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We show how some Hamiltonians may be approximated using rotating wave
approximation methods. In order to achieve this we use the algebra of boson
ladder operators, and transformation formulas between normal and symmetric
ordering of the operators. The method presented is studied in two special cases;
the Morse and the Mathieu models. The connection with regular perturbation
theory is given and the validity of the approximation is discussed.

1. Introduction

In this contribution we produce approximations for some Hamiltonians such as the
ones related with the Morse potential and cosine potential (quantum rotor, or
Mathieu differential equation). The approximation is based on the rotating
wave approximation (RWA) [1, 2] and symmetric ordering of ladder operators [3].
The RWA is widely used in quantum optical systems and particularly in
Jaynes–Cummings types of models [4, 5] and its extensions [6], for example in ion
traps [7], cavity quantum electrodynamics [8] and population transfer in atoms and
molecules [9]. Also the breakdown of the approximations in similar systems has been
considered in several papers [10]. The RWA is usually used for two (or more)
interacting subsystems, and in all the above examples, interaction between different
subsystems are considered. When passing to the interaction picture with respect to
the free Hamiltonian, one remains with a time-dependent Hamiltonian, which under
certain conditions on the frequencies involved may take a simpler form by
neglecting terms that oscillate rapidly [2, 4]. A phenomelogical motivation for the
approximation is that the neglected terms usually describe non-energy conserving
processes, which in the Jaynes–Cummings model describe simultaneous excitation of
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the atom/ion and the quantized field. The neglected terms, usually very small within
the experimental parameter regimes, give rise to the Bloch–Siegert shift of the
energies [11]. In this paper we show that we can also apply a RWA in a single
Hamiltonian system. Developing the potential in a Taylor series and grouping the
quadratic term of the Hamiltonian with the kinetic energy to produce a harmonic
oscillator term plus an infinite sum. The frequency of the artificially produced
harmonic oscillator (HO) is then used as a reference to apply the RWA to the
remaining sum. We call this HO a self-HO for the Hamiltonian studied. Using the
underlying algebra of the oscillator ladder operators and the RWA, closed forms of
the infinite sums are given in two special cases. Only Hamiltonian systems containing
bound or quasi bound states may be approximated, and the validity depends on the
relative ‘depth/width’ of the potential; the deeper and narrower potential the better
the approximation. Thus, it is best suited for low excited bound states, which is
verified by numerical simulations. It is also shown that the RWA gives the result of
regular first-order perturbation theory of the self-HO, which again underlines the
validity regimes of the approximation.

We proceed as follows, in the next section we introduce the self-HO and its Fock
states of an arbitrary Hamiltonian and derive expressions for the diagonal elements
of this Hamiltonian in the Fock basis. This is achieved using the properties of the
ladder operators. In sections 3 and 4, the connection with the RWA is given and two
specific models are considered; the Mathieu and Morse equations respectively. The
validity of the approximation is investigated in section 5 for both studied cases.
Section 6 is left for a summary, and Appendix A shows how the methods may be
used in a more general way for calculating various sums.

2. Diagonal matrix elements in the Fock basis of an arbitrary Hamiltonian

Given an arbitrary Hamiltonian we expand the potential term in a Taylor series
(in the following we consider for simplicity the case of unit mass and �h¼ 1)

H ¼
p̂2

2
þ Vðx̂Þ ¼ V ð0Þð0Þ þ V ð1Þð0Þx̂þ

p̂2

2
þ
!2x̂2

2
þ
X1
k¼3

V ðkÞð0Þ

k!
x̂k ð1Þ

with !2 ¼ V ð2Þð0Þ. We let this frequency ! define the ladder operators [12] for the
Hamiltonian systems as

â ¼
!

2

� �1=2
x̂þ i

p̂

ð2!Þ1=2
, ây

!

2

� �1=2
x̂� i

p̂

ð2!Þ1=2
: ð2Þ

The eigenstates of the number operator N ¼ âyâ are the Fock states, labelled jNi.
The ladder operators increase or decrease the quantum number N when acted on
a Fock state; âyjNi ¼ ðNþ 1Þ1=2jNþ 1i and âjNi ¼ N1=2jn� 1i. Thus, only terms of
the infinite sum

S ¼
X1
k¼3

V ðkÞð0Þ

2k=2k!
ây þ â
� �k

ð3Þ
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of equation (1) that contain an equal number of ây:s and â:s will contribute to the
diagonal matrix elements SN ¼ hNjSjNi. When considering those elements we may
therefore neglect all other terms of the sum. We have

ây þ â
� �k

)

k
k=2

� �
: ðâyâÞk=2 :W , k even,

0, k odd,

8><
>: ð4Þ

where : ðâyâÞk :W denotes the Weyl (symmetric) ordering of the operator N̂k. It may
be transformed into normal ordering using [13]

: ðâyâÞk :W¼
Xk
l¼0

l!

2l
k
l

� �2

âyk�lâk�l: ð5Þ

Thus, the new sum ~Sðx̂, p̂Þ, when the ‘off-diagonal’ terms have been neglected (this
sum will now depend on the operator p̂), may be written as

~S ¼
X1
k¼0

Xk
l¼0

V ð2kÞð0Þ

2kðk!Þ2
l!

2l
k
l

� �2

âyk�lâk�l: ð6Þ

The second sum may be taken to infinity (as we may only add zeros)

~S ¼
X1
l¼0

X1
k¼0

V ð2kÞð0Þ

2kþlðk� l Þ!2l!
âyk�lâk�l: ð7Þ

For k<l the above expression is zero and thus we make the substitution j ¼ k� l
and get

~S ¼
X1
l¼0

1

22ll!

X1
j¼0

V ð2jþ2l Þð0Þ

2jð j Þ!2
âyjâj: ð8Þ

By using the identity

âyjâj ¼
N̂!

ðN̂� j Þ!
, ð9Þ

the sum is diagonalized in the number basis fjNig and we get the diagonal elements
of (1)

hNjHjNi ¼ ! Nþ
1

2

� �
þ
X1
l¼0

1

22ll!

X1
j¼0

V ð2jþ2l Þð0Þ

2jð j Þ!2
N!

ðN� j Þ!
, ð10Þ

where we have used that hNjp̂2=2jNi ¼ hNj!2x̂2=2jNi ¼ ð!=2ÞðNþ 1
2Þ. Note that the

Fock basis used to calculate the diagonal elements of the Hamiltonian are obtained
from the quadratic term of the Hamiltonian and we call them jNi instead of the usual
notation jni. In the following sections we apply the above to some specific examples.
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3. Cosine potential

Using the fact that we can obtain closed forms for the diagonal elements of some of
the potentials studied in section 2, and noting that the RWA is used to keep constant
terms (terms that do not rotate), in this section we show that for some Hamiltonians
we can produce approximations under certain circumstances, namely, when some
parameters allow us to perform the RWA.

One very important equation for scientists is the Mathieu equation [14–16] which
is identical to the Schrödinger equation with a sine or cosine potential, also known
as the quantum rotor. During the last decade it has gained a new shove of attention
due to the growing field of cold atoms in optical lattices [17]. Approximate results
of the eigenfunctions and eigenvalues of the Mathieu equation have been studied
earlier [18–20]. Known approximation methods from physics, such as the WKB and
the Raman–Nath have been applied to the Mathieu equation [19]. Given the
Hamiltonian (reminding that we set �h¼ 1 and m¼ 1)

H ¼
p̂2

2
� g20 cos qx̂ ð11Þ

we can expand the cosine as (we neglect the constant term as it only displaces
the energies)

H ¼
p̂2

2
þ
g20q

2

2
x̂2 � g20

X1
k¼2

ðqx̂Þ2k

ð2kÞ!
ð�1Þk: ð12Þ

With the above definition of the creation and annihilation operators (2), we get

â ¼
g0q

2

� �1=2
x̂þ i

p̂

ð2g0qÞ
1=2

, ây ¼
g0q

2

� �1=2
x̂� i

p̂

ð2g0qÞ
1=2

, ð13Þ

and rewrite the Hamiltonian as

H ¼ g0q âyâþ
1

2

� �
� g20

X1
k¼2

q

2g0

� �k
ðây þ âÞ2k

ð2kÞ!
ð�1Þk: ð14Þ

In the case g0 � q=4 we can do RWA, and thus go to a rotating frame with respect
to the free Hamiltonian, UðtÞ ¼ exp ð�ig0qâ

yâtÞ. Using the relations

UyðtÞâUðtÞ ¼ â exp ðig0qtÞ, UyðtÞâyUðtÞ ¼ ây exp ð�ig0qtÞ, ð15Þ

and by only keeping non-rotating terms in the Hamiltonian we find

H ¼ g0q N̂þ
1

2

� �
� g20

X
k¼2

q

2g0

� �k
ð�1Þk

ðk!Þ2
: ðâyâÞk :W : ð16Þ

We now proceed as in section 2. Inserting (5) into (16) we have
H ¼ g0qðN̂� 1=2Þ � g20S with

S �
X1
k¼2

Xk
l¼0

q

2g0

� �k
ð�1Þk

ðk!Þ2
l!

2l
k
m

� �2

âyk�lâk�l: ð17Þ
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Rearranging terms and like in equation (7) we can sum l to infinity to get

S ¼
X1
l¼0

1

2ll!

X1
k¼2

q

2g0

� �k
ð�1Þk

ðk� l Þ!2
âyk�lâk�l: ð18Þ

By expressing

X1
k¼0

q

2g0

� �k
ð�1Þk

ðk� l Þ!2
âyk�lâk�l ¼

X1
k¼2

q

2g0

� �k
ð�1Þk

ðk� l Þ!2
âyk�lâk�l

þ 1�
q

2g0

� �
1

ð1� l Þ!2
ây1�lâ1�l, ð19Þ

we can write S ¼ S1 þ S2 with

S1 ¼
X1
l¼0

1

2ll!

X1
k¼0

q

2g0

� �k
ð�1Þk

ðk� l Þ!2
âyk�mâk�l ð20Þ

and

S2 ¼
q

2g0

� �
âyâþ

1

2

� �
� 1: ð21Þ

Note that, like previously in section 2, the second sum in equation (20) may be
started at k¼ l, i.e.

S1 ¼
X1
l¼0

1

2ll!

X1
k¼l

q

2g0

� �k
ð�1Þk

ðk� l Þ!2
âyk�lâk�l

¼
X1
l¼0

ð�1Þl

2ll!

q

2g0

� �lX1
n¼0

q

2g0

� �n
ð�1Þn

n!2
âynân ð22Þ

or

S1 exp �
�

4g0

� �
: J0

q

2g0
âyâ

� �
: ð23Þ

or using that âyjâj ¼ N̂!=ðN̂� j Þ!

S1 ¼ exp �
q

4g0

� �
LN̂

q

2g0

� �
: ð24Þ

The result obtained here agree with previous results were approximations to the
Mathieu equation are obtained [18]. The result also gives an interesting relation
between the zeroth Bessel function and Laguerre polynomials.

Combining the results we find the diagonalized RWA Hamiltonian

H ¼
g0q

2
N̂þ

1

2

� �
� g20 exp �

q

4g0

� �
LN̂

q

2g0

� �
: ð25Þ
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If we develop the Laguerre polynomials in powers of q=g0, which should be valid
within the regimes of the RWA and remain to second order, we obtain

H � g0q N̂þ
1

2

� �
�

q2

16
N̂2 þ N̂þ

1

2

� �
� g20: ð26Þ

It should also be pointed out that the method also works for superimposed cosine
potentials;

P
k g

2
k cos ðqkxÞ. This has interesting applications in for example solid

state physics [21] and cold atoms in optical superlattices [22].
We conclude this section by making an analogy between the RWA and first-order

perturbation theory. Given the Hamiltonian

H ¼ g0q N̂þ
1

2

� �
ð27Þ

with eigenstates jNi, we perturb it with

V ¼ �g20 cos ðqxÞ �
g20q

2

2
x2: ð28Þ

The first-order correction to the energy [23] becomes

�E ¼ hCnjVjCni ¼ �g20 exp �
q

4g0

� �
Ln

q

2g0

� �
�
g0q

2
nþ

1

2

� �
, ð29Þ

which regains exactly the same result as the one obtained from the RWA method.
This relation between first-order perturbation theory and the RWA method is easily
shown, using equation (A4), to be valid in any general case.

4. Morse potential

Now let us look at the Morse potential [24, 25], from which we get the Hamiltonian

H ¼
p̂2

2
þ �2ð1� exp ½��ðx̂� bÞ�Þ2: ð30Þ

This kind of Hamiltonian is commonly used to describe properties of diatomic
molecules and other situations with anharmonicity [26]. The Morse Hamiltonian has
turned out to have interesting properties in connection with the WKB approximation
[27, 28] (the WKB quantization gives the exact spectrum), and with supersymmetric
quantum mechanics [29].

One can transform the Hamiltonian by means of the displacement operator
exp ðibp̂Þ so that HT ¼ exp ðibp̂ÞH exp ð�ibp̂Þ ¼ ðp̂2=2Þ þ �2ð1� exp ½��x̂�Þ2. The
transformed Hamiltonian is then written in the approximate form (we neglect
odd powers because of RWA, i.e. we are in the regime � � �)

H ¼ 21=2��ðN̂þ 1=2Þ þ �2ðS1 þ S2Þ ð31Þ
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with

S1 ¼
X
k¼2

ð2�x̂Þ2k

ð2kÞ!
, S2 ¼ �2

X
k¼2

ð�x̂Þ2k

ð2kÞ!
: ð32Þ

Following the procedure of the former section we may write

S1 exp
�

21=2�

� �
LN̂ �

21=2�

�

� �
�
21=2�

�
ðN̂þ 1=2Þ � 1 ð33Þ

and

S2 ¼ �2 exp
�

4ð21=2Þ�

� �
LN̂ �

�

2ð21=2Þ�

� �
�

�

2ð21=2Þ�
ðN̂þ 1=2Þ � 1

� �
ð34Þ

giving the RWA Hamiltonian

H ¼
21=2��

2
N̂þ

1

2

� �
þ �2 exp

�

21=2�

� �
LN̂ �

21=2�

�

� �

� 2�2 exp
�

4ð21=2Þ�

� �
LN̂ �

�

2ð21=2Þ�

� �
þ �2: ð35Þ

Using the fact that � � � in the RWA validity regime, we expand the Hamiltonian
to second order in �=�

H �
3

4
21=2�� N̂þ

1

2

� �
þ
7�2

16
N̂2 þ N̂þ

1

2

� �
: ð36Þ

Note that if we write the (transformed) Morse Hamiltonian as

H ¼ 21=2��ðN̂þ 1=2Þ þ �2 1� exp �
�ðâþ âyÞ

ð21=2��Þ1=2

� �� �2

�
2�2�2

2

ðâþ âyÞ2

2ð21=2Þ��
ð37Þ

and express the exponentials in a factorized normal form

exp ½�ðâþ âyÞ� ¼ exp ð�2=2Þ
X
n¼0

X
k¼0

�nþkâynâk

n!k!
: ð38Þ

The RWA in the above expression keeps only terms n¼ k, i.e. the double sum
becomes a single sum, leading to Laguerre polynomials of order (operator) N.
In this form we can recover equation (31) via RWA and using equation (37).

5. Validity check of the approximation

In this section we numerically study the applicability of the above approximation
as a function of the system parameters.

5.1 Cosine potential

As pointed out, solutions of the Mathieu equation in closed analytical form do not
exist. However, it is well known, from Floquet [30] and Bloch theory [31], that the
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spectrum of a periodic operator in 1D is determined by a continuous quantum
number k referred to as quasi momentum and a discrete number n called the band
index. The spectrum is most often represented within the first Brillouin zone [31]
as allowed energy bands separated by forbidden gaps. The characteristics of the
spectrum are usually, in a phenomenological way, explained in two different ways;
starting from a weak potential or a strong one. In the weak limit the particle is
moving almost freely in a periodic background, which at the degenerate points split
the degeneracy. In the opposite, strong potential limit, particles with energies smaller
than the potential barriers will be quasi bound, and the tunnelling rate determines
the width of the bound energies, band width. As soon as a particle has an energy
exceeding the barriers, it will move almost freely. Thus, we expect that the
k-dependence is weak only for the lowest quasi bound energy bands when the
amplitude g0 of the cosine potential is large. This is confirmed in figure 1, which
shows the lowest energy bands of the Mathieu equation for q¼ 1 and g20 ¼ 10.

The RWA is only supposed to work in the limit of g0 � q, so it approximates
only the lowest quasi bound energies. In figure 2 we present the results of numerical
calculations of the error estimate �Eðn, g0Þ ¼ jERWA

n � Enj, where ERWA
n is the

approximate result for the energy from equation (25),

ERWA
n ¼ g0q nþ

1

2

� �
� g20 exp �

q

4g0

� �
Ln

q

2g0

� �
þ

q

2g0
nþ

1

2

� �
� 1

� �
� g20 ð39Þ

and En is the numerically calculated result of the energy by diagonalization of the
truncated Hamiltonian. Here the size of the Hamiltonian is 765� 765 (well within
the convergence limits for the eigenvalues). The reason why we show the absolute
error, and not the relative one, is because for higher values of n, the energies become
close to zero and the relative error fluctuates greatly in such cases. In the figure,

0.5 0 0.5
10

5

0

5

10

15

20

k

E
n(

k)

Figure 1. The spectrum En(k), within the first Brillouin zone, of the Mathieu equation for a
potential amplitude g20 ¼ 10 and wave number q¼ 1. The cosine function is plotted for clarity,
showing that within the ‘wells’ the particle is quasi bound.

1504 J. Larson and H. Moya-Cessa



the band index n runs between 0 and 5, hence showing the six lowest energies, and
it is clear that the approximation breaks down for small couplings g0 and high
excitations n as expected.

5.2 Morse potential

As the Morse potential is analytically solvable, no numerical diagonalization of the
Hamiltonian is needed. The bound energies for the Morse potential are [24, 25]

En ¼ 21=2�� nþ
1

2

� �
�
�2

2
nþ

1

2

� �2

: ð40Þ

Clearly, since � � �, the second anharmonicity term becomes crucial only for larger
excitations n. The anharmonicity term is purely negative resulting in that the highly
excited bound states are more densely distributed. Interestingly, from the RWA
result of equation (36) we note that the second term is positive causing the energies
to be more sparse for high n’s. However, this is partly compensated for by the
coefficient 3=4 in front of the first harmonic part. It should be emphasized that only
the even terms in the sums (32) are included since within the RWA odd terms vanish.
Thus, it is expected that the method may not be as efficient as for a situation with a
purely even potential V(x). It is more likely that the obtained eigenvalues approx-
imate the ones for the Hamiltonian with a potential

~VeffðxÞ ¼
VeffðxÞ

�2
¼ 1þ

X
k¼0

ð2�xÞ2k

ð2kÞ!
� 2

X
k¼0

ð�xÞ2k

ð2kÞ!
: ð41Þ

Using that exp ðx2Þ ¼
P

kðx
2k=k!Þ, we expect that the potential (41) has some kind

of ‘weak’ exponential behaviour. In figure 3 examples of the normalized effective
potential ~VeffðxÞ=Veffð1Þ are given for �¼ 0.1, 1 and 10.

The relative error DEðn, �Þ ¼ jERWA
n � Enj=En between the expanded RWA result

ERWA
n (36) and the exact result En (40) is shown in figure 4 for the first six eigenvalues

Figure 2. The absolute error �Eðn, g
2
0Þ ¼ jERWA

n � Enj, between the RWA result and the
‘exact’ numerical result, as a function of the band index n and the amplitude g20. The
approximation is most valid for low excited bands n and strong couplings g0. Again the wave
number q is set to unity.
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and as a function of �. In the plot �¼ 1, but similar results are obtained for other
widths �, however, with some increase of DE for larger �.

6. Conclusions

We have developed a method to approximate Hamiltonians using a kind of self-
RWA. We have shown how some of the involved sums may be calculated using
symmetrically ordered expressions for Fock-states expectation values of powers of
the position operator. We have used these expressions to obtain approximations
for Hamiltonians corresponding to the quantum rotor and the Morse potential.
A discussion of the validity of the approximation was given and the relation with
perturbation theory was explained. The direct link between first-order perturbation

1 0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

V e
ff(

x)
/V

ef
f(1

)
a=0.1

a=1

a=10

Figure 3. The normalized effective potential ~VeffðxÞ=Veffð1Þ defined in equation (41) for
� ¼ 0:1, 1 and 10.

0
1

2
3

4
5

0
10

20
30

0

0.5

1

∆ E
 (n

,λ
)

λ

n

Figure 4. This plot displays the relative error DEðn, �Þ ¼ jERWA
n � Enj=En for n ¼ 0, 1, . . . , 5

and as a function of � and here �¼ 1.
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theory and the RWA deepens the understanding of the two methods, and a
consequent question would be if higher orders in the RWA scheme could regain
higher order perturbation theory. This seems possible, but has turned out to be more
subtle than expected, mostly because of the non-commutability of the ladder
operators.

Appendix A: calculating sums via symmetric order

In this Appendix we use the results of the previous sections and show how one may
use it to calculate various sums. Like in section 2, no RWA is used and the results
are exact.

We start with some function f(x) which we can expand according to

fðxÞ ¼
X1
k¼0

f ðkÞð0Þ

k!
xk ¼

X1
k¼0

f ðkÞð0Þ

2k=2k!
ây þ â
� �k

: ðA1Þ

Here we have introduced the ‘symmetric’ ladder operators â and ây obeying the
regular boson commutator algebra ½â, ây� ¼ 1 and which are related to x̂ and
p̂ ¼ �ið@=@xÞ as

x̂ ¼
1

21=2
ây þ â
� �

,

p̂ ¼
i

21=2
ây � â
� �

: ðA2Þ

Further we have the normalized eigenstates and eigenvalues of the number operator
N̂ ¼ âyâ; N̂jni ¼ njni, where n ¼ 0, 1, 2, . . . , and which in x-basis are

CnðxÞ ¼ hxjni ¼
p�1=4

ð2nn!Þ1=2
exp ð�x2=2ÞHnðxÞ: ðA3Þ

As argued in section 2, the diagonal elements, in the Fock basis, of the function
f(x) is identical to the diagonal elements of the function ~fðx̂, p̂Þ where only terms
containing an equal number of creation and annihilation operators are included. We
thus have

hnj ~f jni ¼ hnj f jni: ðA4Þ

The left-hand side (LHS) can be written, using equation (10), as

~f ¼
X1
l¼0

1

22ll!

X1
j¼0

f ð2jþ2l Þð0Þ

2jð2!Þ2
N!

ðN� j Þ!
ðA5Þ

and if we express the right-hand side (RHS) in the x-basis we obtain

X1
l¼0

1

22ll!

X1
j¼0

V ð2jþ2l Þð0Þ

2jð j Þ!2
n!

ðn� j Þ!
¼

1

2nn!p1=2

ðþ1

�1

VðxÞ exp ð�x2ÞH2
nðxÞ dx, ðA6Þ

Below we give some analytically solvable examples. Approximate results are in
principle easily achievable, but are left out in this paper.
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A1. Cosine function

For a cosine function VðxÞ ¼ cos ðqxÞ we have V ð2kÞð0Þ ¼ ð�1Þkq2k and we find [32]
in (A6)

LHS ¼
X1
l¼0

ð�1Þlq2l

4ll!

X1
k¼0

ð�1Þkq2k

2kðk!Þ2
n!

ðn� kÞ!
¼ exp �

q2

4

� �X1
k¼0

ð�1Þkq2k

2kðk!Þ2
n!

ðn� kÞ!
,

RHS ¼
1

2nn!p1=2

ðþ1

�1

cos ðqxÞ exp ð�x2ÞH2
nðxÞ dx ¼ exp �

q2

4

� �
Lnðq

2=2Þ:

ðA7Þ

So that

X1
k¼0

ð�1Þkq2k

2kðk!Þ2
n!

ðn� kÞ!
¼ Lnðq

2=2Þ: ðA8Þ

Note that closed forms of VðxÞ ¼ exp ð�iqxÞ, VðxÞ ¼ cosh ðqxÞ, VðxÞ ¼ coshm ðqxÞ
or VðxÞ ¼ cosm ðqxÞ, m ¼ 0, 1, 2, . . . can also be obtained.

A2. Gaussian function

In the case of VðxÞ ¼ exp ��2x2
� �

, �2 > 0, the integral in the RHS of equation (A6) is
analytically solvable [32]

1

2nn!p1=2

ðþ1

�1

exp ð��2x2Þ exp ð�x2ÞH2
nðxÞ dx

¼ 2nþ1 2�2

�2 þ 2

� �nþ1=2
��1

n
F �n, n; �

2n� 1

2
;
�2 þ 2

2�2

� �
, ðA9Þ

where Fð. . . , . . . ; . . . ; . . .Þ is the Gauss hypergeometric function. The derivatives
are simply V ð2kÞð0Þ ¼ ð�1Þk�2k½k!=ð2kÞ!� resulting in the LHS

LHS ¼
X1
l¼0

ð�1Þl�2l

4ll!

X1
j¼0

ð jþ l Þ!

ð2jþ 2l Þ!

ð�1Þj�2j

2jð j Þ!2
n!

ðn� j Þ!
: ðA10Þ

The above holds also for exponential functions such that 0 > �2 > �1, which,
when applied to Hamiltonian systems, is of interest as they possess an infinite set
of bound states.

A3. Hermite polynomials

When VmðxÞ ¼ H2mðxÞ, where m ¼ 0, 1, 2, . . . we find [32]

RHS ¼
1

2nn!p1=2

ðþ1

�1

H2mðxÞ exp ð�x2ÞH2
nðxÞ dx ¼

2m=2m!n!

m
2 !
� �2

n� m
2

� �
!
, ðA11Þ

while its derivatives are V ð2kÞ
m ð0Þ ¼ ½22kð2mÞ!=ð2kÞ!�H2m�2kð0Þ.
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