Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1848
Assessment and prediction of air quality using fuzzy logic and autoregressive models
José Juan Carbajal Hernández
LUIS PASTOR SANCHEZ FERNANDEZ
Jesús Ariel Carrasco Ochoa
José Francisco Martínez Trinidad
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Artificial intelligence
Air quality assessment
Pattern processing
Prediction
In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.
Elsevier Ltd.
2012
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Carbajal-Hernández, J.J., et al., (2012). Assessment and prediction of air quality using fuzzy logic and autoregressive models, Atmospheric Environment, (60): 37-50
CIENCIA DE LOS ORDENADORES
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos:


Fichero Tamaño Formato  
6 Carrasco_2012_AtmosEnviron16-4.pdf1.4 MBAdobe PDFVisualizar/Abrir