Please use this identifier to cite or link to this item:
Itziar Aretxaga
David Hughes
Acceso Abierto
Galaxies: evolution
Galaxies: high-redshift
Large-scale structure of universe
Submillimeter: galaxies
We measure the angular two-point correlation function of submillimeter galaxies (SMGs) from 1.1 mm imaging of the COSMOS field with the AzTEC camera and ASTE 10 m telescope. These data yield one of the largest contiguous samples of SMGs to date, covering an area of 0.72 deg² down to a 1.26 mJy beam⁻¹ (1σ) limit, including 189 (328) sources with S/N ⩾ 3.5 (3).We can only set upper limits to the correlation length rₒ, modeling the correlation function as a power law with pre-assigned slope. Assuming existing redshift distributions, we derive 68.3% confidence level upper limits of rₒ ≲ 6–8h⁻¹ Mpc at 3.7mJy and rₒ ≲ 11–12 h⁻¹ Mpc at 4.2 mJy. Although consistent with most previous estimates, these upper limits imply that the real rₒ is likely smaller. This casts doubts on the robustness of claims that SMGs are characterized by significantly stronger spatial clustering (and thus larger mass) than differently selected galaxies at high redshift. Using Monte Carlo simulations we show that even strongly clustered distributions of galaxies can appear unclustered when sampled with limited sensitivity and coarse angular resolution common to current submillimeter surveys. The simulations, however, also show that unclustered distributions can appear strongly clustered under these circumstances. From the simulations, we predict that at our survey depth, a mapped area of 2 deg² is needed to reconstruct the correlation function, assuming smaller beam sizes of future surveys (e.g., the Large Millimeter Telescope’s 6″ beam size). At present, robust measures of the clustering strength of bright SMGs appear to be below the reach of most observations.
The Astrophysical Journal
Público en general
Williams, Christina C., et al., (2011), ON THE CLUSTERING OF SUBMILLIMETER GALAXIES, The Astrophysical Journal, Vol. 733(92):1-9.
Versión aceptada
acceptedVersion - Versión aceptada
Appears in Collections:Artículos de Astrofísica

Upload archives

File SizeFormat 
57 Williams_2011_ApJ_733_92.pdf1.42 MBAdobe PDFView/Open