Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1856
CAR-NF: A classier based on specic rules with high netconf
RAUDEL HERNANDEZ LEON
Jesús Ariel Carrasco Ochoa
José Francisco Martínez Trinidad
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Data mining
Supervised Classification
Class Association Rules
Association Rule Mining
In this paper, an accurate classifier based on Class Association Rules (CARs), called CAR-NF, is proposed. CAR-NF introduces a new strategy for computing CARs, using the Netconf as measure of interest, that allows to prune the CAR search space for building specific rules with high Netconf. Moreover, we propose and prove a proposition that supports the use of a Netconf threshold value equal to 0.5 for mining the CARs. Additionally, a new way for ordering the set of CARs based on their rule sizes and Netconf values is introduced in CAR-NF. The ordering strategy together with the "Best K rules" satisfaction mechanism allows CAR-NF to have better accuracy than CBA, CMAR, CPAR, TFPC and HARMONY classifiers, the best classifiers based on CARs reported in the literature.
ResearchGate
2012
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Hernández-León, R., et al., (2012). CAR-NF: A classifier based on specific rules with high netconf, (ResearchGate): 1-38
CIENCIA DE LOS ORDENADORES
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos:


Fichero Tamaño Formato  
7 Carrasco_2012_DataAnlysis16.pdf297.78 kBAdobe PDFVisualizar/Abrir