Por favor, use este identificador para citar o enlazar este ítem:
http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/2365
Learning temporal nodes Bayesian networks | |
Pablo Francisco Hernández Leal Jesús Antonio González Bernal Eduardo Francisco Morales Manzanares Luis Enrique Sucar Succar | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
Bayesian networks Temporal reasoning Learning | |
Temporal nodes Bayesian networks (TNBNs) are analternative todynamicBayesian networks for temporal reasoning with much simpler and efficient models in some domains. TNBNs are composed of temporal nodes, temporal intervals, and probabilistic dependencies. However, methods for learning this type of models from data have not yet been developed. In this paper, we propose a learning algorithm to obtain the structure and temporal intervals for TNBNs from data. The method consists of three phases: (i) obtain an initial approximation of the intervals, (ii) obtain a structure using a standard algorithm and (iii) refine the intervals for each temporal node based on a clustering algorithm. We evaluated the method with syn- thetic data from three different TNBNs of different sizes. Our method obtains the best score using a combined measure of interval quality and prediction accuracy, and a competitive structural quality with lower running times, compared to other related algorithms. We also present a real world application of the algorithm with data obtained from a combined cycle power plant in order to diagnose temporal faults. | |
Elsevier Inc. | |
2013 | |
Artículo | |
Inglés | |
Estudiantes Investigadores Público en general | |
Hernández-Leal, P., et al., (2013). Learning temporal nodes Bayesian networks, International Journal of Approximate Reasoning, (54): 956–977 | |
CIENCIA DE LOS ORDENADORES | |
Versión aceptada | |
acceptedVersion - Versión aceptada | |
Aparece en las colecciones: | Artículos de Ciencias Computacionales |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
204. Learning temporal nodes Bayesian networks.pdf | 2.57 MB | Adobe PDF | Visualizar/Abrir |