Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1402
LCMine: An efficient algorithm for mining discriminative regularities and its application in supervised classification
MILTON GARCÍA BORROTO
JOSE FRANCISCO MARTINEZ TRINIDAD
JESUS ARIEL CARRASCO OCHOA
MIGUEL ANGEL MEDINA PEREZ
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Discriminative regularities
Emerging patterns
Mixed incomplete data
Comprehensible classifiers
In this paper, we introduce an efficient algorithm for mining discriminative regularities on databases with mixed and incomplete data. Unlike previous methods, our algorithm does not apply an a priori discretization on numerical features; it extracts regularities from a set of diverse decision trees, induced with a special procedure. Experimental results show that a classifier based on the regularities obtained by our algorithm attains higher classification accuracy, using fewer discriminative regularities than those obtained by previous pattern-based classifiers. Additionally, we show that our classifier is competitive with traditional and state-of-the-art classifiers.
Elsevier Ltd.
2010
Artículo
Inglés
Estudiantes
Investigadores
Público en general
García-Borroto, M., et al., (2010). LCMine: An efficient algorithm for mining discriminative regularities and its application in supervised classification, Pattern Recognition, (43): 3025–3034
CIENCIA DE LOS ORDENADORES
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos:


Fichero Tamaño Formato  
177.-CC.pdf662.17 kBAdobe PDFVisualizar/Abrir