Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/2347
FPGA-Based Broken Bars Detection on Induction Motors Under Different Load Using Motor Current Signature Analysis and Mathematical Morphology
José de Jesús Rangel Magdaleno
Hayde Peregrina Barreto
JUAN MANUEL RAMIREZ CORTES
María del Pilar Gómez Gil
ROBERTO MORALES CAPORAL
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Broken bars
Fault diagnosis
FPGA
Mathematical morphology
MCSA
Broken bars detection on induction motors has been a topic of interest in recent years. Its detection is important due to the fact that the failure is silent and the consequences it produces as power consumption increasing, vibration, introduction of spurious frequencies in the electric line, among others, can be catastrophic. In this paper, the use of motor current signature analysis and mathematical morphology to detect broken bars on induction motors under different mechanical load condition is analyzed. The proposed algorithm first identifies the motor load and then the motor condition. The statistical analysis of several tests under different motor loads (100%, 75%, 50%, and 25%) and motor condition (healthy, one broken bar, and two broken bars) is presented. The proposed method has been implemented in a field programmable gate array, to be used in real-time online applications. The algorithm obtained in average a 95% accuracy of failure detection.
IEEE
2013
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Rangel, J.J., et al., (2013). FPGA-Based Broken Bars Detection on Induction Motors Under Different Load Using Motor Current Signature Analysis and Mathematical Morphology, IEEE Transactions on Instrumentation and Measurement, Vol. 63 (5): 1032-1040
CIENCIA DE LOS ORDENADORES
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Artículos de Ciencias Computacionales

Cargar archivos: