Por favor, use este identificador para citar o enlazar este ítem:
http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1402
LCMine: An efficient algorithm for mining discriminative regularities and its application in supervised classification | |
MILTON GARCÍA BORROTO JOSE FRANCISCO MARTINEZ TRINIDAD JESUS ARIEL CARRASCO OCHOA MIGUEL ANGEL MEDINA PEREZ | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
Discriminative regularities Emerging patterns Mixed incomplete data Comprehensible classifiers | |
In this paper, we introduce an efficient algorithm for mining discriminative regularities on databases with mixed and incomplete data. Unlike previous methods, our algorithm does not apply an a priori discretization on numerical features; it extracts regularities from a set of diverse decision trees, induced with a special procedure. Experimental results show that a classifier based on the regularities obtained by our algorithm attains higher classification accuracy, using fewer discriminative regularities than those obtained by previous pattern-based classifiers. Additionally, we show that our classifier is competitive with traditional and state-of-the-art classifiers. | |
Elsevier Ltd. | |
2010 | |
Artículo | |
Inglés | |
Estudiantes Investigadores Público en general | |
García-Borroto, M., et al., (2010). LCMine: An efficient algorithm for mining discriminative regularities and its application in supervised classification, Pattern Recognition, (43): 3025–3034 | |
CIENCIA DE LOS ORDENADORES | |
Versión aceptada | |
acceptedVersion - Versión aceptada | |
Aparece en las colecciones: | Artículos de Ciencias Computacionales |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
177.-CC.pdf | 662.17 kB | Adobe PDF | Visualizar/Abrir |