Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/190
FPGA-based compressed sensing reconstruction of sparse signals
HECTOR DANIEL RICO ANILES
JUAN MANUEL RAMIREZ CORTES
JOSE DE JESUS RANGEL MAGDALENO
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Field programmable gate arrays
Image reconstruction
Image sampling
Signal recostruction
Sampling methods
Compressed sensing is a recently proposed technique aiming to acquire a signal with sparse or compressible representation in some domain, using a number of samples under the limit established by the Nyquist theorem. The challenge is to recover the sensed signal solving an underdetermined linear system. Several techniques such as the l1 minimization, Greedy and combinatorial algorithms can be used for that purpose. Greedy algorithms have been found to be more suitable in hardware solutions, however they rely on efficient matrix inversion techniques in order to solve the underdetermined linear systems involved. In this work, a FPGA-based Greedy algorithm architecture with a Chebyshev-type method to solve matrix inversion problem is presented. The architecture was developed for Xilinx Virtex 4 XC4VSX25, Xilinx Spartan 6 XC6SLX45, Altera Cyclone IV EP4CGX150DF31C7 and Altera Cyclone II EP2C35F672C6 FPGAs. The described architecture represents a low-cost and generic solution, robust to changes in word length and signal size. Besides, a MATLAB Graphical User Interface is developed for compressed sensing theory exploration focused on matrix and transform test. MATLAB GUI uses the Compressed Sampling Matching Pursuit algorithm to recover the sensed signal; reconstruction can easily be extended to other compressed sensing algorithms.
Instituto Nacional de Astrofísica, Óptica y Electrónica
2014-09
Tesis de maestría
Inglés
Estudiantes
Investigadores
Público en general
Rico-Aniles H.D.
ELECTRÓNICA
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Maestría en Electrónica

Cargar archivos:


Fichero Descripción Tamaño Formato  
RicoAHD.pdf2.29 MBAdobe PDFVisualizar/Abrir