Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1896
A dynamic clustering algorithm for building overlapping clusters
AIREL PEREZ SUAREZ
José Francisco Martínez Trinidad
Jesús Ariel Carrasco Ochoa
José Eladio Medina Pagola
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Data mining
Overlapping clustering
Graph-based algorithms
Clustering is a Data Mining technique which has been widely used in many practical applications. In some of these applications like, medical diagnosis, categorization of digital libraries, topic detection and others, the objects could belong to more than one cluster. However, most of the clustering algorithms generate disjoint clusters. Moreover, processing additions, deletions and modifications of objects in the clustering built so far, without having to rebuild the clustering from the beginning is an issue that has been little studied. In this paper, we introduce DCS, a clustering algorithm which includes a new graph-cover strategy for building a set of clusters that could overlap, and a strategy for dynamically updating the clustering, managing multiple additions and/or deletions of objects. The experimental evaluation conducted over different collections demonstrates the good performance of the proposed algorithm.
IOS Press
2012
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Pérez-Suarez, A., et al., (2012). A dynamic clustering algorithm for building overlapping clusters, Intelligent Data Analysis, (16) 211–232
CIENCIA DE LOS ORDENADORES
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos:


Fichero Tamaño Formato  
17 Martinez_InterJournal16.pdf1.31 MBAdobe PDFVisualizar/Abrir