Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/29
Pattern-based clustering using unsupervised decision trees
ANDRES EDUARDO GUTIERREZ RODRÍGUEZ
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Patter mining
Pattern-based clustering
Clustering
Mixed Datasets
In clustering, providing an explanation of the results is an important task. Pattern-based clustering algorithms provide, in addition to the list of objects belonging to each cluster, an explanation of the results in terms of a set of patterns that describe the objects grouped in each cluster. It makes these algorithms very attractive from the practical point of view; however, patternbased clustering algorithms commonly have a high computational cost in the clustering stage. Moreover, the most recent algorithms proposed within this approach, extract patterns from numerical datasets by applying an a priori discretization process, which may cause information loss. In this thesis, we propose new algorithms for extracting only a subset of patterns useful for clustering, from a collection of diverse unsupervised decision trees induced from a dataset. Additionally, we propose a new clustering algorithm based on these patterns.
Instituto Nacional de Astrofísica, Óptica y Electrónica
23-11-2015
Tesis de doctorado
Inglés
Público en general
Gutierrez-Rodriguez A. E.
SISTEMAS DE RECONOCIMIENTO DE CARACTERES
Aparece en las colecciones: Doctorado en Ciencias Computacionales

Cargar archivos:


Fichero Descripción Tamaño Formato  
GutierrezRoAE.pdf1.41 MBAdobe PDFVisualizar/Abrir