Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1742
A biometric system based on neural networks and SVM using morphological feature extraction from hand-shape images
JUAN MANUEL RAMIREZ CORTES
María del Pilar Gómez Gil
VICENTE ALARCON AQUINO
JOSE MIGUEL DAVID BAEZ LOPEZ
ROGERIO ADRIAN ENRIQUEZ CALDERA
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Biometry
Pattern spectrum
Hand-shape
Verification
Identification
This paper presents a hand-shape biometric system based on a novel feature extraction methodology using the morphological pattern spectrum or pecstrum. Identification experiments were carried out using the obtained feature vectors as an input to some recognition systems using neural networks and support vector machine (SVM) techniques, obtaining in average an identification of 98.5%. The verification case was analyzed through an Euclidean distance classifier, obtaining the acceptance rate (FAR) and false rejection rate (FRR) of the system for some K-fold cross validation experiments. In average, an Equal Error Rate of 2.85% was obtained. The invariance to rotation and position properties of the pecstrum allow the system to avoid a fixed hand position using pegs, as is the case in other reported systems. The results indicate that the pattern spectrum represents a good alternative of feature extraction for biometric applications.
Vilnius University
2011
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Ramirez-Cortes, J.M., et al., (2011). A biometric system based on neural networks and SVM using morphological feature extraction from hand-shape images, INFORMATICA, Vol. 22, (2): 225–240
ELECTRÓNICA
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Electrónica

Cargar archivos:


Fichero Tamaño Formato  
28 Ramirez_2011_InfoInterJournal22.pdf650.81 kBAdobe PDFVisualizar/Abrir