Please use this identifier to cite or link to this item: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1391
Full duplicate candidate pruning for frequent connected subgraph mining
ANDRÉS GAGO ALONSO
JESUS ARIEL CARRASCO OCHOA
JOSE FRANCISCO MARTINEZ TRINIDAD
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Data mining
Graph mining
Frequent subgraph
Labeled graph
DFS code
Support calculation and duplicate detection are the most challenging and unavoidable subtasks in frequent connected subgraph (FCS) mining. The most successful FCS mining algorithms have focused on optimizing these subtasks since the existing solutions for both subtasks have high computational complexity. In this paper, we propose two novel properties that allow removing all duplicate candidates before support calculation. Besides, we introduce a fast support calculation strategy based on embedding structures. Both properties and the new embedding structure are used for designing two new algorithms: gdFil for mining all FCSs; and gdClosed for mining all closed FCSs. The experimental results show that our proposed algorithms get the best performance in comparison with other well known algorithms.
IOS Press
2010
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Gago-Alonso, A., et al., (2010). Full duplicate candidate pruning for frequent connected subgraph mining, Integrated Computer-Aided Engineering, (August): 1-15
CIENCIA DE LOS ORDENADORES
Versión aceptada
acceptedVersion - Versión aceptada
Appears in Collections:Artículos de Ciencias Computacionales

Upload archives


File SizeFormat 
166.-CC.pdf556.31 kBAdobe PDFView/Open