Por favor, use este identificador para citar o enlazar este ítem:
http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/1896
A dynamic clustering algorithm for building overlapping clusters | |
AIREL PEREZ SUAREZ José Francisco Martínez Trinidad Jesús Ariel Carrasco Ochoa José Eladio Medina Pagola | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
Data mining Overlapping clustering Graph-based algorithms | |
Clustering is a Data Mining technique which has been widely used in many practical applications. In some of these applications like, medical diagnosis, categorization of digital libraries, topic detection and others, the objects could belong to more than one cluster. However, most of the clustering algorithms generate disjoint clusters. Moreover, processing additions, deletions and modifications of objects in the clustering built so far, without having to rebuild the clustering from the beginning is an issue that has been little studied. In this paper, we introduce DCS, a clustering algorithm which includes a new graph-cover strategy for building a set of clusters that could overlap, and a strategy for dynamically updating the clustering, managing multiple additions and/or deletions of objects. The experimental evaluation conducted over different collections demonstrates the good performance of the proposed algorithm. | |
IOS Press | |
2012 | |
Artículo | |
Inglés | |
Estudiantes Investigadores Público en general | |
Pérez-Suarez, A., et al., (2012). A dynamic clustering algorithm for building overlapping clusters, Intelligent Data Analysis, (16) 211–232 | |
CIENCIA DE LOS ORDENADORES | |
Versión aceptada | |
acceptedVersion - Versión aceptada | |
Aparece en las colecciones: | Artículos de Ciencias Computacionales |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
17 Martinez_InterJournal16.pdf | 1.31 MB | Adobe PDF | Visualizar/Abrir |