Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/2079
A Bayesian approach for object classification based on clusters of SIFT local features
Leonardo Chang Fernández
Luis Enrique Sucar Succar
Eduardo Francisco Morales Manzanares
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Object class recognition
Local features
SIFT
Clustering
Bayesian networks
Several methods have been presented in the literature that successfully used SIFT features for object identification, as they are reasonably invariant to translation, rotation, scale, illumination and partial occlusion. However, they have poor performance for classification tasks. In this work, SIFT features are used to solve object class recognition problems in images using a two-step process. In its first step, the proposed method performs clustering on the extracted features in order to characterize the appearance of the different classes. Then, in the classification step, it uses a three layer Bayesian network for object class recognition. Experiments show quantitatively that clusters of SIFT features are suitable to represent classes of objects. The main contributions of this paper are the introduction of a Bayesian network approach in the classification step to improve performance in an object class recognition task, and a detailed experimentation that shows robustness to changes in illumination, scale, rotation and partial occlusion.
Elsevier Ltd.
2012
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Chang-Fernández, L., et al., (2012). A Bayesian approach for object classification based on clusters of SIFT local features, Expert Systems with Applications, Num. (39): 1679–1686
CIENCIA DE LOS ORDENADORES
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos:


Fichero Tamaño Formato  
33 Sucar_2012_ExpSysApp39.pdf1.05 MBAdobe PDFVisualizar/Abrir