Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1190
Using the Web as corpus for self-training text categorization
RAFAEL GUZMAN CABRERA
MANUEL MONTES Y GOMEZ
Paolo ROSSO
LUIS VILLASEÑOR PINEDA
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Text categorization
Semi-supervised learning
Self-training
Web as corpus
Authorship attribution
Most current methods for automatic text categorization are based on supervised learning techniques and, therefore, they face the problem of requiring a great number of training instances to construct an accurate classifier. In order to tackle this problem, this paper proposes a new semi-supervised method for text categorization, which considers the automatic extraction of unlabeled examples from the Web and the application of an enriched self-training approach for the construction of the classifier. This method, even though language independent, is more pertinent for scenarios where large sets of labeled resources do not exist. That, for instance, could be the case of several application domains in different non-English languages such as Spanish. The experimental evaluation of the method was carried out in three different tasks and in two different languages. The achieved results demonstrate the applicability and usefulness of the proposed method.
Springer Science+Business Media
2009
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Guzmán-Cabrera, R., et al., (2009). Using the Web as corpus for self-training text categorization, Springer Science Inf. Retrieval (12): 400–415
CIENCIA DE LOS ORDENADORES
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos: