Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1603
Leukemia identification from bone marrow cells images using a machine vision and data mining strategy
Jesús Antonio González Bernal
Ivan Olmos Pineda
Leopoldo Altamirano Robles
BLANCA AURORA MORALES GONZALEZ
CAROLINA RETA CASTRO
MARTHA CORAL GALINDO DOMINGUEZ
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Acute leukemia classification
Cells images
Data mining
Machine vision
Feature extraction
The morphological analysis of medical images to support medical diagnosis is an important research area. This is the case of leukemia identification from bone marrow smears in which cells morphology is studied in order to classify the disease into its main family and subtype, so that a proper treatment can be indicated to the patient. In this paper we present a method to identify leukemia from bone marrow cells images using a combined machine vision and data mining strategy. Our process starts with a segmentation method to obtain leukemia cells and extract from them descriptive characteristics (geometrical, texture, statistical) and eigenvalues. We use these attributes to feed machine learning algorithms that learn to classify acute leukemia families and subtypes according to the FAB system. We show how the combination of descriptive features and eigenvalues helps to improve classification accuracy. Our method achieved accuracy above 95.5% to distinguish between the acute myeloblastic and lymphoblastic leukemia families and accuracy of 90% (and above) among five leukemia subtypes (after the acute leukemia families classification).
IOS Press Content Library
2011
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Gonzalez-Bernal J.A., et al., (2011). Leukemia identification from bone marrow cells images using a machine vision and data mining strategy, Intelligent Data Analysis, Vol. 15, (3): 443-462
CIENCIA DE LOS ORDENADORES
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos:


Fichero Tamaño Formato  
10 Gonzalez_2011_ComputerScience.pdf13.2 MBAdobe PDFVisualizar/Abrir