Por favor, use este identificador para citar o enlazar este ítem:
http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1764
Lattice Algebra Approach to Color Image Segmentation | |
GONZALO JORGE URCID SERRANO JUAN CARLOS VALDIVIEZO NAVARRO | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
Color image segmentation Color spaces Convex sets Lattice auto-associative memories Linear mixing model Pixel based segmentation Unsupervised clustering | |
This manuscript describes a new technique for segmenting color images in different color spaces based on geometrical properties of lattice auto-associative memories. Lattice associative memories are artificial neural networks able to store a finite set X of n-dimensional vectors and recall them when a noisy or incomplete input vector is presented. The canonical lattice auto-associative memories include the min memory W𝚡𝚡 and the max memory M𝚡𝚡, both defined as square matrices of size n × n. The column vectors of W𝚡𝚡 and M𝚡𝚡, scaled additively by the components of the minimum and maximum vector bounds of X, are used to determine a set of extreme points whose convex hull encloses X. Specifically, since color images form subsets of a finite geometrical space, the scaled column vectors of each memory will correspond to saturated color pixels. Thus, maximal tetrahedrons do exist that enclose proper subsets of pixels in X and such that other color pixels are considered as linear mixtures of extreme points determined from the scaled versions of W𝚡𝚡 and M𝚡𝚡. We provide illustrative examples to demonstrate the effectiveness of our method including comparisons with alternative segmentation methods from the literature as well as color separation results in four different color spaces. | |
Journal of Mathematical Imaging and Vision | |
2012 | |
Artículo | |
Inglés | |
Estudiantes Investigadores Público en general | |
Urcid Serrano, G. J., et al., (2012), Lattice Algebra Approach to Color Image Segmentation, Journal of Mathematical Imaging and Vision, Vol. 42(2-3):150-162 | |
ÓPTICA | |
Versión aceptada | |
acceptedVersion - Versión aceptada | |
Aparece en las colecciones: | Artículos de Óptica |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
33 Gonzalo_2012_MatheImagVision42.pdf | 1.59 MB | Adobe PDF | Visualizar/Abrir |