Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/27
Real-time human action recognition using a reduced feature set
GLORIA CASTRO MUNOZ
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Real-time
Human action recognition
Video surveillance
Support Vector Machine
The Human Action Recognition (HAR) from video sequences is a topic which has captured the interest of a large number of researchers from industry, academia, consumer agencies and security agencies. The solid interest in the topic is motivated by the wide variety and importance of promising applications for example rehabilitation of patients, monitoring and supporting of children and elderly people, automatic annotation of video, human-computer interfaces, and video surveillance among others. Particularly the increasing demand for security and safety by society in recent years has occasioned significant advances in video surveillance technology. However despite these advances, video surveillance systems are not able to analyze in realtime the huge amounts of video coming from video surveillance cameras installed in the worldwide and therefore, they can’t detect and alert about potential criminal activity in real-time.
Instituto Nacional de Astrofísica, Óptica y Electrónica
11-12-2015
Tesis de doctorado
Inglés
Público en general
Castro-Muñoz G.
ELECTRÓNICA
Aparece en las colecciones: Doctorado en Electrónica

Cargar archivos:


Fichero Descripción Tamaño Formato  
CastroMuG.pdf2.85 MBAdobe PDFVisualizar/Abrir