Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/22
EEG/ECoG-based BCI systems: a NeuroFuzzy approach using recurrent neural networks and adaptive filters
EMMANUEL MORALES FLORES
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Brain computer
Neurophysiological signls
Electroencephalography
Dynamical recurrent networks
Fuzzy systems
A brain computer interface (BCI) is a system aimed to provide the brain with an additional channel of communication and control, which does not depend on the normal output pathways. This dissertation is focused on the study of signal processing techniques to address two issues of current BCI methodologies. These issues are related to spatial filtering techniques and approaches for capturing temporal behavior of electrical brain signals recorded through two different modalities: Electroencephalography (EEG) and electrocorticography (ECoG). Concerning to spatial filtering, a non-supervised algorithm based on the steepest descent method to adapt spatial filter’s coefficients for preprocessing ECoG signals is proposed.
Instituto Nacional de Astrofísica, Óptica y Electrónica
17-03-2015
Tesis de doctorado
Inglés
Público en general
Morales-Flores E.
ELECTRÓNICA
Aparece en las colecciones: Doctorado en Electrónica

Cargar archivos:


Fichero Descripción Tamaño Formato  
MoralesFlE.pdf30.05 MBAdobe PDFVisualizar/Abrir