Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/2365
Learning temporal nodes Bayesian networks
Pablo Francisco Hernández Leal
Jesús Antonio González Bernal
Eduardo Francisco Morales Manzanares
Luis Enrique Sucar Succar
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Bayesian networks
Temporal reasoning
Learning
Temporal nodes Bayesian networks (TNBNs) are analternative todynamicBayesian networks for temporal reasoning with much simpler and efficient models in some domains. TNBNs are composed of temporal nodes, temporal intervals, and probabilistic dependencies. However, methods for learning this type of models from data have not yet been developed. In this paper, we propose a learning algorithm to obtain the structure and temporal intervals for TNBNs from data. The method consists of three phases: (i) obtain an initial approximation of the intervals, (ii) obtain a structure using a standard algorithm and (iii) refine the intervals for each temporal node based on a clustering algorithm. We evaluated the method with syn- thetic data from three different TNBNs of different sizes. Our method obtains the best score using a combined measure of interval quality and prediction accuracy, and a competitive structural quality with lower running times, compared to other related algorithms. We also present a real world application of the algorithm with data obtained from a combined cycle power plant in order to diagnose temporal faults.
Elsevier Inc.
2013
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Hernández-Leal, P., et al., (2013). Learning temporal nodes Bayesian networks, International Journal of Approximate Reasoning, (54): 956–977
CIENCIA DE LOS ORDENADORES
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos: