Please use this identifier to cite or link to this item: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/2356
Perturbation Method as a Powerful Tool to Solve Highly Nonlinear Problems: The Case of Gelfand’s Equation
Librado Arturo Sarmiento Reyes
ALEJANDRO DIAZ SANCHEZ
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Gelfand's differential equation
Nonlinear differential equation
Pertubation method
Approximate solutions
Solving nonlinear ordinary differential equations is relevant because phenomena on the frontiers of modern sciences are often nonlinear in nature; therefore this article proposes Perturbation Method (PM) to solve nonlinear problems. As case study PM is employed to obtain a handy approximate solution for Gelfand’s differential equation which governing combustible gas dynamics. Comparing figures between approximate and exact solutions, it is shown that PM method result extremely efficient.
Asian Journal of Mathematics and Statistics
2013-05
Artículo
Inglés
Estudiantes
Investigadores
Público en general
Filobello-Nino, U., et al, (2013), Perturbation Method as a Powerful Tool to Solve Highly Nonlinear Problems: The Case of Gelfand’s Equation, Asian Journal of Mathematics and Statistics, Vol. 6(2):76–82
ELECTRÓNICA
Versión aceptada
acceptedVersion - Versión aceptada
Appears in Collections:Artículos de Electrónica

Upload archives