Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1842
Classification based on specific rules and inexact coverage
RAUDEL HERNANDEZ LEON
Jesús Ariel Carrasco Ochoa
José Francisco Martínez Trinidad
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Data mining
Supervised classification
Class association rules
Association rule mining
Association rule mining and classification are important tasks in data mining. Using association rules has proved to be a good approach for classification. In this paper, we propose an accurate classifier based on class association rules (CARs), called CAR-IC, which introduces a new pruning strategy for mining CARs, which allows building specific rules with high confidence. Moreover, we propose and prove three propositions that support the use of a confidence threshold for computing rules that avoids ambiguity at the classification stage. This paper also presents a new way for ordering the set of CARs based on rule size and confidence. Finally, we define a new coverage strategy, which reduces the number of non-covered unseen-transactions during the classification stage. Results over several datasets show that CAR-IC beats the best classifiers based on CARs reported in the literature.
Elsevier Ltd.
2012
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Hernández-León, R., et al., (2012). Classification based on specific rules and inexact coverage, Expert Systems with Applications, (39): 11203–11211
CIENCIA DE LOS ORDENADORES
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos:


Fichero Tamaño Formato  
4 Carrasco_2012_ExpertSystemsApp39-2.pdf309.87 kBAdobe PDFVisualizar/Abrir