Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1392
A new fast prototype selection method based on clustering
JOSE ARTURO OLVERA LOPEZ
JESUS ARIEL CARRASCO OCHOA
JOSE FRANCISCO MARTINEZ TRINIDAD
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Prototype selection
Supervised classification
Instance-based classifiers
Border prototypes
Data reduction
Clustering
In supervised classification, a training set T is given to a classifier for classifying new prototypes. In practice, not all information in T is useful for classifiers, therefore, it is convenient to discard irrelevant prototypes from T. This process is known as prototype selection, which is an important task for classifiers since through this process the time for classification or training could be reduced. In this work, we propose a new fast prototype selection method for large datasets, based on clustering, which selects border prototypes and some interior prototypes. Experimental results showing the performance of our method and comparing accuracy and runtimes against other prototype selection methods are reported.
Springer-Verlag London Limited
2010
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Olvera-López, J.A., et al., (2010). A new fast prototype selection method based on clustering, Pattern Analysis and Applications, (13): 131–141
CIENCIA DE LOS ORDENADORES
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos:


Fichero Tamaño Formato  
167.-CC.pdf479.17 kBAdobe PDFVisualizar/Abrir