Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/2129
Harmonic oscillator position eigenstates via application of an operator on the vacuum
FRANCISCO SOTO EGUIBAR
Héctor Manuel Moya Cessa
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Position eigenstates
Harmonic oscillator
Squeezed states
Minimum uncertainty states
Squeeze operator
Harmonic oscillator squeezed states are states of minimum uncertainty, but unlike coherent states, in which the uncertainty in position and momentum are equal, squeezed states have the uncertainty reduced, either in position or in momentum, while still minimizing the uncertainty principle. It seems that this property of squeezed states would allow to obtain the position eigenstates as a limiting case, by doing null the uncertainty in position and infinite in momentum. However, there are two equivalent ways to define squeezed states, that lead to different expressions for the limiting tates. In this work, we analyze both definitions and show the advantages and disadvantages of using them in order to find position eigenstates. With this in mind, but leaving aside the definitions of squeezed states, we find an operator that applied to the vacuum gives position eigenstates. We also analyze some properties of the squeezed states, based on the new expressions obtained for the eigenstates of the position.
Revista Mexicana de Física E
17-10-2013
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Soto-Eguibar, Francisco and Moya-Cessa, Héctor Manuel, (2013). Harmonic oscillator position eigenstates via application of an operator on the vacuum, Revista Mexicana de Física E, Vol. 59(2):122–127
ÓPTICA
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Óptica

Cargar archivos: