Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/2275
InstancRank based on borders for instance selection
Pablo Francisco Hernández Leal
Jesús Ariel Carrasco Ochoa
José Francisco Martínez Trinidad
José Arturo Olvera López
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Instance selection algorithms are used for reducing the number of training instances. However, most of them suffer from long runtimes which results in the incapability to be used with large datasets. In this work, we introduce an Instance Ranking per class using Borders (instances near to instances belonging to different classes), using this ranking we propose an instance selection algorithm (IRB). We evaluated the proposed algorithm using k-NN with small and large datasets, comparing it against state of the art instance selection algorithms. In our experiments, for large datasets IRB has the best compromise between time and accuracy. We also tested our algorithm using SVM, LWLR and C4.5 classifiers, in all cases the selection computed by our algorithm obtained the best accuracies in average.
Elsevier Ltd.
2013
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Hernández-Leal, P., et al., (2013). InstanceRank based on borders for instance selection, Pattern Recognition, (46): 365-375
CIENCIA DE LOS ORDENADORES
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos: