Por favor, use este identificador para citar o enlazar este ítem: http://inaoe.repositorioinstitucional.mx/jspui/handle/1009/668
Segmentación de imágenes hiperespectrales usando memorias asociativas morfológicas
JUAN CARLOS VALDIVIEZO NAVARRO
GONZALO JORGE URCID SERRANO
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Remote sensing
Imaging spectroscopy
The advances in image spectroscopy have been applied for Earth observation at different wavelengths of the electromagnetic spectrum using aircrafts or satellite systems. This new technology, known as hyperspectral remote sensing, has found many applications in agriculture, mineral exploration and environmental monitoring since images acquired by these devices register the constituent materials in hundred of spectral bands. Each pixel in the image contains the spectral information of the zone. However, processing these images can be a difficult task because the spatial resolution of each pixel is in the order of meters, an area of such size that can be composed of different materials. The following research presents an alternative methodology to detect pixels in the image that best represent the spectrum of one material with as little contamination of any other as possible. The detection of these pixels, also called endmembers, represents the first step for image segmentation and is based on morphological autoassociative memories and the property of strong lattice independence between patterns. Morphological associative memories and strong lattice independence are concepts based on lattice algebra. Our procedure subdivides a hyperspectral image into regions looking for sets of strong lattice independent pixels. These patterns will be identified as endmembers and will be used for the construction of abundance maps.
Instituto Nacional de Astrofísica, Óptica y Electrónica
2007-09
Tesis de maestría
Español
Estudiantes
Investigadores
Público en general
Valdiviezo-Navarro JC
TRATAMIENTO DIGITAL. IMÁGENES
Versión aceptada
acceptedVersion - Versión aceptada
Aparece en las colecciones: Maestría en Óptica

Cargar archivos:


Fichero Tamaño Formato  
ValdiviezoNJC.pdf3.02 MBAdobe PDFVisualizar/Abrir