of types 2 and 3 was
also verified (by numerical simulations) for the encoding
of different complex beams as the high-order nondiffract-
ing Bessel beams.

4. EXPERIMENTAL GENERATION OF
COMPLEX BEAMS WITH TYPE 3 CGH

We implemented experimentally CGHs for the synthesis
of nondiffracting Bessel beams and Laguerre-Gauss
beams employing a twisted nematic LC device (the
LC2002 SLM of HoloEye Photonics AG). We configured
this device as a phase-mostly modulator employing a lin-
ear polarizer followed by a quarter-wave plate at the in-
put and a second linear polarizer at the output [18,19]. To
minimize modulation errors produced by the nonuniform
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spatial response in the SLM we employed a zone of 200
X 200 pixels in this device. The voltage applied to the
SLM pixels are related to the gray levels of images sup-
plied to the SLM by a PC video card. The phase modula-
tion (versus the gray level) provided by the SLM illumi-
nated with a He—Ne laser (633 nm) is depicted in Fig.
8(a). This phase modulation appears coupled with the am-
plitude modulation plotted in Fig. 8(b). Considering the
reduced phase modulation range of the SLM, we em-
ployed it to display CGHs of type 3. For the design of
these CGHs we neglected the coupled amplitude modula-
tion.

The encoded Laguerre-Gauss beams are analytically
expressed by Eq. (23) and the Bessel beams are repre-
sented in polar coordinates as o/, (27r/rq)exp(in6), where
ro is the asymptotic radial period. For all the encoded
beams we employed a finite circular support with a radius
R equal to 100 pixels (of the SLM). Both the radial period
ro (for Bessel beams) and the waist radius w, (for
Laguerre—Gauss beams) were adopted as R/4. For isola-
tion of the signal from high-order diffraction terms, we
employed the carrier spatial frequencies ug=vo=Au/5. A
circular pupil in the Fourier domain of the CGHs em-
ployed as spatial filter for signal isolation was adjusted to
optimize the quality of the generated fields. Because of
the symmetry of the encoded fields, the pupil employed as
a spatial filter in the experiment was circular. The appli-
cation of this pupil to the signal spectrum represents a
low-pass filtering during reconstruction of the encoded
field. To increase the fidelity of the reconstructed field it is
necessary to increase the pupil diameter. However, if the
diameter is too large, higher amounts of noise contribu-
tion will be transmitted by the pupil. Thus, in practice it
is necessary to optimize this diameter for each particular
CGH. The intensity distributions of the experimentally
generated beams were recorded with a CCD camera. In-
tensities of the generated Bessel beams of orders n=1, 2,

@

1.5 T ! ! ! :
~E 1 .........................................................................
9
£
[= 08 o J - Tl . SRS NP PO SRR TR &

0 f i i i
0 50 100 150 200 250
(b) gray level
[} %
=}
= : ] ; ] :
= 1 RN
g 05 z 5 i 5 5
© % » 5 * 5
0 A i i i i
0 50 100 150 200 250
gray level

Fig. 8. (a) Phase and (b) amplitude modulations provided by a
translucent twisted nematic LC device (LC2002 of HoloEye Pho-
tonics LG) configured as a phase-mostly modulator.
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Fig. 9. Experimentally recorded intensity distributions of non-
diffracting Bessel beams of orders (a) 1, (b) 2, and (c) 4 generated
by type 3 CGHs employing the SLM modulation displayed in
Fig. 8.

and 4 are shown in Fig. 9. The images of the generated
Laguerre—Gauss beams with indices (p,/) of (0, 2), (0, 4),
and (2, 4) appear in Fig. 10.

5. FINAL REMARKS AND CONCLUSIONS

We have discussed a class of phase CGHs for encoding ar-
bitrary scalar complex fields. We have specified the condi-
tions that a CGH of this class must fulfill to encode the
complex field and discussed specific holograms that obey
such conditions. The phase modulation (¢,a) of the
CGHs discussed presents odd symmetry in the variable ¢
(the phase of the encoded complex field). Two of the CGHs
discussed (identified as CGHs of types 2 and 3) allow re-
construction with a relatively high SNR even if a pix-
elated SLM is employed for their implementation. This
feature is enabled by the highly attenuated amplitudes of
high-order diffraction terms of these CGHs that are ex-
pressed in terms of integer-order Bessel functions. One of
the proposed holograms can be appropriately displayed
onto a phase device with a reduced phase range (close to
mrad).

We performed numerical simulations on CGHs de-
signed to encode Laguerre—-Gauss beams, showing that
the pixelated holograms of types 2 and 3 allow signal re-
construction with relatively high SNR. According to the
results, the type 3 CGHs present the maximum values of

Arrizon et al.

Fig. 10. Experimentally recorded intensity distributions of
Laguerre—-Gauss beams of indices (a) (p,[)=(0,2), (b) (p,l)
=(0,4), and (¢) (p,l)=(2,4) generated by type 3 CGHs employing
the SLM modulation displayed in Fig. 8.

SNR. However, the type 3 CGHs show smaller efficiency
than the type 2 CGHs. Performing additional numerical
computations we have proved that CGHs of types 2 and 3
also provide larger SNRs than the point-oriented phase
CGHs reported in [6,9-11]. Besides this result, a detailed
performance comparison of the novel proposed CGHs with
other point-oriented phase CGHs was neglected as be-
yond the scope of the present paper.

We performed the experimental synthesis of Laguerre—
Gauss and nondiffracting Bessel beams of several orders
employing a translucent twisted-nematic LC SLM in a
phase-mostly configuration that provided a phase range
of approximately 1.27rad. Because of this reduced phase
modulation range the complex beams were encoded with
type 3 CGHs. The results obtained proved the ability of
these CGHs to encode arbitrary complex fields employing
a SLM with reduced phase range.
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