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We discuss a class of phase computer-generated holograms for the encoding of arbitrary scalar complex fields.
We describe two holograms of this class that allow high quality reconstruction of the encoded field, even if they
are implemented with a low-resolution pixelated phase modulator. In addition, we show that one of these ho-
lograms can be appropriately implemented with a phase modulator limited by a reduced phase depth. © 2007
Optical Society of America
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. INTRODUCTION
he generation of complex scalar optical fields with am-
litude and phase spatial modulations that are indepen-
ently specified is an important task in contemporary op-
ics. A practical and versatile method for generating these
rbitrary complex fields is based on the use of computer-
enerated holograms (CGHs) [1–12]. In particular, the
se of phase CGHs is especially convenient because of
heir relatively high efficiency [6–11]. It is important to
istinguish cell-oriented and point-oriented holograms for
ncoding complex fields. In general, point-oriented ap-
roaches [6,9–12] are more convenient when holograms
re implemented with low-resolution pixelated modula-
ors.

When a pixelated spatial light modulator (SLM) is em-
loyed to implement a CGH, the quality of the recon-
tructed field can be seriously affected by noise originat-
ng in high-order diffraction field contributions. Here we
iscuss a class of phase CGH’s that encode arbitrary sca-
ar complex fields. We show that two of the CGHs that be-
ong to this class provide appropriate reconstruction of
he encoded fields, even if they are implemented with a
ow-resolution pixelated phase SLM. The good perfor-

ance of these CGHs is enabled by a significant reduction
n the relative intensity of the high-order diffraction field
ontributions that share the spatial frequency domain of
he encoded field. One of the proposed holograms can be
mplemented with a phase SLM that provides a reduced
hase range (close to � rad). We report the experimental
mplementation of this last hologram by means of a trans-
ucent, twisted, nematic liquid-crystal (LC) SLM.

The content is organized as follows. In Section 2 we
resent the theory of our proposal. In Section 3 we evalu-
te and compare the performance of the discussed holo-
rams when a pixelated SLM is employed for their imple-
entation. In Section 4 we report the experimental
1084-7529/07/113500-8/$15.00 © 2
ealization of one of the discussed holograms, and in Sec-
ion 5 we present remarks and conclusions.

. THEORETICAL FORMULATION
ur purpose is to generate an arbitrary complex optical
eld whose amplitude and phase modulations are inde-
endently specified. This complex field can be expressed
s

s�x,y� = a�x,y�exp�i��x,y��, �1�

here the amplitude a�x ,y� and the phase ��x ,y� take
alues in the intervals �0,1� and �−� ,��, respectively. The
omplex amplitude values of the function s�x ,y� belong to
he set of complex numbers with modulus equal to or
maller than one, which is denoted as �S. Our aim is to
ncode the complex field s�x ,y� by means of a phase trans-
ittance CGH. In general, a CGH that encodes the arbi-

rary complex modulation s�x ,y� has a constrained com-
lex transmittance with values in a subset of �S. In the
ase of phase CGHs, this subset is formed by the complex
oints of unity modulus. The transmittance of a phase
GH, expressed as a function explicitly dependent on the
mplitude and the phase of the encoded field, is given by

h�x,y� = exp�i��a,���, �2�

here ��� ,a� is the CGH phase modulation.
The explicit dependence of the amplitude a and the

hase � on the spatial coordinates �x ,y� has been omitted
n Eq. (2). Our purpose is to establish phase functions
ith the form of Eq. (2) that provide the appropriate en-

oding of the complex field s�x ,y�. A fruitful method to de-
ermine appropriate forms of the hologram phase modu-
ation ��� ,a� is based on the representation of h�x ,y� by a
ourier series in the domain of �. Developing this Fourier
eries, the CGH transmittance can be expressed as
007 Optical Society of America
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h�x,y� = �
q=−�

�

hq�x,y�, �3�

here

hq�x,y� = cq
a exp�iq��, �4�

cq
a = �2��−1�

−�

�

exp�i���,a��exp�− iq��d�. �5�

In Eq. (5) it is noted that after integration in the vari-
ble �, the resulting coefficients cq

a remain explicitly de-
endent on the amplitude a. Therefore, the coefficients cq

a

re implicitly dependent on the coordinates �x ,y�. The sig-
al s�x ,y� is recovered from the first-order term h1�x ,y� in
he series of Eq. (3) if the identity

c1
a = Aa �6�

s fulfilled for a positive constant A. This identity is re-
erred to as the signal encoding condition.

Sufficient and necessary conditions to fulfill Eq. (6) are
iven by the following equations:

�
−�

�

sin����,a� − ��d� = 0, �7�

�
−�

�

cos����,a� − ��d� = 2�Aa. �8�

Equations (7) and (8) provide a useful basis for deter-
ination of appropriate CGHs. The phase functions

�� ,a� that obey these equations define a specific class of
hase CGHs. It is noted that the maximum of the integral
n Eq. (8) is 2�. Thus, the maximum possible value of the
onstant A in the encoding condition [Eq. (6)] is one. This
esult provides a limit to the efficiency of the CGHs that
elong to this class. In the remaining discussion we focus
ur attention on functions ��� ,a� with odd symmetry in
he variable �. The symmetry of such functions ensures
he fulfillment of Eq. (7).

. Phase CGH of Type 1
s first example we consider a CGH that is essentially
quivalent to a synthetic hologram already found in optics
iterature [9]. The phase modulation of this hologram can
e expressed as

���,a� = f�a��, �9�

here the factor f�a� remains undetermined for the mo-
ent. The qth-order Fourier series coefficient for this
GH computed with Eq. (5) is

cq
a = sinc�q − f�a��, �10�

here sinc��������−1 sin����. If f�a� is obtained from the
elation

sinc�1 − f�a�� = a, �11�

hen the encoding condition [Eq. (6)] is fulfilled with A
1. For the complete definition of the CGH, the function

�a� is numerically inverted from Eq. (11). The computed
alues of f�a� versus a are shown in Fig. 1 (solid curve).
Next we analyze two additional phase functions ��� ,a�

hat, to the best of our knowledge, correspond to phase
GHs that are reported here for the first time.

. CGH of Type 2
nother phase modulation ��� ,a�, with odd symmetry in
, is given by

���,a� = � + f�a�sin���. �12�

he phase CGH transmittance in this case is h�x ,y�
exp�i��exp�if�a�sin����. The Fourier series in the vari-
ble � for this phase transmittance can be directly found
y using the Jacobi–Anger identity [13]. According to this
dentity, the second phase factor in the CGH transmit-
ance h�x ,y� is given by

exp�if�a�sin���� = �
m=−�

�

Jm�f�a��exp�im��, �13�

here Jm denotes an integer-order Bessel function. Con-
idering this relationship it is readily proved that the new
GH transmittance h�x ,y� is expressed by the Fourier se-

ies defined in Eqs. (3) and (4) with coefficients

cq
a = Jq−1�f�a��. �14�

According to Eq. (14), the encoding condition [Eq. (6)] is
alid (with A=1) if f�a� is obtained from the relation

J0�f�a�� = a. �15�

quation (15) can be fulfilled for every value of a in the
nterval �0,1� by taking the appropriate value of f�a� in
he domain �0,x0�, where x0�2.4048 is the first positive
oot of the Bessel function J0�x�. The resulting function
�a�, numerically generated from Eq. (15), is plotted in
ig. 1 (dashed curve).

. CGH of Type 3
he second new CGH that we propose is associated with

he phase modulation

���,a� = f�a�sin���. �16�

lthough this CGH phase function is similar to the func-
ion in Eq. (12), it presents special features that justify its
iscussion. To obtain the Fourier series and correspond-
ng coefficients for this CGH we employ again the Jacobi–

ig. 1. Function f�a� versus a for the CGHs of types 1 (solid
urve), 2 (dashed curve), and 3 (dotted curve).
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nger identity [Eq. (13)]. The resulting qth-order coeffi-
ient in this Fourier series is

cq
a = Jq�f�a��, �17�

nd the encoding condition is fulfilled if f�a� is inverted
rom the relation

J1�f�a�� = Aa. �18�

he maximum value of A for which Eq. (18) can be ful-
lled is A�0.5819, which corresponds to the maximum
alue of the first-order Bessel function J1�x�, which occurs
n turn at x=x1�1.84.

The function f�a� obtained by numerical inversion from
q. (18) adopts values in the interval �0,x1� [see Fig. 1

dotted curve)]. It is interesting to note, considering the
imit values of f�a� and Eq. (16), that this CGH can be
mplemented with phase modulation in a reduced domain
−f0� , f0�� with f0�0.586. The phase range of the re-
uired modulator in this case is ��=2f0��1.17�.
A further reduction in this phase range can be attained

y adopting a smaller value of A in Eq. (18). An advantage
f this reduced phase domain is that it can be easily ob-
ained with conventional LC SLMs employing relatively
ong wavelengths, e.g., in the near-infrared domain. This
ype of illumination is appropriate for manipulation of liv-
ng cells with optical tweezers [14–16]. It will be shown in
ection 3, that in spite of the phase range reduction in the
GH defined by Eq. (16), it allows the accurate encoding
f complex fields.

. Modification of the Hologram by a Phase Carrier
e assume that the reconstruction of the encoded field is

erformed by spatial filtering in the hologram Fourier
pectrum plane. The optical setup for reconstruction is
chematically represented in Fig. 2. It is assumed that
he CGH is placed at the back focal plane of the first lens
L1). The Fourier transform of the field transmitted by
he CGH is formed at the spatial filter plane. In general,
he CGH spectrum is formed by the signal term and non-
ignal or high-order spectrum field contributions. For re-
onstruction of the encoded field with high signal-to-noise
atio (SNR) a minimal overlapping is desired between the
ignal and the high-order terms in the CGH spectrum.
nder this condition, a spatial filter pupil can be em-
loyed to transmit the light corresponding to the Fourier
pectrum of the encoded field. The encoded field itself is

ig. 2. Double-Fourier transform optical setup for the genera-
ion of scalar complex fields employing a CGH.
enerated by the second Fourier transforming lens (L2) at
he output plane of the setup.

Next we discuss a modification of the CGH defined in
q. (2) that enables the isolation of signal from noise in

he CGH Fourier spectrum domain. The Fourier spectrum
f the encoded field s�x ,y� is denoted by S�u ,v�, where
u ,v� represent the spatial frequency coordinates associ-
ted with the spatial coordinates �x ,y�. If we assume that
he Fourier spectrum S�u ,v� is centered on the Fourier
lane axis �u ,v�= �0,0�, then the spectra for the different
erms hq�x ,y� in the hologram Fourier expansion [Eq. (3)]
re also centered on this axis. Thus, the encoded field can
ot be recovered by spatial filtering from the CGH defined

n Eq. (2).
To achieve the spatial isolation of the encoded field, the

bove definition of the CGH is modified by adding the car-
ier phase modulation 2��u0x+v0y� with spatial frequen-
ies �u0 ,v0� to the phase of the encoded field. The modified
GH transmittance hc�x ,y�=exp�i���+2��u0x+v0y� ,a��

an be expressed by the Fourier series

hc�x,y� = �
q=−�

�

hq�x,y�exp�i2��qu0x + qv0y��. �19�

he Fourier spectrum of this modified CGH is given by

Hc�u,v� = �
q=−�

�

Hq�u − qu0,v − qv0�, �20�

here Hq�u ,v� is the Fourier transform of hq�x ,y� [defined
y Eq. (4)]. The structure of the CGH Fourier transform
ormed by laterally shifted copies of the Fourier spectra

q�u ,v� allows the spatial isolation of the encoded field,
hose Fourier spectrum appears as H1�u−u0 ,v−v0�. The
istribution of the CGH spectra terms Hq�u−qu0 ,v−qv0�
hen u0=v0 is schematically represented in Fig. 3. The

eroth-order H0�u ,v� appears at the center of this figure.
The Fourier spectrum in Eq. (20) corresponds to a CGH

mplemented with a phase modulator free of spatial quan-
ization. Accurate implementation of CGHs without spa-
ial quantization allows an efficient isolation of the en-

ig. 3. Schematic spatial distribution of the CGH spectra terms
�u−qu ,v−qv � when u =v .
q 0 0 0 0
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oded field from nonsignal diffraction orders of the CGH,
nabling reconstruction with a high SNR. A requirement
common to all the CGH types) for obtaining an accept-
ble SNR is that at least one of the hologram carrier fre-
uencies �u0 ,v0� be larger than the bandwidth of the en-
oded field s�x ,y�. On the other hand, if a CGH is
mplemented with a low-resolution pixelated SLM, the re-
onstructed signal term can be significantly affected by
igh-order diffraction contributions. In general, the noise

evel in the reconstructed field introduced by the high-
rder diffraction terms is highly dependent on the CGH
ype. In Section 3 we prove that the two new proposed
GHs (of types 2 and 3) can generate the encoded com-
lex field with high SNR even if they are implemented
ith a pixelated SLM.
An alternate method of attempting the separation of

ignal from noise is based on the addition of a quadratic
hase carrier (see, e.g., [17]) to the phase of the encoded
eld. If the resulting CGH is illuminated by a plane wave,
he Fourier transforms of the different terms hq�x ,y� of
he CGH Fourier series are generated at different planes
n the Fresnel domain of the CGH. A drawback of this

ethod is that part of the high-order noise field contribu-
ions appear in a diluted form at the plane where the Fou-
ier transform of the encoded signal is obtained.

. IMPLEMENTATION OF PHASE
OLOGRAMS WITH A PIXELATED SLM

et us assume that the CGHs are implemented with a
ixelated phase SLM. For simplicity we assume that the
LM pixel pitch �x is the same in the horizontal and the
ertical axes and that the pixels are squares of side b.
hus, the Fourier spectrum of the pixelated CGH is given
y

Hpix�u,v� = E�u,v� �
n=−�

�

�
m=−�

�

Hc�u − n�u,v − m�u�,

�21�

here �u=1/�x is the SLM bandwidth, E�u ,v�
b2 sinc�bu�sinc�bv� is the Fourier transform of the
quare pixel, and Hc�u ,v� is the Fourier spectrum of the
ontinuous CGH given by Eq. (20). According to Eq. (21),
he Fourier spectrum of the pixelated CGH is formed by
he superposition of laterally shifted replicas of the spec-
rum Hc�u ,v� modulated by the pixel Fourier transform
�u ,v�. The spectrum function H1�u−u0 ,v−v0� that ap-
ears at the term Hc�u ,v� of the series in Eq. (21) is
quivalent to the signal spectrum S�u−u0 ,v−v0�. The dis-
ortion of the signal spectrum due to the factor E�u ,v� can
e avoided by an appropriate prefiltering of the encoded
eld [12]. This process consists in replacing the original
ncoded field s�x ,y� by a modified field s��x ,y� that is de-
ned by its Fourier transform S��u ,v� obtained from the
elation S��u−u0 ,v−v0�=S�u−u0 ,v−v0�E−1�u ,v�. The
unction E−1�u ,v� is appropriately defined in the domain
f S�u−u0 ,v−v0� since the carrier frequencies �u0 ,v0� are
lways chosen in such a way that S�u−u0 ,v−v0� is envel-
ped by a nonzero sector of E�u ,v�. This prefiltering is ap-
lied to the complex fields that are holographically en-
oded below either by numerical simulations or
xperimentally.

An inconvenient consequence of the pixelated structure
f the CGH is that the domain of the signal spectrum
erm H1�u−u0 ,v−v0� that is centered at the spatial fre-
uency coordinates �u0 ,v0� may also contain high-order
pectrum contributions Hq that are members of several of
he spectrum replicas Hc�u−n�u ,v−m�u�. To analyze the
elative significance of the high-order spectrum terms Hq
haring the signal spectrum region, let us assume that
he carrier spatial frequencies are u0=v0= �P /Q��u with
elative prime integers P and Q. In this case, it is not dif-
cult to prove that the spectra contributions that appear
entered at the signal spatial frequencies �u0 ,u0� are

QR+1�u−u0 ,v−u0� for any arbitrary integer number R.
he signal term in this set of spectra contributions corre-
ponds to R=0.

To prove this result, we first note that for the assumed
arrier frequencies u0=v0= �P /Q��u, the spectra terms Hq
n Eq. (20) take the form Hq�u−qu0 ,v−qu0�. This means
hat all the terms Hq in Hc�u ,v� are centered at the axis
=v in the CGH Fourier spectrum domain. As a particu-

ar case, the signal spectrum term H1�u−u0 ,v−u0� is also
entered at the coordinates �u0 ,u0�. Another important
bservation is that the only terms Hc�u−n�u ,v−m�u� in
q. (21) that contain spectra functions Hq placed at the
xis u=v are those with indices n=m. Considering the re-
ation u0=v0= �P /Q��u, the term Hc�u−n�u ,v−n�u� can
e expressed as

Hc�u − n�u,v − n�u� = �
q=−�

�

Hq�u − �nQ/P + q�u0,v

− �nQ/P + q�u0�. �22�

It can be directly verified that the functions Hq in Eq.
22) that appear centered at coordinates �u0 ,u0� are those
orresponding to the combination of indices n=−RP and
=QR+1 for any integer R. This proves that the Fourier
pectrum of the pixelated CGH contains the terms
QR+1�u−u0 ,v−u0� for any integer R that are centered at

he coordinates �u0 ,u0�. It must be emphasized that in
his collection of spectra terms the spectrum of the en-
oded field corresponds to R=0.

To obtain a high SNR, the high-order contributions
QR+1�u−u0 ,v−u0� (with R�0) must be negligible com-

ared with the signal spectrum H1�u−u0 ,v−u0�. Consid-
ring Eq. (4), it is clear that the power of the spectrum
erm HQR+1�u ,v� is proportional to the squared modulus
f the coefficient cQR+1

a . It is interesting to note that coef-
cients cq

a for the CGHs of types 2 and 3 defined in Eqs.
14) and (17) in terms of Bessel functions tend rapidly to
ero when 	q	 is increased. Thus, it is expected that (for a
oderately large Q) these CGHs will enable reconstruc-

ion of the encoded field with relatively high SNR.
The significance of noise contribution HQR+1�u−u0 ,v

u0� in relation to the signal term H1�u−u0 ,v−u0� can be
easured by the ratio 	= 	cQR+1

a 	2 / 	c1
a	2. As an example let

s assume P=1 and Q=6 (i.e., u0=v0=�u /6). In this case,
he dependence of log�	� (for R=1 and 2) on the amplitude

for the different CGH types is shown in Fig. 4. The
ower values of log�	� for the CGH of types 2 and 3 are
vident.
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The parameter 	= 	cQR+1
a 	2 / 	c1

a	2 is useful to evaluate the
uality of CGHs without requiring knowledge of the en-
oded complex function s�x ,y�. Lower values of 	 corre-
pond to CGHs with higher immunity to the high-order
oise terms that are transmitted in the CGH plane. The
NR provides another measure of the CGH performance.
ontrasting with the parameter 	, the SNR, which is em-
loyed below for evaluation of different CGHs, is explic-
tly dependent on the form of the encoded field s�x ,y�. It

ust be emphasized that low-order nonsignal spectrum
eld contributions (of order q�QR+1) also present repli-
as due to the SLM sampling. However none of these
pectrum replicas appears centered on the signal frequen-
ies �u0 ,u0�. On the other hand, the low-order nonsignal
pectrum field contributions (e.g., of orders 0 or 2) can
artially overlap the signal spectrum. However, this influ-
nce can be minimized either by increasing the carrier
requencies �u0 ,u0� or by reducing the bandwidth of the
ncoded signal. This control is possible because in general
reduction of the encoded signal bandwidth also reduces

he bandwidth of the high-order CGH terms.
To illustrate the performance of pixelated CGHs we em-

loy these holograms to encode Laguerre–Gauss beams.
hese beams are expressed in polar coordinates �r ,
� as

u�r,
� = C�
2r/w0�	l	Lp
	l	�2r2/w0

2�exp�− r2/w0
2�exp�il
�.

�23�

n Eq. (23) Lp
	l	 denotes an associated Laguerre polyno-

ial, w0 is the beam waist radius, p is the radial mode
ndex, l is the phase singularity charge, and C is a nor-

alization constant. For the first numerical simulation
he waist radius is w0=40�x (recall that �x is the SLM
ixel pitch), the beam indices are �p , l�= �1,1�, and the
eam support is a circle of radius R=128�x. The phase tilt
dded to the phase of the encoded field has spatial fre-
uencies u0=v0=�u /6. We designed the CGHs of types 1,
, and 3 to encode the Laguerre–Gauss beam with such
arameters.
The phase distributions for the designed CGHs of types
and 3 are displayed in Fig. 5. On the other hand, Fig. 6

hows the spectrum modulus of the encoded beam defined

ig. 4. Function log�	� versus a, where 	= 	cQR+1
a 	2 / 	c1

a	2 (for Q
6) for the CGHs of types (a) 1, (b) 2, and (c) 3. The values of

ndex R are 1 (solid curve) and 2 (dashed curve).
y Eq. (23) and the moduli of the signal spectra obtained
ith the pixelated CGHs. It is noted that the signal spec-

ra for the CGHs of types 2 and 3 [Fig. 6(b) and 6(c)] are
uite similar to the spectrum of the encoded beam [Fig.

ig. 5. Phase distributions of CGHs of (a) type 2 and (b) type 3
hat encode a Laguerre–Gauss beam of indices �p , l�= �1,1�.

ig. 6. (a) Spectrum modulus of a complex Laguerre–Gauss
eam with indices �p , l�= �1,1�, and signal spectrum modules ob-
ained with CGHs of types (b) 2, (c) 3, and (d) 1 that encode this
eam.
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(a)]. On the other hand, the modulus of the signal spec-
rum for the CGH of type 1 displayed in Fig. 6(d) shows
ignificant distortions.

We computed the SNR of the reconstructed beams em-
loying a conventional definition of this parameter [12]
nd obtaining the values of 50, 3.5�103, and 3.6�105 for
he CGHs of types 1, 2, and 3, respectively. This SNR is
iven by the power of the encoded field s�x ,y� normalized
y the power of the error in the reconstructed signal. This
rror is expressed as s�x ,y�−�sr�x ,y�, where sr�x ,y� is the
econstructed signal that includes noise distortions due to
igh-order diffraction terms, and � is a constant that is
etermined to minimize the error power.
Starting with the parameters of the CGHs employed in

he first simulation, we performed other numerical simu-
ations changing the indices �p , l�, the spatial frequency of
he encoded beam, and the carrier spatial frequencies
u0 ,v0�, finding that the higher SNR values are provided
y the CGHs of types 2 and 3. An example of these addi-
ional results in Fig. 7 displays the logarithm of the SNR
rovided by CGHs designed to encode a Laguerre–Gauss
eam of indices �p , l�= �2,2� with variable ratio w0 /�x.
he superior SNR provided by CGHs of types 2 and 3 was
lso verified (by numerical simulations) for the encoding
f different complex beams as the high-order nondiffract-
ng Bessel beams.

. EXPERIMENTAL GENERATION OF
OMPLEX BEAMS WITH TYPE 3 CGH
e implemented experimentally CGHs for the synthesis

f nondiffracting Bessel beams and Laguerre–Gauss
eams employing a twisted nematic LC device (the
C2002 SLM of HoloEye Photonics AG). We configured
his device as a phase-mostly modulator employing a lin-
ar polarizer followed by a quarter-wave plate at the in-
ut and a second linear polarizer at the output [18,19]. To
inimize modulation errors produced by the nonuniform

ig. 7. Function log�SNR� versus the normalized waist w0 /�x
or CGHs of types 1 (circles), 2 (squares), and 3 (triangles) de-
igned to encode a Laguerre–Gauss beam of indices �p , l�= �2,2�.
patial response in the SLM we employed a zone of 200
200 pixels in this device. The voltage applied to the

LM pixels are related to the gray levels of images sup-
lied to the SLM by a PC video card. The phase modula-
ion (versus the gray level) provided by the SLM illumi-
ated with a He–Ne laser �633 nm� is depicted in Fig.
(a). This phase modulation appears coupled with the am-
litude modulation plotted in Fig. 8(b). Considering the
educed phase modulation range of the SLM, we em-
loyed it to display CGHs of type 3. For the design of
hese CGHs we neglected the coupled amplitude modula-
ion.

The encoded Laguerre-Gauss beams are analytically
xpressed by Eq. (23) and the Bessel beams are repre-
ented in polar coordinates as Jn�2�r /r0�exp�in
�, where
0 is the asymptotic radial period. For all the encoded
eams we employed a finite circular support with a radius
equal to 100 pixels (of the SLM). Both the radial period

0 (for Bessel beams) and the waist radius w0 (for
aguerre–Gauss beams) were adopted as R /4. For isola-
ion of the signal from high-order diffraction terms, we
mployed the carrier spatial frequencies u0=v0=�u /5. A
ircular pupil in the Fourier domain of the CGHs em-
loyed as spatial filter for signal isolation was adjusted to
ptimize the quality of the generated fields. Because of
he symmetry of the encoded fields, the pupil employed as
spatial filter in the experiment was circular. The appli-

ation of this pupil to the signal spectrum represents a
ow-pass filtering during reconstruction of the encoded
eld. To increase the fidelity of the reconstructed field it is
ecessary to increase the pupil diameter. However, if the
iameter is too large, higher amounts of noise contribu-
ion will be transmitted by the pupil. Thus, in practice it
s necessary to optimize this diameter for each particular
GH. The intensity distributions of the experimentally
enerated beams were recorded with a CCD camera. In-
ensities of the generated Bessel beams of orders n=1, 2,

ig. 8. (a) Phase and (b) amplitude modulations provided by a
ranslucent twisted nematic LC device (LC2002 of HoloEye Pho-
onics LG) configured as a phase-mostly modulator.
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nd 4 are shown in Fig. 9. The images of the generated
aguerre–Gauss beams with indices �p , l� of (0, 2), (0, 4),
nd (2, 4) appear in Fig. 10.

. FINAL REMARKS AND CONCLUSIONS
e have discussed a class of phase CGHs for encoding ar-

itrary scalar complex fields. We have specified the condi-
ions that a CGH of this class must fulfill to encode the
omplex field and discussed specific holograms that obey
uch conditions. The phase modulation ��� ,a� of the
GHs discussed presents odd symmetry in the variable �

the phase of the encoded complex field). Two of the CGHs
iscussed (identified as CGHs of types 2 and 3) allow re-
onstruction with a relatively high SNR even if a pix-
lated SLM is employed for their implementation. This
eature is enabled by the highly attenuated amplitudes of
igh-order diffraction terms of these CGHs that are ex-
ressed in terms of integer-order Bessel functions. One of
he proposed holograms can be appropriately displayed
nto a phase device with a reduced phase range (close to
rad).
We performed numerical simulations on CGHs de-

igned to encode Laguerre–Gauss beams, showing that
he pixelated holograms of types 2 and 3 allow signal re-
onstruction with relatively high SNR. According to the
esults, the type 3 CGHs present the maximum values of

ig. 9. Experimentally recorded intensity distributions of non-
iffracting Bessel beams of orders (a) 1, (b) 2, and (c) 4 generated
y type 3 CGHs employing the SLM modulation displayed in
ig. 8.
NR. However, the type 3 CGHs show smaller efficiency
han the type 2 CGHs. Performing additional numerical
omputations we have proved that CGHs of types 2 and 3
lso provide larger SNRs than the point-oriented phase
GHs reported in [6,9–11]. Besides this result, a detailed
erformance comparison of the novel proposed CGHs with
ther point-oriented phase CGHs was neglected as be-
ond the scope of the present paper.

We performed the experimental synthesis of Laguerre–
auss and nondiffracting Bessel beams of several orders
mploying a translucent twisted-nematic LC SLM in a
hase-mostly configuration that provided a phase range
f approximately 1.2� rad. Because of this reduced phase
odulation range the complex beams were encoded with

ype 3 CGHs. The results obtained proved the ability of
hese CGHs to encode arbitrary complex fields employing
SLM with reduced phase range.
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